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Using a recently developed light-front spectator model that incorporates gluon, where the light-front
wave functions are modeled from the soft-wall anti—de Sitter/QCD prediction, we examine the leading twist
gluon generalized parton distributions (GPDs) inside the proton. We derive the chirally even and odd
distributions by using the overlap representation of the light-front wave functions. In terms of GPDs at
nonzero skewness, we investigate the entire three-dimensional representation of gluons. We analyse the
gluon impact parameter distributions at { = 0 using the Fourier transform of GPDs. We address the total
angular momentum contribution of the gluons by using the Ji’s sum rule and also give our predictions for

both the canonical and kinetic orbital angular momentum in the light-cone gauge.
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I. INTRODUCTION

One of the most difficult tasks in hadronic physics is to
understand the three-dimensional structure of nucleons in
terms of its constituent quarks and gluons, although parton
distribution functions (PDFs) describe the distributions of
the longitudinal momentum and polarization carried by
quarks and gluons in a fast-moving hadron. The PDFs are
the diagonal or forward matrix elements of particular
operators, providing a probability interpretation in terms
of distributions and examining space-time correlations
along the light cone more extensively. It is only possible
to fully understand the correlations by taking into account
the nondiagonal, or off-forward matrix elements of
the same operators. These nondiagonal matrix elements
can be parametrized in terms of generalized parton dis-
tributions (GPDs) [1-6]. The GPDs encode spatial as well
as partonic spin structure in a nucleon. The GPDs can be
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related to the generalized transverse momentum distribu-
tions (GTMDs) [7-18]. In the forward limit, or when the
momentum transfer is zero, they reduce to PDFs, that are
accessible through inclusive processes. The second
moment of the GPDs is related to the gravitational form
factors (GFFs), which are the form factors of the energy-
momentum tensor [4,19-30]. The GPDs or the GFFs are
experimentally accessed through exclusive processes such
as deeply virtual Compton scattering or deeply virtual
vector-meson productions. The GFFs, and therefore, the
GPDs, contain important information about the mass,
angular momentum, and mechanical properties of the
nucleon [28,29,31-38]. The GPDs are described as func-
tions of three variables: longitudinal momentum fraction x
of the parton, longitudinal momentum fraction transferred
in the process which is given by skewness £ and square of
the total momentum transferred t = A2. In addition to
providing information on the longitudinal behavior in
momentum space along the direction in which the nucleon
is moving, the GPDs also provide insights into how
partons are spatially distributed in the transverse plane,
making them an effective tool for studying hadron struc-
ture in three dimensions [39,40]. Experimentally, deter-
mining GPDs in unique processes is quite difficult and
demands high luminosity and resolution. First focused
studies were therefore designed and carried out in the last
decade [41,42]. Through the production of vector mesons,
they are experimentally accessible. Data from experiments
like H1, ZEUS, HERMES [43-49] have played a major
role in the effort to extract the GPDs, also these will be
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explored in the JLab 12 GeV upgrade as well as the
upcoming electron-ion collider [50]. The Fourier transform
of GPDs with respect to the transverse momentum transfer,
A |, gives the impact parameter dependent parton distribu-
tions, also known as IPDs, which tell us how the partons of a
given longitudinal momentum are distributed in transverse
position space [39,40]. Impact parameter measures the
transverse separation of an active parton from the system’s
center of momentum. The spin densities can be represented
in terms of impact parameter dependent GPDs for different
proton polarizations [14,17,51-53]. A more general descrip-
tion of the nucleon is given in terms of the GTMDs [54,55],
that help to access spin-spin and spin-orbit correlation of
the gluon [56]. The GTMDs are called mother distributions
as the TMDs can be extracted from the GTMDs in the
forward limit A, = 0, and the GPDs can be obtained in
impact parameter space upon integration over p;. The
two-dimensional Fourier transform of GTMDs yields
Wigner distributions [57,58], which characterize the five-
dimensional phase-space distribution of partons within the
nucleon. These distributions play a crucial role in revealing
spin-orbital correlations, essential for extracting parton
orbital angular momentum [14,15,59,60].

Although it is known that gluon contributes significantly
to the proton spin, the gluon distributions and contribution
to the spin [61] and orbital angular momentum (OAM) are
less explored as compared to the quarks. This is because, in
most phenomenological models of the proton, there is no
gluon. Only very recently, studies have been started in this
direction [62—74]. In this work, we use a recently developed
spectator model [68] that incorporates the active gluon, to
investigate the gluon GPDs at nonzero skewness (£ # 0) in
the proton. There are eight gluon GPDs for the proton at
leading twist. Four of them (HY, EY, HY, and EY) are chirally
even and other four GPDs (H%, EY. HY, and E%) are chirally
odd. The GPDs HY and HY are related to the unpolarized
and polarized gluon PDFs, respectively. In the impact
parameter space, they provide the spin densities of the
unpolarized and circularly polarized gluons in a longitudi-
nally polarized proton. The GPD EY is related to the
distortion of the unpolarized gluon distribution in a trans-
versely polarized proton, in some models, this GPD is
related to the gluon Sivers function which is a T-odd
transverse momentum dependent parton distribution func-
tion (TMDPDF) [75]. Chiral odd GPDs are also accessible
in specific processes like deeply virtual Compton scattering
or deeply virtual meson generation. They are more difficult
to probe experimentally than chiral even GPDs, as they need
another chiral-odd object in the amplitude to combine.
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As stated above, the GTMDs as well as the GPDs are
important to understand the angular momentum contribution
of the gluons to the nucleon spin, and its OAM. The
decomposition of the total angular momentum of the
nucleon into spin and OAM is not unique [76].
There are two well-known decompositions, known as the
kinetic and canonical decompositions, available in the
literature [76-78]. We also present a calculation of
the gluon contribution to the total angular momentum of
the proton as well as the OAM in different decompositions
in our model.

The work is arranged in the following manner: In Sec. II,
we briefly review the light front gluon spectator model. In
Sec. III, we discuss the general definition of gluon GPD
correlator, which allows us to assess both chiral-even and
chiral-odd GPDs at leading twist with both zero and
nonzero skewness. In Sec. IV we evaluate the chiral-even
gluon GTMDs and we present a discussion on gluon orbital
angular momentum and spin-correlation distributions. In
Sec. V we present the impact parameter dependent gener-
alized parton distributions at zero skewness. Finally, in
Sec. VI we present our conclusions and outlook. Many
supplementary formulas explaining the details of the para-
metrization are presented in the Appendix.

II. LIGHT FRONT WAVE FUNCTION

To investigate the gluon distribution functions within the
proton, we have recently formulated a light-front spectator
model for the proton in which gluon is considered as an
active parton. A detailed description about the model
construction can be found in Ref. [68]. Apart from the
struck gluon, the remaining components, including the
three valence quarks and any additional gluons or sea
quarks, collectively form the spectator system. We consider
the proton as a composite system of spin-1 gluon and spin-
1/2 spectator.

The model is based on the light-cone approach with
x* =x% 4+ x%. We choose a reference frame where the
transverse momentum of the proton vanishes, i.e.,

P = (P, ]}f—f ,0,). The momentum of active parton is given

by p = (xP*, P i;fi ,p.) and the momentum of the spec-
tator Py = ((1 —x)P",Pyx,—p,). The variable x =
pt/P" represents the fraction of longitudinal momentum
carried by the struck gluon. Therefore, the proton state can
be written as a two-particle Fock-state expansion with

proton helicity J, = :I:% as [79]
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where 1,///1 P )( x,p,) are the two-particle light front wave
functions (LFWFs), which represents the probability ampli-
tudes to find constituents corresponding to the two-particle
Fock state [4,, Ax;xP*,p ) with longitudinal momentum
xP*, transverse momentum p, and helicities 4, and 1y in
the proton. Here 4, and Ay stand for the helicity compo-
nents of the active gluon and spectator, respectively.

The two-particle LFWFs of the proton with J, = +1/2
have the following form [68]:
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where both M and My represent the masses of the proton
and spectator. Similarly, the two-particle LFWFs of a
proton with J, = —1/2 have the form
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Where ¢(x, p? ) is the modified form of the soft-wall anti—
de Sitter (AdS)/QCD wave function, which is modeled by
introducing the parameters a and b. The expression for the
wave function ¢(x, p7 ) is modified by x and 1 — x factors,
which explains the small and large x region behavior of the
PDFs. The complete form of the modified soft-wall AdS/
|

(x.p1)- (3)

1 dz” ixPtz7 /1 g +i +j
—pr | 3¢ T PLAISE 2 F Ip, M.
1 PtA/—ATP] C | ggist ~gP+A’
7SZP+ WP u(p A)[ rio™ + Hy

where u (&) are the light-front spinors with p (p’)
and A(1') the momenta and the helicity of the initial
(final) state of proton, respectively. In the sym-
metric frame, the kinematic variables are denoted as

Y
the average momentum P+ = @, momentum transfer

QCD wave function is given as [68,80]

o o=

[1/212 ).

2K°x
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where « is the AdS scale parameter, which is given as k =
0.4 GeV [81]. While, a, b, and N g are the model param-
eters which are fixed by fitting the NNPDF3.0 NLO gluon
unpolarized PDF dataset at initial scale o =2 GeV and
can be found in Ref. [68]. For the stability of the proton, the
sum of constituent masses is considered higher than the
proton mass, i.e., My > M [82].

III. GLUON GPDS

In the light-cone gauge A"t = 0, the off-forward matrix
elements of the bilocal currents of light-front correlation
functions define the four leading twist gluon helicity
conserving GPDs [2,22,83]

dZ P+
tx /1/ F+z F+z
P*/ 2w A < 2) <2>

P
ictTAA
Wy 4) [H-w v } u(p.A). (5)

szJr <p l/|F+l< 2)F+z< >|P ﬂ)
7T*0
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:21,er

i dz”
Pt 2

i
= Zl.%ﬁ(p’,ﬂ’) {Hgﬁ}'s + EY y;ﬁ,l
where F# = 1e?r%F ; is the dual field strength tensor and
a summation over i =1, 2 is implied. Similarly, the
remaining four gluon helicity flip GPDs involves the matrix
elements of gluon tensor operator SF*i(—z/2)F*/(z/2),
where S represents the symmetrization operator in i and j
and can be given as

z7 0
_ AJrPi
M? *

E-" J/+Ai _ Aﬂ/i N E-‘/ 7+Pi _ P+yi
T 2M T M

u(p,4), (7)

|
A* = p" — pt, the skewness &= —AT/2P%, and
the invariant momentum transfer in the process ¢t = A,
The standard form of the gluon field strength tensor
F7¥(x) is given in terms of structure constant f,,. as
follows:
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Fa' (x) = 0"Ag(x) H(®)AL(x). (8)
We choose light cone gauge AT =0, which fixes the
gauge link between the fields to be unity. It also implies
that F*' = 9" A?, which simplifies the calculation. The
operator F™'(—£) is associated with incoming gluon while
F*i(%) is associated with an outgoing gluon. We use the
light-cone quantization framework to obtain the gluon
distributions in terms of light-cone helicity amplitudes.
We then define the following helicity amplitudes that are
connected to different gluon GPDs based on the different
proton and gluon helicity configurations [2,5,17,83]:

dZ lX i 2
Ao == [ G A1 E (<)

X F*i <§> e (u)|p. A)|
Zz

where u(u') denotes the gluon helicity of the initial (final)
state and ¢ is the two-dimensional gluon polarization
vectors. Parity invariance results following relation among
the various helicity amplitudes as

- aUAZ ()C) + gfabcA

; ©)

=0, z;=0

A = (=D (A )" (10)

—il—ﬂ/,—l—}l

A. GPDs at nonzero skewness

The internal structure of the proton has primarily been
investigated within the confines of the £ = 0 limit in most
studies. However, in order to fully uncover the wealth
of information available within the three-dimensional
momentum transfer space, it is imperative to assess the
GPDs at nonzero skewness values. Recent theoretical
works [84-87] have started to explore GPDs at nonzero
skewness. In fact, skewness is typically nonzero in
experiments. The GPDs evolve with the scale differently
in different kinematical regions [88]: for the quark GPDs,
(1) x > £ corresponds to the situation when an active quark
of initial longitudinal momentum fraction of x + & struck
with a photon and come back to the nucleon with
longitudinal momentum fraction x — &; (ii) x < —¢& corre-
sponds the distributions of antiquarks where both the
longitudinal momentum fractions x + ¢ and x —¢& are
negative; both the x > £ and x < —¢£ regions are known
as Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)
domain; (iii) in the third region —¢& < x < ¢, which is
known as Efremov-Radyushkin-Brodsky-Lepage region,
the GPDs correspond to the process in which a quark of
longitudinal momentum x + ¢ interact with a virtual
photon and emit an antiquark of longitudinal momentum
& — x. Here, we investigate the gluon GPDs, in which the
active parton is a gluon, in the DGLAP region (x > &
only), as in the Efremov-Radyushkin-Brodsky-Lepage
region, the GPDs would involve particle number changing
overlaps involving higher Fock components of the

LFWFs, which is beyond the scope of the present work.
The helicity amplitudes, Ay, ;, include specific informa-
tion regarding the initial and final helicities of the proton
and gluon. The chiral-even GPDs are defined in terms of
helicity amplitudes wherein the helicity of the gluon does
not change and the helicity of the nucleon does. While in
the chiral odd GPDs, gluon flips its helicity.

In the reference frame where the momenta p and p’ lie in
the x — z plane, the chiral-even GPDs can be expressed
through the gluon helicity conserving amplitudes within the
helicity basis as follows [5,17,83]:

_ 1 g 2m& :
Hg*\/1_§2T1_\/to—t(1—.§2)Tg’ (11)
2M

Er=-2 to—tTg’ (12)
_ 2IME 13
4 1_52 \/_1_52) Ty, (13)
oM,

Er= eE\/Ty — P (14)

while, the chiral-odd GPDs can be written in terms of gluon
helicity nonconserving amplitudes as

o 2M 7o _ AMPE .
T eyl —1(1-8)"" (,-n1-&)1-& °
(15)
4M? - -
E) = (15 +T9), (16)
T -na-2yi-2
. 4M? - -
- 79+ 1), 17
AT A "
Y =0, (18)

where 7Y and 77 are chiral-even and chiral-odd helicity
basis which are defined as a combination of helicity
amplitudes [87] as

T? =Ap oy HA Tg =Ap oy —A

T{=A,, _+A.___, Ti=A., _.—A,___, (19
and

T{=A _+A_ .. =A A,
T§=Ay +A_, Ti=A,, —A_ . (20)
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Three-dimensional representation of gluon GPDs as a function of gluon longitudinal momentum fraction x and skewness

parameter ¢ for fixed transverse momentum transfer —|¢| = 3 GeV?2.

Here 7, is the minimum value of the transverse momentum
transfer ¢, i.e., ty = —4M>£*/(1 — £) for a given value of &
with € = sgn(D’) where D' is the ith component of D% =
PTA%* — A*P* and t = t, for D' = 0. The matrix elements
77 and T¢ can be written in terms of overlap of light-front
wave functions. The detailed calculation and expressions
for the above matrix elements are given in the Appendix.
Using the Egs. (A11)-(A18) in the above relations we can
get the expressions for individual GPDs at nonzero
skewness.

Figure 1 depicts both the chiral even and chiral-odd
GPDs in three-dimensional momentum space, with skew-
ness parameter, £ and x at a fixed transverse momentum
transfer of —|t| = 3 GeV?. Though the GPDs are oscil-
latory in x space, they vary monotonically with . As shown
in Fig. 1 the distributions exhibit nonzero values in the
x > & region only. The 3D distribution of xHY shows
the behavior of unpolarized GPD. The amplitude of the
distribution depends on the value of x and & in such a way
that it is close to zero when x is very close to ¢ but the
position of the peak in x depends on the value of £ A
similar kind of behavior is also shown by xA? distribution
with a magnitude almost half of the magnitude of the xHY
distribution. The forward limit of H9 and A9 can be related
to the unpolarized and helicity PDFs, respectively. Since
the results in Fig. 1 are presented at fixed momentum
transfer, therefore we cannot relate these results to the
forward limit. The distributions xE9, xE9, and ngT show
similar behavior but of different orders of amplitude.

In Fig. 2, we show the representation of GPDs as a
function of the longitudinal momentum fraction variable x
within the context of the DGLAP region. These plots are
generated at specific values of skewness parameter £ and
momentum transfer —|¢| = 3 GeVZ2 The 2D distributions
of xHY and xHY oscillates from negative to positive as they
go from small to large x for a particular value of £ whereas
xE9,xE9, xE4., and xHj do not change their signs. The
magnitude of both positive and negative peaks depends on
the value of £ as shown in Fig. 2. We observe that the
magnitudes of the peaks xHY and xHY decrease and shift
towards the large value of x as we increase the value of the
skewness parameter. The distributions xEY and xE%. follow
a similar trend. While, contrary to these, the magnitudes of
xEY and xHY distributions increase with increasing &,
though the distributions shift towards larger x.

B. Comparison with other results

We show a comparison between our model predictions
and the extracted GPDs from Ref. [87] in Fig. 4. The
comparison between the two approach is not in a good
agreement due to differences in the dataset and number of
parameters used for model construction. In our model, we
construct the light-front wave functions of the proton using
a soft wall AdS/QCD prediction, with model parameters
determined by fitting the unpolarized gluon distribution
function solely to the NNPDF3.0nlo dataset. The remaining
distributions, including helicity PDFs, TMDs, GPDs, and
GFFs, are intrinsic predictions of our model governed by
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FIG. 2. Two-dimensional plots of gluon GPDs at £ = 0.1, 0.2, and £ = 0.3 as a function of longitudinal momentum fraction x for a

fixed momentum transfer —|7| = 3 GeV>.

these parameters. In contrast, Kriesten et al. [87] para-
metrize the GPDs based on a comprehensive global QCD
analysis of deeply virtual exclusive experiments within the
perturbative-QCD-parton framework. Additionally, they
incorporate lattice QCD data for the GFFs to impose
constraints on the moments of GPDs. Unlike our approach,
Kriesten et al. utilize lattice QCD data in their fitting process
and consider a broader array of parameters, resulting in a
more comprehensive characterization. Specifically, while
our model relies on only two parameters, while Ref. [87]
employ eight parameters for each flavor.

In Fig. 3, we present our model’s predictions for A(Q?)
and B(Q?) alongside comparisons with lattice QCD data
[89], dressed quark model results [28], and the findings by

0.7

o Lattice
This work
.-0.- Dressed Quark

0.6

..... Parametrization ]

0.5}

Ay(t)

0.0 0.5 1.0 1.5 2.0

FIG. 3.
parametrizations from Ref. [87].

Kriesten et al. [87] at Q =2 GeV. Our A(Q?) exhibits a
sharp decline, reaching a small negative amplitude at high
momentum transfers. While not in perfect alignment with
lattice QCD data, its qualitative behavior closely resembles
that of the dressed quark model. It is to be noted, however,
that a quantitative agreement with the results of the dressed
quark model is not expected, as we are considering a
nucleon. Notably, differences in sign and amplitude
become more significant for the GPDs at nonzero ¢ and
t, as depicted in the left panel of Fig. 4, indicating
differences between our results and those of Ref. [87].
Similarly, our B(Q?) results align with trends observed
in lattice simulations and the dressed quark model.
However, the GPD parametrization [87] overshoots the

0.4

By(t)

o Lattice
This work
.-0.- Dressed Quark

..... Parametrization
0.0 0.5 1.0 1.5 2.0
—|t| [GeV?

Left (right) panel: comparison of our model predictions for A(z) [B(t)] GFF with lattice [89], dressed quark model [28], and
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FIG. 4. Comparison of gluon unpolarized GPD HY (left) and gluon helicity flip GPD EY (right) at & = 0.25, t = —0.4 GeV? with

available phenomenological parametrization from Ref. [87].

lattice data at low —t= Q% crucial for determining
the signs of B(Q?) and subsequent GPDs like EY.
Consequently, a difference in the sign of EY arises between
our model and the findings in Ref. [87], as depicted in the
right panel of Fig. 4. Notably, the negative amplitude of EY
reported in Ref. [90] aligns with our model’s predictions,
although a direct comparison cannot be done due to the
scale differences in the two calculations. The negative sign
of EY is also reported in the basis light-front quantization
(BLFQ) formalism [51], which is an effective light front

Hamiltonian approach and the utilized LFWFs are taken up
to three quarks with one dynamical gluon. This observation
also supports the correspondence with the gluon GFF BY.

C. GPDs in =0 limit
In the limit £ — 0, the correlation functions of the GPDs
reduce to a simplified form, resulting in an expression
solely in terms of x and t = —A?. In the context of our

specific model, we reformulate the equations depicting
gluon GPDs at & = 0 limit as

HO(x,0,=A2) = 2N2x2+1 (1 = x)2 [1 et (sz]z - —x)ZATi> + (M— Mx )2] exp [——ln(ﬁ)(l _X)QAZL},

x*(1-x)?

A 1=(1=x)2 /22
Hg(x, 0, —Ai) = 2N§x2h+l(1 _x)2u|: ( )C) <K‘ X B

2 2 T
x*(1=x)* \Ing

E9(x,0,—A7) = 4MN2x?* (1 — x)29(M(1 — x) — My) exp [—

H(x,0,—A3) = 4MN2x* (1 — x)?*='(M(1 — x) — Mx) exp {—

ES(x,0,—A7) = 4M*N2x*=1(1 — x)** ' exp [

) (1-x)?
4K x?

1—x

A? My \2 In(+1)(1 - x)?
—x)2L _7X _ M=\ ) A2
%) 4 ) + <M 1—x> } P [ 4x2x2 Al}’

(22)
hﬁ)ﬁg )521 - x>2] , (24)
<] @

The unpolarized gluon GPD, HY(x,& = 0,t) given in Eq. (21) reduces to the unpolarized gluon parton distribution
function in the forward limit, i.e., f4(x) = H%(x,& = 0,7 = 0). Similarly, the helicity-dependent gluon GPD, HY (x, &=
0, 1) Eq. (22) gives the gluon helicity PDF in the forward limit as ¢!, (x) = H%(x,& = 0,¢ = 0). The gluon helicity GPD
provides the gluon spin contribution to the total proton spin AG = [ dxg; (x).
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zHY(x,t)

cHY.(z,t)

xzEI(x,t)

zFEi(z,t)

FIG. 5. Three-dimensional representation of gluon GPDs as a function of gluon longitudinal momentum fraction x and transverse
momentum transfer squared || (in GeV?) at £ = 0.

Figure 5 shows the three-dimensional behavior of non-
zero gluon GPDs of proton in the momentum space at zero
skewness with respect to x and r = —A? . The unpolarized
GPD HY(x,£E=0,t) at £ =0 shows a sharp peak near

x =0, only for small A,. The behavior around x — 0
drastically changes when A > 0.05 GeV?. It can be better
understood from the first plot in Fig. 6. The helicity GPD,
HI(x,£ = 0,1) peaks around x ~ 0.2 for smaller values of

— 0.00 T
0.02} ’/ = 0.02}
/ -0.02f
< 0.00 = =
s oot} *
=4 e S -0.04f
g -0.02} g g
N N
> > 0.00 > _0.06F
E -0.04 — A, =05GeV ?E —a,=05Gev| R —A=05GeV
~0.06 woo A =1.0GeV -0.01F o A1=1.0GeV —0.08F oo A =1.0GeV
e A = 1.5 GeV mee A= 1.5 GeV e A = 1.5 GeV
. . . . -0.10
0.001 0.2 0.4 0.6 0.8 1 0.001 0.2 0.4 0.6 0.8 1 0.001 0.2 0.4 0.6 0.8 1
x T x
0.00 = 0.8 ///\\\
-0.02}
= -0.04 :3: 0.6f
S oo <
é\ -0.06 8 =Y AJ_= 1.0 GeV
S ~ 0.4}
s 008 2 @ Ay = 1.5 GeV
m ~0.10 =A;=05GeV ]
8 0.2
~0.12 ALZ 1.0 GeV
—0.14 e A= 1.5 GeV 00
0.001 0.2 0.4 0.6 0.8 1 0.001 0.2 0.4 0.6 0.8 1

FIG. 6. Two-dimensional plots of gluon GPDs at £ = 0 as a function of longitudinal momentum fraction x at certain values of
transverse momentum transfer, A (in GeV).
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momentum transfer and its peak decreases a bit slowly as
compared to the unpolarized GPD with increasing x and t.
The helicity GPD HY also shows a similar trend as the
unpolarized GPD, HY. We observe that at zero skewness,
our model’s GPD results are qualitatively similar to those
reported in Ref. [90]; however, quantitatively they differ.
This discrepancy can be attributed to the differences in the
initial scales of the models; our model uses an initial scale
of u} =4 GeV?, whereas in Ref. [90] the initial scale is
u2 = 0.8 GeV2. We also observed that in Fig. 3 of
Ref. [90], the authors reported the effect of the initial scale
on the unpolarized GPD at initial scales of 3 = 1.2 GeV?
and 3 = 1.6 GeV2. From this scale variation, it is apparent
that increasing the initial scale results in a decrease in the
amplitude of the distribution. Consequently, we might
expect that at uj = 4 GeV?, these distributions could also
be quantitatively similar to our distributions. Whereas the
unpolarized and helicity GPDs HY and H 4 are found to be
positive for all values of x and 7 in BLFQ [51] and extended
holographic light-front QCD [66] approaches. The gluon
GPD EY, which is also related to the spin-flip gravitational
form factor B(Q?), is negative in our model. It peaks
around ¢ = 0, which is the forward limit of GPDs, but it
does not correspond to any PDF. There are two more non-
zero chiral odd gluon GPDs, H} and E.. We notice that the
behavior of GPD HY%(x,& = 0,1) is quite similar to the
GPD EY(x,£ = 0,1) and they are related to each other as
EY = (1 — x)HY. Similarly, in Ref. [75,90] the authors have
derived a relation between these GPDs as EY = xH%. Both
EY and HY GPDs are negative and peak around the same
values of x and 7. The GPD EY.(x, & = 0, 1) has the largest
amplitude in the smaller value of x but it also vanishes with
increasing value of x. All the GPDs vanish as x — 1,
independent of the choice of the momentum transfer.

In Fig. 6 we show the gluon GPDs HY(x,0,t), HY,
EY(x,0,1), H%(x,0,1), and E%(x,0,7) with x at certain
values of momentum transfer A; = 0.5, 1, 1.5 GeV,
respectively.

IV. ORBITAL ANGULAR MOMENTUM

As discussed in the introduction, gluons contribute
significantly to the spin of the nucleon. However, the
decomposition of the nucleon spin into quark and gluon
intrinsic spin and OAM parts is not unique. There is also a
question of separation of gluon contribution into those in a
gauge invariant manner. Polarized scattering experiments
have measured spin asymmetries which are directly sensi-
tive to gluon intrinsic spin. The experimental observables
must be related to a gauge-invariant object. This led to a lot
of theoretical discussions, a consolidated summary can be
found in [76]. There are two main decompositions: kinetic
and canonical. Below, we investigate both the kinetic and
canonical gluon orbital angular momentum in this model.

A. Kinetic OAM

According to Ji’s sum rule [78], the total angular
momentum J? of the gluons can be obtained via the
moments of the chiral even helicity conserving GPD HY
and helicity nonconserving GPD EY through the following
sum rule:

J = %/ dxx[HY(x,0,0) + E9(x,0,0)].  (26)

Substituting Egs. (21) and (23) into Eq. (26), we
obtained the gluon’s total angular momentum as J? =
0.058 in our model, which aligns with recent findings from
the BLFQ collaboration, where J? lgLrg = 0.066 [51].
However, it should be noted that the scale in [51] is
0.5 GeV, which is different from that used in our model.

In an analogous gluon spectator model, with a different
wave function, the gluon’s total angular momentum is
determined as J? = 0.19 [90]. The results from this model
[90] are consistent with the recent lattice result J? =
0.187(46)(10) obtained by the ETM collaboration [91],
where the lattice result is provided in the minimal
subtraction scheme at a scale of 2 GeV.

Using the sum rules of gluon GPDs HY, H9, and EY we
calculate the gluon OAM in the light-cone gauge from the
expression [76-78,92]

L= / dx{%x[Hg(x, 0,0) + E¥(x,0,0)] — 9 (x, 0, 0)}.
(27)

Our numerical results show that L7 = —0.42 which means
that the gluon kinetic OAM is negative. In Fig. 7 we show
the variation of the unintegrated gluonic kinetic OAM with
respect to gluon longitudinal momentum fraction x.
Furthermore, it is noteworthy to highlight that the con-
tribution in the small-x region is not negligible. The kinetic
OAM distribution peaks at low x, decreasing rapidly as x

0.001 0.2 0.4 0.6 0.8 1
xTr

FIG. 7. Model predictions on unintegrated gluon kinetic OAM
as a function of momentum fraction x.
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goes to 1. Similar behavior of gluon kinetic OAM has been reported in another gluon spectator model, with their calculated
value for gluon kinetic OAM being L? = —0.123 [90], which is also found to be negative.

B. Canonical OAM from GTMDs

The gluon canonical OAM can be calculated using chirally even gluon GTMDs in light-cone gauge [77,93]. In this
section, we investigate the gluon GTMDs and canonical OAM in our model.
In order to obtain the gluon GTMDs we used the parametrization [8,9,15,94] as

dz= d* . Al . A
Wiee=0pAl) = [ <p+7rF(2)F(2>‘p7>

2r (2rx)
where we have suppressed the color indices in the GTMD correlator because we are considering the light-cone gauge in
which the gauge link becomes to be unity. The GTMDs, F; F 4 describe the distortion of unpolarized partons inside a
longitudinally polarized target, whereas G, ; describes how the longitudinally polarized parton distorts their distribution
inside an unpolarized target. The light cone overlap representation of the chiral-even gluon GTMDs F{ |, F{,, G, and
GY, is given by [9,15]

, (28)
z7=0

1,1 3ZZ€M ‘/’M X, PL)‘//L\.z(xv P
o DICEALLT [l e pwl (e p)] (29)
1
g ic ﬂ
Gl.4 - _2(2”) AX”;EI‘; 6‘;1//” ﬁ(‘x pJ_)l//ﬂ l(x’ pIJI_)’
I &) [whi e pw )t (30)
i(p, XA
> L)ZF‘M ZSlgn ) [l (e P i ()]
M Au/l
o) (e pD)]. (31)
l(pj_ X AJ_) g 1 1 . »
— G = —2(2”)3 22 sEnt) (D (et

e 2sienih Im|y!", (P, (xp)). (32)

where A, 4, and u denoted the proton, quark, and gluon helicities, respectively. Also p/ and p’, are gluon transverse
momentum in the proton initial and final state, given as follows:

A A
pl=pl+(1—x)7l, pl=p.—(1-x) ; (33)

By employing the proton LFWFs from Egs. (2) and (3), the analytical expressions for the above four chiral-even GTMDs
can be obtained as

2 —)?)(p2 —x)2Al
Fl,l(x’fzo’pL’AL):%xzb_l(l_x)zalog<1i){( - ))(g—x)z(l )4)+<M_1A/£Xx>2

i(1=(1=x)3(1-x X 1 2
L= x>2(>1<1_ xy)(pl Aﬂ}expl_l‘)g};) ( - >AT)] 34
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2N 2

(1= (1=x2)(p2 = (1—x2%) My

Gia(x,E=0,p,A,) = ; =1 -

x)2 log<1

N

+(M_l—x)z

x*(1 = x)?

i1+ (1 -x2) A -x)(pLxA)) log(5) [, , A
- 1—x)"— ||, 35
" = exp |~ (9 4 (1 -2 (35)
NIM? 2a+1 1 (1-x)
F1,4(X,§—0,PL7AL)—?X (1-x) IOg(l—x>{ 21 =) }
log(;=) , A2
X exp l— K2)162 (p? + < f) (36)
2N2M? 1 (1 - x)>2
Gii(x,6=0,p.A) =——L—x271(1 - )2“+'log< >{ a )}
K —-Xx x*(1 = x)?
log(i1) A?
X exp [— szlcz (p1 + < 2:)] (37)

In the forward limit, i.e., at £ = 0 and A; = 0 limit the
unpolarized gluon GTMD, FY{ 1 gives the unpolarized gluon
TMD, which describe the unpolarized gluon density as

£i(x) = / @ ! (x.0.p..0.0),  (38)

which we discussed in our previous work [68]. Whereas,
the canonical orbital angular momentum of gluon, #7 can
be obtained from GTMD Ff4 in the light-cone gauge
as [37,54,56,60,76]

£9(x) = / @p. s Pl L FY,(x,0,p.,0,0).  (39)

The x dependence of gluon canonical orbital angular
momentum, 77 can be given as

2
£4(x) = N2 2 1-(1-x) K203 (1 = )2t 1
(1 -x)? log[L]
(40)
Similarly, the spin-orbit correlation factor for the

gluons can be obtained by using the gluon GTMD G
as [13,54,95,96]

/d?pl =G (x,0,p..0,0) (41)

and the fourth chiral even GTMD G, gives the gluon
helicity TMD g¢{, in the forward limit, corresponding

collinear parton distribution is gluon helicity PDF which
contributes to the proton spin as

AG = / dxd®p, G ,(x,0,p,,0,0). (42)

In Fig. 8 we show the gluon momentum fraction x
dependence of canonical orbital angular momentum in
the left panel, whereas the spin-orbit correlation function
has been depicted in the right panel. One can notice that the
gluon canonical OAM, #4(x) and spin-orbit correlation
factor C(x) both distributions have negative values in the
whole range of x. After integrating #7(x) over x one can
obtain the numerical value of gluon canonical orbital
angular momentum which gives the contribution into
Jaffe-Manohar spin sum rule. In our model calculations,
we obtained the numerical value of canonical OAM as
¢? = —0.38, which is in good agreement with the another
spectator model canonical OAM result, #¢ ~ —0.333 [97].
As similar to quarks, the canonical and kinetical gluon
OAMs are comparable in our model, ie., 77~ LY as
reported in Refs. [59,76,98]. The spin-orbit correlation
factor is ¢ = —15.5 in our model, the negative sign implies
that the gluon spin and OAM are oriented in opposite
directions.

V. GPDS IN IMPACT PARAMETER SPACE

The two-dimensional Fourier transform of the GPDs
at zero skewness with respect to the transverse
momentum transferred, A, to the process is used to
determine the IPDs [39],
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FIG. 8. Model predictions for the gluon canonical OAM which can be obtained with F{ , gluon GTMD (left) whereas the gluon spin-
orbit correlations function which can be obtained with gluon G{; GTMD (right).

d2A .
Flub,) = / o P = 0= -at). (43)

where b is the impact parameter in the transverse plane
which is the transverse distance between the struck parton
and the center of momentum of the hadron. In the context
of momentum space, the generalized parton distributions
are depicted as off-diagonal matrix elements devoid of any
immediate probabilistic implications. Conversely, when
analyzed within the framework of impact parameter space,
these distributions not only adhere to rigorous positivity
conditions but also offer a compelling and substantial
probabilistic interpretation [39,99].

zHI (x, by

A

:c?ftg(:c, b,

In Fig. 9, we depict three-dimensional representations of
the nonzero generalized parton distributions in impact
parameter space. Both the chiral even and the chiral odd
GPDs are presented as functions of gluon longitudinal
momentum fraction x and impact parameter b, at zero
skewness. Notably, the first plot in Fig. 9 reveals that the
impact parameter distribution Y satisfies stringent positiv-
ity constraints, i.e., H9 > 0, thereby affording a probabilistic
interpretation. For a more precise understanding, one can
examine the first plot in Fig. 10, which illustrates how the
unpolarized IPDs change with respect to the impact param-
eter b at particular values of gluon momentum fraction x.
Likewise, the helicity GPD in impact parameter space, 7,

zE5.(x,b

1)

FIG. 9. Three-dimensional plots of impact parameter dependent GPDs, HY, HI, £9, HE., and é'gT as a function of x and the transverse

impact parameter b, (in fm) at £ = 0.
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FIG. 10. 2D plots of impact parameter dependent GPDs, H7, 79, £9, H3 and & as a function of the transverse impact parameter b |
(in fm) for specific values of the momentum fraction x, precisely, x = 0.1, x = 0.3 and x = 0.5, with £ = 0.

exhibits a positive distribution across the entire transverse
impact parameter range, adhering to the positivity constraint.
This specific representation of the helicity GPD in impact
parameter space quantifies the difference in density between
gluons with positive and negative helicity. The generalized
parton distributions &7 and H% exhibit comparable shapes
and display a negative distribution across the entire range of
impact parameter space. To establish a probabilistic under-
standing, it is crucial to focus on amplitudes where the initial
and final states possess matching helicities. Nevertheless, a
challenge arises when attempting to develop a probabilistic
interpretation for £Y in momentum space, as it is associated
with states that have differing helicities between the initial

2.0

(01)(z) [fm?]

0.5p

0.001 0.01 0.1 05 1
xTr

FIG. 11. Model predictions for the average squared transverse
radius of the gluon density, denoted as (b3 ) (in fm?) as a function
of x.

and final states. Finally, the chiral-odd GPD, denoted as 5‘},
exhibits a positive behavior across the entire range of b, . It
demonstrates significant amplitude at small x values but is
noticeably attenuated in the region x > 0.5. In Fig. 11 we
present the squared radius of gluon densities in the trans-
verse plane as a function of x. The parameter (b7 ) signifies
the transverse size of the hadron, revealing an expansion of
the transverse radius as parton momentum fraction x
decreases [100]. At lower values of x, the gluon displays
a larger transverse average radii in contrast to the quark.
Conversely, as x values increase, the transverse size of the
gluon decreases. As expected, when x approaches to 1, the
proton’s transverse size resembles that of a pointlike object,
illustrating the color transparency of the proton [100,101].

VI. CONCLUSION

In this work, we have employed a recently developed
light-front spectator model, incorporating the gluon as an
active parton and the rest as a spectator. The proton light-
front wave functions are adopted from the soft-wall AdS/
QCD prediction. The model provides valuable insights into
the leading twist gluon TMDPDFs, GPDs, and GTMDs.
Within the light-cone formalism, the above distribution
functions can be expressed as the overlap of the proton
wave functions. We have extended our investigation to the
gluon GPDs at zero and nonzero skewness in the DGLAP
region, shedding light on their intricate behavior in various
momentum configurations. We have explored both chiral
even and chiral-odd gluon GPDs at leading twist. At
nonzero skewness, among the eight leading-twist GPDs
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only six of them survive in our model in which unpolarized
and helicity GPD exhibit oscillatory behavior, EY, EY and
HY. show negative magnitude while E% shows the positive
distribution in the entire range of x and £ We have
particularly focused on the & = 0 behavior of the GPDs
in the momentum and impact parameter space. We have
evaluated the canonical and kinetic OAMs and the spin-
orbit correlations of the gluons through GTMDs and GPDs
in this model dominating the small x regions. We found that
the canonical and kinetic orbital angular momentums are
negative in the entire range of x and they are approximately
close to each other, as ¢ ~ —0.38 and LY ~ —0.42 in our
model. Using Ji’s spin sum rule we have also calculated the
total angular momentum, J? = 0.058, which agrees with
the BLFQ predictions. The spin-orbit correlations are also
negative, indicating that the gluon spin and OAM are
antialigned. Further, we have also computed the average
transverse square radius, (b3)7 as a function of gluon
longitudinal momentum fraction x. As expected, the

transverse size decreases with increasing x. As x
approaches 1, the transverse size of the proton diminishes,
and it behaves like a pointlike object. Our investigation has
the potential to establish important theoretical limitations
regarding gluon GPDs and angular momentum. However,
to confirm these predictions, further experimental mea-
surements are essential.
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APPENDIX: OVERLAP REPRESENTATION OF LFWF

The matrix elements 79 for the chiral even GPDs are given by the following relations with the LFWFs:

dzpl % *
= [ w0 W)

1673

S ANCH ARG 1

w67 el)].

*

d’p. X .
g = [ T [ W) T w0

SN A GINEN R GHCR s )

d2p * *
1= [l ol w0 Wl

1673

4—1//T

PPL 4
R = R A AR A R AR A A

1673

- Wij+%(xl7 pl)lpi1+%(x”7 pi) 4

(ER A ANNEN YA RSN IR AR O]
2 2 2 2

E TRAPICZN JRIF
2 2

(A2)

(A3)

P

(A4)

Likewise, the matrix elements T? for the chiral odd GPDs in terms of LFWFs could be expressed as the following:

F dzpl * *
T = / o [ D) L R ()

Wl e) L w! L (e,
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7 dsz_ * *
3= / [WILH%()C’,p’l)wa%(x”,pI) + Wll_%(x’,pl)wfl_%(x”,p’i)

1673
b (x/ /) 1 (// //)_ I (/ /)T (// //) (A6)
LASTICE) DL SSEEICIE) DAl AU L AL SUIIC AN SRR
79 — d’p, [WT* (. p’ )WT . p") +WT* (., p/ )WT (x".p")
3 1673 L7 +13\  EL/F 1 A EL +1=4\V O B S o B
AR IS TANNCN IO RN EN AN EIN 0] (A7)
71— [ TRt w0 + v ()
4 1673 L7+ L/ i o B +1=4\V o B L o B
- l//f”{%(X’, pl)w11+%(x”, p) - wf’{_%(x’, pi)wll_%(x”, p’i)} : (A8)

where the arguments of the LFWFs in the above Egs. (A1)-(A8) we use the notations as

A,

/_x_é 21
2’

=T

x pL=p.+(1-%) (A9)

for the active gluon longitudinal momentum fraction (x’) and transverse momentum (p’, ) in the final proton state and

o xTE
1+&

A
pL=p. - (1-2) (A10)
for gluon’s longitudinal momentum fraction (x”) and transverse momentum (p’/ ) in the initial proton state, respectively.
By employing the notion of the helicity amplitude Ay, ,, as stated in Eq. (9) and using the model expression for LFWFs,
one can obtain the following form of matrix elements for chiral even and odd GPDs:

Ty x") = Ny [Fz(x’,x”){i+ < A Y R R e —x’)ﬁ> Q—z} ~ Fy (x’,x")i] exp [Qz (C+B—2>} :

AT \a 4 44) A A 44
(A11)
T.fl(/ //)_N2|:F(/ //){1+<62_1(1_/)(1_//)+(//_/)B>Q2}_F(/ //)1:| |:Q2(C+82>:|
2" = N | Fs (X x") (s X x =)o) 1( ") 7 exp ai) |
(A12)
B B B?
T4 (X', x") = Nﬁ[FAx’,x”){%—l—%(l —x”)} —Fs(x’,x”){%—% 1 —x’)H exp{Q2 <C+a)], (A13)
B B B?
TZ(x’,x”)—Nﬁ{FAx’,x”){%—l—%(l—x”)}—|—F5(x’,x”){2—f%—TQA(l—x’)H exp{Q2<C+a)], (A14)
FI () M — A2 FS(X/,X//) B_Q_g o _F4(x,’x”) B_Q g - 2 B_z
T?(x’x)Ng{ 1—x {2A2 24l x)} = g oAl =¥ Craz) A
5%, x") = TY(x', x") (A16)

TY(x'. ") = N2(Fo(x', X") — F5(x',x")) exp {Qz (c + %)] { <4B—; - % (1=2)(1=x") + (x" =¥ 5) Q—z}, (A17)
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- B? B2 Qz
T9(x',x") = N3 (Fe(x',x") + F7(x',x")) exp {Qz <C+4A>] { (4_,42_1(1 (A =x")+ (¥ —x )4A> 1 }, (A18)
where A, B, and C are defined as
1 (log(Ly) | log(i2n)
A e Ag(x/’x”) — _ﬁ ( x/lz + x/1/2 ’
1 ((1=X)log(y) (1 —x")log(2)
B = Bg(x/,x”) = ? < x/2 1 - x//z 1 )
1 /(1=x)log() (1 —x")*log()
C=0C9(xx") = 22 ( 7 1 + PR 1 , (A19)
whereas the functions F; are defined as
1 1 "
Fl(x' x//) % Og(l ) Og(l/ X )( /x//)h((] _x/)(] _x//))a M — MX/ M MX/ )
x! 4 1—x 1-x
2 [log( =) L+ (1=x)(1=x")
E— (1D 1=x)(1=x"))¢
KZ\/ { )7((1=x)(1 =x")) <x’x”(1—x’)(1—x”) ’
2 =) 1= =x)(1=x")
P\/ (x/ //) ((1 _x/)(l x//)> (x/x”(l x’)(l _x//> ’
2 [log(i== log( =) .1 My
—\/ L (1 =) (1 =) (=)
2 [I) 1 M
_K_Z\/ { /xll) ((1_xl)(l_x//))a;<M_1_);”>’
2 ”) B 1
Kz\/ (X'x")P((1=x)(1 = x")) P
2 ) 1
“ (I _ -
—Kz\/ P =)0 =) (A20)
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