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We consider the instabilities of field perturbations around a homogeneous background color-electric and/
or -magnetic field in SU(2) pure gauge theory. We investigate a number of distinct cases of background
magnetic and electric fields, and we compute the dispersion relations in the linearized theory, identifying
stable and unstable momentum modes. In the case of a net homogenous non-Abelian B field, we compute
the nonlinear (quadratic and cubic) corrections to the equation of motion and quantify to what extent the
instabilities are tempered by these nonlinearities.
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I. INTRODUCTION

The thermalization process of non-Abelian gauge fields
has been the subject of intense study—in particular, in the
context of heavy ion collisions (HICs; see Ref. [1] for a
comprehensive review). In the initial stages of the collision,
anisotropic particle distributions along and perpendicular to
the beam line may create large anisotropic classical fields
[2–6]. In this background, which is not necessarily homo-
geneous, perturbations may under certain conditions grow
(semi)exponentially. These (plasma) instabilities may result
in long-wavelength fluctuations with very large occupation
numbers that may impact the equilibration process as well
[1,7–9]. It turns out that fast hydrodynamization may likely
be understood from kinetic theory with input from pertur-
bation theory [10–18], but a thorough understanding of the
nonperturbative dynamics as well is still of great interest.
Instabilities in anisotropic backgrounds are well known

from both Abelian and non-Abelian gauge theory [19].
While a U(1) theory produces linear field equations of
motion for the gauge field instabilities, which could then in
principle grow very large, for QCD the equations of motion
are nonlinear, and the instabilities could turn out to be
short-lived and irrelevant. The Abelianization phenomenon
[20] implies that there may be directions in field space
where nonlinear contributions vanish, and where the
instability could continue unhindered for some time.
Ultimately, this will depend on the relative magnitude of
the nonlinearities, the range of modes that become unstable,
and the self-coupling. Substantial work has been performed

analytically and numerically on plasma instabilities in QCD
and QCD-like theories (see, for instance, [21–25]), both in
a HIC context and for simplified models.
In the present work, we will explore the instabilities of

gauge field perturbations around homogeneous and con-
stant E and B fields in pure classical SU(2) gauge theory.
For simplicity, we will ignore any fermions coupled to the
gauge fields, which may feel and enhance the anisotropy.
Our approach is inspired by [26,27], where the authors
investigated the dispersion relations of perturbations in
the linearized theory, in a variety of gauge field back-
grounds. Part of the present work is an extension of their
analysis, while later parts attempt to go beyond the linear
approximation.

A. The equations of motion order by order

The classical equation of motion for pure SU(2) gauge
theory reads

Dab
μ Fμν;b ¼ jν;a; ð1Þ

where the covariant derivative is

Dab
μ ¼ ∂μδ

ab − gϵabcAc
μ; ð2Þ

and the field strength tensor is

Fμν;a ¼ ∂
μAν;a − ∂

νAμ;a þ gϵabcAμ;bAν;c: ð3Þ

The gauge field Aμ;a is a 12-component vector, correspond-
ing to color indices a ¼ 1; 2; 3 and Lorentz indices
μ ¼ 0; 1; 2; 3. Because of gauge invariance, there is some
redundancy in these degrees of freedom, and we will make
use of this point shortly. The metric signature is taken to be
ðþ − −−Þ, so that x0 ¼ x0 ¼ t and −xi ¼ xi ¼ ðx; y; zÞ,
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and ∂
0 ¼ ∂0 ¼ ∂=∂t, −∂i ¼ ∂i ¼ ∂=∂xi. Then Ei;a ¼ Fi0;a,

while Bi;a ¼ 1
2
ϵijkFkj;a.

We will assume that the gauge field may be decomposed
into a background field and a fluctuation, with the notation

Aμ
aðx; tÞ ¼ Āμ

aðx; tÞ þ hμaðx; tÞ; ð4Þ

and with an assumption that the fluctuations are in some
sense “small,” hμa ≪ Āμ

a. It then makes sense to expand
order by order in hμa.

1. Background field

The equation of motion for the background field
(expanding to zeroth order in the fluctuation hμa) is simply

D̄ab
μ F̄μν;b ¼ jν;a; ð5Þ

where the bars on D̄ab
μ and F̄μν;b indicate that they are

expressed only in terms of the background field Āμ
a. We

have assumed that the external current enters in this
background field equation in its entirety. In practice, we
will in the following state the background field Āμ

a and
simply infer what the current jνa is required to be to generate
such a field. In principle, this current may be taken to arise
from some distribution of color-charged particles, but we
will not discuss this further.

2. Linear in fluctuations

To linear order in fluctuations, one finds

∂μ∂
μhνa þ gϵabcð2∂νĀb

μh
μ
c þ 2∂μĀν

ch
μ
b þ 2Āμ

b∂μh
ν
cÞ

− g2ð2Āc
μĀν

ah
μ
c − 2Āν

cĀa
μh

μ
c þ Āc

μĀ
μ
chνa − Āc

μĀ
μ
ahνcÞ ¼ 0:

ð6Þ

We adopt the Lorenz gauge ∂μĀ
μ
a ¼ 0 for the background

field, and we have imposed the background gauge fixing
condition on the fluctuations, D̄ab

μ hμ;b ¼ 0, where D̄ab
μ

again denotes the covariant derivative in terms of the
background field Āμ

a only. In a more compact notation,
this may be rewritten as

½gμνðD̄ρD̄ρÞac þ 2gϵabcF̄
μν
b �hν;c ¼ Mμν

ac½12 × 12�hν;c ¼ 0:

ð7Þ

As we will see, in momentum space this turns into a
½12 × 12�matrix equation for hμa, which has unstable modes
for certain choices of Āμ

a. Some of these correspond to
nonzero homogeneous color-electric and/or -magnetic
fields, and we will in Sec. II consider a fairly broad subset.
Given Āμ

a, one may compute the dispersion relations for
these modes.

3. Quadratic in fluctuations

At early times, when hμa is truly ≪ Āμ
a, the linear

approximation is valid, and unstable modes grow expo-
nentially. However, nonlinearities will eventually impact
the evolution. At second order in fluctuations, we have

gϵabcð2∂μhνchμb þ ∂
νhbμh

μ
cÞ

− g2ð2Āμ
chcμhνa − 2Āμ

ahcμhνc þ Āν
ahcμh

μ
c − Āν

chcμh
μ
aÞ; ð8Þ

which upon taking the expectation values for the fluctua-
tions, and truncating at quadratic order, naturally adds to
the background equation of motion (5). Below, we will be
investigating correlators of the fluctuations, defined
through expectation values of the form

Cμν
ab ¼ hhμahνbi; j̄νa ¼ gϵabch2∂μhνchμb þ ∂

νhbμh
μ
ci; ð9Þ

in a state to be specified in Sec. IV C. Schematically, we
may then write

D̄ab
μ F̄μν;b − g2M̄νμ

ab½C�Āμ;b ¼ jνa − j̄νa; ð10Þ

where M̄ is some matrix involving the C correlators in (9).
This in effect changes both the background equation of
motion and the effective current, and if jνa is constant, it will
eventually ruin the assumption of constant background
electric/magnetic fields. We will investigate the effect of
this nonlinear backreaction below.

4. Cubic in fluctuations

Finally, the equation of motion has cubic contributions in
the fluctuations, which read

−g2½hνahcμhμc − hμahcμhνc�; ð11Þ

and which, again upon taking expectation values, naturally
add to the linear equation for the modes as

½gμνðD̄ρD̄ρÞac þ 2gϵabcF̄
μν
b − g2M̂μν

acðCÞ�hν;c ¼ 0: ð12Þ

The matrix M̂ is expressed in terms of the C correlators,
providing a corrected linear equation for the fluctuations
hμa. This gives rise to new time-dependent dispersion
relations, altering the pattern of instabilities.

B. This work

In Sec. II, we will consider a fairly general set of
homogeneous, anisotropic field backgrounds. For three
of these, we will in Sec. III compute the dispersion relations
of the fluctuation modes explicitly, and establish for which
momentum regions the fluctuations are unstable. The
remaining cases are more involved, and we will simply
sketch how one would go about finding dispersion relations
for them in the Appendix, relying heavily on Refs. [26,27].
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In Sec. IV, we choose one of the three cases and compute
the eigenmodes explicitly, in order to compute the C
correlators. This will in turn allow us to compute the cubic
correction matrix M̂ and the quadratic corrections M̄ and J̄,
from which we will be able to study the evolution of the
instabilities. We provide some discussion, conclusions, and
suggestions for future work in Sec. V.

II. ANISOTROPIC BACKGROUNDS
WITH CONSTANT, HOMOGENEOUS

ELECTRIC/MAGNETIC FIELDS

A. Electric field only

We will first consider a constant, homogeneous color-
electric field only, and set up our procedure and notation.
First, without loss of generality, we can choose the electric
field to be in the i ¼ 1, a ¼ 1 direction. We hence require
that

F̄i0
a ¼ Ei

a ¼ δi1a1E: ð13Þ

Since

F̄i0
a ¼ ∂

iĀ0
a − ∂

0Āi
a þ gϵabcĀi

bĀ
0
c; ð14Þ

such an electric field may correspond to a multitude of
choices for Āμ

a (some of which may be gauge equivalent).
We choose to restrict ourselves to two cases: one where only
the linear-in-A (“Abelian”) derivative part of F̄ is nonzero,
and one where only the quadratic-in-A (“non-Abelian”) part
is nonzero. A homogeneous, time-independent Abelian
electric field may then be written (in a compact notation
we will use repeatedly for the 12-component objects such
as Āμ

a, j
μ
a), as

Āμ
a ¼

2
64
0
B@

Ā0
1

Ā0
2

Ā0
3

1
CA
0
B@

Ā1
1

Ā1
2

Ā1
3

1
CA
0
B@

Ā2
1

Ā2
2

Ā2
3

1
CA
0
B@

Ā3
1

Ā3
2

Ā3
3

1
CA
3
75

¼

2
64
0
B@

−xC1

0

0

1
CA
0
B@

−tC2

0

0

1
CA
0
B@

0

0

0

1
CA
0
B@

0

0

0

1
CA
3
75; ð15Þ

so that

E1
1 ≡ E ¼ C1 þ C2: ð16Þ

This corresponds to a vanishing current jν;a ¼ 0. Similarly, a
homogeneous time-independent non-Abelian electric field
may be written as

Āμ
a ¼

2
64
0
B@

0

D2

D1

1
CA
0
B@

0

D4

D3

1
CA
0
B@

0

0

0

1
CA
0
B@

0

0

0

1
CA
3
75 ð17Þ

to find

E1
1 ≡ E ¼ gðD4D1 −D3D2Þ: ð18Þ

This corresponds to a current with four nonvanishing
components:

jνa ¼ −gE

2
64
0
B@

0

D3

−D4

1
CA
0
B@

0

D1

−D2

1
CA
0
B@

0

0

0

1
CA
0
B@

0

0

0

1
CA
3
75: ð19Þ

B. Magnetic field only

For a homogeneous magnetic field, we can again choose
the μ ¼ 1, a ¼ 1 direction, and write

1

2
ϵijkFkj

a ¼ Bi
a ¼ δi1a1B: ð20Þ

An Abelian background field can be parametrized as

Āμ
a ¼

2
64
0
B@

0

0

0

1
CA
0
B@

0

0

0

1
CA
0
B@

−zC4

0

0

1
CA
0
B@

yC3

0

0

1
CA
3
75; ð21Þ

so that

B1
1 ¼ B ¼ C3 þ C4: ð22Þ

This again corresponds to a vanishing current jν;a ¼ 0. The
non-Abelian realization is

Āμ
a ¼

2
64
0
B@

0

0

0

1
CA
0
B@

0

0

0

1
CA
0
B@

0

D6

D5

1
CA
0
B@

0

D8

D7

1
CA
3
75; ð23Þ

with

B1
1 ¼ B ¼ gðD5D8 −D6D7Þ: ð24Þ

This again corresponds to a current with four nonvanishing
components:

jνa ¼ −gB

2
64
0
B@

0

0

0

1
CA
0
B@

0

0

0

1
CA
0
B@

0

D7

−D8

1
CA
0
B@

0

−D5

D6

1
CA
3
75: ð25Þ

These expressions are minor generalizations to [26], where
the authors consider Abelian E with C1 ¼ E, C2 ¼ 0;
Abelian B with C3 ¼ B, C4 ¼ 0; non-Abelian E with
D2 ¼ −D3 ¼

ffiffiffiffiffiffiffiffi
E=g

p
, D1 ¼ D4 ¼ 0; and non-Abelian B

with D5 ¼ D8 ¼
ffiffiffiffiffiffiffiffi
B=g

p
, D6 ¼ D7 ¼ 0. In [27], the same

authors in addition considered arbitrary D2, D3, and D5,
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D8, respectively. We see that there are a host of other
possibilities for choosing the Ci or the Di for a given E or
B. It will not be possible to keep full generality in the
following, but we will further investigate some of the
combinations in terms of the resulting dispersion relations.

C. Electric and magnetic fields, combined

The natural generalization is to consider the combination
of an electric field E1

1 together with a magnetic field that is/
is not aligned in space and/or color. Allowing for all
combinations of Abelian/non-Abelian Āμ

a, one might expect
16 distinct cases. Some combinations are, however, not
possible, since additional components of magnetic and
electric field are sourced. The task is therefore to identify
vector potentials with the property that they generate only
E1
1 and then some combination of Bi

a, enforcing that they
are either of Abelian or non-Abelian type, and that E and B
are constant in space and time. One then finds a limited set
of options, which we will briefly review in the following.

1. Abelian E and Abelian B

Choosing a vector potential of the form

Āμ
a ¼

2
64
0
B@

−xC1

0

0

1
CA
0
B@

−tC2 − yC16 þ zC9

0

0

1
CA

×

0
B@

−zC4 þ xC15

0

0

1
CA
0
B@

−xC10 þ yC3

0

0

1
CA
3
75 ð26Þ

gives Abelian E and B fields aligned in color, with

E1
1 ¼C1þC2;

Bi
a ¼ g

2
64
0
B@
C3þC4

0

0

1
CA
0
B@
C9þC10

0

0

1
CA
0
B@
C15þC16

0

0

1
CA
3
75: ð27Þ

Explicitly setting Ā0
1 ¼ 0 (C1 ¼ 0), this opens up a few

more options:

Āμ
a ¼

2
64
0
B@
0

0

0

1
CA
0
B@
−tC2−yC16þ zC9

−yC18þ zC11

−yC20þ zC13

1
CA
0
B@
0

0

0

1
CA
0
B@
0

0

0

1
CA
3
75; ð28Þ

which gives Abelian E and B fields orthogonal in space:

E1
1 ¼ C2;

Bi
a ¼ g

2
64
0
B@

0

0

0

1
CA
0
B@

C9

C11

C13

1
CA
0
B@

C16

C18

C20

1
CA
3
75: ð29Þ

2. Abelian E and non-Abelian B

A vector potential of the form

Āμ
a ¼

2
64
0
B@

0

0

0

1
CA
0
B@

−tC2

D4

D3

1
CA
0
B@

D11

0

0

1
CA
0
B@

D12

0

0

1
CA
3
75 ð30Þ

gives Abelian E and non-Abelian B fields orthogonal in
space and color:

E1
1 ¼ C2;

Bi
a ¼ g

2
64
0
B@

0

0

0

1
CA
0
B@

0

D3D12

−D4D12

1
CA
0
B@

0

−D3D11

D4D11

1
CA
3
75: ð31Þ

3. Non-Abelian E and non-Abelian B

Finally, we may choose

Āμ
a ¼

2
64
0
B@

0

0

D1

1
CA
0
B@

0

D4

0

1
CA
0
B@

0

0

D5

1
CA
0
B@

0

0

D7

1
CA
3
75; ð32Þ

which gives non-Abelian E and B fields orthogonal in
space, but aligned in color.

E1
1 ¼ gD1D4;

Bi
a ¼ g

2
64
0
B@

0

0

0

1
CA
0
B@

D4D7

0

0

1
CA
0
B@

−D4D5

0

0

1
CA
3
75: ð33Þ

The combination

Āμ
a ¼

2
64
0
B@

0

D2

0

1
CA
0
B@

0

0

D3

1
CA
0
B@

0

D6

0

1
CA
0
B@

0

D8

0

1
CA
3
75 ð34Þ

is equivalent.
In summary, we have seen that we can find
(1) Abelian E or B, or non-Abelian E or B, with a

somewhat generalized parametrization of what was
reported in [26].

(2) Space-aligned, color-aligned E and B: Possible as an
Abelian/Abelian combination. C1 ≠ 0, C3 ≠ 0 is the
special case reported in [26].

(3) Space-aligned, color-orthogonal E and B: Cannot be
realized in our setup.

(4) Space-orthogonal, color-aligned E and B: Possible
as Abelian/Abelian and non-Abelian/non-Abelian
combinations.
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(5) Space-orthogonal, color-orthogonal E and B: Pos-
sible as Abelian/Abelian and Abelian/non-Abelian
combinations.

We also see that there are several computationally distinct
cases, depending on whether the vector potential is itself
space- and/or time-dependent. We will press on with the
three purely non-Abelian cases (E only, B only, E and B),
where Āμ

a is homogeneous and constant. We refer to the
Appendix for a brief discussion of the issues involved for
the Abelian vector potentials.

III. DISPERSION RELATIONS IN THE
LINEARIZED THEORY

A. Non-Abelian B;E= 0

Let us return to the case of a non-Abelian B field and
zero E field. In four-dimensional momentum space, the

linear equation for the modes of the fluctuations reduces to
a set of 12 coupled linear algebraic equations for hμa, which
can then be split into three independent sections:

Mμν
ac½12× 12�hcν ¼

0
BBB@

M00 0 0 0

0 M11 0 0

0 0 M22 M23

0 0 M32 M33

1
CCCA

0
BBBBB@

h01;2;3
h11;2;3
h21;2;3
h31;2;3

1
CCCCCA;

ð35Þ

where in addition M00 ¼ M11 ¼ M22 ¼ M33 are all
Hermitian, and M23 ¼ M†

32, so that the whole matrix M
is Hermitian. Hence, the equations for h01;2;3 (M00) and
h11;2;3 (M11) are identical:

0
B@

□k þD2
5 þD2

6 þD2
7 þD2

8 2iðD5ky þD7kzÞ −2iðD6ky þD8kzÞ
−2iðD5ky þD7kzÞ □k þD2

5 þD2
7 −ðD5D6 þD7D8Þ

2iðD6ky þD8kzÞ −ðD5D6 þD7D8Þ □k þD2
6 þD2

8

1
CA
0
B@

h0;11

h0;12

h0;13

1
CA ¼ 0; ð36Þ

while the h2;31;2;3 sections mix (M22;23;32;33):

0
B@

□k þD2
5 þD2

6 þD2
7 þD2

8 2iðD5ky þD7kzÞ −2iðD6ky þD8kzÞ
−2iðD5ky þD7kzÞ □k þD2

5 þD2
7 −ðD5D6 þD7D8Þ

2iðD6ky þD8kzÞ −ðD5D6 þD7D8Þ □k þD2
6 þD2

8

1
CA
0
B@

h21
h22
h23

1
CAþ

0
B@

0 0 0

0 0 −2B
0 2B 0

1
CA
0
B@

h31
h32
h33

1
CA¼ 0; ð37Þ

and

0
B@

□k þD2
5 þD2

6 þD2
7 þD2

8 2iðD5ky þD7kzÞ −2iðD6ky þD8kzÞ
−2iðD5ky þD7kzÞ □k þD2

5 þD2
7 −ðD5D6 þD7D8Þ

2iðD6ky þD8kzÞ −ðD5D6 þD7D8Þ □k þD2
6 þD2

8

1
CA
0
B@

h31
h32
h33

1
CAþ

0
B@

0 0 0

0 0 2B

0 −2B 0

1
CA
0
B@

h21
h22
h23

1
CA¼ 0: ð38Þ

To somewhat mitigate notational clutter, we have
absorbed g into Ā, gDi → Di, and defined the box opera-
tor in momentum space □k ¼ −ω2 þ k2x þ k2T , with
k2T ¼ k2y þ k2z . We note that D5;6;7;8 not only appear in
the combinationB ¼ D5D8 −D6D7, but also depend onDi
individually.

1. Non-Abelian B: 0 and 1 sectors

The condition on ω to satisfy the equation is that
Det½M00� ¼ 0 ¼ Det½M11�, which reduces to the cubic
equation

□
3
k þ 2αB□

2
k þ βB□k þ γB ¼ 0; ð39Þ

with

αB ¼ ðD2
5 þD2

6 þD2
7 þD2

8Þ ≥ 2B; ð40Þ

βB ¼ α2B þ B2 − 4ððD5ky þD7kzÞ2 þ ðD6ky þD8kzÞ2Þ;
ð41Þ

γB ¼ B2ðαB − 4k2TÞ: ð42Þ

Let us first consider the zero-momentum case kT ¼ kx ¼ 0,
so that ω2 ¼ −□k, and

−ðω2Þ3 þ 2αBðω2Þ2 − ðα2B þ B2Þω2 þ B2αB ¼ 0: ð43Þ

The solutions for ω2 depend only on the combination
αB=B:

INSTABILITIES OF PERTURBATIONS IN SOME … PHYS. REV. D 109, 114033 (2024)

114033-5



ω2

B
¼ αB

B
;

ω2

B
¼ 1

2

 
αB
B

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
α2B
B2

− 4

r !
; ð44Þ

and they are all real and positive (see Fig. 1, top). For
instance, in the case D5 ¼ D8 ¼ 0, D6 ¼ −D7 ¼

ffiffiffiffi
B

p
,

we find αB=B ¼ 2 so that the eigenvalues reduce to
ω2 ¼ ð2B; B; BÞ. For the more general case D6 ¼

ffiffiffiffi
B

p
λ,

−D7 ¼
ffiffiffiffi
B

p
=λ for some λ [26], αB=B ¼ λ2 þ λ−2 ≥ 2, and

the solutions are again real and positive (see Fig. 1,
bottom). As a sanity check, we note that when B ¼ 0,
the eigenvalues are ω2 ¼ ð0; αB; αBÞ. These are real and
positive, and they are only zero when all the Di’s are zero.
For nonzero momentum kT , kx, the explicit realization of

D5;…;8 becomes more important. Again, for the case
D6 ¼ −D7 ¼

ffiffiffiffi
B

p
, one finds (αB=B ¼ 2, βB=B2 ¼ 5−

4k2T=B, γB=B
3 ¼ 2 – 4k2T=B)

�
−
ω2

B
þ k2T

B
þ k2x

B

�
3

þ 4

�
−
ω2

B
þ k2T

B
þ k2x

B

�
2

þ
�
5− 4

k2T
B

��
−
ω2

B
þ k2T

B
þ k2x

B

�
þ 2− 4

k2T
B

¼ 0; ð45Þ

which has the solutions (see Fig. 2)

ω2

B
¼ 1þ k2x

B
þ k2T

B
;

ω2

B
¼ 3

2
þ k2x

B
þ k2T

B
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16

k2T
B

r
:

ð46Þ

These are real and positive for all B; kx; kT , and hence the
0 and 1 components of the fluctuations are stable for this
choice of D5;…;8.
For fixed B, a three-dimensional space of realizations

of D5;…;8 is available, which we will not fully explore
here. We will, however, briefly consider again the case
D6 ¼ −D7 ¼

ffiffiffiffi
B

p
, fixing D8 ¼ 0, which allows us to

choose any value for D5 without changing B. We choose
D5 ¼

ffiffiffiffiffiffi
qB

p
and vary q. In Fig. 3, we show the eigen-

values for q ¼ 1 and their dependence on kx;y;z (respec-
tively, keeping the other two constant). We note how the

kT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2y þ k2z

q
dependence in Fig. 2 is resolved into

different dependences on ky and kz. We can further examine
the q dependence of the lowest eigenvalue as a function of
ky and kz, shown in Fig. 4. We see a nontrivial dependence,
but the eigenvalue remains real and positive.

2. Non-Abelian B: 2 and 3 sectors

For the 2 and 3 components, the requirement
Det½M22;23;32;33� ¼ 0 amounts to [compare to (39)]

½□3
k þ 2αB□

2
k þ ðβB − 4B2Þ□k þ γB − 4B2αB:�2 ¼ 0: ð47Þ

2.0 2.2 2.4 2.6 2.8 3.0
B

B

0.5

1.0

1.5

2.0

2.5

3.0

2

B

0.0 0.5 1.0 1.5 2.0

1

2

3

4

5

2

B

FIG. 1. Non-AbelianB: The three eigenvalues in the 0, 1 sectors
for k ¼ 0, for general Di (top), and for

ffiffiffiffi
B

p ¼ D6=λ ¼ −D7λ
(bottom).
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B

FIG. 2. Non-AbelianB: The three eigenvalues in the 0, 1 sectors
for

ffiffiffiffi
B

p ¼ D6 ¼ −D7, with kT ¼ 0 (top) and kx ¼ 0 (bottom).
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We may focus on the expression inside the square bracket
and infer that any solution is a double solution. For
kT; kx ¼ 0, this becomes

−ðω2Þ3 þ 2αBðω2Þ2 − ðα2B − 3B2Þω2 − 3B2αB ¼ 0; ð48Þ

which has the solutions

ω2

B
¼ αB

B
; ω2 ¼ 1

2

 
αB
B

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2B
B2

þ 12

r !
: ð49Þ

One of these eigenvalues is negative for all αB=B (see
Fig. 5, top). In particular, for D5 ¼ D8 ¼ 0,
D6 ¼ −D7 ¼

ffiffiffiffi
B

p
, we find ω2 ¼ ð3B; 2B;−BÞ, while the

parametrization D6 ¼
ffiffiffiffi
B

p
λ, −D7 ¼

ffiffiffiffi
B

p
=λ allows the

lowest ω2=B to take values in the interval ½−1; 0� (see
Fig. 5, bottom). Again, when B ¼ 0, ω2 ¼ ð0; αB; αBÞ.
For nonzero momentum, we consider again

D6 ¼ −D7 ¼
ffiffiffiffi
B

p
, for which we need to solve

�
−
ω2

B
þ k2T

B
þ k2x

B

�
3

þ 4

�
−
ω2

B
þ k2T

B
þ k2x

B

�
2

þ
�
1− 4

k2T
B

��
−
ω2

B
þ k2T

B
þ k2x

B

�
− 6− 4

k2T
B

¼ 0: ð50Þ

This is a general cubic equation, which may be solved
straightforwardly, to reveal (Fig. 6) that the (double) unstable
mode becomes stable as kx and/or kT increase. Explicitly, for
kT ¼ 0, the unstable region is jkxj=

ffiffiffiffi
B

p
<1, while for kx ¼ 0,

it is kT=
ffiffiffiffi
B

p
<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3 − ffiffiffi

8
p Þ1=3 þ ð3þ ffiffiffi

8
p Þ1=3

q
≃ 1.53.

We can again extend our analysis somewhat, by
allowing D5 ¼

ffiffiffiffiffiffi
qB

p
while keeping D8 ¼ 0. In Fig. 7,

we show the negative eigenvalue and its momentum
dependence (nonzero kx, ky, or kz) for different values
of q ¼ 0; 1; 2; 3; 4. We see that larger n reduces the
region of instability, and we find that for n → ∞,
ω2ðk ¼ 0Þ → 0.
Hence, in the presence of a constant, homogeneous non-

Abelian magnetic field, for this choice of D5;…;8, of the 12
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B
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B
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B

FIG. 3. Non-AbelianB: The three eigenvalues in the 0, 1 sectors
for

ffiffiffiffi
B

p ¼ D6 ¼ −D7, with nonzero D5 ¼
ffiffiffiffiffiffi
qB

p
, q ¼ 1; for

nonzero kx (top), ky (middle), and kz (bottom).
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FIG. 4. Non-Abelian B: The lowest eigenvalues in the 0,
1 sectors for

ffiffiffiffi
B

p ¼ D6 ¼ −D7, with nonzero D5 ¼
ffiffiffiffiffiffi
qB

p
,

q ¼ 0; 1; 2; 3; 4; For nonzero ky (top) and kz (bottom).
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sets of momentum modes present, two are potentially
unstable, growing as

∝ exp ð�jωjtÞ; ð51Þ

with an ω given by the two lowest, degenerate solutions
to (47) [exemplified by the − solution in the special case
of (49)]. Furthermore, the region of instability is cen-
tered around the origin (k ¼ 0), and for large enough k,
these modes are again stable. Hence, only a finite IR
region of momentum modes are unstable, and this region is

1 2 3 4
B

B

2

1
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3

4

2

B

0.5 1.0 1.5 2.0 2.5 3.0

2
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4

6
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2

B

FIG. 5. Non-Abelian B: The three double eigenvalues in the
2, 3 sectors; for k ¼ 0, general Di (top), and for

ffiffiffiffi
B

p ¼ D6=λ ¼
−D7λ (bottom).
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B

FIG. 6. Non-AbelianB: The three eigenvalues in the 2, 3 sectors
for

ffiffiffiffi
B

p ¼ D6 ¼ −D7, with kT ¼ 0 (top) and kx ¼ 0 (bottom).
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FIG. 7. Non-Abelian B: The lowest (negative) eigenvalue in the
2, 3 sectors for

ffiffiffiffi
B

p ¼ D6 ¼ −D7, with nonzero D5 ¼
ffiffiffiffiffiffi
qB

p
,

q ¼ 0; 1; 2; 3; 4; for nonzero kx (top), ky (middle), and kz
(bottom).
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dependent not only on B, but also on the concrete choice of
D5;…;8, exemplified here by varying D5.
In Sec. IV, we will further find the eigenmodes of the

system for non-Abelian B only, with
ffiffiffiffi
B

p ¼ D6 ¼ −D7,
D5 ¼ D8 ¼ 0, and wewill compute the quadratic and cubic
corrections to the evolution equations and solve them
including these corrections.

B. Non-Abelian E;B= 0

For a non-Abelian background E field and zero B field,
the linear equation for the Fourier modes again splits into
three independent sections. The sections for h21;2;3 (M2) and
h31;2;3 (M3) are now identical and decoupled from each
other, and they read (again absorbing g as gDi → Di)

0
B@

□k −D2
1 −D2

2 þD2
3 þD2

4 −2iðD1ω −D3kxÞ 2iðD2ω −D4kxÞ
þ2iðD1ω −D3kxÞ □k −D2

1 þD2
3 D1D2 −D3D4

−2iðD2ω −D4kxÞ D1D2 −D3D4 □k −D2
2 þD2

4

1
CA
0
B@

h2;31

h2;32

h2;33

1
CA ¼ 0; ð52Þ

while the h0;11;2;3-sections mix (M00;M01;M10;M11)0
B@

□k −D2
1 −D2

2 þD2
3 þD2

4 −2iðD1ω −D3kxÞ 2iðD2ω −D4kxÞ
2iðD1ω −D3kxÞ □k −D2

1 þD2
3 D1D2 −D3D4

−2iðD2ω −D4kxÞ D1D2 −D3D4 □k −D2
2 þD2

4

1
CA
0
B@

h01
h02
h03

1
CAþ

0
B@

0 0 0

0 0 −2E
0 2E 0

1
CA
0
B@

h11
h12
h13

1
CA ¼ 0 ð53Þ

and

0
B@

□k −D2
1 −D2

2 þD2
3 þD2

4 −2iðD1ω −D3kxÞ 2iðD2ω −D4kxÞ
2iðD1ω −D3kxÞ □k −D2

1 þD2
3 D1D2 −D3D4

−2iðD2ω −D4kxÞ D1D2 −D3D4 □k −D2
2 þD2

4

1
CA
0
B@

h11
h12
h13

1
CAþ

0
B@

0 0 0

0 0 −2E
0 2E 0

1
CA
0
B@

h01
h02
h03

1
CA ¼ 0: ð54Þ

1. Non-Abelian E: 2 and 3 sectors

The condition on ω is now that Det½M22� ¼ 0 ¼
Det½M33�, which is again a cubic equation of the form

□
3
k þ 2α−□

2
k þ βE□k þ γE ¼ 0; ð55Þ

where still □k ¼ −ω2 þ k2x þ k2T , k
2
T ¼ k2y þ k2z , and

α− ¼ −D2
1 −D2

2 þD2
3 þD2

4; ð56Þ

αþ ¼ D2
1 þD2

2 þD2
3 þD2

4; ð57Þ

βE ¼ α2− − E2 − 4ððD1ω −D3kxÞ2 þ ðD2ω −D4kxÞ2Þ;
ð58Þ

γE ¼ −E2ðα− − 4ðk2x − ω2ÞÞ; ð59Þ

keeping in mind that E ¼ D1D4 −D2D3. For kT ¼ kx ¼ 0,
we obtain

−ðω2Þ3 þ 2αþðω2Þ2 − ðα2− þ 3E2Þω2 − E2α− ¼ 0: ð60Þ

There is now one real solution for ω2, while the other two
solutions are in general nonreal. Hence, already in the 2 and
3 sectors, there are unstable modes in the presence of finite

E. However, for the special case D1 ¼ D4 ¼
ffiffiffiffi
E

p
,

D2 ¼ D3 ¼ 0, the eigenvalues are ω2 ¼ ð0; E; 3EÞ, while
for the generalization D1 ¼

ffiffiffiffi
E

p
λ, D4 ¼

ffiffiffiffi
E

p
=λ, one of the

eigenvalues is negative in the interval λ∈ ½0; 1�, and the
other two are real and positive (see Fig. 8). It appears that
the curve traced out by D1D4 ¼ E in the space of D1;…;4 is
quite special, avoiding the regions where the eigenvalues
are nonreal. In Fig. 9, we show the αþ=α− plane and
the contours of nonzero imaginary values of the eigenval-
ues. Overlaid in red, the curve traced out at λ is varied,
which precisely avoids those regions. Overlaid in green, the

0.5 1.0 1.5 2.0

1

2

3

4

5

FIG. 8. Non-AbelianE: The three eigenvalues in the 2, 3 sectors
for kT ¼ kx ¼ 0,

ffiffiffiffi
E

p ¼ D1=λ ¼ D4λ.
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curves are traced out by adding nonzero D3 ¼
ffiffiffiffiffiffi
qE

p
,

q ¼ 0.5; 1. As another sanity check, we note that for
E ¼ 0, ω2 ¼ ð0; αþ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2þ − α2−

p
Þ, which is real and pos-

itive, but it is nonzero whenever the Di’s are.
For nonzero momentum, we immediately specialize to

D1 ¼ D4 ¼
ffiffiffiffi
E

p
, D2 ¼ D3 ¼ 0, so that we need to solve

�
−
ω2

E
þk2T

E
þk2x

E

���
−
ω2

E
þk2T

E
þk2x

E

�
2

−4

�
ω2

E
þk2x

E

�
−1

�

−4

�
ω2

E
−
k2x
E

�
¼ 0: ð61Þ

The solutions are real, and one of them is negative for some
regions of ðkx; k2TÞ, as shown in Fig. 10.

2. Non-Abelian E: 0 and 1 sectors

We compute Det½M00;01;10;11� ¼ 0 to find [compare (55)]

½□3
k þ 2α−□

2
k þ ðβE þ 4E2Þ□k þ γe þ 4E2α−�2 ¼ 0; ð62Þ

and so we may consider the expression inside the square,
and treat each solution as a double root. We again first
consider the case kx ¼ kT ¼ 0, for which we have

−ðω2Þ3 þ 2αþðω2Þ2 − ðα2− þ 7E2Þω2 þ 3E2α− ¼ 0: ð63Þ

Again, we have one real solution and two solutions that are
nonreal in part of the parameter space, shown in Fig. 11 as a
function of αþ and α−. Overlaid is the now-familiar curve
parametrized by D1 ¼

ffiffiffiffi
E

p
λ, D4 ¼

ffiffiffiffi
E

p
=λ, D2 ¼ D3 ¼ 0

which lies fully in the region of nonreal eigenvalues. For
λ ¼ 1, the eigenvalues are ω2 ¼ ð0; ð2� i

ffiffiffi
3

p ÞEÞ. The real
part of two eigenvalues is always positive, while the third
has a negative real part whenever α− is negative.
For nonzero momentum and D1 ¼ D4 ¼

ffiffiffiffi
E

p
, we need

to solve

2.0 2.5 3.0 3.5 4.0
2

1

0

1

2

FIG. 9. Non-Abelian E: Regions of the nonzero imaginary part
of the eigenvalues in αþ=α− space. Overlaid are the curve

ffiffiffiffi
E

p ¼
D1=λ ¼ D4λ (red), and curves when further adding nonzero
D3 ¼

ffiffiffiffiffiffi
qB

p
, q ¼ 0.5; 1 (green). In this and later contour plots, the

change in colors denotes equisurfaces, but the details are not
important here.
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FIG. 10. Non-Abelian E: The three eigenvalues in the 2,
3 sectors for

ffiffiffiffi
E

p ¼ D1 ¼ D4, as a function of kx (top) and kT
(middle), and the region in the kx=kT plane, where the lowest
eigenvalue is negative (bottom).
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�
−
ω2

E
þk2T

E
þk2x

E

���
−
ω2

E
þk2T

E
þk2x

E

�
2

−4

�
ω2

E
þk2x

E

�
þ3

�

−4

�
ω2

E
−
k2x
E

�
¼ 0; ð64Þ

which provides one real solution and two solutions that are
in general nonreal. In Fig. 12, we show the real and
imaginary parts of these eigenvalues as functions of kx (top)
and kT (bottom), respectively. We see that the eigenvalues
are real and positive everywhere, except for a finite region
near the origin (an ellipse in the kx − kT plane).
And so, for the non-Abelian electric field only, of the set

of 12 momentum modes present, several are potentially
unstable, depending on the precise choice ofD1;…;4. For the
special case of D1 ¼ D4 ¼

ffiffiffiffi
E

p
, the 0, 1 sectors have a

finite-momentum region with two unstable modes near the
origin with nonreal eigenvalues, while in the 2, 3 sectors,
there are two unstable modes in certain momentum regions
with real, negative eigenvalues (imaginary ω).

C. Non-Abelian E and B

Including both an electric and a magnetic field allows us
to specify two directions in space, and hence completely
break isotropy. We recall the non-Abelian/non-Abelian
configuration

Ā0
3 ¼ D1; Ā1

2 ¼ D4; Ā3
3 ¼ D7; ð65Þ

which gives

E1
1 ¼ gD1D4; B2

1 ¼ gD4D7: ð66Þ

The linear equation in momentum space is again a 12-by-12
matrix, but now the sectors are coupled. Introducing a
shorthand, where we absorb g as before and define

2.0 2.5 3.0 3.5 4.0
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2

FIG. 11. Non-Abelian E: Regions of the nonzero imaginary
part of the eigenvalues in the 0, 1 sectors in αþ=α− space
(shaded). Overlaid is the curve

ffiffiffiffi
E

p ¼ D1=λ ¼ D4λ (red), as well
as curves that result when further adding nonzero D3 (green).
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FIG. 12. Non-Abelian E: Real and imaginary parts for the
three (double) eigenvalues in the 0, 1 sectors, as functions of kx
(top two) and kT (bottom two), for kT;x ¼ 0, respectively.
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Mdiag

¼

0
B@

□k −D2
1 þD2

4 þD2
7 2iðD7kz −D1ωÞ −2iD4kx

−2iðD7kz −D1ωÞ □k −D2
1 þD2

7 0

2iD4kx 0 □k þD2
4

1
CA
ð67Þ

and

ME ¼

0
B@

0 0 0

0 0 −2E
0 2E 0

1
CA; MB ¼

0
B@

0 0 0

0 0 2B

0 −2B 0

1
CA;

ð68Þ

we have schematically

0
BBBBB@

Mdiag ME 0 0

−MT
E Mdiag 0 MB

0 0 Mdiag 0

0 MT
B 0 Mdiag

1
CCCCCA

0
BBBBB@

h01;2;3
h11;2;3
h21;2;3
h31;2;3

1
CCCCCA ¼ 0: ð69Þ

This couples the 0, 1, and 3 sectors, while the 2 sector
is decoupled. Note that this is not simply combining the
non-Abelian E and the non-Abelian B that we consid-
ered above.
WewriteD1 ¼ E=D4 andD7 ¼ B=D4, in which case the

determinant of the entire matrix may be conveniently
written as

1

D16
4

½D4
4□

3
k þ 2D2

4α3□
2
k þ β3□k þ γ3�2

× ½D4
4□

3
k þ 2D2

4α3□
2
k þ ðβ3 − 4D4

4ðα3 −D4
4ÞÞ□k

þ γ3 − 4D2
4α3ðα3 −D4

4Þ�2 ¼ 0; ð70Þ

with

α3 ¼ B2 − E2 þD4
4; ð71Þ

β3 ¼ α3ðα3 þD4
4Þ −D8

4 − 4D6
4k

2
x − 4D2

4ðBkz − EωÞ2;
ð72Þ

γ3 ¼ D2
4½α3ðα3 −D4

4Þ − 4D2
4ðα3 −D4

4Þk2x
− 4D2

4ðBkz − EωÞ2�; ð73Þ

which reduces to (56) in the limit B ¼ 0 (D7 ¼ 0). We see
that the 12 roots split up into six double roots, with three for
each term.
We can again specialize to zero momentum, and we will

rescale all quantities with the appropriate power of D4

(ω=D4, B=D2
4, E=D

2
4, α3=D

4
4, and so on, which amounts to

setting D4 ¼ 1) to find the requirements

− ðω2Þ3 þ 2ðB2 þ E2 þ 1Þðω2Þ2
− ððB2 − E2Þ2 þ 3B2 þ E2 þ 1Þω2

þ ðB2 − E2ÞðB2 − E2 þ 1Þ ¼ 0 ð74Þ

and

− ðω2Þ3 þ 2ðB2 þ E2 þ 1Þðω2Þ2
− ððB2 − E2Þ2 − B2 þ 5E2 þ 1Þω2

− 3ðB2 − E2ÞðB2 − E2 þ 1Þ ¼ 0: ð75Þ

These provide 3þ 3 distinct (double) eigenvalues for
ω2=D2

4. The first three can be found straightforwardly:

ω2 ¼ 1; ð76Þ

ω2 ¼ 1

2

�
1þ 2B2 þ 2E2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8E2 þ 16B2E2

p �
:

These are all real, and one is negative in a region of the
E − B plane, as shown in Fig. 13. The remaining three
eigenvalues are in general complex, and Fig. 14 shows the
regions in the E − B plane, where the real part is negative
(top) or the imaginary part is non-zero (bottom).
The solutions for nonzero momentum now involve kx,

ky, and kz independently, in addition to E and B, and it is
perhaps not so helpful attempting to display the eigenvalues
in all generality. But, for instance, for ky ≠ 0, we simply get
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FIG. 13. Non-Abelian E and B: The region in the E − B plane
where one of the first three (double) eigenvalues is negative.
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the same relations, but with ω2 → ω2 − k2y. Hence, all
solutions for ω2 are shifted byþk2y, so that unstable but real
ω solutions become stable for large ky. For kx ≠ 0, a similar
shift appears, but there are additional terms involving k2x as
well in both equations:

þ4k2xðω2 − k2x − B2 þ E2Þ: ð77Þ

Something new happens for kz ≠ 0, where in addition to the
shift ω2 → ω2 − k2z , we pick up terms linear in ω, kz, and
proportional to BE,

þ4ðB2k2z − 2BEkzωÞðω2 − k2z − 1Þ; ð78Þ

so that the (relative) signs of E, B, kz matter for determin-
ing ω.
We will not pursue this further, but simply note that there

is much fun to be had in this large parameter space.

IV. COMPUTING THE QUADRATIC AND CUBIC
CONTRIBUTIONS FOR NON-ABELIAN B

A. Setting up the matrix structures: Mode equation

Having completed our survey of realizations of insta-
bilities, we now return to Eq. (12), which implies that the
equation of motion for the fluctuations hμa including self-
interaction at leading order takes the form

½gμνðD̄ρD̄ρÞac þ 2gϵabcF̄
μν
b �hν;c − g2M̂μν

abðCÞhν;b ¼ 0; ð79Þ

where the matrix M̂μν
ab is expressed in terms of the expect-

ation values of the fluctuation fields themselves:

Cμν
ab ¼ hhμaðx; tÞhνbðx; tÞi ¼ hhμað0; tÞhνbð0; tÞi ð80Þ

¼
Z

d3k
ð2πÞ3 hh

μ
aðk; tÞðhνbðk; tÞÞ†i; ð81Þ

where we have assumed evaluation in a homogeneous state.
For the case of a non-Abelian B field, the matrix structure is
as follows (in the 2 and 3 sectors):

M̂ijab¼

2
6666666664

−M̂11 0 0 0 0 0

0 −M̂22 −M̂23 0 0 −M̂26

0 −M̂32 −M̂33 0 −M̂35 0

0 0 0 −M̂44 0 0

0 0 −M̂53 0 −M̂55 −M̂56

0 −M̂62 0 0 −M̂65 −M̂66

3
7777777775
;

ð82Þ

where

M̂11 ¼ C33
22 þ C33

33; M̂22 ¼ C33
33 þ C33

11; ð83Þ
M̂33 ¼ C33

11 þ C33
22; M̂44 ¼ C22

22 þ C22
33; ð84Þ

M̂55 ¼ C22
33 þ C22

11; M̂66 ¼ C22
11 þ C22

22; ð85Þ

and

M̂23 ¼ M̂32 ¼ −C33
32 ¼ −C33

23; ð86Þ
M̂56 ¼ M̂65 ¼ −C22

32 ¼ −C22
23; ð87Þ

M̂26 ¼ M̂62 ¼ 2C23
23 − C23

32; ð88Þ
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FIG. 14. Non-Abelian E and B: Regions in the E − B plane,
where one or more of the second set of three (double) eigenvalues
has a negative real part (top) or nonzero imaginary part (bottom).
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M̂35 ¼ M̂53 ¼ 2C23
32 − C23

23: ð89Þ

We have at this point already implemented that several
correlators vanish identically, and we have for simplicity by
hand set to zero all correlators involving the modes in the 0
and 1 sectors, since they are stable. The 0 and 1 sectors of
the matrix have the same structure as the 2 and 3 sectors,
but without the sector-mixing components M̂26;62;35;53. In
our particular setup, we in addition find that M̂11 ¼ M̂44,
M̂22 ¼ M̂33 ¼ M̂55 ¼ M̂66, M̂23 ¼ M̂32 ¼ M̂56 ¼ M̂65,
and M̂35 ¼ M̂53 ¼ −M̂26 ¼ −M̂62, as there are only four
distinct correlators to take into account: C22

11, C
22
22, C

23
23, C

22
23.

Our task is then to compute these time-dependent
correlators, and again solve the eigenvalue equations
(Det½M − g2M̂� ¼ 0) to find corrected, time-dependent
values of ω2. We will do this below, but already at this
stage, we note that in the limit where M̂ ≫ M, the
corrected system now has three double eigenvalues,

M̂11; M̂22 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M̂2

23 þ M̂2
26

q
, of which one is negative when-

ever M̂2
23 þ M̂2

26 > M̂2
22. This means that (some of) the

instabilities remain even at late times, provided the back-
ground field remains constant. In the 0 and 1 sectors,
all modes remain stable, since M̂26 → 0, and as we will
see, M̂22 > M̂23.

B. Setting up the matrix structures:
Background equation

Similarly, we can express the quadratic contribution (10)
in terms of correlators:

D̄ab
μ F̄μν;b ¼ jνa − M̄νμ

ab½C�Āμ;b: ð90Þ

Again, in our specific setup, the space-derivative terms in
the correction to the current j̄νa vanish because the corre-
lators are space-independent. The time-derivative terms
also vanish, because they either act on a stable correlator (in
the 0 − μ sector, which we neglect) or because of the
antisymmetrization of ϵabc. We are therefore left with the
matrix M̄ðCÞ, which multiplies Ā, and we find that this
matrix has the same structure as M̂. Since there is no
original current in the 0 and 1 sectors, it is consistent to set
Ā0;1
a ¼ 0 throughout, and we will consider it no further. In

the 2 and 3 sectors, however, we would have to solve the
full Yang-Mills equation with a time-dependent current.
We will not attempt this here, but simply estimate at

which time the assumption of constant Ā is likely to break
down.We quantify this as when the correction is larger than
the original current:

M̄νμ
ab½C�Āμ;b > jνa: ð91Þ

We recall that

jνa ¼ −gB

2
64
0
B@

0

0

0

1
CA
0
B@

0

0

0

1
CA
0
B@

0

D7

−D8

1
CA
0
B@

0

−D5

D6

1
CA
3
75; ð92Þ

with D6 ¼ −D7 ¼
ffiffiffiffiffiffiffiffi
B=g

p
, and D5 ¼ D8 ¼ 0. The correc-

tion simply becomes

ðM̄ ĀÞνa ¼ −gB

2
64
0
B@

0

0

0

1
CA
0
B@

0

0

0

1
CA
0
B@

0

J7
−J8

1
CA
0
B@

0

−J5
J6

1
CA
3
75; ð93Þ

with

J6 ¼ −J7 ¼
ffiffiffiffi
B
g

s
gðC33

11 þ C33
33 − 3C23

23Þ
B

;

J5 ¼ −J8 ¼
ffiffiffiffi
B
g

s
gC22

23

B
; ð94Þ

so that the form of the total current is unchanged, and it
will still generate a B field in the μ ¼ 1, a ¼ 1 direction.
This B field is, however, now time-dependent, and the time-
dependence of Āμ

a could also potentially source an Abelian
E field. This means that as soon as either of the correlators
is larger than B=g, our approximation breaks down. Wewill
now estimate when that happens.

C. Eigenvectors, quantization, and correlators

The 2 and 3 sectors of the linear system have six
eigenvalues for each set of momenta kx;y;z, ωi

k, correspond-
ing to six eigenvectors ϕiðk; tÞ which are solutions to

∂
2
tϕiðk; tÞ ¼ −ω2

i ðkÞϕiðk; tÞ; i ¼ 1;…; 6; ð95Þ

→ ϕiðk; tÞ ¼ αike
iωi

kt þ βike
−iωi

kt: ð96Þ

In order to define the state in which to compute the
expectation values, we will assume that the system is
prepared in a vanishing background Āμ

a ¼ 0 for t < 0,
and that Āμ

a is instantaneously turned on at t ¼ 0, remaining
constant for t > 0. Then, we may write for t < 0

ϕiðk; tÞ ¼
1ffiffiffiffiffiffiffiffi
2ω0

k

q ðaikeiω
0
kt þ ðai−kÞ†e−iω

0
ktÞ; ð97Þ

∂tϕiðk; tÞ ¼
iω0

kffiffiffiffiffiffiffiffi
2ω0

k

q ðaikeiω
0
kt − ðai−kÞ†e−iω

0
ktÞ; ð98Þ

where we note that for Āμ
a ¼ 0, all the eigenvalues

coincide: ωiðkÞ → ω0
k ¼ jkj.
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For t > 0, we may write in general

ϕiðk; tÞ ¼ αike
iωi

kt þ βike
−iωi

kt; ð99Þ

∂tϕiðk; tÞ ¼ iωi
kðαikeiω

i
kt − βike

−iωi
ktÞ: ð100Þ

Matching the expressions at t ¼ 0, we can express αik and
βik in terms of aik and ai−k as

αik ¼ 1ffiffiffiffiffiffiffiffi
2ω0

k

q �
aik

�
1þ ω0

k

ωi
k

�
þ ðai−kÞ†

�
1 −

ω0
k

ωi
k

��
; ð101Þ

βik ¼ 1ffiffiffiffiffiffiffiffi
2ω0

k

q �
aik

�
1 −

ω0
k

ωi
k

�
þ ðai−kÞ†

�
1þ ω0

k

ωi
k

��
: ð102Þ

Choosing our initial state as the vacuum at t < 0, aikj0i ¼ 0

and using the standard commutation relations ½aik; ðajk0 Þ†� ¼
ð2πÞ3δijδ3ðk − k0Þ, we can straightforwardly compute
expectation values of any combination of αik, β

i
k.

The fluctuation fields hμaðkÞ in the 2 and 3 sectors
are linear combinations of the eigenmodes ϕiðkÞ, written
in terms of a unitary matrix UijðkÞ. With (μ ¼ 2; 3,
a ¼ 1; 2; 3 → 1;…; 6), so

hhiðkÞðhjðkÞÞ†i ¼ hUirϕ
rðkÞ½Ujsϕ

sðkÞ�†i
¼ Uir½U†�sjhϕrðkÞ½ϕsðkÞ�†i; ð103Þ

keeping in mind that hϕrðkÞ½ϕsðkÞ�†i ∝ δrs. We wish to
compute the correlators

Cμν
ab ¼

Z
d3k
ð2πÞ3 hh

μ
aðkÞhνbð−kÞi

¼
Z

d3k
ð2πÞ3

hhiðkÞ½hjðkÞ�† þ ½hiðkÞ�†hjðkÞi
2

; ð104Þ

which follow from combining Eqs. (96), (102), and (103),
and using these, we can construct the nonlinear correction
to the linear mode equation (79).
One final complication is that the diagonal correlators

are (IR and UV) divergent, and so in order to gauge the
effect of the instability, we will in practice compute

Cμν
ab;ren

¼
Z

d3k
ð2πÞ3 ½hh

μ
aðk; tÞhνbð−k; tÞi − hhμaðk; 0Þhνbð−k; 0Þi�:

ð105Þ

In Fig. 15, we show the four distinct (renormalized)
correlators in momentum space at times t ¼ 1; 2; 3
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FIG. 15. Non-Abelian B: The correlators C22
11, C

22
22, C

22
23, and C

23
23

(top to bottom) as functions of ky for times gBt ¼ 1; 2; 3 (red,
blue, green). Renormalized (full lines) and unrenormalized
correlators (dotted lines) are shown.
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(in units where gB ¼ 1). We see that the C22
22 and C23

23

correlators are substantially larger than the other two.

D. Corrected dispersion relations

In Fig. 16, we show M11, M22 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

23 þM2
26

q
, which

was our late-time estimate for the eigenvalues in Sec. IVA.
The lowest eigenvalue is indeed negative throughout, and
so for any momentum, for late enough time, instabilities
remain if they are not switched off for other reasons.
We can do better, and simply compute the eigenvalues at

k ¼ 0 of the whole matrixM − g2M̂, as a function of time.
Figure 17 shows the three distinct eigenvalues in the 2 and
3 sectors as a function of time. The initially unstable mode
is briefly stabilized around gBt ¼ 3.5, but by 4.7 the late-
time behavior takes over, and the eigenvalue becomes
negative again.

E. Corrected current

In a similar way, we can insert the correlators into the
effective current. Figure 18 shows the quantities J5;6;7;8 (94)
in time. We see that J6 ¼ −J7 grows the fastest, and it
becomes order 1 (our criterion for g ¼ B ¼ 1) around
gBt ¼ 4 – 5. At this time, we can then no longer assume a

constant background field. Whether this leads to stability is
beyond our approach here, but it may be readily studied
using numerical simulations.

V. CONCLUSIONS

To summarize, we have investigated the instabilities of
field fluctuations in pure SU(2) classical gauge theory with
a constant homogeneous background E and/or B field. We
first, in Sec. II, presented a fairly general set of background
vector potentials, generalizing the setup of [26,27]. We
then, in Sec. III, focused on non-Abelian E and B field
backgrounds, and we derived the dispersion relation that
the fluctuations obey. Nonreal instances of frequencies
ωðkÞ signal unstable modes in the linear theory, and we
confirmed that these arise for homogeneous E fields, B
fields, and when combining the two. As an aside, we also
found that the instability does not simply depend on the B
or E field, but on the vector field components Āμ

a separately.
Our focus was primarily to identify the computationally

distinct possibilities (space-/time-dependent/independent,
Abelian/non-Abelian), and we have not investigated in
great detail whether some of these cases are gauge
equivalent. But as an example, one can convince oneself
that there is a gauge transformation connecting the C1 ¼ 0
and C2 ¼ 0 instances of the Abelian E-only case in
Eq. (15), but that there is no gauge transformation con-
necting the non-Abelian B-only case, D6D7 ¼ B,
D5 ¼ D8 ¼ 0, to D5 ≠ 0 D8 ¼ 0 (Fig. 9), under the
constraint that it does not generate other nonzero compo-
nents of Aμ

a.
Of particular interest is understanding to what extent

these instabilities shut themselves off due to the non-
linearities of the theory. To that end, we computed the
nonlinear (Gaussian) corrections to both the background
field equation and the linear fluctuation equation. We found
that the corrections certainly influence the instabilities of
the fluctuations, but that rather than turning them off, they
can make them stronger. This, however, assumes that
the background field stays constant and homogeneous
throughout, which is spoiled by the nonlinearities in the
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FIG. 17. Non-Abelian B: The corrected eigenvalues ωi as a
function of time.
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FIG. 18. Non-Abelian B: The quantities J5;6;7;8=
ffiffiffiffiffiffiffiffi
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p
in time.
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FIG. 16. Non-Abelian B: The three eigenvalues M11,
M22 �
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p
.
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background field equation. We estimated the time when the
background field is no longer a constant non-Abelian B
field to be gBt ≃ 4, but further details of how this comes
about, and the explicit effect on the instabilities is likely
better addressed numerically.
Although the context of this type of instabilities is the

thermalization of the plasma in HICs, anisotropic gauge
fields are not unique to QCD. Anisotropic conditions
also appear in cosmology—for instance, in the context
of first-order phase transitions. In that case, the walls of
nucleated bubbles sweep through the ambient plasma, so
that immediately in front of and behind the advancing
wall, the plasma is anisotropic (see, for instance, [28–30]).
Although it is not clear to what extent net E and B fields are
produced, it would be worth investigating whether an
anisotropic out-of-equilibrium background could poten-
tially source similar instabilities.
The obvious continuation of this work is to make a full

investigation of the other realizations of background E and
B fields presented in the Appendix. This could also readily
be compared to direct numerical simulations of the pure
gauge SU(2) system, going beyond the Gaussian approxi-
mation to the nonlinearities. Further generalizing to SU(3)
gauge theory involves writing down a Mð32 × 32Þ matrix
equation and solving for the dispersion relations and then
unstable modes there. This is ongoing work, but we note
that the results for SU(2) presented here naturally arise as a
subsector in the SU(3) theory.
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APPENDIX: SPACE- OR TIME-DEPENDENT
VECTOR POTENTIALS

For completeness, we now briefly present a few cases of
Abelian vector potentials, and how one might go about
solving the linearized equations of motion.
If the background field Āμ

a has no space dependence, we
can simply Fourier-transform in three dimensions and write

hμaðx; y; z; tÞ ¼
Z

dkxdkydkz
ð2πÞ3 e−ikxx−ikyy−ikzzhμaðkx; ky; kz; tÞ:

ðA1Þ
Then, the equation of motion in momentum space reads

Mð∂2t ; ∂t; kx; ky; kz; ĀÞhμa ¼ 0; ðA2Þ

which can be solved as a set of coupled linear differential
equations. One may further Fourier-transform in time, in
the sense that

hμaðkx; ky; kz; tÞ ¼
Z

dω
2π

hμaðkx; ky; kz;ωÞeiωt; ðA3Þ

in which case one may substitute ∂t → iω in (A2). The
expectation is that for some of the modes (for certain values
of kx; ky; kz; Ā), ωk has a nonzero imaginary part, and the
mode grows (or decays) exponentially in time.
If the background field depends on a spatial coordinate,

we can only Fourier-transform in the remaining coordinates
(say y, z), to find

hμaðx; y; z; tÞ ¼
Z

dkydkz
ð2πÞ2 e−ikyy−ikzzhμaðx; ky; kz; tÞ; ðA4Þ

and we are led to a relation of the form

Mð∂2t ; ∂t; ∂2x; ∂x; ky; kz; ĀÞhμa ¼ 0: ðA5Þ

This implies that the field profile is not a product of
plane waves in x, y, z, but that the x dependence is some
other function to be solved for explicitly. Similarly, if the
background field depends on two spatial coordinates, we
can only Fourier-transform in the remaining coordinates
(say, z), to find

hμaðx; y; z; tÞ ¼
Z

dkz
ð2πÞ e

−ikzzhμaðx; y; kz; tÞ: ðA6Þ

Neither the x nor y dependence can then be expressed as
plane waves. Finally, if Āμ

a is a function of t, the Fourier
transform in time also fails, and the field has a nontrivial
time evolution. We again refer to [26] and the Appendix for
a discussion on this.

1. Abelian configuration of B field (C3 =B ≠ 0)

Consider a potential Āμ
a in the μ ¼ 3 direction with a

constant homogeneous magnetic field in the i ¼ 2 direction
and in the a ¼ 1 color direction:

Āμ
a ¼

2
64
0
B@

0

0

0

1
CA
0
B@

0

0

0

1
CA
0
B@

0

0

0

1
CA
0
B@

By

0

0

1
CA
3
75: ðA7Þ

The linearized Yang-Mills equation becomes

□hμa − 2gByϵab1∂zh
μ
b − 2gBϵab1ðδμyhzb − δμzhybÞ

− g2B2y2ϵac1ϵcb1hμb ¼ 0: ðA8Þ

Let us define the functions

T� ¼ h02 � ih03; X� ¼ hx2 � ihx3;

Y� ¼ hy2 � ihy3; Z� ¼ hz2 � ihz3:
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Modifying Eq. (A8) and then solving for each mode in
Fourier space, we obtain the dispersion relations

�
−ω2 þ k2x þ ðkz ∓ gByÞ2 − d2

dy2

�
T�ðyÞ ¼ 0; ðA9Þ

�
−ω2 þ k2x þ ðkz ∓ gByÞ2 − d2

dy2

�
X�ðyÞ ¼ 0; ðA10Þ

�
−ω2 � 2gBþ k2x þ ðkz − gByÞ2 − d2

dy2

�
U�ðyÞ ¼ 0;

ðA11Þ
�
−ω2 ∓ 2gBþ k2x þ ðkz þ gByÞ2 − d2

dy2

�
W�ðyÞ ¼ 0;

ðA12Þ

where

U� ≡ Yþ � iZþ; W� ≡ Y− � iZ−:

The above equations resemble a Schrödinger equation
for a harmonic oscillator and have a discrete spectrum
of frequencies. We can solve for the frequencies forWþ and
U− to find

ω2
0 ¼ 2gB

�
nþ 1

2

�
þ k2x ðA13Þ

and

ω2
� ¼ 2gB

�
nþ 1

2

�
� 2gBþ k2x ðA14Þ

for discrete n ¼ 0; 1; 2;… and continuous kx.
It is clear that ω2

0 and ω2þ are always positive (≥ 0) for

any value of n, but ω2
− is negative whenever n < 1

2
− k2x

2gB.
That means there are unstable modes of U− andWþ which
grow exponentially. The remaining modes T� and X�, Uþ
andW− are stable for all kx. We see that the dependence of
kz is absorbed in a redefinition of the y coordinate.

2. Abelian configuration of E field (C1 =E ≠ 0)

Consider instead a potential Āμ
a in the μ ¼ 0 direction

with a constant homogeneous electric field in the i ¼ 1
direction and in the a ¼ 1 color direction:

Āμ
a ¼

2
64
0
B@

−Ex
0

0

1
CA
0
B@

0

0

0

1
CA
0
B@

0

0

0

1
CA
0
B@

0

0

0

1
CA
3
75: ðA15Þ

The linearized Yang-Mills equation becomes

gμν½ð∂ρδad − gfadeĀe
ρÞð∂ρδdc − gfdcfĀ

ρ
fÞhcν�

þ 2gfabcF̄μν
b hcν ¼ 0: ðA16Þ

Solving Eq. (A16) for the modes in Fourier space gives us
dispersion relations such as

�
k2y þ k2z � 2igE − ðωþ gExÞ2 − d2

dx2

�
G�ðxÞ ¼ 0;

ðA17Þ
�
k2y þ k2z ∓ 2igE − ðω − gExÞ2 − d2

dx2

�
H�ðxÞ ¼ 0;

ðA18Þ
�
k2y þ k2z − ðω� gExÞ2 − d2

dx2

�
Y�ðxÞ ¼ 0; ðA19Þ

�
k2y þ k2z − ðω ∓ gExÞ2 − d2

dx2

�
Z�ðxÞ ¼ 0; ðA20Þ

where the functions G� and H� are defined as

G� ≡ Tþ � Xþ; H� ≡ T− � X−:

The above equations again resemble an inverted
Schrödinger equation, an “upside-down” harmonic oscil-
lator. This does not have any normalizable solutions.

3. Abelian E and Abelian B (C1 ≠ 0 ≠ C3)

Consider a potential Āμ
a corresponding to a constant

homogeneous electric field in the x direction and a constant
homogeneous magnetic field also in the x direction:

Āμ
a ¼

2
64
0
B@

−Ex
0

0

1
CA
0
B@

0

0

0

1
CA
0
B@

0

0

0

1
CA
0
B@

By

0

0

1
CA
3
75: ðA21Þ

The linearized Yang-Mills equation in this case becomes

�
ðkz − gByÞ2 − ðωþ gExÞ2 � 2igE −

d2

dx2
−

d2

dy2

�
×G�ðx; yÞ ¼ 0; ðA22Þ

�
ðkz þ gByÞ2 − ðω − gExÞ2 ∓ 2igE −

d2

dx2
−

d2

dy2

�
×H�ðx; yÞ ¼ 0; ðA23Þ

�
ðkz − gByÞ2 − ðωþ gExÞ2 � 2gB −

d2

dx2
−

d2

dy2

�
×U�ðx; yÞ ¼ 0; ðA24Þ

DIVYARANI C. GEETHA and ANDERS TRANBERG PHYS. REV. D 109, 114033 (2024)

114033-18



�
ðkz þ gByÞ2 − ðω − gExÞ2 ∓ 2gB −

d2

dx2
−

d2

dy2

�
×W�ðx; yÞ ¼ 0: ðA25Þ

Since there is explicit dependence on x and y, we are left
with a partial differential equation in both coordinates.
The equations (A22)–(A25) can be further solved using
variable separation. For example, considering Eq. (A24),
we can write

U�ðx; yÞ ¼ U�
E ðxÞU�

B ðyÞ: ðA26Þ

We can split them into two equations:

�
Q�

U −
d2

dx2
− g2E2

�
ω

gE
þ x

�
2
�
U�

E ðxÞ ¼ 0; ðA27Þ

�
−Q�

U � 2gB −
d2

dy2
þ g2B2

�
kz
gB

− y

�
2
�
U�

B ðyÞ ¼ 0;

ðA28Þ

where Q�
U is the separation constant. Equation (A28) is

another Schrödinger equation with the following replace-
ments: Q�

U ∓ 2gB → 2mε, gB → mω̄, kz
gB → y0. Since the

oscillator energy εn ¼ ðnþ 1
2
Þω̄, n ¼ 0; 1; 2; 3;…,

Q�
U ¼ gBð2nþ 1Þ � 2gB: ðA29Þ

Equation (A27) is an inverted Schrödinger equation with
the following replacements: Q�

U → −2mε, gE → mω̄,
ω
gE → x0. It has no normalizable solutions.
Similarly, by separating variables, one can write

W�ðx; yÞ ¼ W�
E ðxÞW�

B ðyÞ: ðA30Þ

This can also be split into two equations:

�
Q�

W −
d2

dx2
− g2E2

�
ω

gE
− x

�
2
�
W�

E ðxÞ ¼ 0; ðA31Þ

�
−Q�

W ∓ 2gB −
d2

dy2
þ g2B2

�
kz
gB

þ y

�
2
�
W�

B ðyÞ ¼ 0;

ðA32Þ

where Q�
W is the separation constant. Similarly, one can

solve the remaining two equations.

4. Abelian E and non-Abelian B (C2 =E, D3 = λ
ffiffiffiffiffiffiffiffiffi
B=g

p
,

and D12 = 1
λ

ffiffiffiffiffiffiffiffiffi
B=g

p
)

Consider a potential Āμ
a corresponding to a constant

homogeneous electric field in the x direction and constant
homogenous magnetic field components in the x and z
directions:

Āμ
a ¼

2
64
0
B@

0

0

0

1
CA
0
B@

−tC2

0

D3

1
CA
0
B@

0

0

0

1
CA
0
B@

D12

0

0

1
CA
3
75: ðA33Þ

In this case, the linearized Yang-Mills equation reduces to

□hμa þ 2gϵa1bðD12∂z − tC2∂xÞhμb
þ 2gϵa3bD3∂xh

μ
b − g2ϵa1dϵd1bðt2C2

2 þD2
12Þhμb

þ g2tC2D3h
μ
bðϵa1dϵd3b þ ϵa3dϵd1bÞ − g2ϵa3dϵd3bD2

3h
μ
b

þ 2g2ϵa2bðδμ3D12D3hxb − δμ1D3D12h
z
bÞ

þ 2gϵa1bðC2δ
μ0axb þ C2δ

μ1a0bÞ ¼ 0: ðA34Þ

We may now Fourier-transform in space, but not in time,
and the linear equation for the modes of the fluctuations
reduce to a set of 12 coupled linear differential equations,
which we can split into four 3 × 3 matrices corresponding
to the μ ¼ 0; 1; 2; 3 sectors introduced earlier, with cross
terms coupling the 0, 1, and 3 sectors. The diagonal 3 × 3
matrix has the form

Mt
ANA ¼

2
64
ð□þ g2D2

3Þ 2igkxD3 g2tD3C2

−2igkxD3 □þ g2ðt2C2
2 þD2

12 þD2
3Þ 2igðD12kz − tC2kxÞ

g2tD3C2 −2igðD12kz − tC2kxÞ □þ g2ðt2C2
2 þD2

12Þ;

3
75 ðA35Þ

where □ ¼ ∂
2

∂t2 þ k2, k2 ¼ k2x þ k2y þ k2z . Diagonalizing this set of equations is nontrivial, but it would result in a set of 12
nonlinear differential equations in t, which would most likely require numerical evaluation.
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