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Observing the mass shifts of chiral partners will provide invaluable insight into the role of chiral
symmetry breaking in the generation of hadron masses. Because both the K� and K1 mesons have vacuum
widths smaller than 100 MeV, they are ideal candidates for realizing mass shift measurements. On the other
hand, the different momentum dependence of the longitudinal and transverse modes smear the peak
positions. In this work, we analyze the angular dependence of the two-body decays of both theK� andK1. It
is found that the longitudinal and transverse modes of the K� can be isolated by observing the pseudoscalar
decay in either the forward or perpendicular directions, respectively. For the K1 decaying into a vector
meson and a pseudoscalar meson, one can accomplish the same goal by further observing the polarization of
the vector meson through its angular dependence on the two pseudoscalar meson decay.

DOI: 10.1103/PhysRevD.109.114042

I. INTRODUCTION

Understanding the generation of hadron masses stands as
one of the fundamental puzzles in quantum chromodynam-
ics (QCD). It is widely believed that spontaneous chiral
symmetry breaking [1,2] partly contributes to the generation
of hadronic masses [3–6]. Experiments conducted world-
wide have aimed to observe the mass shift of hadrons at
finite temperatures or densities [7–11]. This is because
chiral symmetry is expected to be partially restored in the
initial stages of relativistic heavy ion collisions and in
nuclear matter probed by nuclear target experiments,
respectively.
In particular, the J-PARC E16 experiment [8,12] will

pursue the observation of the mass shift of the ϕ meson
through eþe− pairs emanating from pA collisions. This
measurement will be complemented by the J-PARC E88
experiment [13], which aims to measure the ϕ meson
through its KþK− decay. The ϕ is expected to be a
particularly sensitive probe, as its vacuum width is small,

meaning that any width increase in the medium will not be
significant enough to disrupt experimental reconstruction
of the peak position [14].
On the other hand, to isolate the effect of chiral

symmetry restoration in a medium, the transformation
of chiral partners toward degeneracy would be a critical
experimental signal. This inevitably leads us to study the
K�; K1 system as they appear to be the only realistically
observable chiral partners, of which both have small
vacuum widths [15,16].
The existence of the spin degrees of freedom, however,

makes the situation more complicated, as both vector and
axial vector mesons will have different responses depend-
ing on their spin orientation with respect to their motion
relative to the medium. This effect is dominated by non-
chiral symmetry-breaking effects [17], but it will cause the
longitudinal and transverse modes to diverge for larger
momenta, obscuring the peak position [18,19].
In a recent publication [20], we have shown that the

longitudinal and transverse modes of the ϕ meson can be
discriminated by analyzing the angular dependence of its
two-body decay. In particular, the eþe− and KþK− decays
can be used as complementary measurements.
In this work, we analyze the angular dependence of the

two-body decays of both the K� and K1. As we will show,
the longitudinal and transverse modes of the K�, or any
other vector meson such as the ρ (which decays from K1)
can be isolated by observing the pseudoscalar decay in
either the forward or perpendicular directions, respectively.
For the K1 decaying into a vector meson and a pseudoscalar
meson, one can accomplish the same goal by further
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observing the polarization of the vector meson as discussed
before.
The paper is organized as follows. In Sec. II, we introduce

the relevant effective interaction Lagrangians and estimate
the coupling constants for each decay. Then we study a
spin-1 particle state with a superposition of three different
helicities and discuss how the general angular distribution is
connected to the spin density matrix. We furthermore point
out that the same result can be obtained using the helicity
formalism. We then summarize our discussion in Sec. III.
More details regarding the calculations are provided in the
appendices.

II. (AXIAL)VECTOR MESON DECAY RATE

In this section, we will introduce the basic kinematics of
the two-body decay channels, along with phenomenologi-
cal Lagrangians describing the interactions between the
relevant particles, and estimate the corresponding hadronic
coupling constants. We closely analyze the decay channels
ρð770Þ → ππ and K�ð892Þ → Kπ, both of which will be
denoted as V → PP. For the A → VP decays, we study
K1ð1270Þ → ρð770ÞK andK1ð1270Þ → K�ð892Þπ. Here P
denotes a pseudoscalar meson while V and A denote a
vector meson and an axial vector meson, respectively. In
the decay, we will denote θ and ϕ as polar and azimuthal
angles of one of the decay products, measured in the center
of mass (c.m.) frame (see Fig. 1). The z-axis is defined to
align with the momentum direction of the initial particle in
the Lab frame.
We assume that the initial (axial)vector meson is a

superposition of the different helicity states jλi (λ ¼ �1:
transverse polarization, λ ¼ 0: longitudinal polarization)
with respective amplitudes aλ. We can hence express the

general (axial)vector meson state as

jV=Ai ¼
X

λ¼�1;0

aλjλi: ð1Þ

The spin density matrix ρλλ0 is defined using the coefficients
aλ and reads

ρλλ0 ¼ aλa⋆λ0 : ð2Þ

The trace of the spin density matrix is normalized to 1:
ρ11 þ ρ00 þ ρ−1−1 ¼ 1. For a transversely polarized (axial)
vector meson, the meson spin z component will be
Jz ¼ �1, thus ρ00 ¼ 0. In contrast, if the meson is longi-
tudinally polarized, Jz ¼ 0 and ρ00 ¼ 1. The density matrix
of an unpolarized meson has diagonal entries of 1=3,
specifically ρ11 ¼ ρ00 ¼ ρ−1−1 ¼ 1

3
.

A. ρ → ππ and K� → Kπ decay

The phenomenological interaction Lagrangians of the
vector meson with two pseudoscalar mesons used in this
work, are adapted from Ref. [21] and given as

L ¼ gρππðπþ ∂

↔

μπ
−ρμ0 þ πþ ∂

↔

μπ
0ρμ− þ π− ∂

↔

μπ
0ρμþÞ; ð3Þ

L ¼
ffiffiffi
2

p
gK�KπðK̄ τ⃗ ·∂μπ⃗ − ∂μK̄ τ⃗ ·π⃗ÞK�μ: ð4Þ

K�; K are isomultiplets, their matrix representation

being listed in Appendix A. ∂

↔

μ is defined as πþ ∂

↔

μπ
− ¼

πþð∂μπ−Þ − ð∂μπþÞπ−. All the masses of isomultiplets
are isospin averaged using the PDG data [22],
giving mK ¼ 495.644 MeV, mK� ¼ 893.61 MeV, mρ ¼
775.16 MeV and mπ ¼ 138.037 MeV. Similarly, in order
to evaluate the coupling constants gρππ and gK�Kπ , we use
the partial decay width from the PDG [22]. The initial spin
average involves a total of 3 degrees of freedom. For
ρ → ππ, depending on the isospin, the decay modes are
ρþ → πþπ0; ρ− → π−π0 and ρ0 → πþπ−. For the K� → Kπ
decay, they are Kþ� → Kþπ0; K0πþ and K0� → K0π0;
Kþπ−. Therefore, after summing over the initial isospin
components, the average is obtained by dividing by a factor
of 3 for ρ → ππ and 4 for K� → Kπ. The respective widths
are then obtained as

Γρππ ¼
g2ρππ
8π

jp1j
m2

ρ

4

3
jp1j2 ¼ 149 MeV;

ΓK�Kπ ¼
g2K�Kπ

8π

jp1j
m2

K�
4jp1j2 ¼ 51.4 MeV; ð5Þ

where

jp1j ¼
1

2m0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

0 − ðm1 −m2Þ2Þðm2
0 − ðm1 þm2Þ2Þ

q

FIG. 1. Spin-1 particle decay in its rest frame. Cyan and red
arrows each denote one decay particle after decay. The blue arrow
stands for the traveling direction of the (axial) vector-meson in
the Lab frame.
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is the momentum of the two produced particles in the c.m.
frame, while m0 stands for the mass of the initial particle.
For the V → PP decay, m1 is taken to be one of the
outgoing π mesons. For the A → VP decay, m1 is the mass
of the produced vector-meson. From the partial decay width
of the initial vector-meson, we can obtain the coupling
strength of each decay channel. The resultant coupling
constants of the respective interaction Lagrangians are listed
in Table I.
Assuming that the initial (axial)vector-meson is in the

general configuration of Eq. (1), we can obtain the general
angular distribution as [23]

1

Γ
dΓ
dΩ

¼ 3

8π
ð2ρ00cos2θ þ ð1 − ρ00Þsin2θ

− 2Re½ρ1−1�sin2θ cos 2ϕþ 2Im½ρ1−1�sin2θ sin 2ϕ
−

ffiffiffi
2

p
Re½ρ10 − ρ−10� sin 2θ cosϕ

þ
ffiffiffi
2

p
Im½ρ10 þ ρ−10� sin 2θ sinϕÞ; ð6Þ

where θ and ϕ are as before the polar and azimuthal angles
of the outgoing daughter particle. The details of this
calculation are given in Appendix B. Integrating 1

Γ
dΓ
dΩ over

ϕ, we acquire the polar angle distribution as

WðθÞ ¼ 3

4
ðð1 − ρ00Þ þ ð3ρ00 − 1Þcos2θÞ: ð7Þ

If we substitute ρ00 ¼ 0, WðθÞ becomes the decay distri-
bution of a transversely polarized (axial)vector meson,
while for ρ00 ¼ 1, we get its longitudinal counterpart. Both
distributions are depicted in Fig. 2, where ρ00 ¼ 0 (T) and
ρ00 ¼ 1 (L) correspond to the solid and dotted lines,
respectively. They are also a depiction of Eq. (B3) in
Appendix B. These results agree with the result derived
using polarization tensor [20].

B. K1 → ρK and K1 → K�π decay

The Lagrangian characterizing the coupling between the
axial vector meson and a vector and pseudoscalar meson
[21] is given as

L ¼
ffiffiffi
2

p
mK1

ðgK1ρKK̄ τ⃗ ·ρ⃗μ − gK1K�πK̄�
μτ⃗ · π⃗ÞKμ

1: ð8Þ

The matrix representation of the K1 field is given in
Appendix A.

As before, we first compute the partial decay widths
using the above interactions, giving

ΓK1ρK ¼ g2K1ρK

8π
jp1j
�
3þ jp1j2

m2
ρ

�
¼ 34.2 MeV;

ΓK1K�π ¼
g2K�Kπ

8π
jp1j
�
3þ jp1j2

m2
K�

�
¼ 18.9 MeV: ð9Þ

The partial decay widths of theK1 decay channels are taken
from the PDG [22]. Following the same procedure as in the
previous subsection, the angular dependence of the decay
distribution is obtained as

1

Γ
dΓ
dΩ

¼ 3

4πð3þ p12

m2
1

Þ

�
1þ p21

2m2
1

ð1− ρ00 þ ð3ρ00 − 1Þcos2θ

−
ffiffiffi
2

p
Re½ρ10 − ρ−10� sin2θ cosϕ

þ
ffiffiffi
2

p
Im½ρ10 þ ρ−10� sin2θ sinϕ

− 2Re½ρ1−1�sin2θ cos2ϕþ 2Im½ρ1−1�sin2θ sin2ϕÞ
�
:

ð10Þ

Integrating over ϕ, we now find the polar angle distribution
for K1 → ρKðK�πÞ,

WðθÞ ¼ 3

2ð3þ p21
m2

1

Þ

�
1þ p21

2m2
1

ð1− ρ00 þ ð3ρ00 − 1Þcos2θÞ
�
:

ð11Þ

As one can see, compared to Eq. (7) for the K� decay, there
is an extra momentum dependence in the second term
inside the large bracket of the above equation. The angular
dependence of this distribution is shown in Fig. 3.
Unfortunately, unlike the case shown in Fig. 2, if the
polarization of the final vector-meson is not measured, one
cannot distinguish L or T mode of the initial K1, which can
be understood from the suppression factor p21=ð2m2

1Þ ¼
6 × 10−4 ðρKÞ;¼ 5.6 × 10−2 (K�π) appearing in the sec-
ond term in the large bracket of Eq. (11).
However, if one measures the polarization of the final

vector meson, one can distinguish the T or L modes of the
initial K1 meson. Then, there are a total of four possible
combinations of initial and final vector-meson polariza-
tions. Explicit calculations of the corresponding four
amplitudes are given in Appendix B. The final results
are listed below.

TABLE I. Coupling constant for each decay channel and the
respective momentum of the daughter particle in the c.m. frame.

Decay ρ → ππ K� → Kπ K1 → ρK K1 → K�π

jp1jðMeVÞ 362 289 27 299
gABC 5.96 3.27 3.26 0.71
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jMTT j2 ¼ 2m2
K1
g2K1VP

ð1þ cos2θÞ;
jMLT j2 ¼ 2m2

K1
g2K1VP

sin2θ;

jMTLj2 ¼ 2m2
K1
g2K1VP

E2
1

m2
1

sin2θ;

jMLLj2 ¼ 2m2
K1
g2K1VP

E2
1

m2
1

cos2θ: ð12Þ

The first and second subscripts of M (T or L)
here represent the polarization of an initial K1 and final

vector-meson, respectively. The corresponding results are
shown in Fig. 4. As can be seen there, once we isolate the
angular dependence of T and L modes of the final vector
meson, one can distinguish the transverse K1 component
by looking at the forward or backward direction.
Conversely, when we measure the longitudinal component
of the final vector meson, one can isolate the longitudinal
K1 component by again looking at the forward or
backward direction. The improvement compared to the
situation shown in Fig. 3 is clear.

C. Helicity basis and Wigner D-matrix

So far, we have computed the general angular decay
distribution by using the respective interaction Lagrangian
for each decay channel. Here, we shall see that the same
angular distribution is reproduced by taking advantage of
the helicity formalism. As the basic ingredient, we need
the Wigner D-matrix and the density matrix of an initial
(axial)vector-meson. The convention for the Wigner
D-matrix [24,25] is adopted from that of Refs. [26,27].
The helicity basis for a massive particle is labeled by its
momentum p and helicity λ and is obtained by a boost
along z-direction from the rest state followed by the
rotation described by an Euler angle ðϕ; θ; 0Þ.

FIG. 2. Angular distribution of decay rate of (a) ρ → ππ and
(b) K� → Kπ in the c.m. frame for each polarization. T stands for
transverse polarization and L stands for longitudinal polarization
of the initial vector-meson. (a) dΓ

d cos θ of ρ → ππ in the c.m. frame
and (b) dΓ

d cos θ of K
� → Kπ in the c.m. frame.

FIG. 3. Angular decay distribution of the K1 → ρK and
K1 → K�π channels in the c.m. frame for an initially polarizedK1.

FIG. 4. Angular distribution of decay rate of (a) K1 → ρK
and (b) K1 → K�π in the c.m. frame for each polarization. The
first and second T/L stands for the initial and final polarization of
the spin-1 particle, respectively. (a) dΓ

d cos θ of K1 → ρK in the c.m.
frame and (b) dΓ

d cos θ of K1 → K�π in the c.m. frame.
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D1
mm0 ðϕ;θ;0Þ ¼

0
BBB@

1þcosθ
2

e−iϕ − 1ffiffi
2

p sinθe−iϕ 1−cosθ
2

e−iϕ

1ffiffi
2

p sinθ cosθ − 1ffiffi
2

p sinθ

1−cosθ
2

eiϕ 1ffiffi
2

p sinθeiϕ 1þcosθ
2

eiϕ

1
CCCA;

ð13Þ

By applying a Wigner D-matrix, we rotate the density
matrix so that the quantization axis rotates from the z-axis
to align with the direction of momentum of an outgoing
particle, specified by the angles ϕ and θ.

�
1

Γ
dΓ
dΩ

�
¼ 3

4π

X
λ;m;m0¼�1;0

D1†
λmρmm0D1

m0λjHðλ1; λ2Þj2; ð14Þ

Here, λ ¼ λ1 − λ2, where λ1 and λ2 are the helicities of the
daughter particles of mass m1 and m2, respectively.
Hðλ1; λ2Þ here stands for the interaction Hamiltonian for
each helicity component of corresponding decay, which
we can calculate from the interaction Lagrangians given
before. More details regarding this calculation are
explained in Appendix C. Since the final particles are
spinless, for the V → PP decay for example one should
use Eq. (14) with only the λ ¼ 0 component by definition.
This exactly reproduces the result of Eq. (6). On the other
hand, for A → VP one needs to sum over all the helicity
components λ ¼ �1, 0.

III. SUMMARY AND CONCLUSIONS

In this work, we have shown that one can isolate the
initial longitudinal and transverse modes of the K� and K1

from observing the decay angles and polarizations of their
decay particles. In particular, for K�, this is possible by
measuring the decay angle distributions of the outgoing
pseudoscalar mesons. For K1, one furthermore needs to

determine the polarization of the outgoing vector meson to
disentangle the longitudinal and transverse modes.
Such a measurement should be feasible in a future

J-PARC experiment. This will help to reduce the uncer-
tainty of the mass shift measurement of these two particles
in nuclear matter. Once this is realized, the chiral partner
nature of K� and K1 may be experimentally confirmed,
which will bring us one step closer to understanding the
role of chiral symmetry breaking and restoration to the
generation of hadron masses.
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APPENDIX A: EFFECTIVE INTERACTION
LAGRANGIAN

K, K�, and K1 isodoublet matrices are defined as

K� ¼
�
Kþ�

K0�

�
; K̄ ¼ ðK− K̄0 Þ;

K1 ¼
�
Kþ

1

K0
1

�
; K̄� ¼ ðK−� K̄0� Þ: ðA1Þ

Direct matrix multiplication yields the interaction
Lagrangian as

Lρππ ¼ gρππððπþ∂μπ− − ∂μπ
þπ−Þρ0μ þ ðπ−∂μπ0 − ∂μπ

−π0Þρþμ þ ðπþ∂μπ0 − ∂μπ
þπ0Þρ−μÞ; ðA2Þ

LK�Kπ ¼ gK�Kπ½
ffiffiffi
2

p
ðK−

∂μπ
0 − ∂μK−π0 þ K̄0

∂μ

ffiffiffi
2

p
π− − ∂μK̄0

ffiffiffi
2

p
π−ÞKþ�μ

þ
ffiffiffi
2

p
ðK−

∂μ

ffiffiffi
2

p
πþ − ∂μK−

ffiffiffi
2

p
πþ − K̄0

∂μπ
0 þ ∂μK̄0π0ÞK0�μ�; ðA3Þ

LK1VP ¼ mK1
gK1K�π

ffiffiffi
2

p
½ðK−�

μ π0 þ K̄0�
μ

ffiffiffi
2

p
π−ÞKþμ

1 þ ðK−�
μ

ffiffiffi
2

p
πþ − K̄0�

μ π0ÞK0μ
1 �

−mK1
gK1ρK

ffiffiffi
2

p
½ðK−ρ0μ þ K̄0

ffiffiffi
2

p
ρþμ ÞKþμ

1 þ ðK−
ffiffiffi
2

p
ρþμ − K̄0ρ0μÞK0μ

1 �: ðA4Þ
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APPENDIX B: DISENTANGLING THE
POLARIZATIONS OF A VECTOR-MESON
USING THE POLARIZATION TENSOR AND

VECTOR

In this appendix, we will discuss two methods to
disentangle the contributions of different polarization
components of vector mesons to their decay amplitudes.
The first one makes use of the polarization tensor and can
only be used for purely transversely or longitudinally
polarized vector/axial-vector mesons. The second more
general method uses the polarization vector and can be
applied to an arbitrary spin configuration. For the first
method, we first need to define the polarization tensors as

Pμν
T ¼

 
0 0

0 δij − qiqj

q2

!
; Pμν

L ¼

0
B@

q2

m2
0

q0qi

m2
0

q0qi

m2
0

q2
0
qiqj

m2
0
q2

1
CA: ðB1Þ

Contracting these polarization tensors with the decay
amplitude, we can disentangle its transverse and longi-
tudinal parts. m0, q0 and qi here stand for the mass, energy
and momentum of the considered vector/axial-vector
meson. In what follows, we will display the ρ → ππ decay
as an example of V → PP and the K1 → ρK decay as an
example of A → VP. The same method can also be applied
to K� → Kπ and K1 → K�π, respectively. The decay
amplitudes for the two cases are obtained as

Mμν ¼ g2ρππðp1 − p2Þμðp1 − p2Þν;
Mμν ¼ 2m2

K1ρK
g2K1ρK

εμðλρÞε�νðλρÞ: ðB2Þ

Contracting these with the above polarization tensors,
taking the final spin sum (if applicable), we get

ρ → π þ π

(
jMj2T ¼ 2g2ρππp21sin

2θ;

jMj2L ¼ 4g2ρππp21cos
2θ;

ðB3Þ

and

K1 → ρþ K

8>><
>>:

jMj2T ¼ m2
K1
g2K1ρK

�
2þ p21

m2
ρ
sin2θ

�
;

jMj2L ¼ 2m2
K1
g2K1ρK

�
1þ p21

m2
ρ
cos2θ

�
:

ðB4Þ

The different factors 2 and 1 appearing in the fist terms
within the large brackets in Eq. (B4) are due to the different
degeneracy factors of the two transverse and one longi-
tudinal modes for a massive spin-1 particle.
Let us next move on to the second method, in which we

can further study the contributions of the different helicity
states and their mixing. The polarization vectors of the

initial particle in its own rest frame for each helicity state
are given as

εμð0;�1Þ ¼

0
BBBB@

0

∓ 1ffiffi
2

p

− iffiffi
2

p

0

1
CCCCA; εμð0; 0Þ ¼

0
BBBB@

0

0

0

1

1
CCCCA; ðB5Þ

where εμðp; λÞ is the general polarization vector (that will
be more explicitly discussed further below) with p being the
particle momentum and λ its helicity. Taking the absolute
square of the invariant amplitude

MVPP ¼ gVPPðp1 − p2Þμ
X

λV¼�1;0

aλVε
μðλVÞ; ðB6Þ

yields the general angular distribution which can be
expressed as

jMj2 ¼ 2g2VPPjp1j2ð1 − ρ00 þ ð3ρ00 − 1Þcos2θ
− 2Re½ρ1−1�sin2θ cos 2ϕþ 2Im½ρ1−1�sin2θ sin 2ϕ
−

ffiffiffi
2

p
Re½ρ10 − ρ−10� sin 2θ cosϕ

þ
ffiffiffi
2

p
Im½ρ10 þ ρ−10� sin 2θ sinϕÞ; ðB7Þ

where ρλλ0 is defined in Eq. (2).
For the A → VP decay, we also need the polarization

vector of the produced vector-meson in the rest frame of the
initial axial vector-meson, which is obtained by an inverse
Lorentz boost along z-axis followed by an Euler rotation
Rðϕ; θ; 0Þ. Rðα; β; γÞ here rotates the object about the z-axis
by an angle of γ, followed by a rotation around the y-axis
by an angle of β, and finally followed by an angle of α
around the z-axis. The polarization vectors of the produced
vector-meson in the c.m. frame are then obtained as

εμðp⃗;�1Þ ¼

0
BBBBB@

0

∓ 1ffiffi
2

p cos θ cosϕþ iffiffi
2

p sinϕ

∓ 1ffiffi
2

p cos θ sinϕ − iffiffi
2

p cosϕ

� 1ffiffi
2

p sin θ

1
CCCCCA;

εμðp⃗; 0Þ ¼

0
BBBBBB@

jp1j
m1

E1

m1
sin θ cosϕ

E1

m1
sin θ sinϕ

E1

m1
cos θ

1
CCCCCCA
: ðB8Þ

E1 here is the energy of the produced vector-meson in the
c.m. frame. The scalar products between the polarization
vectors of the initial axial vector-meson and the final
vector-meson are thus calculated as,
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εK1
ð1Þ · ε�ρð�1Þ ¼ −

1� cos θ
2

eiϕ; εK1
ð−1Þ · ε�ρð�1Þ ¼ −

1 ∓ cos θ
2

e−iϕ;

εK1
ð0Þ · ε�ρð�1Þ ¼∓ 1ffiffiffi

2
p sin θ; εK1

ð�1Þ · ε�ρð0Þ ¼ � E1ffiffiffi
2

p
m1

sin θe�iϕ;

εK1
ð0Þ · ε�ρð0Þ ¼ −

E1

m1

cos θ: ðB9Þ

The general angular distribution is calculated as

MK1VPðλVÞ ¼
ffiffiffi
2

p
mK1

gK1VP

X
λK1¼�1;0

aλK1 ε
μðλK1

Þε�μðλVÞ; ðB10Þ

X
λV¼�1;0

jMK1VPðλVÞj2 ¼ 2m2
K1
g2K1VP

�
1þ p21

2m2
1

ð1− ρ00þð3ρ00− 1Þcos2θ− 2Re½ρ1−1�sin2θ cos2ϕ

þ 2Im½ρ1−1�sin2θ sin2ϕ−
ffiffiffi
2

p
Re½ρ10− ρ−10�sin2θ cosϕþ

ffiffiffi
2

p
Im½ρ10þ ρ−10� sin2θ sinϕÞ

�
: ðB11Þ

Additionally, using the scalar product of the polarization vectors of the initial axial vector-meson and the final vector-
meson, we obtain the four possible amplitudes depicted in Fig. 4 as follows.

jMTT j2 ¼ 2m2
K1
g2K1VP

X
λK1¼�1

X
λV¼�1

jεμðλK1
Þε�μðλVÞj2 ¼ 2m2

K1
g2K1VP

ð1þ cos2θÞ;

jMLT j2 ¼ 2m2
K1
g2K1VP

X
λK1¼0

X
λV¼�1

jεμðλK1
Þε�μðλVÞj2 ¼ 2m2

K1
g2K1VP

sin2θ;

jMTLj2 ¼ 2m2
K1
g2K1VP

X
λK1¼�1

X
λV¼0

jεμðλK1
Þε�μðλVÞj2 ¼ 2m2

K1
g2K1VP

E2
1

m2
1

sin2θ;

jMLLj2 ¼ 2m2
K1
g2K1VP

X
λK1¼0

X
λV¼0

jεμðλK1
Þε�μðλVÞj2 ¼ 2m2

K1
g2K1VP

E2
1

m2
1

cos2θ: ðB12Þ

APPENDIX C: MORE DETAILS ABOUT
THE HELICITY FORMALISM

The two-body decay process is considered starting from
a definite angular momentum state of jJMi in the mother
particle rest frame, decaying into two particle helicity state
jpϕθλi, where p ¼ p1 − p2 and λ ¼ λ1 − λ2 are the rela-
tive momenta and helicity difference, respectively, between
the two decaying particles denoted with subscripts 1 and 2.
The notation and derivation of this section are adapted
from Ref. [26].

1. One particle state

First, we study the single-particle canonical and helicity
states. The canonical state is defined as a state labeled by its
momentum, total angular momentum and its z-component.
A general canonical state with arbitrary momentum point-
ing in the ϕ, θ direction is then constructed by first

inversely rotating the particle such that it aligns with the
z-axis, followed by a Lorentz boost in the z-direction, and
finally a rotation back into the momentum direction of the
particle with polar angles ðϕ; θÞ,

jp⃗jmj ¼ UðRðϕ; θ; 0ÞLzðpÞR−1ðϕ; θ; 0ÞÞj0jmi; ðC1Þ

where LzðpÞ is a Lorentz boost along the z-axis. When the
particle is at rest, the canonical state transforms under
rotation as

UðRÞj0jmi ¼
X
m0

DjðRÞm0mj0jm0i; ðC2Þ

where DjðRÞm0m is a linear representation of a rotation
operator UðRÞ [26].
The helicity state is labeled by the momentum, total

angular momentum and helicity. It is similarly constructed
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by firstly Lorentz boosting the rest state j0jλi (which
is here defined such that λ is the eigenstate of the
z-component of the angular momentum, it is thus the same
as j0jmi with m ¼ λ). along the z-axis followed by a
rotation such that the momentum points into the direction
specified by the polar angles ϕ and θ. We thus have

jp⃗jλi ¼ UðRðϕ; θ; 0ÞLzðpÞÞj0jλi: ðC3Þ

The relation between canonical and helicity states is
given as

jp⃗jλi ¼UðRðϕ;θ;0ÞLzðpÞR−1ðϕ;θ;0ÞÞUðRðϕ;θ;0ÞÞj0jλi
¼
X
m

Djðϕ;θ;0Þmλjp⃗jmi ðC4Þ

We here choose our normalization to be Lorentz invariant,
such that

hp⃗0j0λ0jp⃗jλi ¼ ð2πÞ32Ep⃗δ
3ðp⃗ − p⃗0Þδjj0δλλ0 ;

hp⃗0j0m0jp⃗jmi ¼ ð2πÞ32Ep⃗δ
3ðp⃗ − p⃗0Þδjj0δmm0 : ðC5Þ

2. Two particle state

By definition, the two particle helicity state is a tensor
product of two one particle states in the c.m. frame,

jϕθλ1λ2i ¼ UðRðϕ; θ; 0ÞÞ½UðLzðpÞÞj0j1λ1i
⊗ UðLzð−pÞÞj0j2 − λ2i�: ðC6Þ

We next derive the relation between the two particle helicity
state and a state of definite angular momentum jJMλ1λ2i.
Here, J and M denote the total angular momentum and its
projection onto the z-axis of the initial particle, respectively.
We assume that the above general two particle helicity state,
with the momentum of one particle specified by the angles
ðϕ; θÞ in the c.m. frame, is related to the total angular
momentum state by a coefficient CJMðϕ; θ; λ1; λ2Þ as

jϕθλ1λ2i ¼
X
JM

CJMðϕ; θ; λ1; λ2ÞjJMλ1λ2i: ðC7Þ

Let us here derive an explicit expression for
CJMðϕ; θ; λ1; λ2Þ. The standard helicity state is defined
for the state where ϕ ¼ θ ¼ 0,

j00λ1λ2i ¼
X
JM

CJMð0; 0; λ1; λ2ÞjJMλ1λ2i

¼
X
J

CJλð0; 0; λ1; λ2ÞjJλλ1λ2i; ðC8Þ

In the standard state, particle 2 is heading toward the
negative z-direction, thus its projection on the z-axis is

−λ2. Therefore, the total angular momentum projection is
given by λ ¼ λ1 − λ2. By a definition of two particle helicity
state, it can also be viewed as a state which is rotated from
the standard state. Hence,

jϕθλ1λ2i ¼ UðRÞj00λ1λ2i
¼
X
J

CJλð0; 0; λ1; λ2ÞUðRÞjJλλ1λ2i

¼
X
JM

CJλð0; 0; λ1; λ2ÞDJðRÞMλjJMλ1λ2i; ðC9Þ

where we have in the last line made use of the fact that a
state of definite angular momentum behaves the same way
as given in Eq. (C2). Making use of proper orthogonality
relations of the states jϕθλ1λ2i and jJMλ1λ2i and properties
of the rotation matrix DJðRÞMλ (see for example Ref. [26]
for more details), we obtain CJMð0; 0; λ1; λ2Þ as

CJMð0; 0; λ1; λ2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2J þ 1

4π

r
; ðC10Þ

and, comparing Eq. (C7) with the last line of Eq. (C9), we
finally have

CJMðϕ; θ; λ1; λ2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2J þ 1

4π

r
DJðRÞMλ; ðC11Þ

where again λ ¼ λ1 − λ2.

3. Two body decay amplitude

The two body decay amplitude is a transition amplitude
from a definite angular momentum state jJMi of the initial
particle to a two particle helicity state jϕθλ1λ2i of the
daughter particles in the c.m. frame. The transition ampli-
tude from jJMi to jϕθλ1λ2i is given as below,

fλM ¼ hϕθλ1λ2jHintjJMi
¼

X
J0M0λ0

1
λ0
2

hϕθλ1λ2jJ0M0λ01λ
0
2ihJ0M0λ01λ

0
2jHintjJMi

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2J þ 1

4π

r
DJðRÞ�MλhJMλ1λ2jHintjJMi; ðC12Þ

where Eq. (C11) and angular momentum conservation was
used in the second line. Hint here stands for the interaction
Hamiltonian describing the decay. Making use of the
fact that this is a scalar quantity, the matrix element
hJMλ1λ2jHintjJMi cannot depend on M, but only on the
rotational invariants J, λ1 and λ2. We will hence denote it as
hJMλ1λ2jHintjJMi≡HJ

intðλ1; λ2Þ in what follows.
If we specify the initial state jIi as superposition of

the different M quantum numbers, specifically jIi ¼P
M aMjJMi and in analogy to Eq. (2) define the spin

density matrix as ρMM0 ¼ aMa�M0 , the normalized angular
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distribution of this decay can be given as Iðϕ; θÞ ¼ jPM aMfλMj2=Γ, where Γ is the decay width of the initial particle. We
hence obtain

Iðϕ; θÞ ¼ 1

Γ

X
λ1λ2

X
MM0

fλMρMM0f�λM0 ¼ 1

Γ

X
λ1λ2

X
MM0

hϕθλ1λ2jHintjJMiρMM0 hJM0jHintjϕθλ1λ2i

¼ 1

Γ

X
λ1λ2

X
MM0

2J þ 1

4π
DJ†ðϕ; θ; 0ÞλMρMM0DJðϕ; θ; 0ÞM0λjHJ

intðλ1; λ2Þj2: ðC13Þ

For the ρ → ππ decay, only the matrix element H1
intð0; 0Þ is needed, and the angular decay distribution is therefore

automatically fixed only from the rotation matrix D1ðϕ; θ; 0Þ, given in Eq. (13). As a result, we obtain

Iðϕ; θÞ ¼ 3

8π
ð1 − ρ00 þ ð3ρ00 − 1Þcos2θ −

ffiffiffi
2

p
Re½ρ10 − ρ−10� sin 2θ cosϕþ

ffiffiffi
2

p
Im½ρ10 þ ρ−10� sin 2θ sinϕ

− 2Re½ρ1−1�sin2θ cos 2ϕþ 2Im½ρ1−1�sin2θ sin 2ϕÞ; ðC14Þ

which agrees with Eq. (6).

On the other hand, for the K1 → ρK decay, the three
matrix elements H1

intð1; 0Þ, H1
intð0; 0Þ and H1

intð−1; 0Þ need
to be considered. Confining us here to strong and thus
parity conserving decay, we can make use of the symmetry
property ofH1

intð1; 0Þ ¼ H1
intð−1; 0Þ and are hence left with

two independent terms, which have to be determined from a
specific interaction Hamiltonian. In this work, it can be
easily obtained from the interaction Lagrangian given in
Eq. (8) and Hint ¼ −Lint. Next, we compute the transition
amplitude of Eq. (C12) using the polarization vectors given
in Appendix B. To determine the relative strength of the
two terms, we only need two independent transition
amplitudes, with an outgoing vector particle carrying a
different helicity λ1. Specifically, we have

f11 ∝ ϵ�ρð1Þ · ϵK1
ð1Þ ¼ −

1þ cos θ
2

eiϕ; ðC15Þ

and

f01 ∝ ϵ�ρð0Þ · ϵK1
ð1Þ ¼ −

E1ffiffiffi
2

p
m1

sin θeiϕ: ðC16Þ

Comparing this with Eq. (C12), we note that

H1
intð1; 0Þ ¼ H1

intð−1; 0Þ ∝ gK1ρK; ðC17Þ

and

H1
intð0; 0Þ ∝ gK1ρK

E1

m1

: ðC18Þ

This is sufficient to derive the angular distribution of the
K1 → ρK decay as

Iðϕ; θÞ ¼ 1

Γ
3

4π

�
jHð1; 0Þj2 þ 1

2
ðjHð0; 0Þj2 − jHð1; 0Þj2Þ

× ð1 − ρ00 þ ð3ρ00 − 1Þcos2θ −
ffiffiffi
2

p
Re½ρ10 − ρ−10� sin 2θ cosϕþ

ffiffiffi
2

p
Im½ρ10 þ ρ−10� sin 2θ sinϕ

− 2Re½ρ1−1�sin2θ cos 2ϕþ 2Im½ρ1−1�sin2θ sin 2ϕÞ
�

¼ 3

4πð3þ p21
m2

1

Þ

�
1þ p21

2m2
1

ð1 − ρ00 þ ð3ρ00 − 1Þcos2θ −
ffiffiffi
2

p
Re½ρ10 − ρ−10� sin 2θ cosϕ

þ
ffiffiffi
2

p
Im½ρ10 þ ρ−10� sin 2θ sinϕ − 2Re½ρ1−1�sin2θ cos 2ϕþ 2Im½ρ1−1�sin2θ sin 2ϕÞ

�
; ðC19Þ

which agrees with Eq. (10).
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