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The paper calculates the helicity-dependent dihadron fragmentation function by extending the
dihadron spectator model and examine the single longitudinal spin asymmetry Aij'i(wh) from dihadron
in semi-inclusive inelastic scattering. This function elucidates the relationship between the longitudinal
polarization of the fragmented quark and the transverse momentum of the resulting hadron pairs. A study
by the COMPASS collaboration detected a minimal signal in their experimental search for this azimuthal
asymmetry in semi-inclusive inelastic scattering. Here, we use the spectator model to calculate the
unknown T-odd dihadron fragmentation function Hi. Adopting collinear factorization to describe the
data, avoiding the transverse momentum dependent factorization and the associated resummation
effects, helping us understand the asymmetry and explaining why the signal is so weak. We involve the
approach of transverse momentum dependence in the model calculations, in order to formulate
the differential cross sections and the spin asymmetries in terms of the collinear parton distributions
and the collinear dihadron fragmentation functions. A transverse momentum factor analysis method was
used, in which the transverse momentum of the final hadron pairs was not integrated. The asymmetry
of sin(2¢;,) in COMPASS kinematics was calculated and compared with experimental data. In
addition, predictions for the same asymmetry are also presented for HERMES and the Electron Ion

Collider.
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I. INTRODUCTION

The study of the dihadron fragmentation functions
(DiFFs) describing the probability that a quark hadronizes
into two hadrons is of great interest both in theory and in
experiment. The DiFFs were introduced for the first time
in Ref. [1]. Their evolution equations have been studied in
Ref. [2]. In particular, the authors of Ref. [3] presented the
evolution equations for extended dihadron fragmentation
functions explicitly dependent on the invariant mass, M,
of the hadron pair. Then Ref. [4] introduced the trans-
versely polarized fragmentation by using the transversely
polarized DiFF, which later lead to the definition of H}.
Reference [5] also started the whole business on dihadron
fragmentation to access the quark transversity distributions.
The basis of all possible DiFFs have been given in Ref. [6].
The authors in Ref. [7] analyzed the hadron pair system in
relative partial waves. In this way, we can make processes
of the dihadrons produced clearly. Soon after, the analysis
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of DiFFs was extended to the subleading twist within a
collinear picture [8]. It is important to propose structure
functions for the dihadron semi-inclusive deep inelastic
scattering (SIDIS) to express the section by using under
the framework of structure functions for the dihadron
SIDIS [9]. The analysis is complete up to the subleading
twist. Researchers began to closely monitor the DiFFs
when attempting to extract the chiral-odd transversity
distribution. This distribution was initially extracted by
considering the Collins effect [10] in single hadron SIDIS
and back-to-back dihadron production in e® e~ annihila-
tions Ref. [11]. Recently, some meaningful results on
DiFFs have been given in Refs. [12-14]. To comprehend
the transversity distribution further, an alternative method
involving dihadron SIDIS has been recognized, which
solely relies on collinear factorization. The chiral-odd
DiFF H7 [7], couples with h; at the leading-twist level.
The function H7* can be extracted from the production
process of two back-to-back hadron pairs in e e~ annihi-
lation [15]. The transversity distribution has been deter-
mined from dihadron SIDIS and proton proton collision
data in previous studies [16-20]. Model predictions for the
DiFFs have been calculated using the spectator model
[21-24] and the Nambu-Jona-Lasinio quark model [25-28]
to estimate the magnitudes of various DiFFs.
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The HERMES collaboration [29] conducted an experi-
ment on azimuthal asymmetry in the dihadron SIDIS
process using a transversely polarized proton target.
Similarly, the COMPASS collaboration [30,31] also pub-
lished experimental data on this topic, but with polarized
protons and deuterious targets. Additionally, the BELLE
collaboration [29] has measured the azimuthal asymmetry
of back-to-back dihadron pair production, leading to the
first parameterization of H;'. The COMPASS collaboration
[32], recently gathered experimental data on different
azimuthal asymmetries by scattering longitudinally polar-
ized muons off longitudally polarized protons. Theoretical
studies have shown that these asymmetries manifest within
the collinear factorization framework, with a sin(2¢))
modulation explored in the spectator model [33]. The
azimuthal angle of the hadron pair system is denoted as
¢y, while ¢ represents the angle between the lepton plane
and dihadron plane. This paper specifically examines the
sin(2¢;,) modulation. In this work, we adopt collinear
factorization to describe the data, and involve the approach
of transverse momentum dependence in the model calcu-
lations, in order to formulate the differential cross sections
and the spin asymmetries in terms of the collinear parton
distributions and the collinear DiFFs. Transverse momen-
tum dependent (TMD) expands collinear factorization to
include the parton transverse momentum. The COMPASS
experiment determined that the sin(2¢),) asymmetry is
statistically consistent with O within the experimental
uncertainty. This study investigates the sin(2¢,) asymme-
try based on results from the spectator model for relevant
parton distribution functions (PDFs) and DiFFs. Through
partial wave expansion, it is found that the only term
contributing to this asymmetry is hi; Hy;;, where H{;
arises from the interference of two p waves and h;
represents the helicity distribution. Utilizing the spectator
model outcomes for the distributions and DiFFs, we assess
the sin(2¢;) discrepancy at COMPASS kinematics and
compare with the preliminary data from COMPASS.

The paper is structured as follows: Sec. II introduces the
theoretical framework of the sin(2¢),) azimuthal asymme-
try in dihadron SIDIS with an unpolarized lepton beam
scattering off a longitudinally polarized proton target. The
application of the spectator model to calculate the T-odd
DiFF HI{UL is discussed in Sec. III. Section IV presents the
numerical results of the sin(2¢);,) azimuthal asymmetry at
the COMPASS measurements kinematics and also provides
predictions for the Electric Ion Collider (EIC). Finally, a
summary of the work is presented in Sec. V.

II. THE sin(2¢;,) ASYMMETRY OF DIHADRON
PRODUCTION IN SIDIS

As shown in Fig. 1, considering the dihadron fragmen-
tation function ¢ — 7z 2~ X, where the unpolarized u with

FIG. 1. Angle definitions involved in the measurement of the
single longitudinal spin asymmetry in SIDIS production of two
hadrons.

momentum ¢ and a longitudinally polarized beam with
mass M, polarized S, proton scattering of momentum P by
exchanging virtual photons with momentum ¢ = ¢ — £'. In
the target, the dynamic quark with momentum p is struck
by the photon and the final state quark with momentum
k = p + g then fragments into two leading unpolarized
hadrons #* and z~ with mass M, M,, and momenta P,
P,. In order to express the differential cross section as well
as to calculate the DiFFs, we adopt the following kin-
ematical variables:

kt P-gq P, n
X =—-—, = -, = — = s
pt YT T UTE
P
=t Q==  s=(P+o)
R, —R
P, =P, +P,, R:ITZ, M2 = P, (1)

Here, we introduce the four-vector on the frame of the
light-cone coordinates as a* = (a™,a”, dr), where a* =

‘10%/5”3 and dr is the transverse component of the vector. The

light-cone part of the target momentum captured by the
initial quark is represented by x, z;, and the fragmenting
quark is used to represent the light radiation z of the
hadron. The part of the light cone of the e fragmenting
quark momentum carried by the last pair of hadrons is
represented by z. In addition, hadron pairs, the invariant
mass, the total momentum, and the relative momentum
between them are defined as M, P;, and R, respectively.

According to the 1_5” = (, we can make sure the selection
of the 7z axis. Hence the momenta PZ, k/,, and Ru can be
written as Ref. [22],

P,

M:
Py~ 0r |, 2
77 g @)
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P Z(K+ k) -
kﬂ:H’ (2P‘ ) G)
h
R|P; R|M
RH = —| | hcos9,| |_hcos6',
M, 2P;,

|R| sin 6 cos ¢hg. |R| sin Osin (/;R} .

R|P7 R|M R
— {_| | h e 9' M) OSQ,RX,R)T:|, (4)

0s 0, —
M, 2P;
where
- M?
Rl =[5t - m2, (5)

here m, is the mass of meson and ¢y, is the angle between
the lepton plane and the dihadron plane. It is desired to
notice that in order to perform partial-wave expansion, we
have reformulated the kinematics in the center of mass
frame of the dihadron system. @ is the center of mass polar
angle of the pair with respect to the direction of P;, in the
target rest frame [34]. There are several useful expression of
the scalar products as follows [34]:

M2 KR4k
P, k=" , 6
he 2Z+ 5 (6)
P, R=0, (7)

M, K4k = -
R‘k—<2—zh—z 2MhT>|R|cose—kT~RT. (8)

The differential cross section for the SIDIS process with
unpolarized muons off a longitudinally polarized nucleon
target can be expressed using the TMD factorization
approach, denoting A(y) = 1—y + ) as shown in Ref. [7],

|

ASRCP) ( / dxdydzthdM,,dcosedzﬁmd%dzﬁr(

X (4hi} = hif )H5L> / ( / dxdydz2M, dM ,dcosOd> P, | d*prd*k;o ( pr—kr—

kTpT”> '5< r—ky— Pu) |:2<ﬁTPhL)(ETPhL)
4 b4

ngUU
dxdydzd¢sde,dprd cos 0dP;,, dM?

2
A y)ZeéL‘[f‘{D,.OO], )

a

- 27sxy?
and

ng_UL
dxdydzde,ddy,dgrd cos OdPy | AM>

o
2nsxy Zeq { sin 0sin(2¢y,)

. |:2(PTPhL)(kTPhL)
MM,

— k
P ] h%LHbL}. (10)

The azimuthal angles ¢ and ¢ represent the angles of
ﬁr and §T with respect to the lepton scattering plane.
The angle P,, is determined by the relationship
P, = f’hj_/|l_5hl|. To simplify the labels U and L are
used to denote the unpolarized or longitudinally polarized
states of the beam or target. The structure functions in
Eq. (9) are expressed as weighted convolutions,

e = [ epriza(5r =" ()

In Eq. 9), f }] and D, oo represent the unpolarized PDF
and unpolarized DiFF with flavor ¢, respectively.
Equation (12) introduces hi; as a twist-2 distribution
function associated with the T-odd DiFFs hi;. Both
DiFFs play a role in the sin(2¢),) azimuthal asymmetry
in SIDIS. The expression of the sin(2¢;) asymmetry is as
follows:

o —ﬁrlgr}
P ) S+ F{ D).

(12)

III. THE MODEL CALCULATION OF H fUL

The TMD DiFFs D, and Hi which will appear in the underlying asymmetry are extracted from the quark-quark

correlator A(k; Py; R) [8],

4

1

g € (0l (£)|Py. R X)(X: Py, R|(0)|0)

|’:7:ET:O’

167

= {D hy + Hi T

k"hn+} 03
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Similarly, we need to express the quark quark correlation
function formula for the leading order distortion in the
center-of-mass frame, and the relationship between the two
correlation functions is as follows:

|R|
16ZMh

A(z, k3, cos 0, M2, pr) = /dk*A(k, P, R). (14)

By projecting out the usual Dirac structures, we obtain
the following decomposition results,

e7ky
M h

47Tr[A(z, kr, R)ic" ys) = Hi, (15)

where y*~ is the negative light-cone Dirac matrix.

The TMD DiFFs D;, Hi can be expanded in the relative
partial waves of the dihadron system up to the p-wave
level [34]:

1
D (z. k3. cos 0, M;) = Dy oo(z. M};) + D) o1 (2. M};) cos 0 + Dl,LL(ZvM%l)Z (3cos?0 — 1)

+ cos(¢y — ¢r) sin@(Dy or + Dy 1 cos ) + cos(2¢; — 2¢R)sin2¢9D1,TT (16)

Hi (z,k.cos0,M7) = Hi o (2.M7) + H-j;, (2.M7) cos®
1
+H1L,LL(27M%,)Z(3COSZQ— 1).

(17)

However, we only expand to the p-wave level. here
H{ o originates from the interference of two s paves, and
HtUL originates from the interference of two p waves with
the different transverse polarizations. ¢; is the azimuthal
angle of quark transverse momentum I_c'T with respect to the
lepton scattering plane.

In this work, the above mentioned part of H; ;; does not
contribute to the calculation of sin(2¢),,), so we only need to
calculate the dihidron fragmentation function H{ ;, under
the spectator model, here for the sake of simplicity, we will
no longer consider the terms related to cos @ in the DiFFs
expansion, so we will concentrate on calculating D ¢,
H fUL. Then we can get something similar function from
the Ref. [22],

1 (k+m) §% _% * _/Ii_i
Aq(k,Ph,R) :Wm(b—‘ e s _|_FP e VR)

< (f= Pyt M) (PPN + Fre )
X (f+m) - 276((k—P,)> —M?).  (18)

Here m and M| represent the masses of the fragmented
quark and the spectator quark, as denoted by the open circle
in Fig. 2. F* FP are the vertices refer to the s-wave
contribution and p-wave contribution [22], and as the
following forms:

[
F = fs’

M%—M%—IF/)M/) M%_M(%)_irmMm
(= M2+ M3 O = MBI
22, M3, m2)O(M,, = my = M))

—if!, . 19
s 4T M2 [AM2m2 + A(M%, M2, m2)): (19)

Fp:fp +fo

here,  AMB, M. m2) = (M3 — (M, + m,))
(M2 — (M, — m,)?), and © denotes the unit step
function. The first two terms of F7 can be identified with
the contributions of the p and the @ resonances decaying
into two pions. The masses and widths of the two resonances
are adopted from the Particle Date Group [35]:
M, =0.776 GeV, T', = 0.150 GeV, M,, = 0.783 GeV.

Putting Eq. (18) into Eq. (14), in this section, we need to
calculate H{,, with one-loop correction. Then according
to Feynman rules, we can write the one-loop contribution of
the correlation function in Fig. 1 as

A
&
&

D s EEEEEEINC TR CEEE T

—
=

+h.c.

FIG. 2. One-loop order corrections to the fragmentation func-
tion of a quark into a meson pair in the spectator model. Where
H.c. represents the Hermitian conjugations of these diagrams.
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Cra ARl (K Am) o, 5
AY(z. K3 cos 6, M2, Rl (F N4 Free ™ ) — P, + M,
(& k. cos0. M3 bw) = 350 —ypr w,, Qe =g \F ¢ T ETe TR Pt M)

x (F W pe_i_%’e) (k+m) / (;1254 ((ky ”—(f)l;;% f’ig& n—i)ie) ’ (20)
AY (2, k2 cos 0, M2, bg) = 327[2(C1F?Z)PE % (g jn’:?)Z (Fe_ﬁ + Fp*e_Ak_%R> (K= Py +M,)
'y E=P T+ Ms)(FSe_% + F"e_i_%R)(k —f+ m)r,,({é +m) 1)
(2n)* (k=P =1 =M: +ie)((k—=1)*> —m? + ie)(I* + ie)
AY(z. K cos 0. M3 ) = i 55 ﬁFf‘Z)Ph % (gjn’?)) (F . Fp*e_%}?)(k — Py +M,)
< (F e ék) / (534 = 1)2% ;2m+)yz_g§}({—_z—l . Z;(ﬂ s D)
=Pl my) ((F‘ + Fpe_%}?) =1+ m)
/ 2n)* (k= P, = 1)> = M? + ie)((k — 1)> = m® + ie) (=1~ L ie) (I + ie)’ 23)

in the above four formulas, the Feynman rules for the optical path propagator 1/(—I~ & i&), as well as the optical path lines
and gluon vertices, are used. In the above formula, the Gaussian form factor should depend on the circle momentum /. In
order to simplify the integral, we follow the choices in Ref. [36]: discarding the | dependence and only assuming that these
Gaussian factors have a k2 dependence, which can give a reasonable final result, similar to the method from Refs. [37-39].

In general, there are two sources of H ll y.. for each graph, one is the real part of the circle integral with |F?|?* imaginary
part is combined, and the imaginary part of the loop integral is combined with |F”|* real parts are combined, the loop
integral real parts are obtained by Feynman parameterization, and the imaginary parts are subject to Cutkosky cutting rule:

1 . .
Using the above convention, the final result of HfUL i1s obtained:
La 1|I_é| P2 _%22 2 2 - 2 g 2 _ _
HI’UL:_74H3(1—Z)P;'|F |*e “»(m* —k*)(2mR™k - R + R*ml~ + R°*mP;, — I"my), (25)
1b |]_é| 2 Zkz 1 CFasMhMX|I_é| 2 _%2 k2
S el B N .|FP =
LUL = 3053(1 = 2)P; [Fre Gy + 1622 (1-z) [F7 e (k> — m?)?
. Cz(l’cz,M%,Zk2 + ZM%l - M2,0, 0,M,), (26)
Hig, =0, (27)
1d IR| P2 Zkz
Hiy, = |FPPe M Cy, (28)

43 (1 —z)P;,

with
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Cy = 32(m — my)(Ak~ — BP;)(k - R)?
+ R?2(k - Py(m — my)(Ak™ + BPy) + Pymg(m? — k?) + I, P, (mg — m)(k* — m?)
+ 8mm,A%(k - R(Ak™ + BP;, + P}, )(Ak™ + BP};) + I,R™(m — my)(k* — m?) — mR™k* + m*R")
—2ALR k- R(m — my)(k* = m?) + 2mk - P, — mk* + m?)),

C, = —mP; R*(Ak™ + BP;,) — 2iAmR™k - R(Ak~ + BP},)
+2imR~k - R(Ak™ + BP;) + 2iAR"mk - R(Ak™ + BP;) + iP; R*m (Ak™ + BP;))
+2iAk"mR™k - R — 2iAk"R™m — il,m(R™)*(k* — m?) + il,(k* — m?),

where C, is a three-point sing-loop tensor integral, which is defined as

Ca(p?, p3. p3im3.m3.m3) = (=2piBo(p3.m3, m3) + (p? + p3 — p)

x Bo(p3, m3,m3) + (p? — p3 + p3)Bo(p3. m}, m3)
+ [mi(p} + p3 — p3) + m3(pi — p3 + p3)
+ pi(=2m3 — pt + p3 + p3)ICo(pi. p3. p3: mi. m3. m3),

here B, is a two-point one-loop tensor integral, defined as

1 1
B 2;2’2:_/(14[ )
o(pismi,m3) ) (P —mi +ie)((1+ q1)* = m3 + ie)

in addition, the three-point one-loop tensor point C is defined as

1 1 1 1
C 2’ 2’ 2;m2’m2’m2 — /d4l . —,
o PPyt ) = | e (U gt - md i) (U qa) i)

where g, =" | p; and g, = 0. The coefficients A and B denote the following functions:

1

I
A=— 1 122K = M2 — M?) 2+ (K2 + M? — M),
e (200 - M2 =M 2 4 2 b )
242 K+ M? — M?
B:_ I l s hI )
Ak, M3, M?) 1( - n 2)

which originate from the decomposition of the following integral Ref. [40],

p'o(P)s[(k = )* — m?]
/d“l h=p,— 1M Ak* + BP),.

The functions /; represent the results of the following integrals:

I = / ()]~ 1) = ] = 5 (2~ m2),

B 6(12)(5[(k — 1)2 — m2]
= /"41 (k—1—P,) — M

B n 1n<1 2\/A(k.M;. M) )
2/ Ak, M, M) K= M2+ M2+ \Ja(k, My, M)
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IV. NUMERICAL RESULTS

In the frame of spectator model, we choose the values for
the parameters « ,, f; ,, 75, p» M, m, from Ref. [22], where
the model parameters were tuned to the output of PYTHIA
event generator adopted for HERMES [41]:

a, =2.60GeV  f,=-0751  y,=-0.193, (39)
a,=707GeV  f,=-0038  y,=-0085, (40)
fy=1197Gev™'  f,=935  f,=063, (41)
=752  M,=29TM, m=00GeV. (42)

Following the convention in Ref. [22], we set the quark
mass m to 0 GeV. Additionally, we approximate the strong
coupling constant o, = 0.3.

The ratio between HfUL and D g is analyzed as a
function of z or M, integrated over the region 0.3 GeV <
M; < 1.6 GeV or 0.2 < z < 0.9 in the left and right panels
of Fig. 3, respectively. When compared to the unpolarized
|

DiFF Dy ¢ Ref. [22]. The left image shows a peak around
z =0.5 GeV, while the right image shows a minimum
around M, = 0.5 GeV and maximum values around
M, = 1.3 GeV, with a magnitude of approximately
1072, The trend displays an initial decrease followed by
an increase.

The numerical results of the azimuth asymmetry of
sin(2¢;,) in the SIDIS process generated by dihadron are
given below, with a nonpolarized y and a longitudinally
polarized nucleon target scattering. According to the
isospin symmetry, the fragmentation correlation function
is found to be important for the processes u — ztz~X,
d—atnX,d— nrtX,and &t - 72X are the same.
So by transforming the sign of f(’, or by doing the 8 —
z—0 and ¢ — ¢ + n transformations equivalently, the
linearly dependent dihadron fragmentation function from
the d > z~7"X and ji » 7~ 7" X processes Hi, has an
additional minus sign relative to the one from the g —
ata~X process, sin(2¢;,) asymmetry can be adopted as
follows:

sin P > - k P 2(p i) ]_C) P -p ]_C)
AUL(2¢/,)(X) _ </ dydz2Mhthdcos9d2PhLd2krd2pT< TZT”) '5(PT—/€T—2L>[ (PrPuy)(krPpy) — Pr T:|

- P
x (4hi} — hllLd)Hll,L)/</ dydz2M ,dM ,,d cos Od* P, | d* prd*ky '5<PT —ky— A)

X (474(p3) + fﬁ’(zo%))Dl,m,),

sin(2¢ N g N k
ARG (o) = ( / dxdy2M,dM ,d cos 0> P, | &y d> By (%) -5<p

- P,
X (4hiy — hfg)H5L> / ( / dxdy2M,dM,d cos 0d> P, | & prd*ky -5(pT —kp — ’l>

x (4f4(p2) +fa’<p%>>Dl,(,(,)’

0.10 T

——- spectator model prediction
0.08F 4

0.06f -
0.04} pmmm——— 4
0.02F L, o .

0.00F==

UL/Dl,oo

1

—-0.02} N

H

—0.04F 4
-0.06f E

—0.08F 1

-0.10 1
0.0 0.5 1.0

z

MM,

(43)

o Pu\ 2P GrPiy) - Bk
T — K1 MM,

<

0.10

T
-== spectator model prediction
0.08f 4

0.06F TN
0.04} Y
0.02} ¥ \

0.00f - S

UL/DL oo

$-0.02F s / \

Hi.

-0.04} p -

-0.06fF

-0.08F

-0.10 L X "
0.0 0.5 1.0 15 2.0

Mp

FIG.3. TheDiFFHj ), asfunctions of z (left panel) and M), (right panel) in the spectator model, normalized by the unpolarized DiFF D ¢,.
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N " Pui\ [2(BrPy)(krPyy) — Prk
AR (a1, = < / dxdydzZMhdcosdePhLdszdsz< “Z T”) -5(pT—kT—£> [ (pr “)(MTM“) Pr T}
Z h

. . P
X (4hf_ll,‘ - hf_g>HbL> / (/ dxddeZMhd COS HdZPhLdzl_?)szkT . 5(pT - kT - %)

<GP + D1 ). (45)
where the TMD DiFF D, ,, has been worked out and listed as Ref. [33],
- 47z|1_é| -z
D Kk M),) = 4|F$2e M (zk? — M2 — m? 24 2mM,+ M
1,00(Z T h) 256ﬂ'3MhZ(1 _ Z)(kz _ m2)2 { | | e (Z h m°z +m"+2m K + S)
i 4 2L My, KR4k
—4|FP e " |R|*(—zk* + M2 + m?(z = 1) + 2mM, — M?) + = |FP|%e "“»|R]*|4| =" -z L
3 2Z 2Mh
K—m? (M, K4k
2z —— . 46
= M, <2z “2m, )]} (46)

As for the twist-2 PDFs f| and h;;, we adopt the same spectator model results [42] for uniformity. To perform numerical
calculation for the sin(2¢),) asymmetry in dihadron SIDIS at the COMPASS kinematics, we adopt the following
kinematical cuts [43]:

0.05 T T 0.05 T T T T T
——- spectator model prediction
0.04F § COMPASS measurement 0.04F
0.03fF 1 0.03fF
0.02f 1 0.02f
S oolf 1 = oof ot | e
S Lo S e . [
T o.oc--l ---------- — 1T boooogos T, 0.00F== L } |
0> 0>
< -0.01f ) I ’ 1 <C -0.01fp l | ’ 4
—0.02f 1 —0.02f 1
—0.03fF 1 —0.03F 1
—0.04F . —0.04F ——- spectator model prediction _
# COMPASS measurement
~0.05 " 1 o5
1072 1071 0.2 0.4 0.6 0.8 1.0
X z
(a) (b)
0.05 T T T
—-—- spectator model prediction
0.04F & COMPASS measurement
0.03
0.02 N
— ',\ =~ //, \\\
3z oo I ~\1__/ N
~ / O N
= 0.00F= S fEssss——
S
53 T
< -0.01F '
-0.02f
-0.03
—0.04
—-0.05 1 1 1 1 1 1
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Mp
(c)

FIG.4. The sin(2¢),) azimuthal asymmetry in the SIDIS process of unpolarized muons off longitudinally polarized nucleon target as a
functions of x (a), z (b), and M, (c) at COMPASS. The full circles with error bars show the preliminary COMPASS data for comparison.
The dashed curves denote the model prediction.
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0.05 T T T 0.05 T T T T
—-—- spectator model predict —-- spectator model prediction
0.04fF 1 0.04F 4
0.03fF 1 0.03fF 1
0.02f 1 0.02f 1
I~ 0.01F 1 g 0.01p T T 1
S e 000k [ S~a
£~ 0.00p-mmm=======ss=sssssoosoSoososnes T~ 0.00F= == S~
0> o) N
< -o.01} E < -0.01f E
—0.02F 1 —0.02F 1
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-0.05 1 1 1 —0.05 1 " " "
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—-—- spectator model prediction
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0.03fF 4
0.02f 1
o S
= 0.01f A N4 1
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~N /7 S~
T~ 0.00 r———======
()
< -0.01f 1
—0.02F 1
—0.03F 1
—0.04f 4
—0.05 L " "
0.0 0.5 1.0 1.5 2.0
M
(c)

FIG.5. The sin(2¢)},) azimuthal asymmetry in the SIDIS process of unpolarized muons off longitudinally polarized nucleon target as a
functions of x (a), z (b), and M, (c) at the EIC (/s =45 GeV). The dashed curves denote the model prediction.

Vs=174GeV  0.003 < x < 0.4,
01<y<09 02<z<09 Q>>1GeV2,
W>5GeV 03 GeV <M, <1.6GeV, (47)

where W is the invariant mass of photon-nucleon system
with W? = (P + ¢)? ~ 1= 0%, our main results are plot in
Fig. 4, showing the predictions for the sin(2¢),) azimuthal
asymmetry in the SIDIS process with unpolarized muons
off longitudinally polarized nucleon target, as shown in
Fig. 1. The x-, z-, and M ,-dependent asymmetries are
depicted in Figs. 4(a)-4(c). The model predictions are
represented by solid lines, while the preliminary
COMPASS data is shown with full circles and error bars
for comparison. The measured asymmetry values are
comparable in magnitude to the test results, and the
distributions of x and z appear relatively flat, warranting
further consideration. Specifically focusing on the asym-
metry distribution with respect to M,,, Fig. 4(c) illustrates
theoretical calculations aligning closely with experimental
trends, featuring peaks around M, = 0.38 and M, = 0.75
before approaching 0.35. It is important to note that the

model results do not take into account QCD evolution
effects, therefore only providing a rough prediction of the
COMPASS preliminary data. Later works that incorporate
QCD evolution are likely to yield more reliable predictions.

In addition, we also predict the sin(2¢),,) asymmetry in
the double longitudinally polarized SIDIS at the future EIC.
Such a facility would be ideal for studying this observable,
as shown in Fig. 5. We will use the EIC kinematical cuts
outlined in Ref. [44]:

Vs=450GeV 0.003<x<04 0.1<y<0.9,
02<z<09 Q>°>1GeV? W>5GeV,

0.3GeV <M, <1.6GeV. (48)

V. CONCLUSION

In this study, we examined the single spin asymmetry
involving a sin(2¢),) modulation in dihadron production
within the framework of SIDIS. Utilizing the spectator
model outcome for D, o, we calculated the T-odd DiFF
HfUL by analyzing both the real and imaginary loop
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contributions. Utilizing the partial wave expansion, it was
determined that Hi", arises from the interference of s and
p waves. Through the analysis of numerical results from
DiFFs and PDFs, we offer a prediction for the sin(2¢,)
asymmetry and compare it with measurements from
COMPASS. Our result yields a good description of the
vanished COMPASS data. At the HERMES and EIC
kinematics we also obtain a very small asymmetry.
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