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Inclusive production processes will be important for the first observations of XYZ states at new
generation electron-hadron colliders, as they generally benefit from larger cross sections than their
exclusive counterparts. We make predictions of semi-inclusive photoproduction of the χc1ð1PÞ and
Xð3872Þ, whose peripheral production is assumed to be dominated by vector exchanges. We validate the
applicability of vector meson dominance in the axial-vector charmonium sector and calculate production
rates at center-of-mass energies relevant for future experimental facilities. We find the semi-inclusive cross
sections near the threshold to be enhanced by a factor of ∼2–3 compared to the exclusive reaction and well-
suited for a first observation in photoproduction.
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I. INTRODUCTION

The discovery of XYZ signals in the quarkonium
sector have stimulated much theoretical and experimental

research. In order to investigate their structure, it is first
necessary to confirm that these phenomena are genuine
hadronic resonances. The majority of them have been
observed only in specific reactions and searches in new
production modes, are required to confirm their status in the
hadron spectrum, and to provide us with complementary
information on their internal dynamics [1–5]. In particular,
it has been argued that the coupling of the Xð3872Þ to
photons could distinguish it from an ordinary charmonium
with the same quantum numbers, like the χc1ð1PÞ [6,7],
and thus photon-induced production is a promising avenue
for XYZ spectroscopy.
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In the first of a series of papers [8], we studied the
exclusive photoproduction of several XYZ states. Exclusive
reactions have the advantage of having well-constrained
kinematics, and generally cleaner experimental signals.
In a subsequent publication [9], we extended the predic-
tions to semi-inclusive production. While such processes
are generally expected to suffer from larger backgrounds,
they benefit from higher cross sections. This latter analy-
sis was restricted to states generated via charged pion

exchange, that is, to the production of Z�
c and Zð0Þ�

b . The
predicted cross sections indicate that these states can
be amply produced in next-generation electron-hadron
facilities [10–12].
Searches for theXð3782Þ have been proposed for a variety

of different inclusive hadroproduction reactions which may
give insight into its composition [13]. For semi-inclusive
electroproduction, Ref. [14] predicts production rates within
the molecular model of the Xð3872Þ emerging from short-
distance production of DD̄� pairs which then rescatter.
Because these latter predictions are based on the perturbative
parton picture encoded in PYTHIA [15], they may not be
reliable for (quasi)real photoproduction, where other pro-
duction mechanisms may also contribute. The goal of the
present paper is to continue our exploration of semi-inclusive
production to focus on vector exchanges, and thus the
production of the Xð3872Þ.
Vector exchanges are relevant even for the conventional

χc1ð1PÞ which has been studied in Refs. [16,17]. In
particular, photon exchange serves as a background to the
possible odderon (also known as 3-gluon [18]) exchange in
high-energy photoproduction. Odderon exchanges will not
be considered in this work, but could enhance the axial
meson production over the rates predicted here.
Predictions for the photoproduction of XYZ states are

complicated by the lack of knowledge of their radiative
decay into light mesons. In order to estimate the required
photocouplings, a common approach is to employ vector
meson dominance (VMD) [19], where typically the photon
is replaced with a sum of ground-state vector mesons, each
weighted by a coupling constant determined from their
electronic widths. Models based on VMD have been
applied with some success in the phenomenology of light
mesons (see e.g., [20] and references therein) and have also
been employed in the study of heavy quarkonia, in cases
where suitable experimental observables have not yet been
measured. The applicability of these models, however,
has been criticized recently [21–23], especially when heavy
mesons are involved. Further, a recent analysis [24] suggests
that VMD-based production models fail to describe J=ψ
photoproduction data near threshold [25,26] and raises
questions about the continued application of VMD to heavy
quarkonia.
As noted in Ref. [2], however, there are cases even in

the charmonium sector where measurements are roughly
consistent with VMD expectations. This observation

suggests that the applicability of VMD should be assessed
on a case-by-case basis. We thus reexamine exclusive
photoproduction of χc1ð1PÞ and Xð3872Þ and show that
the application of VMD leads to order-of-magnitude
predictions consistent with measured decay widths and
other established phenomenology.
Encouraged by this agreement in the exclusive case, we

generalize the vector exchange mechanism to the semi-
inclusive extension of the vector exchange mechanism final
state. This closely mirrors the generalization of the pion
exchange in Ref. [9] but with additional complications
introduced by exchanges of particles with spin. As in the
scalar exchange case, the semi-inclusive generalization of a
t-channel vector exchange only affects the target fragmen-
tation and is thus agnostic to the nature of the particle Q.
The total inclusive production rates for the χc1ð1PÞ and
Xð3872Þ can thus be predicted and are found to be a factor
of 2–3 enhancement over exclusive production alone in the
near-threshold region. Because of this, semi-inclusive
searches are very promising for a first observation at future
facilities.
The paper is organized as follows. In Sec. II, we revisit

the exclusive production of χc1ð1PÞ and Xð3872Þ via
photon and vector meson exchanges. In Sec. III we extend
the analysis to semi-inclusive production using inclusive
proton structure functions. These functions are considered
in two regions of interest separately; in the near-threshold/
resonance region with small missing mass, and at larger
center-of-mass energies, where missing mass can be large.
In Sec. IV, we discuss the numerical results for the cross
sections relevant to future experimental facilities. Finally,
concluding remarks and a summary are given in Sec. V.

II. REVISITING VMD IN EXCLUSIVE X
PRODUCTION

Thanks to the variety of measured decay widths, it is
possible to test the applicability of VMD in the case of
χc1ð1PÞ and Xð3872Þ. The production of Xð3872Þ has been
measured in two-photon collisions as well as hadronic and
radiative decays into vector mesons. For the χc1ð1PÞ, all its
radiative decay widths have been observed. While no two-
photon coupling has been measured for the χc1ð1PÞ, there
exist several microscopic calculations that one can use for
comparison. Since VMD relates all these processes, one
can test to what degree data are actually consistent with
VMD expectations. In order to concretely examine possible
relations between photon and meson exchange quantities,
we revisit the exclusive production and motivate a form of
the amplitude which can be used for both massive and
massless exchange particles.

A. Photon exchange

We first consider the exclusive production of an axial-
vector meson Q via a t-channel photon exchange, as
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represented in Fig. 1 when X is a single nucleon. The
amplitude can be written as

hλγ; λN jTγjλQλN0 i ¼ T μ
λγλQ

gQγγ

�
−gμν
t

�
eBν

λNλN0 ; ð1Þ

in terms of factorized “top” and “bottom” tensors incor-
porating theQγγ and γNN interactions respectively, as well
as the photon propagator. For the top vertex, we choose a
gauge-invariant interaction with a minimal number of
derivatives,

LQγγ ¼
1

2

gQγγ

m2
Q

ϵαβμνFαβ
∂σFσμQν; ð2Þ

where Fμν is the photon field strength tensor and Qν is the
axial vector meson field. Note that, if both photons are on
shell, the interaction vanishes since ∂μFμν ¼ 0 as expected
by the Landau-Yang theorem [27,28]. The Lagrangian
implies,

T μ
λγλQ

¼ 1

m2
Q

fQγγðtÞϵαβσν;

× kαεβðk; λγÞ½q2gσμ − qσqμ�ε�νðk0; λQÞ; ð3Þ

where we factor out the couplings gQγγ in Eq. (1) and
include an additional form factor,

fQγγðtÞ ¼
1

1 − t=m2
Q

; ð4Þ

which parametrizes the finite size of the top vertex. The
scale is chosen as the quarkonium mass mQ, based on the
model of [29] for two-photon transition form factors of
C-even charmonia, and will compensate unphysical poly-
nomial growth of Eq. (2) at large t.
The bottom vertex describes the γNN interaction

Bμ
λN;λN0 ¼ ūðp0; λN0 ÞΓμðqÞuðp; λNÞ; ð5aÞ

and is parametrized in terms of the Dirac and Pauli form
factors,1 F1;2, which are functions of the exchanged photon
virtuality t ¼ q2,

ΓμðqÞ ¼
�
F1γ

μ þ F2

iσμνqν
2mN

�
: ð5bÞ

We further write these form factors in terms of the Sachs
electric and magnetic form factors GE;M [30],

F1 ¼
�
GE þ τGM

1þ τ

�
F2 ¼

�
GM − GE

1þ τ

�
; ð6Þ

where τ≡ −t=4m2
N . In numerical calculations we use the

parametrization of Ref. [31] for GE;M which in Fig. 2 are
shown normalized to the dipole form factor

GDðtÞ ¼
�
1þ −t

0.71 GeV2

�
−2
: ð7Þ

These electromagnetic form factors are known to high
precision for both the proton and neutron. In principle, this
knowledge allows us to predict production cross sections
for targets of both isospins. Photoproduction off a neutron
target is experimentally more difficult and produces smaller
rates, therefore we will only show results for the proton
target but code to produce plots for neutron targets are
available online [32].

B. Meson exchange

We now consider the analogous process to Eq. (1) with
the exchange photon replaced by a massive vector meson.
The meson exchange process was studied in Ref. [8], with
the top vertex parametrized using an effective Lagrangian
of the form,

L̃QγE ¼ 1

2
g̃QγEϵαβμνFαβEμQν; ð8Þ

FIG. 1. Semi-inclusive photoproduction of JPC ¼ 1þþ Q
quarkoniumlike state via vector meson (E) or photon exchange
(γ) in the t-channel. The bottom vertex B is generalized to
consider the production of arbitrary final state X . Compared to
the notation of [8,9], we switched the momentum of the external
and exchanged bosons to be k0 and q respectively to have t ¼ q2.
The exclusive case is recovered when X is a single proton with
momentum p0 ¼ pþ q.

1F1ð0Þ ¼ 1 meanwhile F2ð0Þ ¼ 1.79 is normalized to the
anomalous magnetic moment of the proton.
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where Eν denotes the vector meson field. We instead use the
same Lagrangian as in Eq. (2), simply replacing the photon
by the vector field strength tensor,2 yielding the same top
tensor as in Eq. (3). By doing so, we also include the
charmonium-to-γγ form factor of Eq. (4) which was not
considered in our previous study. Its presence will not affect
numerical results significantly, as momentum transfers above
∼1 GeV2 will be cut off by meson-nucleon form factors.
Note that L̃QγE and LQγE yield the same on-shell

amplitude if the couplings are related by

gQγE ¼
�
mQ

mE

�
2

g̃QγE: ð9Þ

The advantage of using Eqs. (2) and (9) is that we may
use the Feynman gauge propagator also for the massive
exchange,

Pμν
E ¼ −gμν

t −m2
E

; ð10Þ

and therefore the same functional form for both photon and
meson exchange amplitudes. The vector meson exchange
amplitude, may thus be written as

hλγ; λN jT̃E jλQλN0 i ¼ T μ
λγλQ

gQγE

�
−gμν
t −m2

E

�
gENNB̃

ν
λNλN0 : ð11Þ

The bottom vertex here is defined in terms of meson-
nucleon couplings and form factors,

Γ̃μ
EðqÞ ¼ et

0=Λ2
E

�
γμ þ g0ENN

gENN

iσμνqν
2mN

�
; ð12Þ

with t0 ¼ t − tmin ¼ t − tðs; cos θs ¼ 1Þ. The values of the
couplings gð0ÞENN and the cutoff parameters ΛE are listed in
Table I and taken from Ref. [8] and references therein.

C. Applying VMD

VMD predicts relations between hadronic and electro-
magnetic couplings [19],

gQγγ ¼
X
i

gQiγ

γi
; ð13aÞ

gQγE ¼
X
V

gQVE

γV
; ð13bÞ

gγNN ¼
X
E

gENN

γE
; ð13cÞ

where the sums generally run over all vector mesons, i.e.,
ρ;ω;ϕ, and ψ . In the context of the reaction considered
here, we use E and V to differentiate the vector mesons
which are exchanged in the t-channel and coupled to the
photon beam respectively. In Eq. (13a), the sum may run
over either particle and we use a generic label i. The
constants γi are tabulated in Table II and are determined by
the decay constant fi of the vector meson,

1

γi
¼ efi

mi
: ð14Þ

The radiative decays of the meson Q are related to the
two-photon interaction in Eq. (13a) through VMD. This
prediction thus provides a testable consistency relation
when the couplings on both sides of the equality are known.
The radiative couplings needed for the top vertex are

related to the purely hadronic couplings in Eq. (13b). While
the sum runs over all possible vector mesons, the produced
state Q contains a heavy cc̄ pair, and its coupling to purely
light final states is Okubo-Zweig-Iizuka (OZI) suppressed
and expected to be small. We may thus restrict the sum to
only V ¼ J=ψ in Eq. (13b) to write,

gQγE ¼ gQψE

γψ
: ð15Þ

TABLE I. Couplings of the bottom vertex for the vector
exchanges from [8] and references therein.

E gENN g0ENN ΛE [GeV]

ρ 2.4 14.6 1.4
ω 16 0 1.2

FIG. 2. Sachs electric and magnetic form factors for the proton
using the parametrization of Ref. [31]. For the magnetic form
factor, we divide by the magnetic moment of the proton, μ ¼ 2.79.

2This effectively imposes an additional Uð1Þ symmetry on the
interaction with respect to the massive exchange particle, which is
analogous to the Stückelberg construction for massive electro-
dynamics [20,33].
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The hadronic couplings for the bottom vertex are analo-
gously related in Eq. (13c) except here the opposite happens;
since the nucleon contains only light quark constituents, its
couplings to ϕ and ψ are OZI-suppressed [35,36]. Further-
more, such exchanges would be additionally suppressed
by their heavier masses in the exchange propagator and can
be neglected. The remaining couplings to E ¼ ρ, ω can be
determined using isospin symmetry, which allows the sum in
Eq. (13c) to be inverted to obtain the hadronic couplings
from the electromagnetic ones. Writing

gγpp ¼ gωNN

γω
þ gρNN

γρ
¼ e; ð16aÞ

gγnn ¼
gωNN

γω
−
gρNN

γρ
¼ 0; ð16bÞ

yields

gENN ¼ γE
2
e: ð17Þ

Motivated by this relation, we propose an alternative model
to Eq. (11) for the vector meson exchange amplitude
by using VMD to rescale the electromagnetic bottom
tensor in Eq. (5),

hλγ; λN jTE jλQλN0 i ¼ T μ
λγλQ

gQγE

�
−gμν
t −m2

E

�
βEðt0Þ

γE
2
eBν

λNλN0 :

ð18Þ

Here the top coupling may be calculated directly from a
radiative decay width or from the additional use of VMD at
the top vertex with Eq. (15).
For compatibility with the predictions previously made

using Eq. (12) and based on models of meson-nucleon
interactions, we restore the exponential t-behavior with an
additional form factor,

βEðt0Þ ¼ et
0=Λ2

E=GDðt0Þ: ð19Þ

The dipole factor is divided out so as to not double count
the suppression at intermediate values. Equation (19) is
parametrized to be equal to one at forward angles and with
the same ΛE as in Table I, such that the scale of the

amplitude is still primarily dictated by the VMD couplings,
i.e., through Eq. (17).
We chose the argument of the exponential form factor

in Eq. (12) to be t0 instead of t to avoid an unjustified
suppression in the region close to threshold where tmin is
large. This, however, was an ad hoc solution as it introduces
a spurious s dependence in the form factor which should in
principle be only a function of the momentum transfer. To
gauge the systematics of this choice, we plot the χc1ð1PÞ
production cross section for different choices of t or t0 in the
form factors in Fig. 3. In the following, wewill use βðt0Þ as in
Eq. (19) to be consistent with previous predictions.

D. Tests of VMD

With amplitudes for photon and meson exchange in
place, we first compare couplings of the χc1ð1PÞ and
Xð3872Þ determined from the observed radiative decays
Q → γE with the VMD expectations given by Eq. (13b).
For radiative decays, the coupling can be computed by
evaluating,

ΓQ→γE ¼
�
m2

Q−m2
E

16m3
Q

�
1

3

X
λQ;λγ

g2QγET
μ
λQ;λγ

ð−gμνÞT �ν
λQ;λγ

; ð20Þ

where the top vertex is given in Eq. (3). The two-photon
reduced width is defined by

Γ̃Q→γγ ¼ lim
m2

E→0

�
m2

Q

m2
E

�
ΓQ→γE : ð21Þ

TABLE II. VMD parameters for different vector mesons.
Decay constants are taken from [8,34] and references therein.

i mi [MeV] fi [MeV] γi

ρ 775.26 156.38 16.37
ω 782.65 45.87 56.34
ϕ 1019.46 75.87 44.37
J=ψ 3096.90 277.40 36.85

FIG. 3. Comparison of the χc1ð1PÞ production for different
choices of argument for the exponential form factor in Eq. (19).
Solid curves are calculated with VMD as in Eq. (18), while
dashed curves are given by the original vector meson exchange as
in Eq. (11).
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All couplings extracted from measurements are summa-
rized in Table III. We remark that the relative phases
between couplings of different exchanges are unknown and
are assumed to be real and positive unless otherwise stated.
Starting with the χc1ð1PÞ, because the radiative decays

have all been measured, we can use VMD as in Eq. (13a) to
predict the two-photon coupling,

gχc1γγ ¼
X

i¼ρ;ω;ϕ;ψ

gχc1iγ
γi

¼ 3.6 × 10−2: ð22Þ

Experimentally, BESIII has observed a signal for the direct
production process eþe− → χc1 → J=ψð→ μþμ−Þγ [41]
but has not extracted the reduced two-photon width yet.
We therefore instead compare Eq. (22) with other theo-
retical predictions which rely on specific microscopic
models. In nonrelativistic QCD, the reduced two-photon
width can be computed from the cc̄ bound-state wave
function and predicted to be Γ̃χc1→γγ ∼ 0.93 keV [42].
Another calculation based on the light-front wave func-
tions predicts Γ̃χc1→γγ ¼ 3.0 keV [43]. These two values
of the width yield couplings of gχc1γγ ¼ 0.9 × 10−2 and
1.6 × 10−2, respectively, which are of the same order of
magnitude as the VMD prediction Eq. (22). We note that
the J=ψ term is dominant in the sum of Eq. (22) as the other
contributions are OZI-suppressed, and therefore small.
Turning to the Xð3872Þ, there are several ways to

compare the known coupling with VMD expectations. Using
Eq. (13a) and ignoring OZI-suppressed terms, the two-
photon coupling is related to the radiative decay into J=ψ ,

gXγγ ¼
gðmeasÞ
Xψγ

γψ
¼ 3.2 × 10−3; ð23Þ

which agrees very well with the coupling extracted from the
Belle measurement in Table III.

For the radiative decays in to light mesons, one may
use Eq. (15) to determine them from the known two-hadron
couplings. This method was previously employed in
Ref. [8] and will be referred to as “VMD 1”. A test of the
accuracy of this estimation is to use Eq. (13b) to recalculate
the J=ψγ radiative coupling from the extracted light meson
contributions,

gXψγ ¼
gðmeasÞ
Xψρ

γρ
þ gðmeasÞ

Xψω

γω
¼ 0.329: ð24Þ

Compared to the measured value in Table III, the resulting
coupling is within the correct order of magnitude but is
deviated by a factor of ∼3.
From this comparison, we see that, within VMD, the size

of the extracted two-hadron couplings implies the radiative
couplings into light mesons may still be sizeable even after
the OZI suppression. Thus, we may choose to combine
Eqs. (13a) and (13b) to get an estimate more consistent with
the measured couplings. Specifically, because the Xψγ
contribution saturates the two-gamma coupling as calcu-
lated in Eq. (23), the sum over light vector terms in
Eq. (13a) must vanish.3 This implies that the couplings
to the ρ and ω, while comparable to the J=ψ radiative
coupling, will interfere destructively. We thus have

gXγρ
γρ

þ gXγω
γω

¼ gðmeasÞ
Xγγ −

gðmeasÞ
Xγψ

γψ
¼ 0; ð25Þ

which, combined with Eq. (15), may be used to determine
the radiative couplings by

gXγρ ¼ −
γρ
γω

gXγω ¼ −
γρ
γω

gðmeasÞ
Xψω

γψ
: ð26Þ

Here we use the measured Xψω coupling to determine both
couplings but we may alternatively invert this relation and
use the measured Xψρ coupling as input instead,

gXγω ¼ −
γω
γρ

gXγρ ¼ −
γω
γρ

gðmeasÞ
Xψρ

γψ
: ð27Þ

Equations (26) and (27) will result in slightly different
coupling estimations which we refer to as “VMD 2” and
“VMD 3”, respectively.
We calculate the top couplings for ρ and ω exchange

using the three VMDmethods described in Table IV, where
we see a consistent prediction with respect to the absolute
size of each contribution. The similarity in sizes and,

TABLE III. Summary of “top” vertex couplings (i.e., two-
photon, radiative, and hadronic) which can be calculated directly
from measured decay widths. All couplings are calculated with
the interaction Eq. (3) with V and E referring to the “beam” and
exchange particles respectively. The hadronic couplings are taken
from [8] and redefined by Eq. (9) as described in the text.

Q V E gðmeasÞ
Qγγ gðmeasÞ

QγE gðmeasÞ
QVE

χc1ð1PÞ
γ

ρ 0.019 [37]
ω 0.010 [37]
ϕ 0.005 [37]

J=ψ 1.29 [38]

Xð3872Þ γ γ 3.2 × 10−3 [39]
J=ψ 0.118 [40]

J=ψ ρ 3.24 [8]
ω 7.31 [8]

3We note that the statistical uncertainties of the measured two-
photon width permit Γ̃X→γγ ¼ 20–500 eV [39]. Using the upper
bound value results in a factor of two increase in gXγγ relative to
the one quoted in Table III.
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importantly, the effect of the possible relative sign, can be
seen in the resulting cross sections in the left panel of
Fig. 4. The spread of predictions is inherent to the model
dependence of VMD and should be taken as an estimate of
the systematic uncertainty. All together, the predicted cross
sections based on VMD are sizeable and not at odds with
current measured decay widths. In the numerical studies of
semi-inclusive productions we will continue to use the
“VMD 1” couplings as these are consistent with previous
predictions in Ref. [8] and provide a more central value for
the cross section.
We also note that, while the two-photon coupling of the

Xð3872Þ is much smaller than the single radiative ones, the
χc1ð1PÞ couplings to γðρ=ωÞ and γγ are of comparable size.
This will reflect in an inverted hierarchy of the photon and
vector meson exchange contributions at high energies
between the χc1ð1PÞ and the Xð3872Þ, as we will show
in Sec. IV.

Finally, as this will be crucial to the semi-inclusive
extension, we use the χc1ð1PÞ to test the form of the bottom
vertex in Eq. (18) to reproduce predictions based on meson-
nucleon couplings. We fix the top couplings to the
measured values in Table III and compute the meson
exchange amplitudes using either Eq. (12) or with
Eq. (5b) rescaled by Eqs. (17) and (19). The resulting
curves are shown for the ω and ρ exchanges in the right
panel of Fig. 4, where we see that the bottom vertex in
Eq. (18) reproduces previous predictions of the sum of the
two vector meson exchange amplitudes well near the
threshold. We consider this as a validation of the form
in Eq. (18) to relate vector meson and photon exchanges
and can use this form to extend the calculation to the semi-
inclusive production in the following section.

III. SEMI-INCLUSIVE FORMALISM

Following Ref. [9], the Ep → anything transition in the
bottom vertex depends on (polarized) vector meson-
nucleon inclusive cross sections, which are unfortunately
not accessible experimentally. We thus resort to VMD to
relate the meson-nucleon vertex to the photoabsorption
cross sections of the proton, which are well known over a
broad range of kinematics.
We consider the double differential inclusive cross

section via photon exchange, as a function of the momen-
tum transfer t and invariant missing massMX . This process
is shown diagrammatically in Fig. 1. We can immediately
write it in analogy to the cross section expressions in deep

FIG. 4. Predictions for exclusive axial-vector meson photoproduction near threshold. In both panels the cross sections are calculated
by Eq. (18) (solid) or by Eq. (11) (dashed) with the different contributions summed at the amplitude level. Left panel: The Xð3872Þ is
calculated with the different estimations of top couplings with VMD as described in the text and in Table IV. Right panel: The χc1ð1PÞ is
shown with individual meson contributions.

TABLE IV. Three different applications of VMD to estimate
the charmless radiative couplings of the Xð3872Þ relevant for the
top vertex. We assume all couplings to be real and positive except
in VMD 2 and 3 where the ρ coupling is chosen negative to
saturate Eq. (25).

jgXγρj jgXγωj Eq.

VMD 1 0.088 0.199 (15)
VMD 2 0.058 0.199 (26)
VMD 3 0.088 0.303 (27)
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inelastic scattering (DIS) of electrons off nucleons,4

d2σγ-ex
dtdM2

X
¼ g2Qγγe

2

8πð2 ffiffiffi
s

p
EγÞ2

T μν
γQjPγj2Wμν; ð28Þ

with Eγ ¼ ðs −m2
NÞ=2

ffiffiffi
s

p
the beam energy in the center-of-

mass frame. Details of kinematics, definitions, conventions,
and relations to matrix elements are given in the Appendix.
Here the propagator with no explicit Lorentz indices
refers simply to Pγ ¼ 1=t, where t ¼ q2 is the virtuality
of the spacelike exchanged photon. The lower bound of
MX is given by the lowest multiparticle threshold, Mmin ¼
mN þmπ. This formula therefore does not account for
the exclusive Qp final state, which has to be added
separately.
The bottom tensor is parametrized as (see e.g., [38]),

Wμν ¼
�
−gμν þ qμqν

t

�
F1 þ

1

p · q

�
pμ −

p · q
t

qμ
�

×

�
pν −

p · q
t

qν
�
F2; ð29Þ

in terms of the proton structure functions F1;2 ≡ F1;2ðxB; tÞ
which we denote as functions of momentum transfer and
the Bjorken scaling variable,

xB ¼ −t
2ðp · qÞ ¼

−t
M2

X −m2
N − t

: ð30Þ

The top tensor comes from the interaction in Eq. (3),

T μν
γQ ≡ 1

2

X
λγλQ

T μ
λγλQ

T �ν
λγλQ

¼
�
−gμν þ qμqν

t

�
T1 þ

1

k · q

�
kμ −

k · q
t

qμ
�

×

�
kν −

k · q
t

qν
�
T2; ð31Þ

where

T1 ≡ jfQγγj2
t2

2m6
Q

ðk · qÞ2; ð32aÞ

T2 ≡ jfQγγj2
t2

2m6
Q

ðk · qÞ�m2
Q − 2ðk · qÞ�; ð32bÞ

and after performing Lorentz contractions,

T μν
γQWμν ¼ 3F1T1 þ

�ðk · qÞ
t

�
F1T2

þ
�ðp · qÞ

t
−

m2
N

ðp · qÞ
�
F2T1 þ

�ðk · qÞðp · qÞ
t2

− 2
ðp · kÞ

t
þ ðp · kÞ2
ðp · qÞðk · qÞ

�
F2T2: ð33Þ

Using the same argument that led to Eq. (18), to obtain
the vector exchange formula from Eq. (28), we need to first
replace the electromagnetic couplings with the hadronic
ones calculated with VMD, and then replace the massless
propagator with a sum over the massive ones, i.e.,

gQγγPγe →
X
E¼ρ;ω

gQγEPEβE
γE
2
e; ð34Þ

with the γE factors of Eq. (13) and form factor ratio βE of
Eq. (19). In βE we continue to use t0 ¼ t − tðs; cos θ ¼ 1;
MX

2 ¼ m2
NÞ to match the form factors in the exclusive

reaction and not introduce spurious MX dependence.
As discussed in Sec. II D, the sum is restricted to ρ and

ω, as the interaction between the proton and the other
vectors is OZI-suppressed just as in the exclusive case.
Since the left-hand side of Eq. (34) is squared in Eq. (28),
the inclusive cross section contains a double sum which
includes the ρN → ωN nondiagonal transition. The result-
ing cross section via meson exchanges is thus,

d2σE-ex
dtdM2

X
¼ e2

128πsE2
γ
T μν

γQjgQγρPργρβρ þ gQγωPωγωβωj2Wμν:

ð35Þ

This contribution can be added to the photon exchange
cross section in Eq. (28) to estimate the combined pro-
duction. We note that we add the two terms incoherently
and ignore the interference between strong and electro-
magnetic exchanges for simplicity. In the energy regions of
interest, one term will be found to dominate by several
orders of magnitude and this interference is negligible.
Equation (35) is valid at energies where a description in
terms of fixed-spin exchanges is applicable, and we restrict
this form to energies within ∼2 GeV from threshold. At
higher energies, to avoid violations of unitarity, higher-spin
exchanges must be included and resummed into Reggeized
meson propagators.
In the exclusive case, Reggeization of a spin-j exchange

can be implemented with a prescription that replaces the
leading powers of sj in the propagator with ðs=s0ÞαðtÞ, where
αðtÞ is the exchanged Regge trajectory and s0 ¼ 1 GeV2 is a
characteristic hadronic scale [cf. Eq. (6) in Ref. [8] ]. In semi-
inclusive production, matching the leading s behavior to the
expected behavior of the inclusive production distribution in
the triple Regge limit (−t ≪ MX

2 ≪ s) motivates the form

4In DIS contexts our t and MX are typically denoted −Q2 and
W respectively. The latter should not be confused for our Wγp
which is the invariant mass of the beam-target system.
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of the Regge propagator with respect to the missing mass
MX instead of s0,

				 1

t −m2
E

				
2
�

s
M2

X

�
2

→ jα0RξðtÞΓð1 − αRðtÞÞj2
�

s
M2

X

�
2αRðtÞ

:

ð36Þ

Here αRðtÞ ¼ αRð0Þ þ α0Rt, with αRð0Þ ¼ 0.5 and α0R ¼
0.9 GeV−2 for both ρ andω. The signature factor is given by

ξðtÞ ¼ 1

2
½−1þ e−iπαRðtÞ�: ð37Þ

In Eq. (35), the s dependence may only come from the
kinematic prefactors of the two hadronic tensors and, from
Eq. (33), we can identify the form

T μν
γQP

2
EWμν ¼

X2
n¼0

Cn

				 1

t −m2
E

				
2
�

s
M2

X

�
2−n

; ð38Þ

where the coefficients are functions of t and MX ,

C0 ¼
M4

X

4ðp · qÞðk · qÞT2F2; ð39aÞ

C1 ¼ −
�
M2

X

t
þ M2

Xm
2
N

2ðk · qÞðp · qÞ
�
T2F2; ð39bÞ

C2 ¼ 3F1T1 þ
ðk · qÞ

t
F1T2 þ

�ðp · qÞ
t

−
m2

N

ðp · qÞ
�
F2T1

þ
�ðk · qÞðp · qÞ

t2
þ m4

N

4ðk · qÞðp · qÞ þ
m2

N

t

�
F2T2:

ð39cÞ

We have three terms because of the different subleading
powers of s which appear from the half-angle factors when
exchanging a particle with spin (e.g., sin θ=2 →

ffiffiffiffiffiffiffiffiffiffi
−t=s

p
at

fixed t and large s). Clearly, as s → ∞, only the n ¼ 0 term
will survive, but we may keep all terms to capture some
subleading behavior. Because the Cn functions are inde-
pendent of s, the Reggeization prescription of Eq. (36) can
be applied directly, yielding

d2σR-ex
dtdM2

X

¼ e2

128πsE2
γ
jgQγργρβρþgQγωγωβωj2

×
X2
n¼0

Cnjα0RξΓð1−αRðtÞÞj2
�

s
M2

X

�
2αRðtÞ−n

: ð40Þ

At high energies, this expression can be added to the
photon exchange which does not Reggeize [44].

A. Proton structure functions

For the structure functions F1;2, we need to separately
consider kinematic regimes which represent different phys-
ics in the bottom vertex. For production close to threshold,
which is expected to have the largest cross sections, the
structure functions are evaluated at missing masses of only
a fewGeV, and are dominated by nucleon resonances.
For the near-threshold region, we use the parametriza-

tions of Refs. [45,46] (herein referred to as B&C), which
describe current electron-proton inclusive data in the
resonance region (MX ≤ 3.5 GeV and −t ≤ 7.5 GeV2).
We note that this parametrization is an empirical descrip-
tion of the data, thus extrapolating far outside of the fitted
region may yield unphysical behavior. To consider energies
Wγp ≤ 7 GeV, we must evaluate the structure functions for
MX ≲ 3 GeV and 0≲ −t≲ 30 GeV2 as illustrated in the
Chew-Low plots in Fig. 5 and we thus need to extrapolate
to large momentum transfers. Luckily both F1;2 vanish
quickly as jtj → ∞ (at fixed MX this implies xB → 1) and
we are not very sensitive to details of the poorly constrained
high-t region.
When increasing Wγp, higher values of MX become

accessible. Extrapolation of B&C to higherMX however, is
not well-behaved and considering center-of-mass energies
above Wγp ≳ 7 GeV requires a different parametrization.
At these high energies, the peaks of the resonance region
make up a small portion of the entire phase space, and the
details of their descriptions are not relevant. We thus use a
phenomenological Regge-inspired parametrization from
Refs. [47,48] (referred to as D&L),

FIG. 5. Chew-Low plot for inclusive Xð3872Þ production at
near threshold energies. The lower bound of missing mass is
given by the lowest inelastic threshold, Mmin ¼ mN þmπ .
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F2ðxB; tÞ ¼
X
k

fk2ðtÞð1 − xBÞϵkxB1−αkð0Þ: ð41Þ

Here the sum runs over two Pomerons (hard and soft [49])
and a Reggeon. This form is based on Regge factorization
arguments at small xB, and thus additional powers of
ð1 − xBÞ are included to enforce that the structure functions
vanish at xB ¼ 1. Based on quark counting rules, one takes
ϵk ¼ 5 for Pomeron exchanges and ϵk ¼ 1 for Reggeons.
These factors are simplistic and do not account for realistic
QCD evolution, but enforce a slightly more physical
behavior in regions with large t at small MX . At any rate,
the production is dominated by the forward limit where
xB ∼ 0, and predictions are relatively insensitive to the
exact values of ϵk.
The Regge pole residues are given by the form,

fk2ðtÞ ¼ Ak

�
−t
s0

�
αkð0Þ�

1þ −t
Λ2
k

�
nk−αkð0Þ

; ð42Þ

with intercept αð0Þ, normalization A, and scale Λ2 for each
exchange given in Table V. The exponent factor nk adjusts

the t-dependence of the coupling only for the hard Pomeron
and is defined as nPhard

¼ ðαPhard
ð0Þ − 1Þ=2while nk ¼ 0 for

the other exchanges.
The structure function F1 can be calculated from F2

using the ratio of longitudinal-to-transverse photoabsorp-
tion cross sections as parametrized in Ref. [48].
As a comparison point, we compute the same structure

functions using parton distribution functions (PDFs)
extracted from global fits. At leading order, we may
calculate,

F2ðxB; tÞ ¼
X
i

e2i xBϕiðxB; tÞ; ð43Þ

where we sum over all parton flavors of charge ei and with
PDF ϕi. The other structure function may be constructed
through the Callan-Gross relation. We interpolate the
most recent leading order PDFs from the CTEQ-TEA
Collaboration [50].
The structure function F2, which dominates at large s, is

plotted in Fig. 6 for the different parametrizations. At small
missing masses, the CTEQ and D&L structure functions
are generally compatible with B&C, with the former two
basically averaging through the resonance peaks of the
latter. Unfortunately, the largest contribution to the semi-
inclusive cross section comes from the small-t region,
where the perturbative QCD parametrizations break down.
We therefore use B&C at low Wγp and D&L at high Wγp

in all phase space, instead of interpolating between the
different models.

TABLE V. Summary of parameters for the D&L Regge pole
parametrization [47] for the F2 structure function.

k A αð0Þ Λ2 [GeV2]

Phard 0.00151 1.452 7.85
Psoft 0.658 1.0667 0.6
R 1.01 0.524 0.214

FIG. 6. Comparisons of the structure function F2 using the D&L parametrization Eq. (41) (solid), the CTEQ-TEA’s leading-order
PDFs (dashed) and B&C (dotted). These are evaluated at fixed t in the near-threshold region (left panel), as well as at large missing
masses (right panel). Three representative values of t are shown to exemplify the F2 → 0 as −t ≫ MX

2 (i.e., xB → 1) behavior at small
missing mass.
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B. Triple Regge behavior

As done with pion exchange in Ref. [9], it is illustrative
to match the cross section to the triple Regge limit
(see e.g., [51]) to examine the expected behavior of the
inclusive vector exchange cross sections at high energies.
Moreover, since the photon exchange does not reggeize
[44] and, as we will see, it actually dominates the χc1ð1PÞ
production, it is important to ensure that the high energy
predictions do not violate the Froissart unitarity bound.
Taking the s → ∞ limit with largeMX

2 and small −t, we
can replace xB ∼ −t=MX

2 into Eq. (40) and rewrite the
cross section in the form,

EQ
d3σ
d3k0

¼ ð2 ffiffiffi
s

p
EγÞ

π

d2σ
dtdM2

X

≡X
k

1

πs0s

�
Gγ

kðtÞ
�

s
M2

X

�
2

þ GR
k ðtÞ

�
s

M2
X

�
2αRðtÞ�

×

�
M2

X

s0

�
αkð0Þ

; ð44Þ

where the functions Gγ
kðtÞ and GR

k ðtÞ are the “triple Regge
couplings” for the photon and meson exchange reactions
respectively, and the sum over k includes all the bottom
exchanges in Table V. This is schematically represented in
Fig. 7. As before, we sum explicitly the strong and
electromagnetic contributions while ignoring the cross
term. While the vector meson exchange is replaced by
the Regge trajectory, the photon carries fixed spin j ¼ 1 at
all energies, which results in very different asymptotic
behavior between the two terms.
To examine the high energy behavior of the integrated

cross section, we express the cross section Eq. (44) in terms
of the fraction of longitudinal momentum ofQ with respect
to its maximum possible value, xF ¼ jk⃗0kj=jk⃗0maxj, where
jk⃗0maxj ¼ λ1=2ðs;Q2;M2

minÞ=2
ffiffiffi
s

p
. In the triple Regge limit,

xF ∼ 1 −MX
2=s ≃ 1. For the Reggeon exchange, this

means approximating

d2σR-ex
dtdxF

≃ πEQ
d3σR-ex
d3k0

¼
X
k

GR
k ðtÞ
s20

ð1 − xFÞαkð0Þ−2αRðtÞ
�
s
s0

�
αkð0Þ−1

: ð45Þ

We can read off the triple Regge coupling by collecting all s
and xF independent factors in Eq. (40),

GR
k ðtÞ ¼

ðs0α0ReÞ2
128π

t2ð2m2
Q − tÞ

m6
Q

jfQγγj2fk2ðtÞ

× jgQγργρβρ þ gQγωγωβωj2jξðtÞΓð1 − αRðtÞÞj2:
ð46Þ

The computation of the integrated cross section there-
fore involves integrating over both tmin ≥ t ≥ tmax and
0 ≤ xF ≤ 1, where the bounds of t integration may intro-
duce total energy dependence as the boundary of the
Chew-Low plot grows with s. We note that such integrals
evaluate the cross section in regions of phase space where
the triple Regge limit is not realized and the model is less
reliable. We must therefore ensure that this region does not
contribute significantly to our predictions. Performing the
xF integral one finds,

dσR-ex
dt

¼
X
k

�
GR

k ðtÞ
s20δkðtÞ

��
s
s0

�
αkð0Þ−1

; ð47Þ

where δkðtÞ≡ 1þ αkð0Þ − 2αRðtÞ. Because αRðtÞ ≤ 0.5 in
the physical region where t < 0, the integral over t avoids
the divergence at t ¼ 0, since δkðtÞ ≳ 0.5 for all bottom
exchanges. The meson-nucleon form factors make GR

k ðtÞ
vanish exponentially for growing −t. The relevant phase

FIG. 7. Diagrammatic representation of the triple Regge formula of Eq. (44). Since the sum over E runs over natural vectors only, the
propagators factor out and the sum can be included in the coupling GR

k . Alternatively, photon propagators and the Gγ
k coupling can be

used. The sum over k includes all the bottom exchanges in Table V related to the D&L parametrization.
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space is thus effectively cut at t ≃ −2 GeV2, far from the
kinematic limit tmax ¼ tðs; cos θ ¼ −1Þ.5 Therefore, the
boundaries in t do not carry additional energy dependence
to the fully integrated cross section, which is given by

σR-exðγp → QXÞ ∼
X
k

�
s
s0

�
αkð0Þ−1

: ð48Þ

Among the possible bottom exchanges, the one that
dominates asymptotically is the soft Pomeron, which gives
αPsoft

ð0Þ ∼ 1 and produces an almost constant asymptotic
cross section.6 As this statement does not depend on the top
trajectory αRðtÞ, the analysis holds true for any Reggeon,
and was seen to hold also for pion exchange [9].
In the case of photon exchange, the analogous coupling

of Eq. (46) has a much slower fall off at large virtualities. In
particular, one finds

Gγ
kðtÞ ¼

ðs20egQγγÞ2
32π

ð2m2
Q − tÞ
m6

Q

jfQγγj2fk2ðtÞ; ð49Þ

which from Eqs. (4) and (42) behaves as 1=t at large t.
The integrated cross section σγ-ex may thus pick up an
slow energy dependence through σγ-ex ∼ log jtmaxj ∼ log s.
In this way the γγP coupling will be similar to a triple
Pomeron coupling [51], albeit with the overall size given by
electromagnetic couplings.

IV. NUMERICAL RESULTS

With all this in place, we may compute the semi-
inclusive cross sections with the appropriate parametriza-
tions of the proton structure functions for the kinematic
regions of interest for both the χc1ð1PÞ and Xð3872Þ
production. At energies near threshold, the dominant
inclusive contribution at energies near threshold is found
to be the isoscalar ω exchanges, while the contributions of
photon exchange is entirely negligible (only a few fb or
less) for both cases. The total integrated cross sections for
Wγ near threshold are plotted in Fig. 8.
The region up to 500 MeV from threshold is clearly

dominated by the Qp final state, as the available range of
missing mass is small. Above it, other inelastic contribu-
tions are sizeable and grow faster with energy than the
exclusive final state alone. As discussed in Sec. III, the
fixed spin-1 exchange models grow indefinitely with s, and

unitarity requires they must turn downward as Reggeization
of the exchange mesons takes place. We do not know
a priori at what energies this should happen, and therefore
the predictions for intermediate energies are uncertain. Still,
if one believes that the fixed-spin description is realistic up
to ∼1–2 GeV above threshold, we can already see nearly a
factor of ∼2 enhancement over the exclusive reaction.
Unlike for the pion exchange case and the Δþþ [9], no

specific nucleon resonance dominates the γp spectrum. We
therefore do not isolate any quasi-elastic exclusive proc-
esses [e.g., γp → Xð3872ÞΔþð→ pπÞ], since any individ-
ual channel will likely be much smaller than the exclusive
reaction. In any case, an experiment with sufficiently high
luminosity to observe such channels could provide com-
plementary information to better identify production mech-
anisms. More physically motivated parametrizations of
the structure functions in the resonance region such as in
Refs. [52–54] can be used in such an analysis.
For higher center-of-mass energies, we plot the predicted

Reggeized production cross sections in Fig. 9. We show
Wγp ≥ 20 GeV to avoid the uncertain intermediate energy
region. The χc1ð1PÞ and Xð3872Þ are found to have
different hierarchies with regards to individual production
mechanisms; the χc1ð1PÞ production is dominated by
photon exchange, while the Xð3872Þ by vector meson
exchanges. This reflects the different hierarchy of cou-
plings discussed in Sec. II D and mirrors the predictions
of [16,17] which suggest searches for χc1ð1PÞ photo-
production at high energies may be dominated by photon
exchange.

FIG. 8. Total integrated photoproduction cross sections for the
Xð3872Þ and χc1ð1PÞ near threshold. The dashed curves show the
contributions from the exclusive final state. The unshaded region
marks energies accessible at the proposed JLab upgraded facility
with a 22 GeV photon beam [12].

5The unphysical region where the Γ function in Eq. (46)
overcomes the exponential form factor is explicitly removed via a
cutoff in t, as done in Refs. [8,9].

6The value αPsoft
ð0Þ ¼ 1.07 > 1 in D&L mimics the logarith-

mic growth allowed by the Froissart bound. We note that D&L’s
hard Pomeron trajectory leads to

ffiffiffi
s

p
behavior, but is orders of

magnitude smaller than the other exchanges and does not
contribute appreciably in the energy range considered.
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V. SUMMARY AND CONCLUSIONS

In this work, we have generalized previous studies on
semi-inclusive photoproduction of (exotic) axial charmo-
nium states, to the case where vector meson exchanges are
involved. In particular, we focused on the χc1ð1PÞ and
Xð3872Þ production. The model is based on the factoriza-
tion between a “top vertex” where the beam dissociates
into the observed charmonium and a vector meson, and a
“bottom vertex” where the vector meson scatters onto the
nucleon target. Since the latter interaction is not accessible
experimentally, one needs to resort to vector meson
dominance to infer it from the measured photon-nucleon
cross section.
The validity of VMD applied to charmonium photo-

production has recently been called into question, as the
new data from the GlueX and J=ψ-007 experiments [25,26]
suggest a violation of several orders of magnitude [24]. A
sanity check on the applicability of VMD to this type of
reactions is therefore opportune. We started by revisiting
our exclusive model of [8] and compared the predictions
obtained with this model including hadronic vector
exchanges with the predictions one would get using a
simple VMD rescaling. We found a reasonable consistency
between the two within the expected model uncertainties.
With the apparent success of VMD in this sector, we

derived a model for semi-inclusive production. We used
different parametrizations of the proton structure functions
available in the literature, as input to obtain the cross
sections of photon and vector meson exchanges. We predict
the production rates both for energies near threshold,
where nucleon resonances must be taken into account,
as well as for high energies, where Regge physics must be

considered. The results suggest the near-threshold regime
has the highest cross sections on the order of several tens of
nanobarn and therefore the highest likelihood for obser-
vation. Preliminary results from GlueX suggest evidence
for χc1ð1PÞ production, which will allow us to benchmark
our model [55]. Furthermore, despite having less constrained
kinematics, the semi-inclusive final states were found to be
roughly a factor of two enhancement compared to the
exclusive final state alone and therefore a promising way
to obtain a first observation of the Xð3872Þ in photo-
production at future facilities. We highlight the potential
reach of an upgraded JLab facility with a 22 GeV photon
beam [12] marked by the unshaded region of Fig. 8.
Cross section predictions at high energies apply to a

relatively small portion of the total phase space: where
the charmonium state carries most of the beam energy.
However, other production mechanisms will also contribute
at more central kinematics, so the predictions presented
here should be understood as a conservative lower bound of
the full semi-inclusive production. Extending our calcu-
lation to larger invariant masses, we found substantially
smaller production rates, but the triple Regge asymptotics
means the inclusive cross section becomes nearly largely
independent of s. This means that facilities optimized
at much higher energies such as the EIC [10,56] or the
EicC [11] may also be able to observe these states in
inclusive searches. The curves shown should be considered
as order-of-magnitude estimates, due to the unknown
matching between the low and high energy predictions
and the inherent model dependence of VMD.
Code to reproduce all figures and results are available

online [32].

FIG. 9. Predicted contributions to the integrated cross section for semi-inclusive χc1ð1PÞ (left) and Xð3872Þ (right) production at high
energies.
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APPENDIX: COMPARISON WITH DIS
FORMULAS

In this appendix, we provide a derivation of Eq. (28) and
relate to the standard expression used in DIS studies as a
consistency check of normalizations.
With the momenta as in Fig. 1, we write the necessary

dot products, using q ¼ k − k0 and sþ tþ u ¼ m2
N þ

m2
Q þMX

2,

2ðp · kÞ ¼ s −m2
N; ðA1aÞ

2ðk · qÞ ¼ t −m2
Q; ðA1bÞ

2ðp · qÞ ¼ M2
X −m2

N − t: ðA1cÞ

The Lorentz-invariant differential cross section for the
reaction γp → QX , is given by [2]

EQ
d3σ
d3k0

¼ 1

16π3
1

4Eγ
ffiffiffi
s

p 1

4

X
N

X
fλg

Z Y
n

d3pn

ð2πÞ32En

× jAγN→QX
fλg j2ð2πÞ4δ4

�
kþ p − k0 −

X
n

pn

�
;

ðA2Þ

where the sum over N runs over all possible final states
containing n unobserved particles, and fλg ¼ λγ; λN; λQ;
λ1; λ2;…; λn collectively denotes the particle helicities. We
recall that Eγ ¼ ðs −m2

NÞ=2
ffiffiffi
s

p
is the photon beam energy

in the center-of-mass frame. If the process is dominated by
photon exchange, the amplitude factorizes into a top vertex,
which describes the γ → Qγ� interaction, and a bottom
matrix element that encodes the γ�N → X piece,

AγN→QX
fλg ¼ T μ

λγλQ
gQγγ

�
−gμν
t

�
eBν

λNfλng; ðA3Þ

where T μ
λγλQ

¼ hλγjJμð0ÞjλQi is given in Eq. (3), and

Bν
λNfλng ¼ hλN jJνð0Þjfλngi: ðA4Þ

The same decomposition may be done in DIS, where the
photon beam and quarkonium Q are replaced by an
electron beam and a recoiling electron,

AeN→e0X
fλg ¼ lμ

λeλe0
e

�
−gμν
t

�
eBν

λNfλng; ðA5Þ

where lμ
λe;λe0

¼ hλejJμð0Þjλe0 i ¼ ūðk0; λe0 Þγμuðk; λeÞ.
One can thus rewrite Eq. (A2) as

EQ
d3σ
d3k0

¼ 1

4π2
g2Qγγe

2

4Eγ
ffiffiffi
s

p T μν
QγjPγj2Wμν; ðA6Þ

where T μν
γQ ¼ 1

2

P
λγλQ

Tμ
λγλQ

T�ν
λγλQ

as given in Eq. (31), and

Wμν ¼
1

4π
×
1

2

X
N

X
λNfλng

Z Y
n

d3pn

ð2πÞ32En
ð2πÞ4δ4

×

�
kþ p − k0 −

X
n

pn

�

× hλN jJμð0ÞjfλngihfλngjJνð0ÞjλNi

¼ 1

4π
×
1

2

X
λN

Z
d4zeiq·zhλN j½JμðzÞ; Jνð0Þ�jλNi; ðA7Þ

which in terms of structure functions yields Eq. (29). We
thus get

d2σ
dtdM2

X
¼ π

ð2 ffiffiffi
s

p
EγÞ

EQ
d3σ
d3k0

¼ 1

8π

g2Qγγe
2

ð2 ffiffiffi
s

p
EγÞ2

T μν
γQjPγj2Wμν; ðA8Þ

which was given in Eq. (28).
This normalization convention coincides with the one

adopted for DIS in Ref. [38], where the elastic e−p double-
differential cross section is given as
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d2σ
dxBdy

¼ y
8π

Lμν

�
e2

Q2

�
2

Wμν; ðA9Þ

in terms of Q2 ¼ −t and the dimensionless variables xB
given by Eq. (30) and y ¼ ðp · qÞ=ðp · kÞ, the fraction of
energy lost by the electron beam in the lab frame (and not
the fraction of transverse momentum defined in Ref. [9]).
The lepton tensor is defined as

Lμν ¼ 1

2

X
λ;λ0

lμ
λ;λ0l

†ν
λ;λ0 : ðA10Þ

Using Eq. (A1), we can see that this can be expressed in
terms of t and MX

2 as

d2σ
dtdM2

X
¼ 1

ð2 ffiffiffi
s

p
EγÞ2

1

y
d2σ

dxBdy
; ðA11Þ

This mirrors the definition Eq. (31) except with the
coupling factored out in Eq. (A9) and thus replacing
e2Lμν → g2QγγT

μν
γQ in Eq. (A11) yields Eq. (28).
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