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We present the analytic calculation of the leading-order three-point energy correlator (EEEC) in
hadronic Higgs decays, including both the gluon-initiated channel H — gg+ X and quark-initiated
channel H — qgq + X. The phase-space integration is evaluated directly using Mandelstam variables

si=(pi+p j)z, and the appearing square roots can be rationalized by either conformal ratios or celestial

coordinate variables. Throughout the calculation, we observe the same transcendental function space as in
N = 4 super—Yang-Mills theory and eTe~ — hadrons. Different infrared limits are also explored using the
full analytic result, offering the fixed-order data for EEEC factorization and resummation. Given its
nontrivial shape dependence, the EEEC presents an excellent opportunity to explore the dynamics of gluon
jets originating from the H — gg decay channel at future lepton colliders.
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I. INTRODUCTION

The discovery of the Higgs boson in 2012 by the LHC
[1,2] has filled in the last piece of the standard model and
has made the precise measurement of its properties a
primary task in particle physics. This includes determining
the Higgs boson mass and its couplings with standard
model particles. On one hand, there has been lots of
successful progress in understanding the Higgs productions
[3], in particular, via gluon fusion [4-9]. On the other hand,
due to the large QCD backgrounds at the LHC and high-
luminosity LHC (HL-LHC) [10], it is harder to precisely
measure the Higgs decay channels and probe the Yukawa
couplings with fermions of the first two generations. While
the H — bb decay channel was recently observed at the
LHC [11,12], the channel of Higgs decaying into charm
quarks remains unobserved. It is also difficult to search for
possible invisible decay channels beyond the standard
model, which is one of the directions for new physics
exploration. To reach higher accuracy, people have pro-
posed to build a Higgs factory, such as Circular Electron-
Positron Collider (CEPC) [13-15], International Linear
Collider (ILC) [16,17], and Future Circular Electron-
Positron Collider (FCC-ee) [18]. At lepton colliders, the
environment is cleaner, so particle reconstruction and
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process selection are more precise. In particular, the
Higgs decay widths can be determined with high accuracy,
making it more promising to explore new physics channels.

Among the Higgs decay channels, the hadronic ones are
particularly interesting in QCD, where the final-state
particles include hadrons initiated by gluons or quarks
(for a review, see Ref. [19]). We will refer to them as Hgg
and Hqgq decay channels, respectively. The Hgg decay rate
has been calculated to N*LO [20-25] in Higgs effective
field theory (HEFT) [26-28] with top quarks integrated out.
The Hbb decay rate in the massless quark approximation is
also known to N*LO [20,29-32], and the bottom mass
correction estimated by an effective Higgs-bottom inter-
action is calculated to N*LO [33,34].

In this work, we mainly focus on one of the event shape
observables, energy correlators, and apply it to hadronic
Higgs decays. Energy correlators measure the energies
deposited in the detectors as a function of the angles among
these detectors. The two-point case, also known as the
energy-energy correlation (EEC) function, was proposed in
1970s [35,36] and has been generalized to higher points
recently [37,38]. In perturbative QCD, the n-point energy
correlator is defined as a weighted cross section,

=Y ¥ [w]ly

m 1<iy,i,<m 1<k<n

1—0059,,
< 1 5<xﬂ—f'>, (1)
1<j<i<n

where Q represents the center-of-mass energy of the
corresponding collision process and m is the number of
final-state particles and do,, is the associated differential

dxlz
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cross section. We will utilize xj; to represent the angular
distance in the following. The energy correlator is perhaps
the simplest event shape observable to compute analyti-
cally. The two-point case, EEC, which depends on one
angular variable x;, only, has been calculated analytically
to next-to-next-to-leading order (NNLO) in N = 4 super—
Yang-Mills (SYM) [39,40] and to next-to-leading order
(NLO) in both eTe™ annihilation and hadronic Higgs
decays [41-43]. For the three-point energy correlator
(EEEC) which depends on three angular variables xi,,
X13, X3, the leading order (LO) corresponds to the tree-
level four-particle final states if we ignore self-correlation.
Because of the soft suppression from energy weights and
collinear regularization by the angles, the tree level itself is
infrared finite. In Refs. [44,45], the LO EEEC was
computed in both N'=4 SYM and e*e™ collision, and
the results exhibit simple structure but rich physics. Very
recently, the collinear limit of the four-point energy
correlator was calculated in N =4 SYM [46]. These
advancements strongly motivate us to complete the LO
EEEC calculation in hadronic Higgs decay. In the mean-
time, there are also available numerical programs for
computing event shapes, including EEC, at et e collisions.
Examples include, Event2 [47,48] and Niojet++ [49,50] at
NLO and Eerad3 [51] and Colorfulnnlo [52—54] at NNLO. Very
recently, the numerical results at NLO for event shape
observables in hadronic Higgs decays have also become
available [55].

It has been observed that energy correlators have the
potential to be a highly accurate event shape in QCD
measurements [56-67]. On the theoretical side, in addition
to the potential for reaching higher fixed-order corrections,
energy correlators also feature relatively simple factoriza-
tion theorems. For EEC, the distribution exhibits singular
behavior in both the collinear limit x;, — 0 and the back-
to-back limit x;, — 1. The collinear limit undergoes a
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP-)type
factorization, and the large logarithms In(x;,) have been
resumed to the next-to-next-to-leading logarithmic (NNLL)
accuracy [68,69]. In the back-to-back limit, a transverse-
momentum-dependent factorization formula was derived in
Ref. [70], and the resummation up to N*LL is already
available [71-78]. At hadron colliders, transverse EEC
(TEEC) is also studied and resummed to N3LL [79,80]. For
EEEC, the factorization in the triple collinear limit
(x12,X13, X33 — 0) takes a similar form as EEC, and the
resummation has reached NNLL accuracy [38,81]. Both
TEEC and EEEC have been measured at the LHC and used
to extract the strong coupling constant «, [82-85].
Moreover, thanks to the advancements in track function
calculations [86-90], one can effectively utilize track
information from colliders and combine it with energy
correlators. This allows us to track the flavors of QCD
events and probe the nonperturbative dynamics within the
jets [38,91-93]. On the experimental side, the angle

resolution is better for charged particles compared to
neutral particles. Therefore, it is also interesting to measure
the charged energy correlator [38,94]; i.e., we only sum
over the charged particles in Eq. (1). In summary, energy
correlator has the potential to reach the frontier of precision
QCD in the short future.

While the quark jet has been extensively studied at
lepton colliders, exemplified by processes like ete™ —
qq — hadrons, the understanding of the gluon jet remains
limited. The channel involving the decay of the Higgs into
two gluons emerges as a promising candidate for studying
gluon jets. However, the observation of the H — gg decay
channel at hadron colliders is challenging due to significant
background interference. The promise lies in future e™e™
colliders, which have the potential to produce exceptionally
clean events of the Higgs decaying into two gluons. For
instance, the CEPC is anticipated to generate around 7000
events of H — gg corresponding to a statistical precision of
approximately 1.2% according to Ref. [95]. This opens a
gateway to exploring various aspects, including hadroni-
zation, of the gluon jet. The traditional event shape
observables for ete™ collisions or Higgs decays, such as
thrust [96,97], C-parameter [98,99], heavy jet mass [100],
and EEC [35,36], typically depend on a single variable. In
contrast, the EEEC, with its nontrivial shape dependence,
offers an excellent opportunity to scrutinize the detailed
dynamics of gluon jets at future lepton colliders. In this
paper, we initialize the studies of EEEC in the context of
Higgs physics by first providing the fixed-order data in the
hadronic channel.

An outline of the paper is as follows. In Sec. II, we
describe the analytic calculation in detail, including the
direct integration over the four-particle phase space and the
simplification of the obtained results. In Sec. III, we discuss
the function space and present the analytic results. Notice
that EEEC is a function of three angular variables, so we
also investigate how to visualize the distribution. In Sec. IV,
we study the EEEC kinematic limits. With the full analytic
result in hand, we can extract the expansion in different
infrared limits. This provides the fixed-order data for
understanding EEEC factorization and resummation. We
conclude in Sec. V.

II. CALCULATION

In this section, we discuss the details of EEEC calcu-
lation. First of all, let us write down the relevant inter-
actions of HEFT Lagrangian, where the top quarks are
integrated out,

—— — \/_

1 ygH) .
Let O =7 A HTH(G"Gy,) + > 5 Hugwy. (2)
o q ¥

(@]

9 q

Here, H and w, stand for Higgs and quark fields,
respectively, and G** is the gluon field strength tensor.
A(u) is the Wilson coefficient with respect to the effective
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O, operator, and y,(u) is simply the Yukawa coupling.
Note that we also take the massless quark limit (except for
the top quark) while keeping the Yukawa coupling nonzero.
As discussed in Ref. [101], there is no interference between
O, and O, when calculating the squared matrix elements
under the massless quark limit, which remains true to all
orders in a, because of chiral symmetry.' This allows us to
compute the gluonic channel and quark channel separately.

In the following, we will denote the EEEC for gluon-
initiated Higgs decay as H,(x;,x,,x3) and EEEC for
quark-initiated decay as H ,;(x;, X5, x3), with x; ;5 being
the angular distance among three detectors. Concerning
normalization, we will scale the differential distribution by
the decay width at the Born level, i.e.,

1

Chgy = %NAA(P’)Z’"?-I’

1
Fqu = ECAJ%(:“)’"H? (3)

where my is the mass of Higgs boson, N, denotes the
number of adjoint representation, and C4 is the Casimir
invariant with Ny = 8, C4 = 3 in QCD. Then, the explicit
expression for LO EEEC becomes

H (x17x29x3 F /
Ha ik
NE

xé(xl 1 —(:2059,-/-)5()62_ 1 —c;)sﬁik)

1 —cosd;
X5(X3—T]k>, a=gg.q3 (4)

dPs, Ek

|-/\/lH—>4|2

with i, j, k run over all final-state particles. Here, the center-
of-mass energy Q = my, dPS, represents the four-particle
phase-space measure, and |M_,|* denotes the tree-level
squared matrix elements for Higgs decaying into four
massless partons.

A. Matrix elements

We calculate the squared matrix elements using the
programs Qgraf [102] and Form [103—105] and evaluate the
color algebra with the Color package [106]. For gluon-
initiated decay, the Born process is H — gg, and the
relevant four-parton subprocesses for LO EEEC are

H = g(p1)9(p2)9(P3)9(pa).
H = g(p1)9(p2)a(p3)a(ps).
H = q(p1)3(p2)a(p3)a(ps). (5)

where the last one includes both nonidentical and identical
quark contributions. For the quark-initiated channel, we have

'If one considers the bottom mass effect, the operator mixing
cannot be neglected.

FIG. 1. Some example Feynman diagrams for hadronic Higgs
decay at O(a?). The two diagrams on the top represent the H —
gg + X channel, and the other two are the H — ¢g + X channel.

H = q(p1)a(p2)g(p3)g(ps).
H = q(p1)q(p2)a(p3)q(ps). (6)

In Fig. 1, we present some sample Feynman diagrams.
For all processes, we use the axial gauge for gluon

polarization,
2 = Sy =2y
ntp¥ + nvp" n-p’ p*
Zeﬂ(pi’l)e*y<pi’/1):_gﬂy+ pl_ pz_ pl_[?lz’
= n-p; (pi-7)
(7)

where 71 is a reference vector. In practice, we choose 7
to be p; with i # j during the summation of the gluon
polarization with momentum p;. Alternatively, we can also
carry out the calculation in the Feynman gauge where
contributions from ghost diagrams are necessary. In the
case of the process with four-gluon final states, we need to
consider the following two additional processes and their
permutations,

H — g(p1)g9(p2)c(p3)e(pa)
H — c(p1)e(pa)e(ps)e(pa), (8)

where ¢ stands for ghost particle. We verify that the results
obtained in the axial and Feynman gauge are identical.
Eventually, we can express the squared matrix elements in
terms of Mandelstam variables s;; = (p; + p;)*.

To simplify the calculation, we first apply the topology
identification. For standard Feynman integrals, renaming
the final-state momenta or shifting the loop momenta still
lead to the same result. This symmetry can be used to
reduce the matrix elements or amplitudes. As discussed in
Ref. [45], in the context of EEEC, we need to carry the
energy weights and the § measurement functions through-
out the calculation (cf. Eq. (2.3) of Ref. [45]). Eventually,
we can rewrite Eq. (4) as

114036-3
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1 dPS
Ha(x17x2’x3):F—/Z—Q4|Mtot(171,l927193,174)|2

Ha

E,E,E 1 —cos@
g é 36<x1— cos 23)

(0] 2
1—cosé@ 1—cosé@

X(s(Xz—%)(s(Xy,—flz)
-+ permutations of x;,x,, X3, (9)

with the combined matrix elements
(Mio(P1: P2s P35 P4) P = (IM(p1. P2, p3. pa)I?
+ [M(p1. pa. s p3)
+ [M(p1. ps. p3. P2)?

+|M(P47P1’P2’P3)|2), (10)

where |M(p1, pa, P3. pa)|? = |[Mpy_as|*. Therefore, our
task is to compute the integrals for unsymmetric terms
and permute the angular distances x; ;3 eventually.

B. Phase space integration

The phase-space measure for four massless partons can
be written as [107]

dPS, = (zﬂ)4-3d(Q2)1—;’21—2d(_A4)"—55®(_A4)
X dgd_lde_ded_3dS12dS13dSl4dS23dS24dS34
X 8(Q% =512 — 513 = S14 — 523 — S — 534). (11)

In the direct phase-space integration method, the primary
challenge arises from intricate constraints involving the
summations of high powers of s;; due to the presence of the
Heaviside function ®(—A,), where the Gram determinant
is defined as A4 = /1(S12S34, 513524, S14S23), with 4 being the
Kéllén function:

Mx,y,2) =2+ + 22 =2(xy +xz+yz). (12)

Fortunately, by introducing the energy fractions for the first
three particles, defined as

_2pi-gq
Zi - Q2 )
with g being the 4-momentum of Higgs boson, the

nonanalytic Heaviside step function ®(—A,) decouples
from the phase-space integral,

i=1.23 (13)

Ay = 22323(x% + x5 + X3 — 2x1 x5 — 2xx3 — 2XpX3

+4x,2,x3) = 2223224, (14)

leaving A, < 0 as a kinematic constraint for the angular
distances x; ;3. To achieve the factorization as shown in

Eq. (14), we have expressed the s;; through the angular
distances x; ; 3 and momentum fractions z; , 3, for example,

X = I —cos 0,3 _ 2P2'P3Q2 _ 523
2 4p,-0p3-Q Q%223

(15)
Following the procedure in Ref. [45], we express the

EEEC as twofold integrals over energy fractions z; and z3,

1 =y
/ dz3 / ” dzi f(x1. %2, %3, 21, 23), (16)
0 0

with f(x;,x,, x3, 71, z3) being an appropriate integrand. To
calculate the above integrals, we employ partial fractions on
all denominators within the integrand f(x;, x5, X3, 21, 23),
leading to the emergence of three square roots after a direct z;
integration:

51 =4/X7 + X3+ x5 — 2x1x5 — 2x1 X3 — 2x,X3,
Sy = xf + x% + x% —2X1xy — 2X1X3 — 2X5X3 + 4X X0 X3,
53 = \/s%zg 4200, + X5 — x3)x323 + 22 (17)

The first two square roots do not involve the integration
variable z3. Introducing a set of variables via fc—‘ =2zz, 2=
3 X3
2_(-_35\2
(1-2)(1=2) and x3 = % both square roots can
be rationalized,

B o P—=(z-2)7? _
s1=x3(z—2) S 0= 90 -3) (z—12).
?—(z-72)?

(18)

S = Xal = I.
U a(l-9(-7)

Notice that 7 is purely imaginary. For the third one, we pass z3
to a new integration variable y,

yX3

3= ) (19)
Yxy = y(xy + x5 = x3) +x
such that s5 is rationalized,
20 _ 2y )2
S% o X3(X1 y .Xz) (20)

C (0P =y X = x3) +xp)%

The integration range for the variable y remains within the
interval [0, 1]. Subsequently, we need to further employ
partial fractions to the obtained integrand such that all
denominators are linear in y. Finally, the y integrals can
be evaluated analytically using the program Hyperint [108],
and the result is expressed in terms of Goncharov poly-
logarithms (GPLs) [109-111]. The GPLs are defined by
iterative integrals,
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x dt
G(al,"'an;x)z/ G(ay,---ayt), (21)
o I—a

with
—In"(x). (22)

At this stage, the numerical EEEC distribution can
already be evaluated by publicly available programs such
as Ginac® [113], HandyG [114], and Fastgpl [115].

C. Simplification

To speed up the numerical evaluation and to understand
the analytic structure of EEEC, we need to simplify
the result. It is known that GPLs up to transcendentality
weight 3 can be expressed in terms of logarithms and
classical polylogarithms Li,(x) with n < 3. So, first of all,
we convert all GPLs in the raw result into classical
polylogarithms using Gtorules [116]. Some adjustments
for the arguments in In(x) and Li,(x) are required to meet
the branch prescription in Mathematica. Then, we collect
the transcendental functions with the same coefficients and
construct the raw function space. The rational coefficients
can be simplified by the multivariate partial fraction
package MultivariateApart [117]. Regarding the raw bases,
we apply the transcendentality weight-2 identities to
simplify the Li,(x) functions. These identities can be
generated by the well-known five-term identity [118]:

. . o 1-x . 1=y
L12<x>+L12<y>+L12(1 y)+L12<1—xy>+L12(1_xy)
2

:%—log(x) log(1—x)—log(y)log(1-y)

1- 1-
—log (1 a ) log< Y ) (23)
—Xy 1—xy

After that, we add the x;,; permutations and repeat
this procedure until the expression cannot be further
simplified.

More interestingly, we find that there exists a linear
transformation between the simplified function space and
the function space of EEEC in A/ = 4 SYM theory [44].
We calculate this transformation by evaluating both func-
tion spaces with the same numerical point and applying
the PSLQ algorithm [119,120]. Specifically, we denote our

simplified function bases as hl(-w) (x123) and the function

bases in AV = 4 SYM theory [44] as gﬁ.w) (x1.2.3), where the
superscript (w) indicates the transcendentality weight.
These two sets of bases are linearly dependent, meaning

*We utilize the program PolyLogTools [112] as a back end to
invoke Ginac.

Emicigf”w i c;h" =0, (24)
i=1

i=m+1

where c; is a rational number. Here, m is the number of
function bases from Ref. [44], and n — m is the number
of our simplified function bases. By evaluating both sets of
function bases at the same numerical kinematic point and
applying the PSLQ algorithm,3 we determine the rational
coefficients c;. Note that Eq. (24) typically encompasses
multiple relations among g, and #;, and a single application
of the psLQ algorithm yields only one such relation. For
example,

y L, @ 2
B =5 (g5 + hi)): (25)

To uncover all relations, we apply the PSLQ algorithm
iteratively, each time excluding a base that can be related to
others. The algorithm terminates when no further relations
are found, as indicated by obtaining different c¢; values with
different numerical kinematic points. Substituting all the
discovered relations into the Higgs EEEC, we found that
the result can indeed be expressed in terms of the function
space as in N = 4.

III. RESULTS

In this section, we describe the analytic result of
Higgs EEEC.

A. Function space

The EEEC function space in N' = 4 SYM was studied in
Ref. [44]. Following the calculation in Ref. [45] and the
previous section, we find e e~ annihilation and hadronic
Higgs decays share the same function space. Here, we
briefly summarize the structure. First of all, we introduce
the celestial variables by mapping the angular variables
X123 onto the distances among three points y;,3 on the
celestial sphere:

o 2
x":<1+|lyy,-j|2><§k|+|yk|2>’ (FIpkell 2 20

Since these three points also fall into a circle, we can further
map the y; variables onto the radius /s and two angles ¢,
¢, (see Fig. 2). Explicitly, we define

yi=Vse, y2 = sglitd2), yi=vs. (27)
=7 =717

The {s, 7y, 7, } can also rationalize the first two square roots
in Eq. (17). Below, we will use this variable set for some

*In practice, we use the PSLQ algorithm through Mathematica’s
built-in function, FindIntegerNullVector.
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N

3

Y2

FIG. 2. Demonstration of celestial variables. By mapping the
angular distances x;,; to three points y;,; on the celestial
sphere, we pass them to the radius s and two angles ¢, , among
these points.

cases and the angular distances {x,x,,x3} for others,
depending on which one manifests the physics. The
relation between them is

N (1 —Tl)2 N (1 —72)2
xl - - 2 ) x2 - - 2 )
CESIE Gr1? o
1= 2
.X3 I s ( 7172) . (28)

(s+1?  7n

Itis found in Ref. [44] that the EEEC kinematic space can
be embedded into a hexagon on a unit circle and the
remaining symmetry is the dihedral group Dg. This implies
that EEEC contains some similar structure to six-gluon
scattering amplitude. If we define three conformal invariant
ratios

S+Tl Tl—l
u = - ’ = ’
! 1+ST1 2 l—T]TZ
1 -

(1-2)(1+s71)

its symbol alphabet can be written as a close set under the Dg
group. Finally, incorporating the single-valued requirement
and the singularity structure in the triple collinear limit [37],
we are able to reconstruct the entire EEEC function space. The
form that manifests these structures can be found in Ref. [44],
but here we provide the expression in terms of x; ; 3, which is
more convenient for phenomenological studies.

The complete function space contains classical poly-
logarithms up to transcendentality weight 2. At weight 1,
we find seven bases,’

2—8,—X| —Xp—X3
245y —x] —X2—X3
to be careful with the branch cuts. For all allowed values of x; ; 3,
this logarithm should be rewritten as In (2 — s, — x; — x, — x3) —

1n(2+32—xl—.7C2—X3).

*When evaluating In( ) in Mathematica, one need

f1=In(l -x), f2=Inx, f3=1n(1 - x,),
fa=1Inx,, f5=In(1 —x3), fe =Inxs,

Dy — Xy — X —
f7=1n(v). 2o TR S (30)

24 sy X =Xy — X3

At transcendentality weight 2, we find 21 bases, with
explicit expressions given in Eq. (A2) in the Appendix.
Here, we quote a specific basis as an example,

g17 = —ilm[Li,(v)]
53
(i =D =)z = 1))

- 1Im[ln(v)] In

5 (31)

and we emphasize that, despite how they look, all bases are
analytic within the allowed kinematic space A, < 0. That
is, the Im[Li, (x)] in the above equation and in Eq. (A2) is
understood as

(32)

s|—>—s|,x2—>—s2)} .

Im[Li, (x)] = %[Liz (x) = (Lip(x)]

It is surprising that, despite the distinct nature of scattering
processes among N' = 4 SYM, e e~ — hadrons, and had-
ronic Higgs decay, their EEEC function spaces are exactly
the same. This also happens for EEC, as shown in
Refs. [39,41-43]. It will be interesting to understand the
universality inside the structure of energy correlators. This
might allow us to build a future bootstrap program that can be
directly applied to the jet substructures at colliders.

B. Analytic results

Here, we present the analytic result of Higgs EEEC. For
gluonic channel Hgg, we have

a,\? 1

i T2 2A .

471') 477.'\/—7.8‘% { an 1 (xl)

+ CpTEngAy(x;) + CoTpnsAs(x;)

+ CRA4(x))]. (33)

Hgg(xl?x27x3) - (

where A, (x;) is the simplest term, only containing up to
transcendentality weight-1 functions f1357. As an exam-
ple, we write down A, (x;) explicitly:
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4723 + 1952 x,x3 — 3004x,x3 + 1130x2x3x3 —

4574x,x3x3 +2400x3.x3 + 1724x, xx3 + 36x7x3 — 1363, X3

Ay =

105x}x5x3
n 236x] — 1974x3x8 + 2128x,x3x] — 3640x3x3x% + 6580x,03x7 — 3262x3x7 + 6580x3x3x —4256x,x3x; —3262x3x3
105333
190)(2x1 +260x3x3x7 — 940x,x3x7 + 466x3x7 + 1000x2x3x1 —460x3x; +480x3x3x; —410x,x3x; —40x3x3
15x3x5x5
20x2x1 — 148x3x3 + 8x3x3 — 200,37 +92x3xF — 24x3x; + 16x3x; — 192x3x3x) + 82x,x3x] + 8x3 + 82x3x3
3xt3a3
n —1400x3x3 +5180x3x3 +4620x3x7 —5320x3x; — 2660x2x3x1 +1974x3x; +2100x3 —472x3 + 1974x2x§] 7l
1053 33
2624x2x3x1 +1224x,x7 + 15544x2x3x1 9476x3x1 976x,x3 — 17100x2x3x1 +7384x3x1 + 6482x2x3
105333
—240)62)(1 +3568x3x7 — 5112x,x7 —8088x3x7 + 7828)62)61 866x7 + 8460x3x; —2570x,x; —3220x3
105x3x3x3

| =2363 — 1802x,y23 + 24463,

105x3x3

+ permutations of x,x,, X3.

In the supplemental material accompanying this paper
[121], we provide the expressions for other functions
A,_4(x;). For Hqg, we find

H,.( e g
(X1, X%, x3) = | — ) ———
qg\N1>A25 A3 4r 4x /_—S%

+ CEB;(x;) + CrCyBs(x;)] (35)

[CrTpn By (x;)

with explicit forms for each color channel also included in
the supplemental material.

e o
Identical quark

_2k ]
1 1 1 1 Fa—

Lo

000 005 010 015 020 025 030

T3

FIG. 3. Comparison of our analytic result H,, and numerical
evaluation in cuba. We pick the configuration where the ratios are
set as xj:xpix3 = 3:2:1. A;_4 represents different color chan-
nels in Eq. (33). The smooth curves are from the analytic result,
and the points are from Cuba. To show all the curves in the same
figure, we rescale the results by some constants. Since the
identical quark contribution is tiny, we also verify it separately.

4008x3 x2x3 +12244x,x3x3 —5236x5x3 — 363Ox1x2x3} f7

$2

(34)

To verify the result, we also perform some numerical
checks. To our knowledge, there is no publicly available
numerical program capable of calculating the fixed-order
hadronic Higgs decays. In MadGraphs [122,123], we find that
the HEFT model does not include the effective vertex H gggg.
So, instead, we generate all matrix elements again in FeynCalc
[124—-127] as a cross-check and implement the four-particle
phase space in Eq. (11) with the Monte Carlo library Cuba
[128]. Since LO EEEC itself is infrared finite, we do not need
any subtraction scheme. In Fig. 3, we choose one configu-
ration withratios x; : x,:x3 = 3:2:1 and calculate 17 points
numerically. For each color channel, we find good agree-
ment. Additionally, we also calculate the identical quark
pairs contribution separately as a dedicated check. We did the
same cross-check for the Hgg EEEC, and the comparison
can be found in Fig. 4.

We emphasize that simplifying our analytic result into
classical polylogarithms makes its numerical evaluation very
fast and convenient. In Mathematica, it takes less than 4 sec
to numerically evaluate our analytic formula on a generic
point for H ;, to 200 digits of accuracy and less than 2 sec for
H ;. This is much faster than Monte Carlo simulation. In
addition, our result can also provide accurate values for a
singular point, while it is usually difficult to extract the
logarithmic behavior from numerical integration.

C. Visualization

Now, let us discuss how to visualize the EEEC result.
Notice that EEEC is a function of three angular distances,
so it is a three-dimensional density distribution. As
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15 T T T

— Identical quark

0.05 0.10 0.15

T3

0.00 020 025 030

FIG. 4. Comparison of our analytic result H,; and numerical
evaluation in cuba. The same configuration is chosen as the
gluonic channel. B;_; represents different color channels in
Eq. (35). Again, we divide the curves by different constants to
make the figure compact.

shown in Eq. (14), the kinematic space is constrained
by x}+ x5+ x% —2X1xy — 2X1x3 — 2X,x3 + 4x1x5x3 < O,
leading to an irregular space (we refer it as “zongzi” space)
in Fig. 7. Although angular distances have greater physical
intuition, slicing or projecting an irregular space poses
challenges. However, if we instead use {s, ¢, ¢,} varia-
bles in Eq. (28), the kinematic space becomes a more
manageable cube: s € [0, 1] and ¢, ,/7 €0, 1].

To begin with, we choose several values for s and plot
the logarithmic density log H, ., with respect to ¢, ,, as
shown in Fig. 5. For every individual figure, we find
that the distribution grows fast when ¢; — 0 or ¢, — 0.
This implies possible large logarithms in this limit. In fact,
¢, — 0 leads to 7; — 1, and thus x; —» 0 and x; = x3,
which corresponds to the squeeze limit. The squeeze limit
logarithms and the subleading power are studied and
resumed using light-ray operator product expansion in
Refs. [129-133]. There are also additional growing

daln

02 04 06 08

diin i/

02 04 06 08
diim

02 04 06 08
(2%

FIG. 5.

(2%

02 04 06 08

(2%

1000 ¢
1004

10

0.100 ¢

0.010¢

0.001 L L L L
0.0

FIG. 6. The s dependence of EEEC distribution H,, and H
with ¢, ¢, fixed. For each channel, we pick four sets of values of
{1, ¢} for illustration. To estimate uncertainties, we vary the
scale u in a,(u) by a factor of 2, both upward and downward
from my.

behaviors when s — 1, indicating possible logarithms in
the coplanar limit. We will discuss the coplanar limit in
more detail in the next section. Meanwhile, we also observe
that H,, and H ,; have a similar distribution near the triple
collinear limit (s — 0 or x; 5 3 — 0) and the coplanar limit,
so the gluonic channel and quark channel may share some

02 04 06 08

dijm diim

[V
S N & o =

02 04 06 08
b/

02 04 06 08
diim

The logarithmic density log H , (upper panel) and log H ,; (lower panel) with respect to ¢, ,. For a fixed s, the distribution gets

enhanced when either ¢, or ¢, is close to 0. When s is close to 1, the distribution receives additional logarithmic enhancement. We set

the strong coupling constant a,(my) = 0.1125.
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TABLEI. A summary of the EEEC kinematic limits. Each limit
can be approached by either {x,x,,x3} or {s,7;,7,} variable
set. The latter one reveals that the back-to-back limit is encom-
passed within the coplanar limit.

Variable set

Kinematic limit {x1, %2, x3} {s, 71,72}
Triple collinear X103~ 0 s—0
Coplanar s, =0 s—1
Squeezed x; = 0,x, ~x3 7, > 1
Back-to-back x; — 1 s—> 1,7y - -1

universal structure in these two limits.” It will be interesting
to understand the difference between H,, and H; in the
middle s region.

We can also investigate the s dependence of EEEC when
fixing the ¢, ». In Fig. 6, we choose four values {¢, ¢, } =
{z/2,x/3}, {27/3,3n/5}, {2n/5,7/5}, {=/6,7/3} and
plot both H,, and H, EEEC. All curves have similar
behaviors as the two-point energy correlator EEC, be-
coming divergent in both s - 0 and s — 1 edges. The
higher-order uncertainty band is estimated by varying the
renormalization scale in the strong coupling constant, i.e.,
a,(p =2"my),v=-1,0, 1.

It is also useful to project EEEC into lower-dimensional
distributions. For example, the projected three-point energy
correlator is introduced in Ref. [38], where the longest
angular distance x; = max{x, x,, x3 } is kept and the others
are integrated out. This can also be generalized to the v-point
correlator [38] as long as M(v) > 0, and essentially, we
shuffle the information encoded by the kinematic space into
different values of v. To achieve the projected three-point
energy correlator for Higgs decay, we will also need to
calculate the contact terms, i.e., the differential cross section
with energy weight E7E; and E3 up to NLO. We save this for
future work.

IV. KINEMATIC LIMITS

In this section, we discuss the kinematic limit of EEEC.
We have already introduced some of the singular limits in the
previous section when describing our analytic result. Here,
we summarize all possible interesting limits in the kinematic
space in Table I. The triple collinear limit corresponds to the
case where three of the final-state particles are moving within
ajet, and thus EEEC becomes a jet substructure observable in
this limit. The coplanar limit refers to the configuration where
three particles live in the same plane. While this is always true
for three-particle final states, it becomes a kinematic con-
straint for four-particle final states and beyond. The squeezed

*From the perspective of analytic expression, as we mentioned
above, H 99 and H i share the same transcendental function space.
However, studying the structure of rational functions is harder,
given its complexity.

m Squeezed x3-0

m Squeezed x,-0

o Squeezed x1-0

m Triple collinear

m Back-to-Back x3—1
m Back-to-Back x,—1

m Back-to-Back x1—>1

FIG. 7. The zongzi space. The ranges of x;,3 allowed by
different kinematic limit are shown, and the boundary corre-
sponds to the coplanar limit. Notice that there are overlaps among
different regions.

(back-to-back) limit is reached when two final-state particles
become collinear (back-to-back). We demonstrate these
kinematic configurations for clarity in Fig. 8. It is also
important to emphasize that all these kinematic limits are not
cleanly separated. Instead, each of them overlaps with the
others, as shown in Fig. 7. Therefore, it is also interesting to
look at a double kinematic limit, e.g., squeeze limit under the
triple collinear limit.

A. Triple collinear limit

We start by comparing our expansion results in the triple-
collinear limit with the analytic results presented in Ref. [37].
To begin with, it is important to recall that the tree-level
n-point energy correlator factorizes in the homogeneous
collinear limit. This follows from the fact that 1 — (n + 1)
matrix elements factorize into the product of dijet matrix
elements for 1 — 2 processes and the 1 — n splitting
functions. Moreover, the (n 4 1)-particle phase space decou-
plesinto the “hard” two-particle phase space and the collinear
n-particle phase space. For the tree-level three-point corre-
lator, this factorization results in a dijet hard function and the
so-called EEEC jet function in the triple collinear limit.
Specifically, for gluon-initiated hadronic Higgs decays, the
three-point correlator gives rise to the EEEC gluon jet
function. Similarly, the quark-initiated channel yields the
EEEC quark jet function, which is identical to the one
extracted from the process e™ e~ — hadrons [37,45].

For convenience, we opt not to perform a full analytical
expansion of our results in Egs. (33) and (35) in the triple-
collinear limit. Instead, we randomly select 50 sets of x; 3
values that are very close to 0 and compare our complete
results against the EEEC jet function presented in Ref. [37].
Across all randomly chosen sets, we observe good agree-
ment. This serves as a robust validation of our analytic
calculations, particularly given the nontrivial shape depend-
ence of the jet function.

B. Coplanar limit

Second, we focus on the coplanar limit of EEEC. As
mentioned above, the LO coplanar limit starts from the

114036-9
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FIG. 8.

Different kinematic configurations for four final-state particles. The blue lines represent the particles that are measured by

EEEC, and the black line is the fourth particle, whose direction is determined by momentum conservation. From left to right, we show

triple-collinear, squeezed, back-to-back, and coplanar limits.

three-parton configuration at order a,, and our calculation
actually gives the NLO coplanar limit at order a?.

As shown in the last two figures of Fig. 5, when approaching
s — 1, we find an edge ¢p; + ¢, = = that separates the EEEC
distribution into two triangular regions, and the top one with
¢1 + ¢, > © exhibits more divergent behavior than the
bottom one. Since the analytic result is expressed in terms
of polylogarithms, there must exist some additional logarith-
mic divergence in the top triangular region.

To understand the coplanar behavior at NLO, we first
examine the coefficients for each basis in the function space.
Only the coefficients for gg, g7, g3, 99, 912, 913, and g;7 start at
O((1—=s5)7") when s — 1. Then, we expand these seven
bases in the coplanar limit, and it turns out that only g,; gives
rise to the logarithmic divergence. Explicitly, we find

o b b D+
g17 &~ 17r9< cos 5 cos > cos 3

x In ((1 - s)ztanz%tanzﬂtan (36)

, 1+ ¢2)
2 2 )
The nonanalytic € function comes from the branch cut of
Im[In(2 — x; — x, — x3 — 5,)] in Eq. (31). This logarithm is
only nonzero when 2 —x; —x, —x3 < 0 in the coplanar
limit with s, — 0, which simplifies into cos‘/" cos & ¢2 X

cos H5+2 ¢‘+¢2 <0 using the parametrization descrlbed in

Egs. (26) and (27). This is precisely the top triangle region
¢, + ¢, > = inthe density figure. Regarding the other bases,
they are less singular when s — 1, so they only contribute to
|

fog= e (CA +2Cp)Tpng24cos(¢) -

—24cos (¢ — ¢y) +6c0s (2(h1 — )
+cos (4¢hy) + 24 cos (¢ + ¢»)
+6c0s(2(2¢; + ¢,))
—4cos (3¢ +2¢,) —4cos (¢ +3¢,)

+4cos (3¢, +4¢,) +45] x <sm¢] ¢2 i

—4cos (2¢,

¢1+¢2
2

22¢08(2¢p1) +cos (4¢;) +4cos (¢ —3¢)

— ) +4cos (3¢,
—22c08 (2(1 + ¢2)) + cos (4(¢1 + 1))
—4cos (3 + ) +4cos (44 + )
—4c0s (2¢ +3¢hy) +4cos (4¢; +3¢,) +4cos (¢ +4¢)

> +32C2[ 22co0s (2¢h;) +cos (4, ) + 6cos (2(¢1 — o))

the power divergence %_s In summary, we find for H ; the
expression

H -~ — Ys 259 —cosﬁcos@cosdll_'_(ﬁ2
qq 4z 2 2 2
In <(1 —5)? tanz%tanz%tan2 W)

X f4a(d1. d2) + power divergence + O[(1 — s)°]
(37)

with the coefficient function

fq3 = Cr(Ca +2Cf)[15 + 10cos ¢y + 10 cos ¢,
+ 10cos(¢py + ¢y) + 2cos(¢p — ¢h,) — cos(2¢,)
—c08(2¢hy) — cos(2¢p; + 2¢py) + 2 cos(2¢p, + ¢h,)

+2 cos((/’)l + 2452)] (smﬁsln%s]n ¢ ‘|2' ¢2> =5

(38)

If we keep track of the color factors, we see that the
logarithmic enhancement is from the partonic channel that
involves gluons. This is expected because, from the perspec-
tive of Effective field theory (EFT), soft gluons are allowed to
slightly deviate from the plane, resulting in a soft enhance-
ment proportional to In(1 —s).

For the gluonic Higgs decay H,, we find the same
structure but with a more complicated coefficient func-

tion fgg(¢1 s ¢2):

—4cos (¢ —2¢)

— o) +24cos(¢hy) —22cos (2¢,)
—24cos (2¢; + ¢5)
—24cos (¢ +2¢,) +6c0s (2(dh; +2¢,))
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—22¢0s (2¢h;) —22c0s (2(¢; + b)) +cos (4¢,) +cos (4(¢; + ¢,)) +6c0s (2(2¢) + 1)) + 608 (2(¢h) +2¢h,))

-7
+45] x (sin%sin%sin(ﬁ1 —2H]52> .

More interestingly, the same logarithmic divergence exists
in both A" =4 SYM and e*e~ annihilation. The N = 4
result is

Sa=4 =48 X% (sinﬂsin@sin ot ¢2> _3, (40)

2 2 2

where the normalization constant is slightly different from
the result given in Ref. [44]. For e™ ¢~ annihilation, we find

fere- =—4Cp(Cy +2Cp)[2c0s(¢hy) cos(¢py)
+2cos (¢) + ¢y) cos(py) +2cos (py + 2¢,) cos(¢hy)
+2c0s(¢;) +cos (2¢;) + cos(¢,) +cos (¢1 + )

+cos (¢ +2¢,)] x (sin% sin%sin@) _5.

(41)

Notice that there are also logarithms involving ¢; and ¢, in
Eq. (37). This is precisely the overlap between the coplanar
limit and the squeezed limit. Intuitively, under the coplanar
|

2(43n* — 173573 + 749072 — 105301 + 4740)

(39)

|
configuration (as shown in the last picture of Fig. 8), two
final-state particles are still allowed to be collinear with
each other. For phenomenological applications, the exist-
ence of infrared divergence also suggests resumming these
logarithms to all orders. We defer this to future research.

C. Squeezed limit

In this subsection, we study the squeezed limit where
two detectors are positioned atop each other while the third
one is well separated from the first two. This corresponds
to the limit of x; < x, = x3 = and its permutations.
Different permutations give the same result due to the
bosonic symmetry of the three-point energy correlators. It
is straightforward to extract the squeezed limit at the
leading power, giving the following simple results:

Xp—> s 2 1 i
Hi (xl , X2, X3) x2§:z <Z_ﬂ> m |:Qx(]r]) —+ O(.x(l)):| (42)

with

0ule) =i a5(1 -

8(101> — 701> + 136n — 79) In(1 — 1)
3y’

12(197% — 62 +47)In(1 —n) 215" + 185> — 2530> + 51307 — 2820
+ CanTF 7 - 5
n 5(1=n)n
8(170n* — 13905 4 36391> — 3869 + 1447) In(1 — 1)
+ CAnfTF 7
15(1 =n)n

. 2(6097" = 29905 + 1312107 — 1887307 + 86820)}

225(1 —n)n®

120" — 8407 + 248212 — 309277 + 1351) In(1 — )

8(
+G [‘ 150 =)y

2(14724% = 1751557 + 83180 — 1449907 + 81060)

225(1 - )

and

} (43)

4(40n% — 40p +21)In(1 =) 1817° — 6784 + 6065 — 252

Qqﬁ(n) = CACF|: 15’76

45(1 =) ]

4(10p* = 107 +3) In(1 —n) 43’ — 1747 + 138y — 36

+ CpnfTF |: 15,16

6(197° =487 +31)In(1 —n) 157 + 64> =390y + 372

45(1 = n) ]

G [_ (1=n)n®

2(L =)y’ ] ’ 44)
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where the highest power of # in denominator is 7 for Q (1)
and 6 for Q,;(n7). Interestingly, taking the A" =1 SYM
limit by setting Ty = 1/2,ny =N, Cy =N, Cp =N
the above two equations become identical,

QM) =1 = Qua ()=
6(2113 + 157]2 — 457 +30)In(1 — )

= N?
(n=1)n°
3(4n + 57* — 605 + 60)
+ e . (45)

However, the A/ = 1 limit of the corresponding result for
e"e™ annihilation gives a different result. Taking the col-
linear limit under the squeezed limit, i.e., x; K x, = x3 =
n — 0, the results in Egs. (43) and (44) become

1 146CAI’leF 872(/13‘ 3Cpnpr
Qgg(”)Nn{ 25 s 5 |
1 [263C,Cr 59 16C2
() m— | 22ASE L P o T . (46
Qg () ;7{ 225 225 FUTFETTS (46)

We find the above result for the quark-initiated channel in
Higgs decay is identical to the corresponding result for e e~
annihilation as shown in Ref. [45]. It can be understood by
the presence of common ingredients in the factorization
theorem for the collinear limit under the squeezed limit as
proposed in Ref. [37]. Taking the A" =1 SYM limit in
Eq. (46), we obtained the identical result

1 9
QoM =1 = 5N%§ + O(n)
1,9
M= ZNC 3 + O(n); (47)

the simplicity of the above result serves as an additional
indication of the correctness of our results for H ,(x;, x5, x3)
and H ;(x1,x;, X3).

—

01s[

collinear coplanar
H H.

_ coplanar
Hyg

0.10

0.05

0.00_, ,

FIG. 9. Equilateral EEEC, where all three angles are equal
X1 = X, = x3 = x. The fixed-order uncertainties are estimated in
the same way as Fig. 6. The solid lines correspond to the full
result, the dotted lines represent its collinear expansion, and the
dot-dashed lines depict the coplanar expansion.

D. Equilateral limit

Lastly, we can also look at the configuration where all
angles are the same x; = x, = x3 = x, namely, equilateral
EEEC. In this case, the phase-space constraint from the
Gram determinant in Eq. (14) becomes x < %. The equi-
lateral limit is different from other limits since it is not
naturally a singular limit. Instead, it is a phase-space cut
imposed in the EEEC measurement function. In Fig. 9, we
plot both the gluon and quark distributions in the equilateral
limit. They exhibit similar behavior to EEC, containing
endpoint singularities on both sides. The only difference is
that the x —>% limit corresponds to the coplanar limit,
instead of the back-to-back limit.

With the analytic result in hand, we can extract
both collinear limit x — 0 and coplanar limit x — 3 for
equilateral EEEC. For the collinear limit, we find

H;(x) X (7)? 4\/—”}1?0”( x), where A%"(x) and h;%“(x)

are presented in the following:

B — Cyn Ty (2B 08, Tons TG TR 906 20896k 34x% 129746756
n — —
99 ATSEF e x2 x 7293 3 893025
K K K Pl
e (3ATE  HAT IS ST S 2368k, 259537657
A 2 x 2433 595350
256K 2 2653 3008k 472 263512 512k 567[ 24267847
+ 2T 4 L 11 191 L 5 T2 =5 +31\/—+T_ 14175 +31\/— + 13400
1\ 35,2 T35 3715 x x2 x
2368k 215672 1517131447 48)
7293 27 1786050 J°
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K K ﬂz K T
peoi() — ¢y (PP wp T e it TN | 4496k 2055 418459681
G A X 2 x 7203 27 510300
e (BETE A RS S 13568c 1602 19740161
AN 2 x 7293 3 36450
(TR SRS AT TR CRATT NS 6976c 32502 45690151
F X x2 x 7293 27 36450

(49)

Here, k = CL (%) = Im|[Li, (¢7)] is the Gieseking constant. Note that Cl, (¢) = — f(;/’ log |2 sin |dx is the Clausen function.
When considering the equilateral distribution d"’ = 3x%H,(x), the collinear asymptotics in both channels only exhibit power
divergence, where 1 leads to single loganthms upon integration over x, i.e., in the cumulant. This is expected because

collinear EEEC is soft safe and we should only observe single collinear logarithms in the cumulant at LO. On the other
hand, we encounter both power and logarithmic divergences in the coplanar limit. The analytic expansion reads

Hi(x) S ()2 1 K (x) with

_8192zInu | 299008z _ 32768xIn2  — 71680k | 328Liy(=3) _ 50997272 4 4890304 __ 71466881n2
hcop ()C) —Cc.n.T < 6561 19683 6561 + 729/3 243 19683 25515 25515
99 = Langl

u Vu
360448z Inu 184647687 32768 14417927 1n2 —16382zlnu _ 8192 _ 65536xin2

6561 + 19683 243 73+ 6561

x  416Li, e n
12800 _ AOLLS) 4 48108 4 SIOIG 3082 (Ss36rinu 1146880n  458752xn3 2621447r1n2)

Vi TT6s6l 6561 2187 6561
o (16984 IR DURAR Th0896m (=Tl 30 g
19683u N 19683

_ 60160k _ 23860Lir(=3) | 599078z | 1273696  2461570241n2
729v3 243 T 7T es6l T 76545 T 229635 622592z Inu  144343047%

i T8 T 6sel
1146880z1n3 24903687 In 2>

u

u

+

2187 + 2187 (50)

JeoP

729/3 243 6561 25515 76545 T 2187 ~ 76561 2187
qg \*) = +

Vu u
4243456mInu 5447680z 1982464xIn3  16973824x In 2)

__ 60160k _ 13900Liy(-3) _|_2033071 4 10180832 _ 493536321n2 20480z Inu 1126407  8192071n2
(x) =C,C

6561 © 19683 2187 6561

7293 81 T 243 T 3645 3645 409607  8683520x
- +
Vu 6561u 19683

_ 20480k _ 2392Liy(=3) _ 7622 _ 493888 _ 6074241n2
+ C]:I’lf ( )

7293 243 6561 729 2187 +_ 2187 729 2187

Vi u
6258688 Inu 3850240z 3211264x1In3 250347527z In 2)

_ 6400k _ 6704Li,(-3) + 5802647> + 14464 + 24884481n2 409607z Inu 204807 1638407 1n2
2
+C

(51)

6561 T o087 2187 6561
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In the above equations, we use u = % — x for convenience.

Thus, in the coplanar limit, we expect both collinear and
soft divergences, which gives rise to 1‘1—;‘ in the distribution
and In?(u) in the cumulant. Moreover, we observed a
noninteger power u™? = (3 —4x)™2 in the expansion. It
will be interesting to understand the origin of this term. In
Fig. 9, we also plot the asymptotics for both channels; it
is clear that the coplanar expansion deviates from the
fixed order earlier due to the aforementioned logarithmic
divergences.

V. CONCLUSION

It is well known that high-precision QCD measurements
require accurate calculations on the theoretical side. Despite
significant progress in developing new techniques for multi-
loop calculations, for example, integration-by-parts reduc-
tions [134] and differential equations [135,136], very few of
them can be directly applied to jet observables. This is mostly
due to the complicated measurement functions associated
with these observables, and thus one has to resort to
computationally expensive Monte Carlo integration to obtain
precise results with more digits. However, the numerical
results become less reliable when the distribution contains
large logarithms. In this sense, analytic calculations for jet
observables are still necessary. Because of its simple meas-
urement functions, the energy correlator stands out as a good
candidate for developing techniques and achieving higher-
order results.

In this paper, we perform the analytic calculations for LO
EEEC in hadronic Higgs decays, specifically H — gg + X
and H — qgq + X. Instead of performing IBP reductions, we
employ a good parametrization that allows the decomposi-
tion of the Gram determinant and facilitates the direct
integration of the four-particle phase space. Topology
identification is applied to simplify the integrand. The
derived analytic results can be expressed using GPLs or
classical polylogarithms up to transcendentality weight 2.
With widely used tools like Mathematica, our analytic
findings can be efficiently evaluated on numerical points
to high precision. It turns out that EEEC for NV = 4 SYM,
et e annihilation, and Higgs decay share the same function
space and analytic structure. Moreover, the gluonic channel
H ,, and quark channel H ; exhibit very similar dependen-
cies on s and ¢;,. The universality suggests analytic
structures of energy correlators that are independent of the
underlying theories. The techniques developed here might
also be applied to compute other phase-space integrals or
other observables.

We have already observed rich structures for three-point
energy correlators at LO. While EEC is singular in the
collinear and back-to-back limits, EEEC exhibits infrared
divergences in multiple regions. As discussed in the previous
section, these include triple-collinear limit, coplanar limit,
squeezed limit, and others. The rich kinematics allow us to

apply EEEC to jet productions at both e™e™ colliders and p p
colliders.

First, we can directly measure EEEC at e ¢~ colliders. For
LEP at Q =91.2 GeV, we are looking at the decays of
photons or Z boson, while for future colliders like CEPC at
0 ~ 240 GeV, we have access to the decay of the Higgs
boson. In this case, our analytic results provide the fixed-
order theoretical data for the measurement of EEEC in
hadronic Higgs decays. The next step is to perform resum-
mation for all possible large logarithms. As indicated in the
kinematic analysis, a two-scale (x;/x3,x,/x3) EFT is
required to describe the singularities. This necessitates the
derivation of a factorization theorem in every singular limit
and the formulation of the resummed prediction for each of
them. For the matching to the fixed-order result, we also need
a profile scale that guides the transition from resummation to
fixed-order behavior. In the standard analysis of event shapes
like thrust [137-139], C-parameter [140], and heavy jet mass
[141], people use one-dimensional profile functions to
combine the dijet resummation from EFT and fixed-order
predictions in QCD. Since EEEC is a function of three
variables, it could serve as a good candidate to study how to
design such a profile scale in a high-dimensional distribution.
For the H — g channel, by incorporating renormalon
subtraction [142] and accounting for nonperturbative power
corrections, our result can be applied to precision Higgs
measurements, including the determination of Yukawa
couplings [143,144]. Regrading the H — gg decay channel,
which is likely to be observed at future lepton colliders,
EEEC could also be a good observable to study gluon jets. In
particular, comparing the theory prediction with the exper-
imental data will provide us insights into gluon jet sub-
structure and hadronization.

In addition, the collinear limit of EEEC serves as a
valuable jet substructure observable at pp colliders. By
treating the collinear EEEC as the jet function in the EFT
framework, we can focus on resumming the large loga-
rithms in the collinear limit. This, combined with the hard
function and jet algorithm, enables us to provide a
theoretical prediction for jet production processes at pp
colliders. We can also establish connections between the
EEEC calculations and other advancements in energy
correlators. For example, the addition of labels for quarks
and gluons in the calculation allows for the separation of
different flavors, enabling the analytic result to be com-
bined with track functions. Moreover, we can integrate our
analytic result over two of the angles to obtain NLO
projected energy correlators. The infrared divergences in
this case will be canceled with the one-loop corrections for
three-parton productions. All the analyses developed for
projected energy correlators in pp — jets can then be
generalized to Higgs decays.
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APPENDIX: EEEC FUNCTION SPACE

We provide the complete function space for Higgs
EEEC. There are seven weight-1 bases f;_; as listed in
X1

|
:Liz( ) gzzLiz< = >
.Xl—l X2

9

93 = Liz(
X

Eq. (30) and 21 weight-2 bases g;_,; given below. Notice
that we have already made the S; permutation symmetry
explicit. With the function space, the analytic result for
Higgs EEEC can be written as

Hz:Zrz(l xlvx23x3 fl Z

i=1

xl,x27x3 (Al)

with rl(.l‘z) being the rational coefficients. The explicit forms

of weight-2 bases g;_,; are given in the following:
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X3
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1 X3
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o

),
o)

)
2(x, - Dx,

— X1 +2X1X2 — X +X3

x3— 1

(" )|

2X]XQ

97 = go(X2 < x3), gs = Go(X1, X2, X3 < X3, X3,X1),
. . s2—|—x1—x2+x3 . s2—|—xl—x2—x3
= 2iIm|Li -1 -L :
P [2< 2(1-x,) ) Q( 2(x — 1)
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1
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§) — 8 S]+X1+X2—X3
—Im|log Re |log
Sy + X+ Xy — X3 Sy + X1+ Xy — X3
—1m IOg S1+S2 Re IOg —Sl—X1+X2 +X3
Sy + X — X2 — X3 Sy — X1 + X + X3
1 Im log 2(s1 = 57)(x; = 1)x, |
S2 +X1 — 2X1X2 +X2 X3)(S2 — X +XZ +X3)
<« Rello Xl—l)x2( STt X — X +X3) 1
¢ (824 X1 = 2x125 + X5 — x3) (55 — X1 + x5 +x3) )/ |
4 Im log 2(s) + 55)(x; = 1)x, |
S2 +X] — Xy —)C';)(Sz — X +2x1x2 — Xy +X3)
% Re 10g< 2()(1 - 1)x2(S1 +x1 — X +X3) >_ } (A2)
L (824 X1 = 2x125 + X5 — x3)(55 — X1 + X5 + x3) ‘

We emphasize again that all bases are analytic, even though they are written in terms of real or imaginary parts of the
logarithms. For convenience, we also list the expressions for the two square roots s, here:

51 = 4/X7 4 X3+ x5 — 2x705 — 2x; X3 — 2x,X3, Sy = 4/x7 4+ X3+ X3 = 2x1x5 — 2x1x3 — 2xpx3 + dxyxpx3. (A3)
A more compact form of the function space in terms of {s,7;,7,} can be found in the A/ = 4 case in Ref. [44], which
manifests the symmetries and is more convenient for theoretical analysis. The form presented here, however, is better suited

for phenomenological applications.
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