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QCD sum rules for positive and negative parity heavy baryons in the heavy quark limit are formulated.
We apply the method to Λ and Σ channels. We include the next-to-leading order corrections in
αs-expansion to dimension 0 and 3 terms in the operator product expansion. The corrections lead to
the considerable reduction of the predicted masses and significantly improves the stability with respect to
the Borel parameter, especially for negative parity states. It is also found that, in the heavy quark limit,
chiral odd condensates do not contribute to the negative parity states.
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I. INTRODUCTION

In the past decades, a remarkable experimental progress
has been made in the field of heavy baryon physics. In fact,
many excited states of singly charmed baryon have been
observed in the 2000s. Excited singly bottom baryons have
also been discovered in recent years one after another,
although only two stateswere known until 2012 [1,2]. Those
data have been investigated comprehensively from various
theoretical perspective so far (see Ref. [3] and references
therein). To study negative parity heavy baryons is espe-
cially important in the sense that they can be key subjects to
clarify the mechanism of excitation in baryon systems.
QCD sum rule is one of the useful nonperturbative

method based on QCD, which can connect the nontrivial
vacuum condensates with the hadron properties in a model
independent way. So far, bymany authorsQCD sum rule has
been used to study not only ground (positive parity)
[4–11] but also excited (negative parity) heavy baryons
[3,12–21]. In many works, [7,11,13,16,19], the transverse
γ-matrices were adopted to ensure that the interpolating
fields with positive parity uniquely couple to the states with

positive parity. In Ref. [12], employing the transverse
γ-matrices combined with or without a covariant derivative,
the interpolating fields with negative parity are also ensured
that they couple only to the states with negative parity. The
authors inRefs. [3,14–21] adopted thep-wave heavy baryon
interpolating fields with a covariant derivative systemati-
cally constructed from Bethe-Salpeter equation to study the
masses and the decay properties of p-wave heavy baryons.
In this paper we employ a completely different approach

that was originally proposed in Ref. [22]. We use the
interpolating field of positive intrinsic parity without
covariant derivatives. Noting the fact that the interpolating
field of positive intrinsic parity couples not only to positive
parity states but also to negative parity ones, we “project”
the correlation function of the interpolating fields onto each
parity [22], which enables us to construct the sum rules for
respective parity states. Nucleons and hyperons were
investigated within this method and the origin of the mass
splitting between positive and negative parity was dis-
cussed in connection with chiral condensates [22–25]. Up
to now, there exist no work applying properly this method
to studying heavy baryons.
We consider heavy baryons containing one heavy quark

and construct the QCD sum rules in the framework of the
heavy quark effective theory (HQET), since the physics of
hadrons containing one infinitely heavy quark is well
described with HQET and the analysis is greatly simplified
due to the heavy quark symmetry.
We take into account the next-to-leading order correc-

tions in αs to the terms in the operator product expansion.
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It is known that in the systems containing heavy quarks
αs-correction gives significantly large contribution, which
amounts to 100% or more to the leading order contribution
[9,10,26,27]. In Refs. [9,10], the αs-corrections to dimen-
sion 0 and dimension 3 terms in the operator product
expansion of the heavy baryon correlation functions are
calculated to study positive parity Λ and Σ. However, as
will be pointed out in Sec. III A, the authors excluded the
interpolating fields that couple to negative parity states.
In the present paper, we use the interpolating field includ-
ing both of the parity components, and compute the
αs-corrections in the correlation function.
The paper is organized as follows. In the second section,

we formulate the QCD sum rules for positive and negative
parity heavy baryons. The method is applied to Λ and Σ
heavy baryons and demonstrate the derivation of the sum
rules at leading order in αs, in the third section. In the fourth
section, we calculate the next-to-leading order correction in
αs and present the sum rules including the corrections. The
sum rules derived in the third and fourth sections are
analyzed numerically in the fifth section. The sixth section
is devoted to summary and discussion.

II. QCD SUM RULES FOR POSITIVE
AND NEGATIVE PARITY HEAVY BARYONS

IN THE HQET

In this section, we set up the QCD sum rule for positive
and negative parity heavy baryons in the HQET. We
consider the following correlation function in the HQET:

ΠBðωÞ ¼ i
Z

d4xeiωv·xh0jT½ηBðxÞη̄Bð0Þ�j0i; ð1Þ

where ηB is the interpolating field of heavy baryon B and v
is the four velocity of the heavy baryon. In the general
procedures in the QCD sum rule approach, the correlation
functions are evaluated by the operator product expansion
(OPE) in unphysical region ω → −∞ on one hand and
expressed in terms of the properties of physical states
(masses, coupling constants and so on) on the other hand;
we relate the two descriptions exploiting the dispersion
relations, which yields the QCD sum rule.
Let us first consider how Eq. (1) is expressed in terms of

physical states. The interpolating field ηB couples not
only to positive parity states but also to negative party ones
[22,28], in the way that

h0jηð0ÞjBjðþÞðv; αÞi ¼ λjðþÞuðv; αÞ; ð2Þ

h0jηð0ÞjBjð−Þðv; αÞi ¼ λjð−Þγ5uðv; αÞ; ð3Þ

where jBjð�Þðv; αÞi is the j-th positive/negative parity
resonance state with velocity v and spin α and uðv; αÞ is
the Dirac spinor for the baryon at heavy quark limit. Hence,
inserting a complete set of physical states between the two

interpolating fields in Eq. (1) and neglecting the widths of
the resonance states, Eq. (1) in the baryon rest frame v ¼ 0
can be expressed as follows,

ΠðωÞ¼
X
j

� −jλjðþÞj2
ω− Λ̄jðþÞþ iϵ

Pþþ
−jλjðþÞj2

ω− Λ̄jð−Þ þ iϵ
P−

�
; ð4Þ

where P� ≡ 1
2
ðγ0 � 1Þ are the parity projection operators

and Λ̄jð�Þ ≡Mjð�Þ −mQ with Mjð�Þ being the masses of
j-th positive/negative parity states of the heavy baryon and
mQ the heavy quark mass. It should be noticed that Eq. (4)
does not have poles at negative ω because of the absence of
antiheavy baryons in the heavy quark limit. In the corre-
lation function of nucleons or hyperons, the term corre-
sponding to the first (second) one in Eq. (4) has poles of
antiparticles of negative (positive) parity at negative ω. As a
result, even after performing “parity projection” (see
below), the contributions of positive and negative parity
states are not separated from each other [24,25].
We apply “parity projection” onto the correlation func-

tion, namely, consider

ΠBð�ÞðωÞ ¼
1

4
Tr½P�ΠðωÞ�: ð5Þ

From Eq. (4) we seeΠBðþÞðωÞ contain only the contribution
of the positive parity states and ΠBð−ÞðωÞ only the negative
parity. Calculating Eq. (5) using the OPE and matching the
results with the corresponding parity components in
Eq. (4), we obtain the sum rules. The matching can be
done via the dispersion relations for ΠBð�Þ and utilizing
Borel transformation. ΠBð�Þ obeys the dispersion relations,

ΠBð�ÞðωÞ ¼
Z

∞

0

dω0 ρBð�Þðω0Þ
ω0 − ω − iϵ

; ð6Þ

(the subtraction terms, which are polynomial in ω, are not
written explicitly here). In Eq. (6), ρBð�ÞðωÞ is the spectral
function defined by

ρBð�ÞðωÞ ¼
1

π
ImΠBð�ÞðωÞ; ð7Þ

We apply the Borel transformation operator, defined by

B̂≡ lim
n→∞;−ω→∞
M¼−ω=n fixed

ωn

ΓðnÞ
�
−

d
dω

�
n
; ð8Þ

on both sides of the dispersion relation, Eq. (6). This
transformation introduces an exponential weight in the
integral as

B̂ΠBð�ÞðωÞ ¼
1

M

Z
∞

0

dω0e−ω0=MρBð�Þðω0Þ; ð9Þ
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and eliminate the subtraction terms. In the left-hand side
(lhs) of Eq. (9), where ΠBð�ÞðωÞ are calculated by OPE, the
convergence of the series in the OPE is improved since the
higher dimensional terms in the OPE are suppressed
factorially (∼1=n!). Simultaneously, in the right-hand side
(rhs), the contributions of higher resonances and continuum
are suppressed exponentially compared with that of the
lowest-lying state. It is therefore allowed to approximate
excited-state contributions to the rhs of Eq. (9) by the
imaginary part of the OPE result which starts from the
“continuum threshold” ωth; namely, we use

ρBð�ÞðωÞ ¼ jλBð�Þj2δðω − Λ̄Bð�ÞÞ

þ 1

π
ImΠOPE

Bð�ÞðωÞθðω − ωthÞ; ð10Þ

where ΠOPE
Bð�ÞðωÞ is the correlation function calculated by

OPE. Substituting Eq. (10) into the rhs of Eq. (9), we
obtain,

jλBð�Þj2e−Λ̄Bð�Þ=M ¼
Z

ωth

0

dωe−ω=M
1

π
ImΠOPE

Bð�ÞðωÞ; ð11Þ

Derivative of the logarithm of Eq. (11) with respect to
−1=M gives the expressions for Λ̄Bð�Þ,

Λ̄Bð�Þ ¼
∂

∂ð−1=MÞ
R ωth
0 dωe−ω=M 1

π ImΠOPE
Bð�ÞRωth

0 dωe−ω=M 1
π ImΠOPE

Bð�ÞðωÞ
: ð12Þ

Calculating the correlation function by OPE and substitute
the results into the rhs of the above equations, we obtain the
sum rules for Λ̄Bð�Þ.

III. APPLICATION TO Λ AND Σ CHANNEL

In this section, we apply the method described in the
previous section to I ¼ 0 (Λ) and I ¼ 1 (Σ) heavy baryons.

A. Interpolating fields for Λ and Σ
The candidates of the interpolating field for Λ are

ηS ≡ ϵabcðuaCγ5dbÞhc; ð13Þ

ηP ≡ ϵabcðuaCdbÞγ5hc; ð14Þ
ηV ≡ ϵabcðuaCγ5γμdbÞγμhc; ð15Þ

and those for Σ,

ηA ≡ ϵabcðuaCγμdbÞγμγ5hc; ð16Þ

ηT ≡ 1

2
ϵabcðuaCσμνdbÞσμνγ5hc; ð17Þ

where u and d are the up and down quark fields, h the
effective heavy quark field in the HQET, C the charge
conjugation operator, σμν ¼ i

2
½γμ; γν� and a, b and c the

color indices. The subscripts, S, P, V, A, and T stand for the
channel of the light diquark fields, scalar, pseudoscalar,
vector, axialvector, and tensor, respectively. The general
interpolating fields for Λ and Σ should be given by their
linear combinations,

ηΛ ¼ tSηS þ tPηP þ tVηV; ð18Þ
ηΣ ¼ tAηA þ tTηT; ð19Þ

with tX (X ¼ S, P, V, A, T) being arbitrary mixing
parameters.
Some important remarks are in order here. ηSðPÞ couples

only to positive (negative) parity states, as in the form of
Eq. (2) [Eq. (3)], since the effective heavy quark field, h,
which is constrained to satisfy vh ¼ h, is projected onto
positive parity states at its rest frame v ¼ 0. On the other
hand, ηV , ηA, and ηT can couple with both of parity states,
which becomes obvious if we decompose them as

ηV ¼ ðuCγ5γ0dÞγ0hþ ðuCγ5γidÞγih; ð20Þ
ηA ¼ ðuCγidÞγiγ5hþ ðuCγ0dÞγ0γ5h; ð21Þ

ηT ¼ ðuCσ0idÞσ0iγ5hþ 1

2
ðuCσijdÞσijγ5h; ð22Þ

(Color indices are suppressed here for simplicity.) The first
term in the right hand side of each of the above equations
couples only with positive parity state, while the second
term only with negative parity states. In all the previous
studies on positive parity heavy baryons in QCD sum rules
[4–7,9,10], the second terms of Eqs. (20)–(22) are excluded
consistently. However, as was pointed out above, they
couple to negative parity heavy baryons and are not allowed
to be excluded for the purpose of constructing the sum rules
for positive and negative parity states.
Let us define the correlators of ηX ’s,

ΠXYðωÞ≡ i
Z

d4xeiωv·xh0jT½ηXðxÞη̄Yð0Þ�j0i: ð23Þ

Then the correlation function, Eq. (1), for Λ and Σ can be
written in terms of ΠXYðωÞ as

ΠΛðωÞ ¼
X

X;Y¼S;P;V

tXtYΠXYðωÞ; ð24Þ

ΠΣðωÞ ¼
X

X;Y¼A;T

tXtYΠXYðωÞ: ð25Þ

In the following two subsections, we evaluate Eq. (23)
by OPE to derive the sum rules at leading order (LO) in αs-
expansion and those at next-to-leading order (NLO). To this
end, we write Eq. (23) as
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ΠXYðωÞ ¼ Πð0Þ
XYðωÞ þ Πð1Þ

XYðωÞ þ � � � ; ð26Þ

where Πð0Þ
XYðωÞ and Πð1Þ

XYðωÞ denote LO and NLO contri-
butions in αs-expansion, respectively, and the ellipsis the
higher order ones.

B. Sum rules at LO in αs-expansion

We carry out the OPE of Πð0Þ
XYðωÞ. The nonvanishing

contribution in the OPE up to dimension 6 operators and at
LO in αs-expansion are represented by the Feynman
diagrams shown in Fig. 1.
First, we show the results for the components of Πð0Þ

XYðωÞ
that contribute to ΠΛðωÞ,

Πð0Þ
SS ðωÞ ¼

−Nc!

120π4
ω5 lnð−ωÞPþ

þ −1
32π2

�
αs
π
G2

�
ω lnð−ωÞPþ

þ −Nc!

4N2
c
hūuihd̄di 1

ω
Pþ

þ � � � ; ð27Þ

Πð0Þ
PPðωÞ ¼

−Nc!

120π4
ω5 lnð−ωÞP−

þ −1
32π2

�
αs
π
G2

�
ω lnð−ωÞP−

þ Nc!

4N2
c
hūuihd̄di 1

ω
P−

þ � � � ; ð28Þ

Πð0Þ
VVðωÞ ¼

−Nc!

120π4
ω5 lnð−ωÞðPþ þ 3P−Þ

þ −1
32π2

�
αs
π
G2

�
ω lnð−ωÞðPþ − P−Þ

þ −Nc!

4N2
c
hūuihd̄di 1

ω
ðPþ − 3P−Þ

þ � � � ; ð29Þ

Πð0Þ
SP;PSðωÞ ¼ 0; ð30Þ

Πð0Þ
SV;VSðωÞ¼

Nc!

4π2Nc
ðhūuiþhd̄diÞω2 lnð−ωÞPþ

þ −Nc!

32π2Nc
ðghūσ ·Guiþghd̄σ ·GdiÞ lnð−ωÞPþ

þ 1

32π2
ðghūσ ·Guiþghd̄σ ·GdiÞ lnð−ωÞPþ

þ���; ð31Þ

Πð0Þ
PV;VPðωÞ ¼ 0; ð32Þ

where the ellipsis denotes the terms that will disappear
when the Borel transformation is carried out. Calculation
of the dimension 6 (four-quark condensate) term is done by
applying the factorization hypothesis. Nc is the number of
colors, hq̄qi≡ h0jq̄qj0i, hαsπ G2i≡ h0j αsπ Ga

μνGaμνj0i,
ghq̄σ ·Gqi≡ gh0jq̄σμν λa

2
Gaμνqj0i, where g is the strong

coupling constant, λa the usual Gell-Mann SU(3) matrix,
and Ga

μν the gluon field strength.
Let us discuss Eqs. (27)–(32).
(i) ΠSSðPPÞ has only Pþð−Þ component and ΠSP;PS ¼ 0.

This is due to the fact that ηSðPÞ couples only to
positive (negative) parity states, as was mentioned in
the previous subsection. In contrast, ηV can couple
with both of parity states. Therefore ΠVV has both of
Pþ and P− components and ΠSV;VS has only Pþ.

(ii) Diagonal correlators, ΠSS, ΠPP, ΠVV , have only
chiral even condensates. On the other hand, non-
diagonal correlator, ΠSV;VS, has only chiral odd
condensates. This can be understood by introducing
right- and left-handed quark fields, qR and qL [29],

ηS ¼ ðuRCdR − uLCdLÞh; ð33Þ

(a) (b)

(c) (d)

(e) (f)

FIG. 1. Nonvanishing diagrams representing the terms in the
OPE at LO in αs-expansion. (a) leading term (dimension 0),
(b) dimension 3, (c) dimension 4, (d) and (e) dimension 5,
(f) dimension 6 term. The single and the double lines stand for the
light and the heavy quark propagators, respectively.
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ηP ¼ ðuRCdR þ uLCdLÞγ5h; ð34Þ

ηV ¼ ðuRCγμdL − uLCγμdRÞγμh: ð35Þ

(Color indices are suppressed here for simplicity.) In
general, in the OPE of correlation functions, hq̄qi
or ghq̄σ ·Gqi appear only if qR is paired with qL,
since q̄q ¼ q̄RqL þ q̄LqR, q̄σ ·Gq ¼ q̄Rσ · GqL þ
q̄Lσ · GqR. In ΠSV;VS this is possible if one qRðLÞ
in ηS is paired with one qLðRÞ in ηV , as shown in
Fig. 2(a). In ΠSS, ΠPP, and ΠVV , this is possible only
if two pairs, i.e., uR and uL, dR and dL, are formed at
once, yielding the term h0jūud̄dj0i [see Figs. 2(b)
and 2(c)].

(iii) ΠPV;VP is vanishing, although one may think that
ΠPV;VP has P− component, since both of ηP and ηV
can couple with negative parity states, and have
chiral odd condensates if one qRðLÞ in ηP is paired
with qLðRÞ in ηV . In reality, however, the pair yields
the term hq̄γ5qi, which is vanishing.

Next, we show the OPE results for Πð0Þ
XYðωÞ related with

ΠΣðωÞ,

Πð0Þ
AAðωÞ ¼

−Nc!

120π4
ω5 lnð−ωÞð3Pþ þ P−Þ

þ 1

32π2

�
αs
π
G2

�
ω lnð−ωÞðPþ − P−Þ

þ −Nc!

4N2
c
hūuihd̄di 1

ω
ð3Pþ − P−Þ

þ � � � ; ð36Þ

Πð0Þ
TTðωÞ ¼

−Nc!

40π4
ω5 lnð−ωÞðPþ þ P−Þ

þ 1

32π2

�
αs
π
G2

�
ω lnð−ωÞðPþ þ P−Þ

þ −3Nc!

4N2
c

hūuihd̄di 1
ω
ðPþ − P−Þ

þ � � � ; ð37Þ

Πð0Þ
AT;TAðωÞ¼

3Nc!

4π2Nc
ðhūuiþhd̄diÞω2 lnð−ωÞPþ

þ −3Nc!

32π2Nc
ðghūσ ·Guiþghd̄σ ·GdiÞ lnð−ωÞPþ

þ −1
32π2

ðghūσ ·Guiþghd̄σ ·GdiÞ lnð−ωÞPþ

þ���: ð38Þ

Again the ellipsis denotes the terms that will vanish after
the Borel transformation is applied.
In order to discuss Eqs. (36)–(38), we decompose ηA as

ηA ¼ ηĀ þ ηA; ð39Þ

where

ηĀ ¼ ðuCγidÞγiγ5h; ηA ¼ ðuCγ0dÞγ0γ5h: ð40Þ

Then ΠAA and ΠAT;TA can also be decomposed as

ΠAAðωÞ¼ΠAAðωÞþΠAAðωÞþΠĀAðωÞþΠAĀðωÞ; ð41Þ

ΠAT;TAðωÞ ¼ ΠĀT;TĀðωÞ þ ΠAT;TAðωÞ: ð42Þ

Following Eqs. (41) and (42), one can decompose Eqs. (36)
and (38) as

Πð0Þ
AA
ðωÞ ¼ −Nc!

120π4
ω5 lnð−ωÞ · 3Pþ

þ 1

32π2

�
αs
π
G2

�
ω lnð−ωÞPþ

þ −Nc!

4N2
c
hūuihd̄di 1

ω
· 3Pþ

þ � � � ; ð43Þ

Πð0Þ
AAðωÞ ¼

−Nc!

120π4
ω5 lnð−ωÞP−

þ −1
32π2

�
αs
π
G2

�
ω lnð−ωÞP−

þ Nc!

4N2
c
hūuihd̄di 1

ω
P−

þ � � � ; ð44Þ

L(R)

L(R)

R(L)

(a)

)c()b(

L(R) R(L)

L(R) R(L)

L(R) R(L)

R(L) L(R)

FIG. 2. Diagrams with explicit dependence on the chirality of
light quarks, corresponding to (a) dimension 3 term in ΠSV ,
(b) dimension 6 term in ΠSS;PP, and (c) that in ΠVV .
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Πð0Þ
Ā A;A Ā

ðωÞ ¼ 0; ð45Þ

Πð0Þ
ĀT;TĀ

ðωÞ¼ 3Nc!

4π2Nc
ðhūuiþhd̄diÞω2 lnð−ωÞPþ

þ −3Nc!

32π2Nc
ðghūσ ·Guiþghd̄σ ·GdiÞ lnð−ωÞPþ

þ −1
32π2

ðghūσ ·Guiþghd̄σ ·GdiÞ lnð−ωÞPþ

þ���; ð46Þ

Πð0Þ
AT;TAðωÞ ¼ 0: ð47Þ

Using Eqs. (43)–(47) instead of Eqs. (36) and (38), one can
interpret Eqs. (36)–(38) completely in parallel with
Eqs. (27)–(32).

(i) ΠĀ ĀðAAÞ has only Pþð−Þ component andΠĀ A;A Ā ¼ 0.
This is due to the fact that ηĀðAÞ couples only to
positive (negative) parity states. On the other hand,
ηT can couple with both of parity states. Therefore
ΠTT has both of Pþ and P− components and ΠĀT;TĀ

has only Pþ.
(ii) Diagonal correlators, ΠAA, ΠAA and ΠTT , have only

chiral even condensates, while nondiagonal corre-
lator, ΠĀT;TĀ, has only chiral odd condensates. To
understand this, we write ηA and ηT in terms of right-
and left-handed quark fields,

ηĀ ¼ ðuRCγidL þ uLCγidRÞγiγ5h; ð48Þ

ηA ¼ ðuRCγ0dL þ uLCγ0dRÞγ0γ5h; ð49Þ

ηT ¼ 1

2
ðuRCσμνdR þ uLCσμνdLÞσμνγ5h: ð50Þ

InΠĀT;TĀ, hq̄qi or ghq̄σ · Gqi can appear if one qRðLÞ
in ηĀ is paired with one qLðRÞ in ηT . In ΠAA, ΠAA and
ΠTT , this can occur only if uR is paired with uL and
simultaneously dR is paired with dL, yielding the
term h0jūud̄dj0i.

(iii) ΠAT;TA is vanishing, although it may be possible that
ΠAT;TA has P− component, since both of ηA and ηT
can couple with negative parity states, and have
chiral odd condensates if one qRðLÞ in ηA is paired
with qLðRÞ in ηT . But in fact, the pair yields the term
hq̄γ5qi, which is vanishing.

Now we have all the ingredients to derive the sum rules.
Substituting Eq. (24) inwhich theOPE results Eqs. (27)–(32)
are used as ΠXYðωÞ, and Eq. (25) in which Eqs. (36)–(38)
are used, into the rhs ofEq. (12),weobtain theQCDsumrules
for Λ̄Λð�Þ and Λ̄Σð�Þ at LO in αs-expansion,

Λ̄Bð�Þ ¼
∂

∂ð−1=MÞP
ð0Þ
Bð�ÞðMÞ

Pð0Þ
Bð�ÞðMÞ

; ðB ¼ Λ;ΣÞ; ð51Þ

where Pð0Þ
Bð�ÞðMÞ are given by

Pð0Þ
ΛðþÞðMÞ ¼ t2S þ t2V

20π4
E5ðM;ωthÞ

−
tStV
π2

ðhūui þ hd̄diÞE2ðM;ωthÞ

þ t2S þ t2V
32π2

�
αs
π
G2

�
E1ðM;ωthÞ

þ tStV
16π2

ðghūσ · Gui þ ghd̄σ ·GdiÞE0ðM;ωthÞ

þ t2S þ t2V
6

hūuihd̄di; ð52Þ

Pð0Þ
Λð−ÞðMÞ ¼ t2P þ 3t2V

20π4
E5ðM;ωthÞ

þ t2P − t2V
32π2

�
αs
π
G2

�
E1ðM;ωthÞ

−
t2P þ 3t2V

6
hūuihd̄di; ð53Þ

Pð0Þ
ΣðþÞðMÞ ¼ 3ðt2A þ t2TÞ

20π4
E5ðM;ωthÞ

−
3tAtT
π2

ðhūui þ hd̄diÞE2ðM;ωthÞ

−
t2A þ t2T
32π2

�
αs
π
G2

�
E1ðM;ωthÞ

þ 7tAtT
16π2

ðghūσ ·Gui þ ghd̄σ · GdiÞE0ðM;ωthÞ

þ t2A þ t2T
2

hūuihd̄di; ð54Þ

Pð0Þ
Σð−ÞðMÞ ¼ t2A þ 3t2T

20π4
E5ðM;ωthÞ

þ t2A − t2T
32π2

�
αs
π
G2

�
E1ðM;ωthÞ

−
t2A þ 3t2T

6
hūuihd̄di: ð55Þ

In the above equations,

EnðM;ωÞ≡
Z

ω

0

dω0ω0ne−ω0=M; ð56Þ

and the explicit value of the number of colors Nc ¼ 3 is
substituted. The numerator in Eq. (51) is easily obtained by
using the property,
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∂

∂ð−1=MÞEnðM;ωÞ ¼ Enþ1ðM;ωÞ: ð57Þ

A noticeable feature of the above sum rules is that the
sum rules for negative parity states do not have chiral odd
terms (hq̄qi, ghq̄σ · Gqi, …). As was pointed out in the
discussion about Eqs. (27)–(32) and Eqs. (36)–(38), chiral
odd condensates contribute only through the nondiagonal
correlators, ΠSV and ΠAT . However, in the case of heavy
baryons, ΠSV and ΠAT have only positive parity compo-
nent. As a result, only the positive parity sum rules receive
the contribution of chiral odd condensates but the negative
parity sum rules not. This feature of the sum rules for heavy
baryons is in contrast to those for nucleons and hyperons,
where chiral odd condensates contribute to both of parity
states but with opposite sign, which increase the mass of
negative parity and make the mass difference between
positive and negative parity large [22–25].
Also note that while the general interpolating field of Λ,

Eq. (18), has three mixing parameters, tP, tS, and tV , the
sum rule for Λ̄ΛðþÞ depends on two of them, tS and tV , and
that for Λ̄Λð−Þ on tP and tV . This is due to the fact that ηPðSÞ
in Eq. (18), whose coefficient is tPðSÞ, does not couple to
positive (negative) parity states. As a result, Λ̄ΛðþÞ depends
on the mixing parameters via their ratio, tV=tS, and Λ̄Λð−Þ
via tV=tP.
It is interesting that Eq. (53) and Eq. (55) coincide with

each other, which means that the mass difference between
Λð−Þ and Σð−Þ is not given within this calculation. The
difference is produced by including the αs-correction [see
Eqs. (82) and (84)].

C. Sum rules at NLO in αs-expansion

Let us next consider NLO correction in αs-expansion.
We take into account the correction to the leading dimen-
sion (dimension 0) and the next dimension (dimension 3)
terms in the OPE. For convenience, we write the dimension

0 and 3 terms in ΠXYðωÞ respectively as

ΠXYðωÞ0 ¼ Πð0Þ
XYðωÞ0 þ Πð1Þ

XYðωÞ0 þ � � � ; ð58Þ

ΠXYðωÞ3 ¼ Πð0Þ
XYðωÞ3 þ Πð1Þ

XYðωÞ3 þ � � � ; ð59Þ

where Πð0Þ
XYðωÞ0;3 denotes LO contribution in αs-expansion,

Πð1Þ
XYðωÞ0;3 NLO contribution, and the ellipsis the

higher order.
First, let us calculate the correction to the dimension 0

term, Πð1Þ
XYðωÞ0. Diagrams corresponding to Πð1Þ

XYðωÞ0 are
shown in Fig. 3. The calculation of those diagrams in
D ¼ 4þ 2ϵ space-time dimension can be performed by
using the method described in [30,31]. The results are
presented in Eqs. (A5)–(A7) and Eqs. (A9)–(A11).
Expanding them in powers of 1=ϵ, we obtain for each

component of Πð1Þ
XYðωÞ0,

Πð1Þ
SS;PPðωÞ0 ¼

αs
40π5

NcCF

�
ω5L

1

ϵ
þ3ω5L

�
L −

2π2

27
−
22

5

�
þ � � �

�
Pþ;−; ð60Þ

Πð1Þ
VV;AAðωÞ0 ¼

αs
80π5

NcCF

�
ω5L

1

ϵ
þ3ω5L

�
L −

4π2

27
−
223

45

�
þ � � �

�
Pþ;−

þ 3αs
80π5

NcCF

�
ω5L

1

ϵ
þ3ω5L

�
L −

4π2

27
−
71

15

�
þ � � �

�
P−;þ; ð61Þ

Πð1Þ
TTðωÞ0 ¼

αs
40π5

NcCF

�
ω5L

1

ϵ
þ3ω5L

�
L −

2π2

9
−
248

45

�
þ � � �

�
Pþ

þ αs
40π5

NcCF

�
ω5L

1

ϵ
þ3ω5L

�
L −

2π2

9
−
263

45

�
þ � � �

�
P−; ð62Þ

(a) (b)

(c) (d)

FIG. 3. Diagrams corresponding to NLO correction in αs-
expansion to dimmension 0 term.
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where CF ¼ ðN2
c − 1Þ=ð2NcÞ, L≡ lnð−ω=μMSÞ þ γE=2 −

ð1=2Þ ln π with γE the Euler constant, μMS is the renorm-
alization scale in the MS scheme and the ellipsis denotes
the terms that will vanish after the Borel transformation is
carried out. L can be written in the MS scheme as
L ¼ ln ð−2ω=μMSÞ with the renormalization scale in the
MS scheme, μMS. Later calculation is done in the MS
scheme and we denote μMS simply by μ.
ΠXXðωÞ0 is renormalized by the renormalization con-

stant ZηX of the interpolating field ηX [9] as

ΠXXðωÞ0 ¼ Z2
ηXΠ

ren
XXðωÞ0: ð63Þ

ZηX are given by (see Appendix B for derivation)

ZηS;P ¼ 1 −
3

4

�
1þ 1

Nc

�
αs
π

1

ϵ
; ð64Þ

ZηV;A ¼ 1 −
3

8

�
1þ 1

Nc

�
αs
π

1

ϵ
; ð65Þ

ZηT ¼ 1 −
1

4

�
1þ 1

Nc

�
αs
π

1

ϵ
: ð66Þ

By rewriting Eq. (63) as

Πren
XXðωÞ0 ¼ Πð0Þ

XXðωÞ0 þ Πð1Þ
XXðωÞ0

þ
�

1

Z2
ηX

− 1

�
Πð0Þ

XXðωÞ0; ð67Þ

one can confirm that the pole in Πð1Þ
XXðωÞ0 [the second term

in Eq. (67)] is canceled by the third term (counterterm). As
a result, we obtain the renormalized dimension 0 term,

Πren
SS;PPðωÞ0 ¼

�
−

1

20π4
ω5Lþ 3αs

10π5
ω5L

�
L −

2

27
π2 −

22

5

��
Pþ;−; ð68Þ

Πren
VV;AAðωÞ0¼

�
−

1

20π4
ω5Lþ 3αs

20π5
ω5L

�
L−

4

27
π2−

223

45

��
Pþ;−þ

�
−

3

20π4
ω5Lþ 9αs

20π5
ω5L

�
L−

4

27
π2−

71

15

��
P−;þ; ð69Þ

Πren
TTðωÞ0 ¼

�
−

3

20π4
ω5Lþ 3αs

10π5
ω5L

�
L −

2

9
π2 −

248

45

��
Pþ þ

�
−

3

20π4
ω5Lþ 3αs

10π5
ω5L

�
L −

2

9
π2 −

263

45

��
P−; ð70Þ

where the number of colors is fixed to be Nc ¼ 3.
Next, we calculate the correction to the dimension 3 term. Diagrams corresponding to Πð1Þ

XYðωÞ3 are shown in Fig. 4. The
results of the calculation are given in Eqs. (A16)–(A21). Expansion of them in powers of 1=ϵ yields

Πð1Þ
SV;VSðωÞ3 ¼ −

3αs
16π3

CF

�
ω2L

1

ϵ
þ 2ω2L

�
L −

2π2

9
−
29

6

�
þ � � �

�
ðhūui þ hd̄diÞPþ; ð71Þ

Πð1Þ
AT;TAðωÞ3 ¼

3αs
16π3

CF

�
ω2L

1

ϵ
þ 2ω2L

�
Lþ 2π2

3
þ 29

6

�
þ � � �

�
ðhūui þ hd̄diÞPþ; ð72Þ

where the ellipsis again denotes the terms that will disappear when the Borel transformation is applied. ΠXYðωÞ3 is
renormalized by ZηX and Zq̄q [10],

(a) (b)

(d)(c)

(e) (f)

FIG. 4. Diagrams corresponding to NLO correction in αs-
expansion to dimmension 3 term.
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ΠSV;VSðωÞ3 ¼
ZηSZηV

Zq̄q
Πren

SV;VSðωÞ3; ð73Þ

ΠAT;TAðωÞ3 ¼
ZηAZηT

Zq̄q
Πren

AT;TAðωÞ3: ð74Þ

Zq̄q is the renormalization constant of q̄q (see Appendix C),

Zq̄q ¼ 1 − 3CF
αs
4πϵ

: ð75Þ

Multiplication of the renormalization constants cancels the

pole in Πð1Þ
XYðωÞ3, providing the renormalized dimension 3

term,

Πren
SV;VSðωÞ3 ¼

�
1

2π2
ω2L −

αs
2π3

ω2L

�
L −

2π2

9
−
29

6

��

× ðhūui þ hd̄diÞPþ; ð76Þ

Πren
AT;TAðωÞ3 ¼

�
3

2π2
ω2Lþ αs

2π3
ω2L

�
Lþ 2π2

3
þ 29

6

��

× ðhūui þ hd̄diÞPþ; ð77Þ

where the number of colors is fixed to be Nc ¼ 3.

Now we can obtain the sum rules for Λ̄Bð�Þ at NLO in
αs-expansion. Substituting Eqs. (27)–(32) and Eqs. (36)–
(38) with the dimension 0 terms replaced by Eqs. (68)–(70)
and dimension 3 terms by and Eqs. (76) and (77), into the
rhs of Eq. (12), we obtain

Λ̄Bð�Þ ¼
∂

∂ð−1=MÞ ½Pð0Þ
Bð�ÞðMÞ þ Pð1Þ

Bð�ÞðMÞ0�
Pð0Þ
Bð�ÞðMÞ þ Pð1Þ

Bð�ÞðMÞ
; ð78Þ

where Pð1Þ
Bð�ÞðMÞ denote the contributions of NLO terms in

αs and they consist of the corrections to dimension 0 and 3
terms,

Pð1Þ
BðþÞðMÞ ¼ Pð1Þ

BðþÞðMÞ0 þ Pð1Þ
BðþÞðMÞ3; ð79Þ

Pð1Þ
Bð−ÞðMÞ ¼ Pð1Þ

Bð−ÞðMÞ0: ð80Þ

Here, Pð1Þ
Bð�ÞðMÞ0 correspond to the contributions from

NLO corrections to dimension 0 terms and their explicit
expressions for Λ and Σ are given by,

Pð1Þ
ΛðþÞðMÞ0 ¼ t2S

−3αs
10π5

�
2F5ðM;ωth; μÞ þ E5ðM;ωthÞ

�
ln 4 −

2

27
π2 −

22

5

��

þ t2V
−3αs
20π5

�
2F5ðM;ωth; μÞ þ E5ðM;ωthÞ

�
ln 4 −

4

27
π2 −

223

45

��
; ð81Þ

Pð1Þ
Λð−ÞðMÞ0 ¼ t2P

−3αs
10π5

�
2F5ðM;ωth; μÞ þ E5ðM;ωthÞ

�
ln 4 −

2

27
π2 −

22

5

��

þ t2V
−9αs
20π5

�
2F5ðM;ωth; μÞ þ E5ðM;ωthÞ

�
ln 4 −

4

27
π2 −

71

15

��
; ð82Þ

Pð1Þ
ΣðþÞðMÞ0 ¼ t2A

−9αs
20π5

�
2F5ðM;ωth; μÞ þ E5ðM;ωthÞ

�
ln 4 −

4

27
π2 −

71

15

��

þ t2T
−3αs
10π5

�
2F5ðM;ωth; μÞ þ E5ðM;ωthÞ

�
ln 4 −

2

9
π2 −

248

45

��
; ð83Þ

Pð1Þ
Σð−ÞðMÞ0 ¼ t2A

−3αs
20π5

�
2F5ðM;ωth; μÞ þ E5ðM;ωthÞ

�
ln 4 −

4

27
π2 −

223

45

��

þ t2T
−3αs
10π5

�
2F5ðM;ωth; μÞ þ E5ðM;ωthÞ

�
ln 4 −

2

9
π2 −

263

45

��
; ð84Þ

and Pð1Þ
BðþÞðMÞ3 are those from the corrections to dimension 3 terms,

Pð1Þ
ΛðþÞðMÞ3 ¼ tStV

αs
π3

�
2F2ðM;ωth; μÞ þ E2ðM;ωthÞ

�
ln 4 −

2

9
π2 −

29

6

��
ðhūui þ hd̄diÞ; ð85Þ
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Pð1Þ
ΣðþÞðMÞ3 ¼ tAtT

−αs
π3

�
2F2ðM;ωth; μÞ þ E2ðM;ωthÞ

�
ln 4þ 2

3
π2 þ 29

6

��
ðhūui þ hd̄diÞ: ð86Þ

In the above equations,

FnðM;ω; μÞ≡
Z

ω

0

dω0ω0n ln
�
ω0

μ

�
e−ω

0=M; ð87Þ

and the derivative in the numerator of Eq. (78) can be
obtained by using the relation,

∂

∂ð−1=MÞFnðM;ω; μÞ ¼ Fnþ1ðM;ω; μÞ: ð88Þ

IV. NUMERICAL ANALYSIS

In this section, we give a numerical analysis of the sum
rules for Λ̄, Eqs. (51) and (78) in detail.
We use the standard values for vacuum condensates

collected in Table I. The value of the strong coupling
constant is taken to be αsðμ ¼ 1 GeVÞ ¼ 0.47, which is
consistent with the world average [27].
We analyze Eqs. (51) and (78) in the following pro-

cedure. First, we search the value of the mixing parameter
of the interpolating field that makes the curve of Λ̄ as a
function of the Borel parameter M stable as much as
possible. Next, for thus found optimal value of the mixing
parameter, we find ωth such that the region of M, so called
“Borel window,” opens. The Borel window is the region
satisfying the standard criterion applied in the QCD sum
rule approach: the lowest pole contribution exceeds 50% in
the spectral function

Rωth
0 dωρðωÞR
∞
0 dωρðωÞ ≥ 50%; ð89Þ

and the magnitude of the highest order (dimension 6) term
in OPE is less than 10%,

R
∞
0 dωρðωÞdim .6R
∞
0 dωρðωÞfull

≤ 10%: ð90Þ

Finally, we examine whether the curve of Λ̄ stabilize or not
as ωth is varied. If so, the value of Λ̄ in the stability plateau
yields a prediction of the heavy baryon mass.

A. Λð+ Þ
In this subsection, we consider positive parity Λ. As was

mentioned in the comments on Eq. (51), Λ̄ depends on the
mixing parameter tS and tV via their ratio, so we
write tV=tS ¼ t.
Let us first analyze the sum rule at LO in αs-expansion,

Eq. (51). The curve of Λ̄ as a function of M is found to be
stable for t ≃ 0.5–2.0. For negative values of t, stability is
much worse. Here we fix t ¼ 0.5 since the results are not
changed ifwevary thevalue of t in the range t ¼ 0.5–2.0. The
Borel window opens for ωth ≳ 1.6 GeV. Namely, if we
increase ωth, the Borel window starts to open at
ωth ≃ 1.6 GeV, and becomes wider. The lower bound of
the window is M ≃ 0.38 GeV. In Fig. 5, the curve of Λ̄ is
plotted for several values of ωth in the range
ωth ¼ 1.6–1.9 GeV. We see that Λ̄ does not stabilize as
ωth is varied.
Next, we consider the sum rule at NLO in αs-expansion,

Eq. (78). As in LO sum rule, good stability is obtained for
t ≃ 0.5–2.0 and the stability is much worse for t < 0. We fix
t ¼ 0.5 for the same reason as in LO sum rule. Borel
window opens for ωth ≳ 1.2 GeV. The lower bound of the
window is M ≃ 0.31 GeV. M-dependence of Λ̄ for ωth ¼
1.2–1.5 GeV is plotted in Fig. 6. Although Λ̄ does not
stabilize as ωth is varied, the stability is slightly improved
and Λ̄ is reduced from that in LO sum rule. Since the
stability plateau does not appear, we cannot make any
reliable prediction of Λ̄ΛðþÞ, and we give conservatively
only the lower bound:

Λ̄ΛðþÞ ≳ 0.6 GeV: ð91Þ
The value of the lower bound is Λ̄ at M ¼ 0.31 GeV and
ωth ¼ 1.2 GeV, where the Borel window starts to show up.
For comparison, we show M-dependence of Λ̄ at LO,

that with NLO correction only to dimension 0 term, and

TABLE I. Values of the vacuum condensates at the normali-
zation scale μ ¼ 1 GeV.

Condensate Value

hūui ¼ hd̄di≡ hq̄qi ð−0.24� 0.02 GeVÞ3
hαsπ G2i ð0.012� 0.006Þ GeV4

ghūσ ·Gui ¼ ghd̄σ ·Gdi ð0.8� 0.2Þhq̄qi
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FIG. 5. Borel parameter (M) dependence of Λ̄ for ΛðþÞ at LO
in αs-expansion, Eq. (51).
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that with the corrections to both of dimension 0 and 3 terms
in Fig. 7. We see that the correction to dimension 3 term is
more important than that to dimension 0 term.

B. Λð− Þ
In this subsection, we consider negative parity Λ. Since

Λ̄ depends on tP and tV via their ratio, we write tV=tP ¼ t.
First we consider the sum rule at LO in αs, Eq. (51) for

Λð−Þ. In this case Λ̄ is weakly dependent on t, since
Eq. (51) for Λð−Þ depends only on t2P and t2V . Note that
Eq. (51) for ΛðþÞ has not only t2S and t2V but also the cross
term tStV and therefore t-dependence is stronger than that
for Λð−Þ. For any value of t, Borel window opens
for ωth ≳ 2.5 GeV. Therefore we fix t ¼ 0.5. In Fig. 8,
we plot Λ̄ as a function ofM for several values of ωth in the
range ωth ¼ 2.5–3.1 GeV. We see Λ̄ stabilizes for
ωth ≃ 2.9 GeV, and the Borel window is found to
be 0.42 GeV≲M ≲ 0.5 GeV.
Next we turn to NLO sum rule, Eq. (78) for Λð−Þ.

t-dependence is very weak. The reason is the same as that
for LO sum rule. For any t, Borel window opens for
ωth ≳ 1.9 GeV. So we fix t ¼ 0.5. We plot M-dependence
of Λ̄ in Fig. 9 for ωth ¼ 1.9–2.5 GeV. Λ̄ stabilizes for

ωth ≃ 2.1 GeV, and the Borel window is found to be
0.35 GeV≲M ≲ 0.40 GeV. For this value of ωth and
the Borel window, Λ̄Λð−Þ is estimated to be

Λ̄Λð−Þ ≃ 1.6 − 1.7 GeV: ð92Þ

In Fig. 10, we show Λ̄ for the above two cases for
comparison, from which we see the αs-correction signifi-
cantly reduce the value of Λ̄ and improve the stability.
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FIG. 6. M-dependence of Λ̄ for ΛðþÞ at NLO in αs-expansion,
Eq. (78).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0.25  0.3  0.35  0.4  0.45  0.5  0.55

��
 [G

eV
]

M [GeV]

LO
NLO (dim.0)

NLO (dim.0 and 3)

FIG. 7. M-dependence of Λ̄ for ΛðþÞ at LO, that with NLO
correction only to dimension 0 term, and that with the corrections
to dimension 0 and 3 terms. ωth is taken to be 1.6 GeV, 1.4 GeV,
and 1.2 GeV, respectively.
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FIG. 8. M-dependence of Λ̄ for Λð−Þ at LO in αs-expansion,
Eq. (51).
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FIG. 9. M-dependence of Λ̄ for Λð−Þ at NLO in αs-expansion,
Eq. (78).

 1

 1.5

 2

 2.5

 3

 0.3  0.35  0.4  0.45  0.5  0.55  0.6

��
 [G

eV
]

M [GeV]

LO
NLO

FIG. 10. M-dependence of Λ̄ forΛð−Þ at LO and NLO. ωth was
taken to be 2.9 GeV and 2.1 GeV, respectively.
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C. Σð+ Þ
In this subsection we analyze the sum rule of ΣðþÞ. We

define t ¼ tT=tA, since Λ̄ depends on tA and tT via
their ratio.
We begin with the sum rule at LO in αs, Eq. (51) for

ΣðþÞ. The best stability is obtained for t ≃ 1.0. Borel
window opens for ωth ≳ 1.7 GeV. M-dependence of Λ̄ for
ωth ¼ 1.7–2.0 GeV is plotted in Fig. 11.
Λ̄ at NLO in αs, Eq. (78) for ΣðþÞ, is most stable for

t ≃ 1.0. Borel window opens for ωth ≳ 1.4 GeV. The lower
bound of the window is M ≃ 0.33 GeV. M-dependence of
Λ̄ is plotted in Fig. 12 for ωth ¼ 1.4–1.7 GeV. The curve
does not stabilize as ωth is varied. As in the case of ΛðþÞ,
we can determine only the lower bound of Λ̄:

Λ̄ΣðþÞ ≳ 0.9 GeV: ð93Þ

The value of the lower bound corresponds to Λ̄ at M ¼
0.33 GeV and ωth ¼ 1.4 GeV, above which the Borel
window opens.
In Fig. 13, we showM-dependence of Λ̄ at LO, that with

NLO correction only to dimension 0 term, and that with the
corrections to both of dimension 0 and 3 terms. We see that
the stability is slightly improved by including the αs-
correction and the correction to dimension 3 term is more
important than that to dimension 0 term.

D. Σð− Þ
In this subsection, we consider the sum rule for negative

parity Σ.
We begin with LO sum rule, Eq. (51) for Σð−Þ. The

dependence on t is weak, because of the absence of the
cross term, tAtT . For any t, Borel window opens for
ωth ≳ 2.5 GeV. We fix t ¼ 1.0. For ωth ¼ 2.5–3.1 GeV,
M-dependence of Λ̄ is plotted in Fig. 14.
The NLO sum rule, Eq. (78) for Σð−Þ, is also weakly

dependent on t. For any t, Borel window opens for
ωth ≳ 2.1 GeV. So We fix t ¼ 1.0. For ωth ¼
2.1–2.4 GeV, M-dependence of Λ̄ is plotted in Fig. 15.
At ωth ≃ 2.2 GeV, Λ̄ stabilizes and Borel window is
0.36 GeV≲M ≲ 0.40 GeV. We can make an estimate
of Λ̄Σð−Þ from the Λ̄ for ωth and the Borel window found
above,

Λ̄Σð−Þ ≃ 1.7–1.8 GeV: ð94Þ

In Fig. 16, we show Λ̄ for the above two cases for
comparison, from which we see the αs-correction signifi-
cantly reduce the value of Λ̄ and improve the stability.
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FIG. 11. M-dependence of Λ̄ for ΣðþÞ at LO, Eq. (51).
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V. SUMMARY AND DISCUSSION

We have formulated the QCD sum rules for positive and
negative parity states of heavy baryon containing one heavy
quark in the framework of HQET. Choice of the interpolat-
ing field is a crucial problem in the QCD sum rule
approach. We used the general interpolating field of
positive intrinsic parity without covariant derivatives for
given isospin and included the components that couple with
negative parity states, which were discarded in the previous
studies. It has been shown that by applying parity projec-
tion onto the correlation function of the interpolating fields
the sum rules for respective parity states can be constructed.
The sum rule enables us to evaluate the positive or negative
parity heavy baryon masses relative to the heavy quark
mass, Λ̄. We have applied the method to Λ and Σ channels.
In the OPE we have taken into account the operators up to
dimension 6 and included αs-corrections to the terms of the
leading dimension and those of the next dimension.
The effects of αs-correction were found to be significant,

especially for negative parity states. For positive parity
states, by including αs-corrections the Borel parameter
(M)-stability is slightly improved, but the improvement is
not enough to give any reliable predictions of Λ̄. It is
allowed to give only a lower bound of Λ̄:

Λ̄ΛðþÞ ≳ 0.6 GeV; Λ̄ΣðþÞ ≳ 0.9 GeV: ð95Þ

For negative parity states significant improvement of
M-stability and large reduction of Λ̄ were found. In fact,
stability plateau appears, which allows us to give an
estimation of Λ̄:

Λ̄Λð−Þ ≃ 1.6–1.7 GeV; Λ̄Σð−Þ ≃ 1.7–1.8 GeV: ð96Þ

The mass of the heavy baryon is given bymB ¼ mQ þ Λ̄
at leading order of 1=mQ expansion in HQET, where mQ is
the current mass of the heavy quark Q. When we use the
MS masses of c and b quark [32],

mc ¼ 1.27 GeV; mb ¼ 4.18 GeV: ð97Þ

we obtain the lower bound of the masses of positive parity
states,

mΛcðþÞ ≳ 1.87 GeV;

mΣcðþÞ ≳ 2.17 GeV;

mΛbðþÞ ≳ 4.78 GeV;

mΣbðþÞ ≳ 5.08 GeV; ð98Þ

which do not contradict the masses of the observed
JP ¼ 1=2þ states [32]: Λcð2286Þ, Σcð2455Þ, Λbð5620Þ,
Σbð5811Þ. For the masses of negative parity states, we
obtain,

mΛcð−Þ ≃ 2.87–2.97 GeV;

mΣcð−Þ ≃ 2.97–3.07 GeV;

mΛbð−Þ ≃ 5.78–5.88 GeV;

mΣbð−Þ ≃ 5.88–5.98 GeV: ð99Þ

Observed JP ¼ 1=2− states of Λ are Λcð2595Þ and
Λbð5912Þ [32]. Our prediction of mΛbð−Þ is close to the
experimental value, while that of mΛcð−Þ is not. The
deviation may be attributed to the fact that for charmed
baryons HQET is inappropriate and 1=mQ correction is
important. Our predictions of mΣcð−Þ and mΣbð−Þ suggest
that observed Σcð2800Þ and Σbð6097Þ [32], whose spin-
parity has not yet been specified, can be the candidates of
JP ¼ 1=2− states.
A notable feature of the heavy baron sum rule, which is

not seen in the light baryon sum rule, is that the sum rule for
the negative parity states do not have chiral odd conden-
sates. Chiral odd condensates contribute only through the
nondiagonal correlators, owing to the property of the light
diquark. On the other hand, since the heavy quark field
couples only with positive parity states, the nondiagonal
correlators have only positive parity component. Therefore,
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FIG. 16. M-dependence of Λ̄ of Σð−Þ at LO and NLO. ωth was
taken to be 2.9 GeV and 2.2 GeV, respectively.
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in the heavy quark limit, it is inevitable that the negative
parity states do not depend on chiral odd condensates.
If the mass of the heavy quark is large but finite and

heavy quark condensation occurs, the diagonal correlators
yield heavy quark condensate hQ̄Qi terms while the
nondiagonal correlators hq̄qi terms. As a result, the chiral
odd term of the correlation function reads

Πchiral odd ∼ hQ̄QiðPþ − P−Þ þ hq̄qiðPþ þ αP−Þ þ � � � ;
ð100Þ

where the ellipsis denotes higher dimensional terms and α
is a coefficient suppressed by powers of μ=mQ. In the heavy
quark limit, Eq. (100) is reduced to

Πchiral odd ∼ hq̄qiPþ þ � � � ; ð101Þ

and accordingly the chiral odd condensates do not appear in
the sum rule for negative parity.
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APPENDIX A: CALCULATION OF THE
DIAGRAMS WITH αs-CORRECTION

(FIGS. 3 AND 4)

In this appendix, we explain briefly how the calculation
of the diagrams including αs-correction shown in Figs. 3
and 4 is performed and present the full results.
Although a little bit lengthy, the calculation can be

performed straightforwardly by exploiting the method
invented by Grozin [31]. It is convenient to calculate the
diagrams in momentum space. The diagrams in Figs. 3 and
4 can be expressed with the integrals of subdiagrams shown
in Fig. 17(a) or 17(b). Figure 17(a) is the massless particle
diagram, whose explicit expressions are defined by

Z
dDkdDl

Dn1
1 Dn2

2 Dn3
3 Dn4

4 Dn5
5

¼ −πDð−q2ÞD−
P

i
niGðn1; n2; n3; n4; n5Þ; ðA1Þ

where

D1¼−k2; D2¼−l2;

D3¼−ðk−qÞ2; D4¼−ðl−qÞ2; D5¼−ðk− lÞ2: ðA2Þ

Figure 17(b) is the diagram of heavy particle defined by

Z
dDkdDl

Dn1
1 Dn2

2 Dn3
3 Dn4

4 Dn5
5

¼ −πDð−2q0Þ2ðD−n3−n4−n5ÞIðn1; n2; n3; n4; n5Þ; ðA3Þ

where

D1 ¼
k0 þ q0

q0
; D2 ¼

l0 þ q0
q0

;

D3 ¼ −k2; D4 ¼ −l2; D5 ¼ −ðk − lÞ2: ðA4Þ

Therefore we first calculate those subdiagrams, namely G
or I in the above equation, which can be expressed in terms
of more easily calculable diagrams [31]. Next, integrating
the subdiagrams, we finally obtain the expressions of
Figs. 3 and 4.
The results of Figs. 3(a), 3(c), and 3(d) are summarized

as follows,

ΠXYðωÞFig: 3ðaÞ ¼
g2NcCF

32π3D=2 ð−ωÞ5
�
−ω
μ

�
3ðD−4Þ ΓðD=2ÞΓð7 − 3DÞ

Γð6 − 2DÞ
× ½2Ið1; 1; 0; 1; 1Þ − Ið1; 1; 1; 1; 0Þ − 2Ið0; 1; 1; 1; 1Þ þ Ið1; 1; 1; 1; 1Þ�M2; ðA5Þ

ΠXYðωÞFig: 3ðcÞ ¼
g2NcCF

8π3D=2 ð−1Þ3Dþ7ð−ωÞ5
�
−ω
μ

�
3ðD−4Þ ΓðD=2Þ2Γð7 − 3DÞΓð3 −DÞΓðD=2 − 1Þ

Γð5 −DÞ M2; ðA6Þ

k l�

lk

qq

n4n3

n2n1
n5

k q� l q�

k l�

lk

q k� q l� qq

n4n3

n2n1
n5

)b()a(

FIG. 17. Subdiagrams of Figs. 3 and 4. The single (double) line
stands for the massless (heavy) particle propagator.
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ΠXYðωÞFig: 3ðdÞ ¼
g2NcCF

32π3D=2 ð−1Þ2Dð−ωÞ5
�
−ω
μ

�
3ðD−4Þ ð2 −DÞΓðD=2ÞΓð7 − 3DÞΓð2 −D=2ÞΓðD=2 − 1Þ2

Γð3 −D=2Þ M2; ðA7Þ

where the matrix M2 is given by

M2 ¼

8>>><
>>>:

4P� ðXY ¼ SS; PPÞ
4½P� þ ðD − 1ÞP∓� ðXY ¼ VV; AAÞ
8ðD − 1Þ½2Pþ þ ðD − 2ÞP−� ðXY ¼ TTÞ
0 ðXY ¼ elseÞ

ðA8Þ

The result of Fig. 3(b) has more complicated form. For each component they are given by

ΠSS;PPðωÞFig: 3ðbÞ ¼
g2NcCF

64π3D=2 ð−ωÞ5
�
−ω
μ

�
3ðD−4Þ Γð3D=2 − 3ÞΓð7 − 3DÞ

Γð3 −DÞ
× f4½−Gð0; 1; 1; 1; 1Þ −Gð1; 0; 1; 1; 1Þ −Gð1; 1; 0; 1; 1Þ − Gð1; 1; 1; 0; 1Þ þGð1; 1; 1; 1; 1Þ�
−2ðD − 4ÞGð1; 1; 1; 1; 0Þ þ 2ðD − 2Þ½Gð0; 1; 1; 0; 1Þ þ Gð1; 0; 0; 1; 1Þ�g; ðA9Þ

ΠVV;AAðωÞFig: 3ðbÞ ¼
g2NcCF

64π5D=2 ð−ωÞ5
�
−ω
μ

�
3ðD−4Þ Γð3D=2 − 2ÞΓð7 − 3DÞ

ðD − 1ÞΓð3 −DÞ

×

��
AVA þ 7 − 3D

2ð3 −DÞBVA

�
P� þ ð1 −DÞ

�
AVA þ 1

2ð3 −DÞBVA

�
P∓

	
; ðA10Þ

ΠTTðωÞFig: 3ðbÞ ¼ −
g2NcCF

32π5D=2 ð−ωÞ5
�
−ω
μ

�
3ðD−4Þ Γð3D=2 − 3ÞΓð7 − 3DÞ

Γð3 −DÞ

×

�
ð1 −DÞ

�
2AT þ 8 − 3D

3 −D
BT

�
Pþ þ ð2 −DÞ

�
ð1 −DÞAT þ 7 − 4D

3 −D
BT

�
P−

	
; ðA11Þ

where AVA, BVA, AT and BT are given in terms of G,

AVA ¼ 2πDðD − 2Þ½4Gð−1; 1; 1; 0; 1Þ þ 2ðD − 5ÞGð0; 1; 1; 0; 1Þ − ðD − 8ÞGð1; 1; 1; 1; 0Þ
− 8Gð0; 1; 1; 1; 1Þ þ 2Gð1; 1; 1; 1;−1Þ þ 2Gð1; 1; 1; 1; 1Þ�; ðA12Þ

BVA ¼ −2πDðD − 2Þ½4DGð−1; 1; 1; 0; 1Þ − 8Gð0; 1; 1; 0; 1Þ − ðD − 8ÞGð1; 1; 1; 1; 0Þ
− 8Gð0; 1; 1; 1; 1Þ þ 2Gð1; 1; 1; 1;−1Þ þ 2Gð1; 1; 1; 1; 1Þ�; ðA13Þ

AT ¼ 2πD

ðD − 1ÞðD − 2Þ f8ðD − 4Þ2Gð−1; 1; 1; 0; 1Þ − 4ðD − 3ÞðD − 4ÞGð1; 1; 1; 1;−1Þ

þ 8ðD − 2ÞðD − 3ÞGð0; 1; 1; 1; 1Þ þ 2½28þ 2DðD − 7Þ − ðD − 2ÞðD − 4ÞðD − 5Þ�Gð1; 0; 0; 1; 1Þ
þ ½2ðD − 8Þ þ ðD − 4ÞðD2 − 13Dþ 20Þ�Gð1; 1; 1; 1; 0Þ − 2ðD − 2ÞðD − 3ÞGð1; 1; 1; 1; 1Þg; ðA14Þ

BT ¼ 2πD

ðD − 1ÞðD − 2Þ f4DðD − 4Þ2Gð−1; 1; 1; 0; 1Þ þ 2ðD − 4Þ2Gð1; 1; 1; 1;−1Þ

− 8ðD − 2Þ2Gð0; 1; 1; 1; 1Þ − 8ðD2 − 6Dþ 10ÞGð1; 0; 0; 1; 1Þ
− ½DðD − 8Þ2 − 80�Gð1; 1; 1; 1; 0Þ þ 2ðD − 2Þ2Gð1; 1; 1; 1; 1Þg: ðA15Þ
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The results of Fig. 4 are summarized as follows,

ΠXYðωÞFig: 4ðaÞ ¼
−g2CF

128πD
ð−ωÞ2

�
−ω
μ

�
2ðD−4Þ

× ½2Ið1; 1; 0; 1; 1Þ − Ið1; 1; 1; 1; 0Þ þ 2Ið0; 1; 1; 1; 1Þ þ Ið1; 1; 1; 1; 1Þ�M31; ðA16Þ

ΠXYðωÞFig: 4ðbÞ ¼
−g2CF

32πD
ð−ωÞ2

�
−ω
μ

�
2ðD−4Þ ΓðD=2 − 1ÞΓðD=2ÞΓð4 −DÞΓð6 − 2DÞ

Γð5 −DÞ M31; ðA17Þ

ΠXYðωÞFig: 4ðcÞ ¼
−g2CF

256πD
ð−ωÞ2

�
−ω
μ

�
2ðD−4Þ Γð3 −D=2ÞΓðD=2 − 1Þ2Γð6 − 2DÞ

Γð4 −D=2Þ M32; ðA18Þ

ΠXYðωÞFig: 4ðdÞ ¼
g2CFð−1Þ7−D

64πD
ð−ωÞ2

�
−ω
μ

�
2ðD−4Þ

DΓðD=2 − 2ÞΓðD=2ÞΓð6 − 2DÞM31; ðA19Þ

ΠXYðωÞFig: 4ðeÞ ¼
g2CF

16πD
ð−ωÞ2

�
−ω
μ

�
2ðD−4Þ ΓðD=2 − 1ÞΓðD=2ÞΓð6 − 2DÞΓð3 −DÞ

Γð5 −DÞ M31; ðA20Þ

ΠXYðωÞFig: 4ðfÞ ¼
g2CFð−1ÞD

64πD
ð−ωÞ2

�
−ω
μ

�
2ðD−4Þ ΓðD=2 − 1ÞΓðD=2ÞΓð6 − 2DÞΓð2 −D=2Þ

Γð3 −D=2Þ M31; ðA21Þ

where the matrices M31 and M32 are given by

M31 ¼ ðhūui þ hd̄diÞ ×

8><
>:

4Pþ ðXY ¼ SV; VSÞ
8ðD − 1ÞPþ ðXY ¼ AT; TAÞ
0 ðXY ¼ elseÞ

ðA22Þ

M32 ¼ ðhūui þ hd̄diÞ ×

8>><
>>:

4ðD−2ÞðD−6ÞðDþ1Þ
D−4 Pþ ðXY ¼ SV; VSÞ

8ðD−1ÞðD−2ÞðD−3ÞðD−6Þ
D−4 Pþ ðXY ¼ AT; TAÞ

0 ðXY ¼ elseÞ
ðA23Þ

Following the description in Ref. [31], the subdiagram
integral, G and I appearing in Eq. (A5), Eqs. (A9)–(A11)
and Eq. (A16), can be reduced to some combinations of the
diagrams which can be easily calculated. The procedure is
straightforward, but the results are so lengthy that we
cannot help omitting them here.

APPENDIX B: RENORMALIZATION OF
INTERPOLATING FIELD

In this appendix, we calculate αs-corrections of the
interpolating fields, Eqs. (13)–(17), in D ¼ 4þ 2ϵ
space-time dimension, and determine the corresponding
renormalization constants.
The interpolating field under consideration is

ηX ¼ ðqCΓXqÞΓ0
Xh; ðX ¼ S; P; V; A; TÞ; ðB1Þ

where Γð0Þ
X is

ðΓX;Γ0
XÞ ¼

8>>>>>><
>>>>>>:

ð1; γ5Þ ðX ¼ PÞ
ðγ5; 1Þ ðX ¼ SÞ
ðγ5γμ; γμÞ ðX ¼ VÞ
ðγμ; γμγ5Þ ðX ¼ AÞ
ðσμν; σμνγ5Þ ðX ¼ TÞ

ðB2Þ

Renormalization constant of the interpolating field, ZηX , is
defined by

ηBX ¼ ZηXη
R
X; ðB3Þ

where ηBX and ηRX denote the bare and renormalized
interpolating fields, respectively. Then Eq. (B3) can be
rewritten as
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ηRX ¼ ðqRCΓXqRÞΓ0
Xh

R

þ
�
Zq

ffiffiffiffiffiffi
Zh

p
ZηX

− 1

�
ðqRCΓXqRÞΓ0

Xh
R ðB4Þ

with Zq and Zh respectively being the wave function
renormalization of the light quark and the heavy quark
field given by

Zq ¼ 1þ CF
αs
4πϵ

; Zh ¼ 1 − 2CF
αs
4πϵ

: ðB5Þ

ZηX is determined so that the counterterm [the second term
in Eq. (B4)] cancels the UV-pole of the αs-correction of ηX.
The diagram corresponding to αs-correction of ηX are
depicted in Fig. 18, and its UV-pole reads

UV-pole of Fig: 18

¼ −k
�
1þ 1

Nc

�
αs
π

1

ϵ
ϵabcðuTaCΓXdbÞΓ0

Xhc; ðB6Þ

where the coefficient k for each channel is given by

k ¼

8>><
>>:

3
4

ðX ¼ S; PÞ
3
8

ðX ¼ V; AÞ
1
4

ðX ¼ TÞ
ðB7Þ

ZηX is chosen so that the counter term in Eq. (B4) is equal to
the minus of Eq. (B6). ZηX obtained in this way are
Eqs. (64)–(66).

APPENDIX C: RENORMALIZATION OF q̄q

In this appendix, we determine the renormalization
constant of q̄q.
Renormalization constant of q̄q, Zq̄q, is defined by

ðq̄qÞB ¼ Zq̄qðq̄qÞR; ðC1Þ

where ðq̄qÞB and ðq̄qÞR denote the bare and renormalized
operators, respectively. Then Eq. (C1) can be rewritten as

ðq̄qÞR ¼ q̄RqR þ
�
Zq

Zq̄q
− 1

�
q̄RqR: ðC2Þ

On the other hand, UV-pole of αs-correction of q̄q, shown
in Fig. 19, reads

UV-pole of Fig: 19 ¼ −CF
αs
π

1

ϵ
q̄q: ðC3Þ

Zq̄q is determined so that the counter term [the second term
in Eq. (C2)] cancels the UV-pole of the αs-correction of q̄q,
Eq. (C3). Thus we obtain Zq̄q as in Eq. (75).
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