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The chiral symmetry is explicitly and spontaneously broken in a strongly interacting massive fermionic
system. We study the chiral symmetry restoration in massive four-fermion interaction models with
increasing temperature and chemical potential. At high temperature and large chemical potential, we find
the boundaries where the spontaneously broken chiral symmetry can be fully restored in the massive Gross-
Neveu model. We call the phenomenon superrestoration. The phase boundary is obtained analytically and
numerically. In the massive Nambu–Jona-Lasinio model, it was found that whether superrestoration occurs
depends on regularizations. We also evaluate the behavior of the dynamical mass and show the
superrestoration boundaries on the ordinary phase diagrams.
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I. INTRODUCTION

Chiral symmetry is a fundamental property of elemen-
tary particles. In the quantum chromodynamics (QCD),
quarks and gluons are confined into hadrons, which is
related to the chiral symmetry breaking. The QCD
Lagrangian for the light quarks possesses an approximate
chiral symmetry due to nonvanishing current quark masses.
At low energy scale, the constituent quark masses are
dynamically generated by the spontaneous chiral symmetry
breaking. It is expected that the thermal effect restores the
broken chiral symmetry at high temperature and/or large
chemical potential. One of interesting topics in QCD is to
investigate chiral symmetry breaking and restoration.
We cannot avoid the nonperturbative effect of QCD in

order to study the chiral symmetry breaking. One of
possible procedures is to consider the phenomena in a low
energy effective model of QCD. The Gross-Neveu (GN)

model [1] is often used to investigate the phase structure of
the chiral symmetry in extreme conditions. It is a renor-
malizable model with a four-fermion interaction since the
model is defined in a two-dimensional spacetime. In the
original GN model, the discrete Z2 chiral symmetry
prohibits mass terms. The four-fermion interaction induces
nonvanishing expectation value for the composite operator
constructed by the fermion and the antifermion, and the
chiral symmetry is broken spontaneously. For 2 ≤ D < 4,
four-fermion interaction models are renormalizable in a
sense of the 1=Nc expansion and possess an ultraviolet-
stable fixed point [2–4]. The broken chiral symmetry is
restored at high temperature and/or large chemical potential
and the phase boundary for the massless model has been
analytically and numerically shown in Ref. [5].
In the massive GNmodel, the mass term breaks the chiral

symmetry explicitly, and it is expected to avoid the no-go
theorem [6–8] with the mass term even with the axial
interaction term at zero temperature. The Nambu–Jona-
Lasinio (NJL) model [9,10] is a four-fermion interaction
model with the current quark mass terms and considered as
one of the low energy effective models of QCD. The NJL
type models often used in the analysis of phase diagrams at
a finite temperature, T, and chemical potential, μ. Since the
model contains the four-fermion interaction and is not
renormalizable in the four-dimensional space-time, the
model prediction may depend on the regularization method.
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One introduces a cutoff scale to remove the UV divergence
in the fermion loops. The three-dimensional momentum
cutoff scheme is often adopted (for reviews, [11–14]) to
investigate the phase diagrams. Other methods are also
considered in the model, the Pauli-Villars [15–18], the
Fock-Schwinger proper-time [19–29], and the dimensional
regularization [30–36]. Some papers comprehensively
study these differences in the regularizations [37,38].
Although the finite temperature and chemical potential
give UV finite contributions, physical quantities depend on
the regularization method [37]. The trace anomaly, specific
heat, speed of sound and other thermodynamical quantities
are investigated with the two regularization methods in the
three-dimensional momentum cutoff scheme [39]. From a
viewpoint of renormalization group consistency, effects of
a momentum cutoff scheme are considered in a quark-
meson model, which is a similar model to the NJL model
on the mean-field level [40]. It is also noted that the phase
diagrams of the GN models (D ¼ 2, D ¼ 3) and the NJL
model (D ¼ 4) are modified by effects beyond the large-N
approximation [41–44]. There are functional renormaliza-
tion group calculations that show no spontaneous sym-
metry breaking in the massless GN model (D ¼ 2) [45].
The paper is organized as follows: in Sec. II, the massive

GN model is introduced. We renormalize the four-fermion
coupling and mass parameter to obtain a well-defined
effective potential at a finite temperature and chemical
potential. In Sec. III, we derive the equation for the
condition of superrestoration from the gap equation. We
evaluate the behavior of the dynamical mass, and draw the
phase boundary of the superrestoration and the boundary of
the chiral condensate on a μ-T plane. In Sec. IV, we also
compute the same physical quantities and evaluate the
energy density, pressure and trace anomaly in the two-
flavor NJL model with two different regularizations.
Finally, summary and discussions are given in Sec. V.

II. GROSS-NEVEU MODEL

We briefly introduce the action of the massive GN model
on the D-dimensional spacetime (2 ≤ D < 4),

S ¼
Z

dDx

�
ψ̄ðxÞðiγμ∂μ −m0ÞψðxÞ þ

λ0
2N

ðψ̄ðxÞψðxÞÞ2
�
;

ð1Þ

where m0 and λ0 are a bare mass parameter and a bare
coupling of a four-fermion interaction, respectively. N
denotes the number of copies of fermions ψðxÞ. In the
massless case,m0 ¼ 0, this model enjoys the discrete chiral
Z2 symmetry.
Introducing an auxiliary field, σ̃ðxÞ, to this action, we

obtain a redefined action,

Sa ¼
Z

dDx

�
ψ̄ðxÞðiγμ∂μ − σ̃ðxÞÞψðxÞ

−
N
2λ0

ðσ̃ðxÞ2 − 2m0σ̃ðxÞÞ
�
: ð2Þ

In this expression (2), the constant term, Nm2
0=ð2λ0Þ,

is dropped because the term does not affect physical
quantities. The original action (1) is reproduced by sub-
stituting the solution of the equation of motion,
σ̃ðxÞ ¼ −λ0ψ̄ðxÞψðxÞ=N þm0, after returning the dropped
term to this action (2). Assuming that the auxiliary field is
constant (corresponding to considering only the homo-
geneous chiral condensate), σ̃ðxÞ ¼ σ̃, we obtain the
effective potential in the leading order of the 1=N
expansion,

VDðσ̃Þ ¼
σ̃2 − 2m0σ̃

2λ0
−
CD

D
ðσ̃2ÞD=2; ð3Þ

with a constant, CD ¼ trIð4πÞ−D=2Γð1 −D=2Þ.
In the massless case, m0 ¼ 0, it is well-known fact that,

under a certain renormalization condition, the gap equation,
∂VDðσ̃Þ=∂σ̃jσ̃¼mχ

¼ 0, can be solved exactly. For instance,

under the renormalization condition,

∂
2VDðσ̃Þ
∂σ̃2

����
σ̃¼μr

¼ μD−2
r

λr
; ð4Þ

where μr and λr stand for a renormalization scale and a
renormalized coupling respectively, the solution is given by,

mχ ¼
�
C−1
D

λr
þD − 1

� 1
D−2

μr: ð5Þ

This solution (5) is positive real when the coupling is larger
than the critical one, λχ ¼ C−1

D ð1 −DÞ−1. In two dimensions
λχ ¼ 0 and in otherwise λχ > 0. For λr > λχ, the chiral
symmetry becomes spontaneously broken and the fermion
mass is dynamically generated. The coupling larger (smaller)
than λχ is called the strong (weak) coupling.
The effective potential with the renormalized coupling

still contains a divergence related to the bare mass
parameter. To remove the divergence, we also have to
renormalize the mass parameter. We here choose a renorm-
alization condition,

1

μD−1
r

∂VDðσ̃Þ
∂σ̃

����
σ̃¼μr

¼ 1

λr

�
1 −

mr

μr

�
þ CDðD − 2Þ; ð6Þ

with mr denoting the renormalized mass parameter. Under
this condition, the mass parameter gives the tilt of the
effective potential, and the solution of the gap equation
converges to mr in the weak coupling limit, λr → 0; in
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the following, we rename mr a current mass. Thus the
renormalized effective potential is given by

VDðσ̃Þ ¼
�
1

λr
þ CDðD − 1Þ

�
σ̃2μD−2

r

2
−
mrσ̃μ

D−2
r

λr

−
CD

D
ðσ̃2ÞD=2: ð7Þ

In the two-dimensional limit, it is confirmed that this
expression is consistent with Ref. [46].
To consider the GN model at a finite temperature, T, and

a chemical potential, μ, we modify the action (1) by using
the Matsubara formalism. The effective potential reads

VDðσ̃;mr; μr;T; μÞ ¼
�
1

λr
þ ðD − 1ÞCD

�
σ̃2μD−2

r

2

−
mrσ̃μ

D−2
r

λr
−
CD

D
ðσ̃2ÞD=2

− C̃DT
Z

∞

0

dq qD−2

×
h
ln
�
1þ e−

� ffiffiffiffiffiffiffiffiffiffi
q2þσ̃2

p
−μ


=T
�

þ ð−μ → μÞ
i
; ð8Þ

where C̃D ¼ ð4πÞ−ðD−1Þ=2trI=ΓðD−1
2
Þ. In this expression,

the thermal part [the second line in Eq. (8)] is separated
from the vacuum part [the first line in Eq. (8)]. We use the
symbol M as the solution of the gap equation,
∂VDðσ̃;mr; μr;T; μÞ=∂σ̃jσ̃¼M ¼ 0, in this paper; in our
definition of σ̃, the solution of the gap equation is
equivalent to the dynamically generated fermion mass.

III. SUPER RESTORATION

A. Analytical results

At zero temperature and zero chemical potential, the
dynamically generated fermion mass is always not zero in
the massive theory, and converges to mr from above in the
weak coupling limit, λr → 0. It is also well known that the
chiral symmetry tends to be restored at high temperature or
large chemical potential. In the massless theory, we can
observe the first-order phase transition boundary at low
temperature and large chemical potential, and the second-
order one at high temperature and small chemical potential
on a μ-T plane. In this section, we show that the dynamical
mass decreases below the current mass, mr, at a high/large
but finite temperature and chemical potential; we call such
a phenomenon superrestoration.
We consider a solution of the gap equation satisfying

M ≤ mr on a μ-T plane,

0¼
�
1

λr
þCDðD−1Þ

�
M
μr
−

mr

λrμr
−CD

�
M
μr

�
D−1

− C̃D
M
μr

Z
∞

0

dqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2þM2

p
�
q
μr

�
D−2h�

e
� ffiffiffiffiffiffiffiffiffiffiffi

q2þM2
p

þμ


=Tþ1

�−1þðμ→−μÞ
i
:

ð9Þ

If such a solution exists and is continuous outer the first-order phase transition boundary on the μ-T plane, at least there is
the solution that satisfies M ¼ mr. Supposing M ¼ mrð> 0Þ in this equation, we obtain

Γ
�
1 −

D
2

��
D − 1 −

�
mr

μr

�
D−2

�
¼ −

2π1=2

ΓðD−1
2
Þ
Z

∞

0

dqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

r

p
�
q
μr

�
D−2h�

e
� ffiffiffiffiffiffiffiffiffiffi

q2þm2
r

p
þμ


=T þ 1

�−1 þ ðμ → −μÞ
i
: ð10Þ

This equation should give a superrestoration boundary on the μ-T plane.
At the limit, mr → 0, in Eq. (10), we obtain an expression,

D − 1

2π1=2
Γ
�
1 −

D
2

�
Γ
�
D − 1

2

�
¼ ΓðD − 2Þ

�
T
μr

�
D−2�

LiD−2ð−e−μ=TÞ þ LiD−2ð−eμ=TÞ

; ð11Þ

where LiaðsÞ is a polylogarithm. It should be noted that the limit is different from the chiral limit obtained by M → 0 after
setting mr ¼ 0 in Eq. (9). Equations (10) and (11) do not indicate the existence of the solution, but give the way to confirm
it. At the zero chemical potential, Eq. (11) can be solved exactly,

T̃
μr

¼
�
−
2D−1 − 4

D − 1

ΓðD
2
− 1Þ

Γð1 − D
2
Þ ζðD − 2Þ

� 1
2−D

; ð12Þ

with T̃ denoting the temperature at the limit adapted in Eq. (11). The specific values are e1þγ=π ≃ 1.54 in D ¼ 2 and
1= ln 2 ≃ 1.44 in D ¼ 3. They are about two to three times higher than the critical temperature (eγ=π ≃ 0.57 in D ¼ 2 and
1= ln 4 ≃ 0.72 in D ¼ 3) in the massless theory [5,47]. We can also solve the Eq. (11) at zero temperature,
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μ̃

μr
¼
�
−
ðD−1ÞðD−2Þ

2π1=2
Γ
�
1−

D
2

�
Γ
�
D−1

2

�� 1
D−2

; ð13Þ

with μ̃ denoting the chemical potential at the limit adapted
in Eq. (11). The specific values are e=2 ≃ 1.36 in D ¼ 2
and 2 in D ¼ 3. These are also about two times larger than
the critical chemical potential (1=

ffiffiffi
2

p
≃ 0.71 inD ¼ 2 and 1

in D ¼ 3) in the massless theory [5,47]. The explicit
breaking term in the effective potential makes the differ-
ence between the ordinary phase boundary and the super-
restoration boundary at the limit adapted in Eq. (11). Due to
the linear nature of the breaking term, this requires two to
three times larger T and μ to achieve the superrestoration
than the ordinary phase transition. The superrestoration
boundary in the limit is described by Eq. (11) as the curve
connecting T̃ and μ̃ on the μ-T plane. For a current mass
enough small, the superrestoration boundary in the limit
gives approximately the boundary at a finite current mass.

B. Numerical results

The nontrivial solution of the gap equation in the limit,
mr → 0 after setting M ¼ mr, has been found analytically;
in particular, we have found the specific values at zero
temperature or chemical potential. We here calculate
numerically the superrestoration boundary at a finite mr
based on Eq. (9) and plot it on the μ-T plane. In our
calculations, we set the coupling constant satisfying
M=μr ¼ 1 in the trivial condition (mr ¼ 0, T ¼ 0 and
μ ¼ 0) for arbitrary dimensions and trI ¼ 2D=2.
Behavior of the dynamically generated fermion mass as a

function of temperature and chemical potential is shown in
Figs. 1 (D ¼ 2) and 2 (D ¼ 3) with a fixed current mass,
mr ¼ 0.2. They are plotted by evaluating the minimum of
the effective potential. On the left figure, a second-order
phase transition is replaced with a crossover due to the
massive theory. As the figures show, the dynamical fermion
mass smoothly becomes below the current mass at high
temperature or large chemical potential.

FIG. 1. (GN model) Behavior of the dynamically generated fermion mass as a function of temperature (left, fixed μ=μr ¼ 0.05) and
chemical potential (right, fixed T=μr ¼ 0.05) in D ¼ 2. The current mass is shown by a dotted line (mr ¼ 0.2).

FIG. 2. (GN model) Behavior of the dynamically generated fermion mass as a function of temperature (left, fixed μ=μr ¼ 0.05) and
chemical potential (right, fixed T=μr ¼ 0.05) in D ¼ 3. The current mass is shown by a dotted line (mr ¼ 0.2).
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The superrestoration boundaries are shown as outer lines
in Fig. 3; the solid and two dotted lines denote the limit and
the massive cases with mr=μr ¼ 0.2 (circles) and 0.5
(triangles), respectively. The boundaries are illustrated by
Eqs. (9) and (11) and consistent with the behavior pre-
sented in Figs. 1 and 2 plotted by minimizing the effective
potential. To compare with these, we also plot first- and
second-order phase transition boundaries (solid black and
gray) and peaks of the chiral susceptibility (dotted gray)
that is defined by ∂M=∂mr as inner lines from the inside
mr=μr ¼ 0.0, 0.01 and 0.2. In three dimensions, there is no
phase boundary and the lines of the chiral susceptibility are
curved to extend the area enclosed by the lines at low
temperature and large chemical potential. Since the lines
are drawn in terms of the susceptibility, it does not
necessarily coincide with the lines where the dynamical
mass changes the most.
The figures show that the superrestoration boundaries

almost overlap each other. The area enclosed by them tends
to shrink in particular at high temperature and small
chemical potential. On the other hand, the area tends to
expand at low temperature and large chemical potential in
D ¼ 2. These indicate the different behavior of the super-
restoration boundaries from the first-order phase transition
boundary and the peaks which expand monotonically with
increasing mr. It is also observed that the difference of the
superrestoration boundaries caused by the current mass
change is slighter than the boundary of the first-order phase
transition and the peaks of the chiral susceptibility.

IV. TWO-FLAVOR NJL MODEL

In this section, we apply the previous discussion to the
two-flavor NJL model on the four-dimensional spacetime.

The Lagrangian of the two-flavor NJL model with current
quark mass is given as,

L ¼ ψ̄ðiγμ∂μ −mÞψ þ G
2Nc

½ðψ̄ψÞ2 þ ðψ̄iγ5τaψÞ2�; ð14Þ

with a mass matrix m ¼ diagðmu;mdÞ, an effective cou-
pling constant G, the number of colors Nc and the Pauli
matrices of the isospin vector τa (a ¼ 1, 2, 3). For
simplicity, we assume mu ¼ md. While the Lagrangian
has the SUð2ÞL × SUð2ÞR global symmetry at the massless
limit, the symmetry is explicitly broken down to the
SUð2ÞLþR because of the nonzero quark masses. Since
the effective coupling has the negative mass dimensions
and the model cannot be renormalizable, one has to
introduce the momentum cutoff to evaluate the physical
quantities.
In the leading order of the 1=Nc expansion, we obtain the

effective potential,

VðσÞ¼ σ2

4G
−
1

2

Z
d4q

ið2πÞ4 ln detðγμqμ−m−σþ iϵÞ; ð15Þ

with the auxiliary scalar field σ ≃ −ðG=NcÞψ̄ψ . The
determinant is taken over the flavor and spinor indices.
From the stationary condition of the effective potential, the
gap equation is expressed as follows,

hσi ¼ 2G · itr SðMÞ; ð16Þ

whereM is the constituent massM ¼ mu þ hσi, the trace is
the sum over spinor indices and SðMÞ is the quark
propagator,

(a) (b)

FIG. 3. (GN model) Behavior of the superrestoration boundaries (outer solid: the limit mr → 0 after setting M ¼ mr, circles:
mr ¼ 0.2, and triangles: mr ¼ 0.5). The first- and second-order phase transition boundaries (solid black and gray) and the peaks of the
chiral susceptibility (dotted gray) are shown as the inner lines from the inside mr=μr ¼ 0.0, 0.01, and 0.2. (a) D ¼ 2, (b) D ¼ 3.
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itr SðMÞ ¼ −tr
Z

d4q
ið2πÞ4

1

γμqμ −M þ iϵ
: ð17Þ

The momentum integral in Eq. (17) is divergent, and we
introduce the momentum cutoff scale later.
Since we are interested in the behavior of the constituent

mass in a thermal system, we apply the imaginary time
formalism with a chemical potential to the model. By using
the formalism, the gap equation at a finite temperature and
chemical potential is derived as follows,

hσi ¼ 2G½itr S0ðM;ΛÞ þ itr STðM;ΛÞ�; ð18Þ

itr S0ðM;ΛÞ ¼ M
π2

Z
Λ

0

dq q2

EðMÞ ; ð19Þ

itr STðM;ΛÞ ¼ −
M
π2

Z
Λ

0

dq q2

EðMÞ
�

1

1þ eE
þ=T þ 1

1þ eE
−=T

�
;

ð20Þ

with EðMÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2þM2

p
and E�¼EðMÞ�μ. Equation (19)

is the zero temperature part of the gap equation and is equal
to Eq. (17) integrated with respect to q0. We regularize the
integral in Eq. (19) using three-momentum cutoff scale Λ,
and adopt the values of Ref. [13], Λ ¼ 631 MeV and
G=ð2NcÞ ≃ 5.51 × 10−6 MeV−2.
Equation (20) is the finite temperature and chemical

potential part of the gap equation. Unlike the zero tempera-
ture part, the momentum integral is finite for Λ → ∞. In
this paper, we consider two regularizations in the integral of
Eq. (20) because the value is finite whether the limit is
taken or not. In the case 1, the same cutoff scale is used as
the zero temperature part. In the case 2, the momentum
scale is integrated out and Eq. (18) is written as follows,

hσi ¼ 2G½itr S0ðM;ΛÞ þ itr STðM;∞Þ�: ð21Þ

In this case, the effect of the finite temperature and
chemical potential is independent of the regularization
scale.
The effective potential at a finite T and μ is written as

follows,

VðσÞ ¼ σ2

4G
þ V0ðM;ΛÞ þ VTðM;ΛÞ; ð22Þ

V0ðM;ΛÞ ¼ −
1

π2

Z
Λ

0

dq q2EðMÞ; ð23Þ

VTðM;ΛÞ ¼ −
T
π2

Z
Λ

0

dq q2
�
ln ð1þ e−E

þ=TÞ

þ ln ð1þ e−E
−=TÞ: ð24Þ

In the case 2, we use the following effective potential,

VðσÞ ¼ σ2

4G
þ V0ðM;ΛÞ þ VTðM;∞Þ: ð25Þ

We show the behavior of the constituent mass as a
function of T in Fig. 4. The thermal effect reduces the
dynamical mass. As seen in the left figure, the thermal
effect in the case 2 is larger than that in the case 1. At high
temperature, it is found that the constituent mass, M,
becomes smaller than the current quark mass,
mu ¼ 5.5 MeV, in the case 2. The superrestoration takes
place in the case 2, but not in the case 1.
We show the behavior of the constituent mass as a

function of μ at T ¼ 10 MeV in Fig. 5. From the left figure,
the effects of the chemical potential are indistinguishable in
each case. The right figure shows that the constituent mass,

FIG. 4. (NJL model) Constituent massM as a function of T at μ ¼ 0 in the two cases. Horizontal dotted lines represent the value of the
current quark mass. Right figure shows the high temperature region of the behavior for the constituent mass.
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M, approaches the current quark mass, mu, and becomes
smaller than mu for large chemical potential, μ≳ Λ, in the
case 1 and 2, respectively.
We show the behavior of the effective potential in the

high temperature region in Fig. 6. In the case 1 (solid), the
minimum of the effective potential, i.e., the expectation
value of σ becomes smaller as T increases. Since the chiral
symmetry is explicitly broken due to the current quark
mass, the minimum of the effective potential does not
become 0. On the other hand, in the case 2 (dashed), the
minimum of the effective potential becomes 0 at
T ≃ 350 MeV. The expectation value of σ changes from
positive to negative as T increases. The negative value of

hσi causes the constituent quark masses to be smaller than
the current quark masses. This means that the chiral
condensate takes place to counteract the explicit symmetry
breaking at high temperature.
We draw the peaks of the chiral susceptibility [48,49]

and the superrestoration boundary in Fig. 7. The area
enclosed by the line of the maximum of the chiral
susceptibility in the case 2 is smaller than that in the case
1. This feature is related to the fact that the thermal
contribution in the case 2 is larger than the case 1 in
Fig. 4. The difference between both the cases depends on
whether the radiative corrections with higher momentum
quarks are dropped or not from the temperature effect. In

FIG. 5. (NJL model) Constituent mass M as a function of μ at T ¼ 10 MeV in the two cases. Horizontal dotted lines represent the
value of the current quark mass. Right figure shows the large chemical potential region of the behavior for the constituent mass.

FIG. 6. (NJL model) Left: Behavior of the effective potential is shown as a function of σ at μ ¼ 0. The solid and dashed lines represent
the effective potential in the case 1 and 2, respectively. The colors of the lines display temperatures (blue: T ¼ 320 MeV, and red:
450 MeV). Right: The minimum of the effective potential as a function of T at μ ¼ 0. The line types represent the cases as well as
the left.
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the low temperature and large chemical potential region,
the phase boundaries of the first-order phase transitions for
both the regularizations are almost identical, because the
contribution is negligible from the momentum higher than
the Fermi momentum. The superrestoration occurs only in
the case 2. It is found at about twice the temperature and
chemical potential of the first-order phase transition and the
peak of the chiral susceptibility. We take the equivalent
limit of Eq. (11), the gap equation (21) leads to,

Λ2

2
¼ −T2½Li2ð−e−μ=TÞ þ Li2ð−eμ=TÞ�: ð26Þ

From Eq. (26) the specific values are given as T̃ ¼ffiffiffi
3

p
Λ=π ≃ 348 MeV at zero chemical potential and μ̃ ¼

Λ ¼ 631 MeV at zero temperature. These values well
reproduce the numerically obtained phase boundaries.
Although the dimensions are different, the NJL model in
the case 2 produces a similar behavior of the superrestora-
tion in the GNmodels. The results of the GN models in two
and three dimensions are independent of the regularization
procedures because of their renormalizability. As a refer-
ence, we show the phase boundaries in the chiral limit
where we takemu ¼ 0 and leave the cutoff scale unchanged
for the two cases. The boundary of the second-order phase
transition in the case 2 is inside that in the case 1. The
boundaries of the first-order phase transition are almost
independent of the regularizations. The first-order phase
transition starts from higher temperature and smaller
chemical potential than that for mu ¼ 5.5 MeV.
Since the thermal term is calculated without introducing

the momentum cutoff in the case 2, the term maintains the
translational invariance. It is expected to contribute the
trace anomaly, Δ ¼ ε − 3P. We evaluate the trace anomaly
using the thermodynamic relationships [50]. From the

effective potential, the energy density and the pressure
are given as,

ε ¼ 2Nc

�hσi2
4G

þ ε0ðM;ΛÞ þ εTðM;ΛÞ
�
; ð27Þ

P ¼ −2NcVðhσiÞ; ð28Þ

with

ε0ðM;ΛÞ ¼ −
1

π2

Z
Λ

0

dq q2EðMÞ; ð29Þ

εTðM;ΛÞ ¼ 1

π2

Z
Λ

0

dq q2EðMÞ
�

1

1þ eE
þ=T þ 1

1þ eE
−=T

�
:

ð30Þ

In the case 2, the energy density is,

ε ¼ 2Nc

�hσi2
4G

þ ε0ðM;ΛÞ þ εTðM;∞Þ
�
: ð31Þ

The behavior of the energy density, pressure, and trace
anomaly is shown in Figs. 8 and 9 as a function of T at
μ ¼ 0 and μ at T ¼ 10 MeV, respectively. From Fig. 8, ε
and 3P are proportional to T4 in the high temperature
region in the case 2. In Fig. 9, the energy density and trace
anomaly have gap structures at μ ≃ 350 MeV due to the
first-order phase transition. In the case 1, the slopes of the
energy density and trace anomaly are steeper above
μ ≃ 620 MeV. The difference between the two cases comes
from the regularization for the thermal term.
We apply the equivalent limit for Eq. (11) to Eq. (24) in

the case 2, and obtain

FIG. 7. (NJL model) In the two cases, the behavior of the superrestoration boundary (blue circles) with the peaks of the chiral
susceptibility (gray dotted) and the phase transition boundaries are displayed. The black and the gray solid lines represent the first-order
and the second-phase transition boundaries, respectively.
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PTðM ¼ 0;Λ ¼ ∞Þ ¼ −2NcVTð0;∞Þ

¼ 4NcT4

π2
½Li4ð−e−μ=TÞ þ Li4ð−eμ=TÞ�:

ð32Þ

Equation (32) coincides with the Stefan-Boltzmann low,
PTð0Þ ¼ ð7Ncπ

2=90ÞT4 for themassless fermions (Nf ¼ 2)
at μ ¼ 0. The dominant thermal contribution to the trace
anomaly is given by ΔTðM;ΛÞ ¼ εTðM;ΛÞ − 3PTðM;ΛÞ.
At the limit,mu → 0,ΔTðM ¼ 0;Λ ¼ ∞Þ ¼ 0 holds on the
superrestoration boundary because εTð0;∞Þ ¼ 3PTð0;∞Þ
at finite T and μ. For mu ≠ 0, εTðmu;∞Þ is larger than
3PTðmu;∞Þ at the boundary. Expanding the thermal part of
the trace anomaly with respect tomu on the superrestoration
boundary and using Eq. (26), we obtain

ΔT ¼ 3Λ2

π2
m2

u þOðm4
uÞ: ð33Þ

Equation (33) is satisfied when the current mass is suffi-
ciently small, and the numerical results indicate that the
discrepancy is less than 0.1% for mu ¼ 5.5 MeV.

V. SUMMARY AND DISCUSSIONS

We have evaluated the massive four-fermion interaction
models by using the effective potential in the leading order
of the 1=N expansion under the assumption that the chiral
condensate is spatially homogeneous.
First, we have considered the massive GN model on the

D-dimensional spacetime (2 ≤ D < 4). At zero temper-
ature and chemical potential, the chiral symmetry is broken
above the critical coupling, λr > λχ . The dynamically
generated fermion mass approaches the current mass,
mr, from above in the weak coupling limit, λr → 0. On
the other hand, at a finite temperature and chemical
potential, we have found the boundary where the dynamical
fermion mass coincides with the current mass for a finite
coupling, λr, on the μ-T plane as shown in Fig. 3 (with
Figs. 1 and 2) based on Eq. (9). We call this boundary
superrestoration boundary. It is different from the well-
known phase boundaries for the chiral symmetry. The
superrestoration boundary is insensitive to changing the
current mass, and the boundary at the massless limit gives a
good approximation for a finite mr case.
Next, we have investigated the superrestoration in the

NJL model, a prototype model of QCD. In four dimensions,
the four-fermion models are nonrenormalizable and the

FIG. 8. (NJL model) In the two cases, the behavior of the energy density (blue dotted), the pressure (orange dotted) and the trace
anomaly (green dotted) as a function of T at μ ¼ 0. Left and right figures represent the case 1 and 2, respectively.

FIG. 9. (NJL model) In the two cases, the behavior of the energy density (blue dotted), the pressure (orange dotted) and the trace
anomaly (green dotted) as a function of μ at T ¼ 10 MeV. Left and right figures represent the case 1 and 2, respectively.
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results depend on the regularization procedures. We have
employed two regularization procedures: the momentum
cutoff is imposed to both the vacuum and thermal parts of
the effective potential (case 1), and to only the vacuum part
(case 2). In the case 1, the dynamical fermion mass
approaches but does not decrease below the current mass
at high temperature and large chemical potential. In the
case 2, we have found the superrestoration boundary where
the dynamical fermion mass decreases across the value of
the current mass. The behavior in the case 2 is similar to the
one in the GNmodel, and besides the problems are reported
due to the finite momentum cutoff of the integrals in the
thermal terms [39]. In the NJL model with the current quark
mass, the axial SUð2ÞL−R symmetry is explicitly broken.
Whether or not superrestoration occurs, the symmetry
remains broken. Therefore, the Nambu-Goldstone mode
such as a pion does not appears with the dynamical
symmetry breaking at the superrestoration boundary. No
phenomena associated with the superrestoration have been
found for the meson mass (the soft mode) and decay
constant in the NJL model. We expect that the super-
restoration increases the production rate of lightened
fermions, if a strong interaction beyond the standard model
triggers the superrestoration at the electroweak or a higher
energy scale. It should be noted that the superrestoration
does not take place at the chiral limit,m → 0, because it is a
phenomenon in which the chiral condensate becomes zero
or of opposite sign, weakening the SUð2ÞL−R symmetry
breaking due to the current quark mass.
In the models containing the explicit symmetry-breaking

term (current quark masses), we have found the super-
restoration boundaries on the μ-T plane. These boundaries
represent the lines where the dynamical mass coincides the
current mass. On the boundaries, the spontaneously broken
chiral symmetry is fully restored. Outside the boundaries,
the chiral condensate, hψ̄ψi, develops a positive value (e.g.,
hσi ≃ −ðG=NcÞhψ̄ψi < 0), and the dynamical mass is
smaller than the current mass. The superrestoration takes
place at high temperature and large chemical potential

region that is difficult to reach experimentally in QCD. We
have also evaluated the energy density, pressure, and trace
anomaly. At the high temperature region and μ ¼ 0, the
energy density and pressure are proportional to T4 only in
the case 2. At the zero temperature and zero chemical
potential, the quark contribution to the trace anomaly is
known to be represented as ð1þ γmÞmiq̄iqi [51,52],
where γm is the anomalous dimension of quark mass.
In the finite temperature and/or finite chemical potential,
the trace anomaly is derived by the expectation value,
ð1þ γmÞmihq̄iqii, [53]. In the case 2, the expectation value,
hψ̄ψi, vanishes but Δ ≠ 0 on the superrestoration boun-
dary. At the limit, mu → 0, we found that the thermal part
of the trace anomaly, ΔT , vanishes since εT ¼ 3PT on the
superrestoration boundary.
Here we have assumed that 1=N corrections are sup-

pressed at higher temperature where the mesons become
the soft modes. But it is interesting to evaluate the 1=N
corrections for the superrestoration. It has been also pointed
out that the inhomogeneous chiral condensate is favored at
low temperature and large chemical potential in the two-
dimensional GN model by using lattice simulations [54].
For the massive GN model in two dimensions, the Ref. [55]
first calculated the inhomogeneous phase diagram. For
D ¼ 3, some works in the last couple of years suggest that
there is no inhomogeneous condensate in the GN model:
Refs. [56,57]. More general models in three dimensions in
Ref. [58]. Inhomogeneous phases in the massive NJL
model were investigated in Ref. [59,60]. We will continue
the work further and consider the inhomogeneous state. We
are also interested in applying our results to other systems
and expect that the superrestoration may be observed in
some physical phenomena. We hope to report on these
problems in the future.
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