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QCD sum rules for positive and negative parity heavy baryons
at next-to-leading order in «,-expansion
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QCD sum rules for positive and negative parity heavy baryons in the heavy quark limit are formulated.
We apply the method to A and X channels. We include the next-to-leading order corrections in
as-expansion to dimension O and 3 terms in the operator product expansion. The corrections lead to
the considerable reduction of the predicted masses and significantly improves the stability with respect to
the Borel parameter, especially for negative parity states. It is also found that, in the heavy quark limit,
chiral odd condensates do not contribute to the negative parity states.
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I. INTRODUCTION

In the past decades, a remarkable experimental progress
has been made in the field of heavy baryon physics. In fact,
many excited states of singly charmed baryon have been
observed in the 2000s. Excited singly bottom baryons have
also been discovered in recent years one after another,
although only two states were known until 2012 [1,2]. Those
data have been investigated comprehensively from various
theoretical perspective so far (see Ref. [3] and references
therein). To study negative parity heavy baryons is espe-
cially important in the sense that they can be key subjects to
clarify the mechanism of excitation in baryon systems.

QCD sum rule is one of the useful nonperturbative
method based on QCD, which can connect the nontrivial
vacuum condensates with the hadron properties in a model
independent way. So far, by many authors QCD sum rule has
been used to study not only ground (positive parity)
[4-11] but also excited (negative parity) heavy baryons
[3,12-21]. In many works, [7,11,13,16,19], the transverse
y-matrices were adopted to ensure that the interpolating
fields with positive parity uniquely couple to the states with
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positive parity. In Ref. [12], employing the transverse
y-matrices combined with or without a covariant derivative,
the interpolating fields with negative parity are also ensured
that they couple only to the states with negative parity. The
authors in Refs. [3,14-21] adopted the p-wave heavy baryon
interpolating fields with a covariant derivative systemati-
cally constructed from Bethe-Salpeter equation to study the
masses and the decay properties of p-wave heavy baryons.

In this paper we employ a completely different approach
that was originally proposed in Ref. [22]. We use the
interpolating field of positive intrinsic parity without
covariant derivatives. Noting the fact that the interpolating
field of positive intrinsic parity couples not only to positive
parity states but also to negative parity ones, we “project”
the correlation function of the interpolating fields onto each
parity [22], which enables us to construct the sum rules for
respective parity states. Nucleons and hyperons were
investigated within this method and the origin of the mass
splitting between positive and negative parity was dis-
cussed in connection with chiral condensates [22-25]. Up
to now, there exist no work applying properly this method
to studying heavy baryons.

We consider heavy baryons containing one heavy quark
and construct the QCD sum rules in the framework of the
heavy quark effective theory (HQET), since the physics of
hadrons containing one infinitely heavy quark is well
described with HQET and the analysis is greatly simplified
due to the heavy quark symmetry.

We take into account the next-to-leading order correc-
tions in a; to the terms in the operator product expansion.
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It is known that in the systems containing heavy quarks
a,-correction gives significantly large contribution, which
amounts to 100% or more to the leading order contribution
[9,10,26,27]. In Refs. [9,10], the a,-corrections to dimen-
sion 0 and dimension 3 terms in the operator product
expansion of the heavy baryon correlation functions are
calculated to study positive parity A and . However, as
will be pointed out in Sec. III A, the authors excluded the
interpolating fields that couple to negative parity states.
In the present paper, we use the interpolating field includ-
ing both of the parity components, and compute the
a,-corrections in the correlation function.

The paper is organized as follows. In the second section,
we formulate the QCD sum rules for positive and negative
parity heavy baryons. The method is applied to A and X
heavy baryons and demonstrate the derivation of the sum
rules at leading order in «,, in the third section. In the fourth
section, we calculate the next-to-leading order correction in
a, and present the sum rules including the corrections. The
sum rules derived in the third and fourth sections are
analyzed numerically in the fifth section. The sixth section
is devoted to summary and discussion.

II. QCD SUM RULES FOR POSITIVE
AND NEGATIVE PARITY HEAVY BARYONS
IN THE HQET

In this section, we set up the QCD sum rule for positive
and negative parity heavy baryons in the HQET. We
consider the following correlation function in the HQET:

() ——iu/"a“xeﬂv”x«MYWnB<x)ﬁB<o>no>, (1)

where 7 is the interpolating field of heavy baryon B and v
is the four velocity of the heavy baryon. In the general
procedures in the QCD sum rule approach, the correlation
functions are evaluated by the operator product expansion
(OPE) in unphysical region @ — —oco on one hand and
expressed in terms of the properties of physical states
(masses, coupling constants and so on) on the other hand;
we relate the two descriptions exploiting the dispersion
relations, which yields the QCD sum rule.

Let us first consider how Eq. (1) is expressed in terms of
physical states. The interpolating field #z couples not
only to positive parity states but also to negative party ones
[22,28], in the way that

(0[7(0)[Bj(4) (v, ) = Ajpyu(v, a), (2)

(0[n(0)|Bj—) (v, @)) = Ajyysu(v, a), (3)

where |B;)(v,a)) is the j-th positive/negative parity
resonance state with velocity v and spin a and u(v, @) is
the Dirac spinor for the baryon at heavy quark limit. Hence,
inserting a complete set of physical states between the two

interpolating fields in Eq. (1) and neglecting the widths of
the resonance states, Eq. (1) in the baryon rest frame v = 0
can be expressed as follows,

=14 =4
w)= = P, + = P_|, 4
(@) ;L’_AJH)"HS N w—ANj_)+ie “)
where P, = % (yo £ 1) are the parity projection operators
and /_\j(i) = M) —mg with M., being the masses of

Jj-th positive/negative parity states of the heavy baryon and
m the heavy quark mass. It should be noticed that Eq. (4)
does not have poles at negative @ because of the absence of
antiheavy baryons in the heavy quark limit. In the corre-
lation function of nucleons or hyperons, the term corre-
sponding to the first (second) one in Eq. (4) has poles of
antiparticles of negative (positive) parity at negative m. As a
result, even after performing “parity projection” (see
below), the contributions of positive and negative parity
states are not separated from each other [24,25].

We apply “parity projection” onto the correlation func-
tion, namely, consider

1
Mg (@) = Tr[PLT()]. (5)
From Eq. (4) we see [1p(,) (@) contain only the contribution
of the positive parity states and Ig_) (@) only the negative

parity. Calculating Eq. (5) using the OPE and matching the
results with the corresponding parity components in
Eq. (4), we obtain the sum rules. The matching can be
done via the dispersion relations for Ilg.) and utilizing
Borel transformation. I1p () obeys the dispersion relations,

)= [Tawr 2 )

(the subtraction terms, which are polynomial in @, are not
written explicitly here). In Eq. (6), pp(1)(@) is the spectral
function defined by

1
Pp+) (@) = ;ImHB(i) (@), (7)

We apply the Borel transformation operator, defined by

N " d\"
B= Ilim -, 8
e T(n )< dw) ®)

on both sides of the dispersion relation, Eq. (6). This
transformation introduces an exponential weight in the
integral as

Blp. M/ da'e=Mpp (o), 9)
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and eliminate the subtraction terms. In the left-hand side
(Ihs) of Eq. (9), where I, (w) are calculated by OPE, the
convergence of the series in the OPE is improved since the
higher dimensional terms in the OPE are suppressed
factorially (~1/n!). Simultaneously, in the right-hand side
(rhs), the contributions of higher resonances and continuum
are suppressed exponentially compared with that of the
lowest-lying state. It is therefore allowed to approximate
excited-state contributions to the rhs of Eq. (9) by the
imaginary part of the OPE result which starts from the
“continuum threshold” wy,; namely, we use

pB(:t)<w) = |/13(i)|25<w - AB(:N:))

1
- ;Iml’lgff) (w)0(w — wy),  (10)

where Hgff) (w) is the correlation function calculated by

OPE. Substituting Eq. (10) into the rhs of Eq. (9), we
obtain,

_ Wy 1
MB(i)Pe—As(i)/M — A h da)e—w/M;ImHgFf)(a)), (11)

Derivative of the logarithm of Eq. (11) with respect to
—1/M gives the expressions for /_\B(i),

J Wy - 1
_ s Jo " dwe /M;ImHgES) (12)

Anrsr —
B() Jo dwe‘w/M%ImHgFE)(a))

Calculating the correlation function by OPE and substitute
the results into the rhs of the above equations, we obtain the
sum rules for Ag(y).

III. APPLICATION TO A AND X CHANNEL

In this section, we apply the method described in the
previous section to I = 0 (A) and I = 1 (£) heavy baryons.

A. Interpolating fields for A and X
The candidates of the interpolating field for A are

s = eabc(uacyﬁdb)hw (13)
np = eabc(uaCdb)75hcv (14)
ny = €abc(uac}/57ydb)yﬂhc’ (15)

and those for X,

Na = €ape (U Cy,dp )y ysh,, (16)

1
1 = 3 ancuaCondy)orshe,  (17)

where u and d are the up and down quark fields, % the
effective heavy quark field in the HQET, C the charge
conjugation operator, ¢, = %[y,.7,] and a, b and ¢ the
color indices. The subscripts, S, P, V, A, and T stand for the
channel of the light diquark fields, scalar, pseudoscalar,
vector, axialvector, and tensor, respectively. The general
interpolating fields for A and X should be given by their
linear combinations,

Na = tshs + tpnp + tyny, (18)
Ny = taNa + trly, (19)

with 1y X =S, P, V, A, T) being arbitrary mixing
parameters.

Some important remarks are in order here. 75p) couples
only to positive (negative) parity states, as in the form of
Eq. (2) [Eq. (3)], since the effective heavy quark field, A,
which is constrained to satisfy #h = h, is projected onto
positive parity states at its rest frame v = 0. On the other
hand, 5y, n4, and 5y can couple with both of parity states,
which becomes obvious if we decompose them as

ny = (uCysyod)y’h + (uCysy;d)y'h, (20)

na = (uCy;d)y'ysh + (uCrod)y"ysh, (21)
. 1 ..

nr = (uCGOid)GOIysh + E (MCGijd)Glj]/Sh, (22)

(Color indices are suppressed here for simplicity.) The first
term in the right hand side of each of the above equations
couples only with positive parity state, while the second
term only with negative parity states. In all the previous
studies on positive parity heavy baryons in QCD sum rules
[4-7.9,10], the second terms of Eqs. (20)—(22) are excluded
consistently. However, as was pointed out above, they
couple to negative parity heavy baryons and are not allowed
to be excluded for the purpose of constructing the sum rules
for positive and negative parity states.
Let us define the correlators of 7y’s,

My (@) = i / e (O[Tl (x)iy (0)]10).  (23)

Then the correlation function, Eq. (1), for A and X can be
written in terms of Iyy(w) as

) (0) = txtyllyy (@), (24)
X,Y=S.P,V

Iy (w) = Z txtyllyy(@). (25)

X, Y=AT

In the following two subsections, we evaluate Eq. (23)
by OPE to derive the sum rules at leading order (LO) in «,-
expansion and those at next-to-leading order (NLO). To this
end, we write Eq. (23) as
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Myy (@) = Mgy (@) + (@) + - -

(26)

where Hgg),(a)) and Hg;}(w) denote LO and NLO contri-
butions in a;-expansion, respectively, and the ellipsis the

higher order ones.

B. Sum rules at LO in

We carry out the OPE of l'[gg),
contribution in the OPE up to dime

ag-expansion

(w). The nonvanishing
nsion 6 operators and at

LO in a,-expansion are represented by the Feynman

diagrams shown in Fig. 1.
First, we show the results for the
that contribute to I, (w),

. —N,!

components of Hg?f,(a))

)P

-1
+ <%G2>wln(—w)P+

3272
-N,!
4N?
_|_ cee,

T

+

() (@) P,

(27)

(a) (b)

(©

(d)

©

FIG. 1.

()

Nonvanishing diagrams representing the terms in the

OPE at LO in a,-expansion. (a) leading term (dimension 0),

(b) dimension 3, (c) dimension 4, (

d) and (e) dimension 5,

(f) dimension 6 term. The single and the double lines stand for the
light and the heavy quark propagators, respectively.

— |
H(o) ) = NC.
120z*

-1 /oy
—+ ﬂ <; G2>a)ln(—a))P_

@ In(—w)P_

(28)

-N,!
MY (@) = — %

= 12052 o’ In(—w) (P, +3P_)

3272 \ @
_N,!
4N?
+ cee,

= <"‘ G2>a)ln(—a))(P+ ~P.)

2 () (dd) — (P, —3P_)

!
(29)

0
1) p(@) = 0, (30)

N/
472N,

-N,!
+327T2NC

II§) s (@) ((@iu) + (dd))w* In(~w) P,

(gliio - Gu) + g(do-Gd))In(—w) P,

(glic-Gu) +g{do-Gd))In(-w) P,
(31)

+327r2
_i_...’

HI(’E)\Z,VP((‘)) =0, (32)
where the ellipsis denotes the terms that will disappear
when the Borel transformation is carried out. Calculation
of the dimension 6 (four-quark condensate) term is done by
applying the factorization hypothesis. N, is the number of
colors,  (gq) = (0174|0),  (%G?) = (0]%G;,G**|0),
9(go - Gq) = g(0|go,, % G q|0), where g is the strong
coupling constant, 4 the usual Gell-Mann SU(3) matrix,
and Gy, the gluon field strength.

Let us discuss Eqgs. (27)-(32).

(i) Igg(pp) has only P, _) component and Ilgp pg = 0.
This is due to the fact that 7gp) couples only to
positive (negative) parity states, as was mentioned in
the previous subsection. In contrast, 7y can couple
with both of parity states. Therefore Iy, has both of
P, and P_ components and Ilgy ys has only P.,.
Diagonal correlators, Ilgg, IIpp, Ilyy, have only
chiral even condensates. On the other hand, non-
diagonal correlator, Ilgy g, has only chiral odd
condensates. This can be understood by introducing
right- and left-handed quark fields, gz and ¢; [29],

(i)

ns = (ugCdg — u Cdy )h, (33)
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np = (ugCdg 4 u, Cdy)ysh, (34)

Ny = (”RcyudL - ”LC}’MdR)V”h- (35)

(Color indices are suppressed here for simplicity.) In
general, in the OPE of correlation functions, (gq)
or g(go - Gq) appear only if g is paired with ¢,
since qq = qrqr +qrqr. 90 -Gq = qro-Gq, +
4o - Ggg. In gy yg this is possible if one gg(;)
in 55 is paired with one g g in 7y, as shown in
Fig. 2(a). In Ilgg, I1pp, and Iy, this is possible only
if two pairs, i.e., up and u;, dg and d; , are formed at
once, yielding the term (0|izudd|0) [see Figs. 2(b)
and 2(c)].

(iii) ILpy yp is vanishing, although one may think that
Ipy yp has P_ component, since both of #p and 7y
can couple with negative parity states, and have
chiral odd condensates if one gg(;) in 77p is paired
with g g) in n7y. In reality, however, the pair yields
the term (gysq), which is vanishing.

Next, we show the OPE results for Hg?,),((u) related with

[y (w),

0 (0) = -0 07 In(~0) (3P + P.)
+ g (26 Jom(-o)(p, - P.)
+ :xz' () (dd) % (3P, —P.)
+oenl (36)
L(R) R(L) L(R) R(L)
L(R) R(L) R(L) L(R)
o) ©

FIG. 2. Diagrams with explicit dependence on the chirality of
light quarks, corresponding to (a) dimension 3 term in Ilgy,
(b) dimension 6 term in Ilgs pp, and (c) that in ITyy.

" —-N_!
Hpp(@) = 55 50" n(-w)(P, + P.)

+L< G2>a)ln(—a))(P++P)

3272
AN
e () (P = P.)
T (37)
113 14 0) = () + ) ()P
3‘21]2VN' (glio-Gu) + g(do-Gd))In(~a) P,
3;12( (0~ Gu) + g(do- Gd)) In(—a) P,
.. (38)

Again the ellipsis denotes the terms that will vanish after
the Borel transformation is applied.
In order to discuss Egs. (36)—(38), we decompose 774 as

Na = N +1a, (39)

where

ni = uCyid)y'ysh, s = (uCrod)y°ysh.  (40)

Then Il44 and 14774 can also be decomposed as

Mya (@) =Tz(@) +Tga (@) + 14 (@) + 1,5 (@),  (41)

Hyr7a(@) = a7 74(@) + Haz 7a(@). (42)

Following Egs. (41) and (42), one can decompose Egs. (36)
and (38) as

(0) -
H_ _ ¢
(@) = 150,

@ In(-w) - 3P,
1
32x?

< G2>wln(—w)P+
~N,!

Jo
IN? (au)(dd) . 3P,

T (43)

SR (44)
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HQO/)AAA(@) —0. (45)
110)11(0) = o (10) + (0 a?n(-0)P,
R —
+37,2(9(70° Gu) +g(do- Gd) In(-w) P,
L (46)

0
Hﬁ_,T),Té (@) = 0. (47)

Using Egs. (43)—(47) instead of Egs. (36) and (38), one can
interpret Eqs. (36)—(38) completely in parallel with
Egs. (27)—(32).

(1) I54(aa)hasonly P, ) componentand IT;, 45 = 0.
This is due to the fact that 1) couples only to
positive (negative) parity states. On the other hand,
nr can couple with both of parity states. Therefore
I177 has both of P and P_ components and I137 73
has only P,.

(i) Diagonal correlators, Iz, IT44 and I177, have only
chiral even condensates, while nondiagonal corre-
lator, 1157 74, has only chiral odd condensates. To
understand this, we write #, and %7 in terms of right-
and left-handed quark fields,

ni = (urCydy, + up Cy;dg)y'ysh, (48)

na = (urCrody, + up Cyodg)y°ysh. (49)
1 v

=3 (ugCoyydg +u;Co,,dy)o*ysh.  (50)

InTl;7 74, (@q) or g(go - Gq) can appear if one gg ;)
in 773 is paired with one gy ) in 7. In Iz, Ty, and
I177, this can occur only if up is paired with u; and
simultaneously dj is paired with d;, yielding the
term (0|iudd|0).

(iii) IT47 74 is vanishing, although it may be possible that
4774 has P_ component, since both of 77,4 and 7y
can couple with negative parity states, and have
chiral odd condensates if one gg(;) in 74 is paired
with gy (g) in 77. But in fact, the pair yields the term
(gysq), which is vanishing.

Now we have all the ingredients to derive the sum rules.
Substituting Eq. (24) in which the OPE results Egs. (27)—(32)
are used as Ilyy(w), and Eq. (25) in which Egs. (36)—(38)
are used, into the rhs of Eq. (12), we obtain the QCD sum rules
for Ap1) and Ag(y) at LO in a-expansion,

2PV (M)
- a1/ L B(+)
Aoy =0 4 (B=AE B

5(+) (M)

(0)

where P B(+)

(M) are given by

(9@ - Gu) + g{do - Gd))Eg(M. @)

167>

+ % () (dd), (54)

13 + 3¢t
207

-1 /a,
+ 4 T<;‘SG2>E1(M’CU:11)

Es(M, o)

3272
2 2
- % () (dd). (55)

In the above equations,

E,(M,0) = /w do@/"e='/M (56)
0

and the explicit value of the number of colors N. =3 is
substituted. The numerator in Eq. (51) is easily obtained by
using the property,

114032-6
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9
a(=1/M)

A noticeable feature of the above sum rules is that the
sum rules for negative parity states do not have chiral odd
terms ((gq), g{go - Gq), ...). As was pointed out in the
discussion about Egs. (27)—(32) and Eqgs. (36)—(38), chiral
odd condensates contribute only through the nondiagonal
correlators, Ilgy, and I1,7. However, in the case of heavy
baryons, Ilgy, and Il47 have only positive parity compo-
nent. As a result, only the positive parity sum rules receive
the contribution of chiral odd condensates but the negative
parity sum rules not. This feature of the sum rules for heavy
baryons is in contrast to those for nucleons and hyperons,
where chiral odd condensates contribute to both of parity
states but with opposite sign, which increase the mass of
negative parity and make the mass difference between
positive and negative parity large [22-25].

Also note that while the general interpolating field of A,
Eq. (18), has three mixing parameters, 7p, tg, and ty, the
sum rule for /_\A( +) depends on two of them, 7y and 7y, and

E,(M,0) = E, (M, ). (57)

that for /_\A( y on 7p and ty. This is due to the fact that 7ps)
in Eq. (18), whose coefficient is 7p(5), does not couple to

positive (negative) parity states. As a result, A A(+) depends

on the mixing parameters via their ratio, fy /g, and AA<_)
via ty/1p.

It is interesting that Eq. (53) and Eq. (55) coincide with
each other, which means that the mass difference between
A(-) and X(—) is not given within this calculation. The
difference is produced by including the a -correction [see
Egs. (82) and (84)].

C. Sum rules at NLO in a;-expansion

Let us next consider NLO correction in a,-expansion.
We take into account the correction to the leading dimen-
sion (dimension 0) and the next dimension (dimension 3)
terms in the OPE. For convenience, we write the dimension

|

(a) (b)
@ é
(©) (d)

FIG. 3. Diagrams corresponding to NLO correction in ay-
expansion to dimmension O term.

0 and 3 terms in Ilyy(w) respectively as
My (@) = Myp(@)o + Ty (@)y + -+ (58
xy (@) xy (@) xv (@) ’ )

Myy(@); = Mp(@); + Mp(@)s +---,  (59)

where H§?§(w)0.3 denotes LO contribution in o -expansion,

Hﬁ};(a))m NLO contribution, and the ellipsis the
higher order.

First, let us calculate the correction to the dlmensmn 0
term, Hg(}( )o- Diagrams corresponding to HXY(co) are
shown in Fig. 3. The calculation of those diagrams in
D = 4 4 2¢ space-time dimension can be performed by
using the method described in [30,31]. The results are
presented in Egs. (AS5)—(A7) and Egs. (A9)-(All).
Expanding them in powers of 1/¢, we obtain for each

component of HQQ (@),

H(SIS),PP(C'))O = 4((;;5 [ SL +3w5L <L - 22i7 - %) + - ] Py, (60)
) (@) = S0 BN, CF[ SL— +3w5L <L—42i7 %) + ] P._
+830 ——=N, CF[ SL— +3a)5L(L —%—%) + ] P__, (61)
) (@), = 48‘;5 [ SL- +3a)5L (L - 2% - %) ¥ ] P,
+%NCCF[ SL- +3a)5L (L —2% —%) +- ] P, (62)

114032-7
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where Cp = (N2 —1)/(2N.), L =In(~w/pys) +7£/2 —
(1/2) Inz with y; the Euler constant, uyg is the renorm-
alization scale in the MS scheme and the ellipsis denotes
the terms that will vanish after the Borel transformation is
carried out. L can be written in the MS scheme as
L

= In (—2w/py5) with the renormalization scale in the
MS scheme, pgg. Later calculation is done in the MS

scheme and we denote ugg simply by p.
Iyy(w), is renormalized by the renormalization con-
stant Z, ~of the interpolating field ny [9] as
Ixx (@), Z%X I (@), (63)

Z’?x

000000

are given by (see Appendix B for derivation)
3 1Y\ al
Z, =1-"(1+—|"~ 4 é }
ns.p 4( +Nc)ﬂ'€’ (6 ) @
3 I\al
Z, =l—=(1+—)—"—, 65
Mv.a 8 < + NL) ( )
(e) ®

Z, =11 (14 L)%! 66
Ty +N_c Te (66)  giG. 4. Diagrams corresponding to NLO correction in a,-
expansion to dimmension 3 term.

By rewriting Eq. (63) as

one can confirm that the pole in Hg(l}(a))o [the second term

ren () (1)
% (@)o = Myx(@)o + My (@)o in Eq. (67)] is canceled by the third term (counterterm). As

1 0 a result, we obtain the renormalized dimension O term,
+ (Z—z - 1>H§())((w)o’ (67)
nx
|
1 3a, 2 22
T8 pp (@) {—W > 107 5L<L—ﬁ”2 5)} Foms (68)

1 3a, 4 . 223 3 9a, 4 T
[Iten — | _ SL+— S L L——p2 =2\ | P _ - &L L L——n?—— P_ ., 69
War(@)o [ 202" 2057 < 27" 45)] + % T < 27" 15)] + (6)

3 3a, 2 248
3 () = {‘—“)5” 5oL (L o7 _>] r

207 107 9 45

where the number of colors is fixed to be N. = 3.
Next, we calculate the correction to the dimension 3 term. Diagrams corresponding to H}Q( )5 are shown in Fig. 4. The
results of the calculation are given in Egs. (A16)—(A21). Expansion of them in powers of 1/¢ yields

3a 1 27 29 . _

1) (0 = s orn L 20 (1 -2 -2 () + @ ™)
3a, 1 2% 29 _ -

I} 7 (@)5 = 1623 CF [szg+2w2L(L +?+g> —|—--}(<uu> + (dd))P., (72)

where the ellipsis again denotes the terms that will disappear when the Borel transformation is applied. Ilyy(w); is
renormalized by Z, and Zg, [10],
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Z,Z
Hsv,vs(a))3 = E = Hrsexr/l,vs(w)y (73)
aq
Z, Z
ar ra(w); = %Hﬂ ra(®)3. (74)
aq
Z3, 1s the renormalization constant of g (see Appendix C),
Zyg =1-3Cp (75)

477.'6'

Multiplication of the renormalization constants cancels the
(1)

pole in Iy, (@);, providing the renormalized dimension 3

term,
(1 2722 29
ren _ 2 _ s 2 _ - _ ==
Hsv,vs(a’)3 = 271 L I L <L 9 6 )]
x ((@u) + (dd))P.., (76)
[ 3 27% 29
Hff?’TA(a)% -gw 2 L<L +T+F>:|
x () + (dd))P,. (77)

where the number of colors is fixed to be N, = 3.

Now we can obtain the sum rules for /_\B<i) at NLO in
a,-expansion. Substituting Eqgs. (27)-(32) and Egs. (36)—
(38) with the dimension 0 terms replaced by Egs. (68)—(70)
and dimension 3 terms by and Egs. (76) and (77), into the
rhs of Eq. (12), we obtain

(0) ()
[—\B(i) _ ﬁa/m [PB(i)(M) + PB(i)(M)O] (78)
(0) M ’
Py (M) + Py (M)
where ng ) (M) denote the contributions of NLO terms in

a, and they consist of the corrections to dimension 0 and 3
terms,

Pyly (M) =Py (M), + Py (M), (79)
PYL (M) = PY) (M), (80)

Here, Pg()i>(M)O correspond to the contributions from

NLO corrections to dimension 0 terms and their explicit
expressions for A and X are given by,

2 22
PE\1<)+)( |: M @y U +E5(M w,h)<1n4_ﬁﬂ2_?>}
4 223
{ (M, @y, 1) + Es(M, w,h)<1n4_ﬁﬂz_g>} (81)
(1) _ 2 22
PA(_)( tp 1025 [ (M, @y, 1) + Es(M, a),h)<1n4_ﬁﬂ2_?)]
4 , 71
+ tV 207 5 ZFS(M WDrps M) + Es(M Cl),h) In4 — Eﬂ' - E , (82)
(1) 59 4 7
P2(+)(M) =G 208 [2F5(M, @y, i) + Es(M, wyy) <1n4 — ﬁﬂz S
—3a 2, 248
+ [ZFS(M Wy i) + Es(M, w,h)<1n4_§ﬂz_g>} (83)
W (p), = 2 2% 4, 223
Pz(—)(M)O G 2005 {2F5(M,a),h,,u) +E5(M7wth)<1n4 5 2 -
—3a 2, 263
+A— o0 {2F5(M W) + Es(M, w,,) <1n4 s _Hﬂ (84)
and ng +>(M )5 are those from the corrections to dimension 3 terms,
v % 2, 29 ]
PA(+)(M)3 = tsl‘v; 2F,(M, @y, 1) + E;(M, @) | In4 —§7z s ((@u) + (dd)), (85)
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— 2 29 -
PLL(M)s = taty =5 |2F> (M. 0y, ) + Ex(M, ) (In 4+ 52 + = ) | (i) + (dd)). (86)
Z(+) s 3 6
In the above equations, A A(+)

/

F,(M,0,u) = /w do'@™ In <2> /M (87)

0 H

and the derivative in the numerator of Eq. (78) can be
obtained by using the relation,

0

acian) Mo oo) = P (Moo, ). (88)

IV. NUMERICAL ANALYSIS

In this section, we give a numerical analysis of the sum
rules for A, Egs. (51) and (78) in detail.

We use the standard values for vacuum condensates
collected in Table I. The value of the strong coupling
constant is taken to be a,(u = 1 GeV) = 0.47, which is
consistent with the world average [27].

We analyze Egs. (51) and (78) in the following pro-
cedure. First, we search the value of the mixing parameter
of the interpolating field that makes the curve of A as a
function of the Borel parameter M stable as much as
possible. Next, for thus found optimal value of the mixing
parameter, we find w,;, such that the region of M, so called
“Borel window,” opens. The Borel window is the region
satisfying the standard criterion applied in the QCD sum
rule approach: the lowest pole contribution exceeds 50% in
the spectral function

WDy

o " dop(w)

W > 50%, (89)

and the magnitude of the highest order (dimension 6) term
in OPE is less than 10%,

5 dop(o)y

Finally, we examine whether the curve of A stabilize or not
as wy;, is varied. If so, the value of A in the stability plateau
yields a prediction of the heavy baryon mass.

TABLE 1. Values of the vacuum condensates at the normali-
zation scale y = 1 GeV.

Condensate Value

(i) = (dd) = (gq) (-0.24 4+ 0.02 GeV)?
(%G% (0.012 4 0.006) GeV*

gliie - Gu) = g(do - Gd) (0.8 +£0.2)(g9)

In this subsection, we consider positive parity A. As was
mentioned in the comments on Eq. (51), A depends on the
mixing parameter f¢ and t#, via their ratio, so we
write ty/tg = 1.

Let us first analyze the sum rule at LO in a,-expansion,
Eq. (51). The curve of A as a function of M is found to be
stable for ¢~ 0.5-2.0. For negative values of 7, stability is
much worse. Here we fix ¢ = 0.5 since the results are not
changed if we vary the value of ¢ in the range t = 0.5-2.0. The
Borel window opens for wy 2 1.6 GeV. Namely, if we
increase @y, the Borel window starts to open at
wg ~ 1.6 GeV, and becomes wider. The lower bound of
the window is M =~ 0.38 GeV. In Fig. 5, the curve of A is
plotted for several values of g in the range
oy = 1.6-1.9 GeV. We see that A does not stabilize as
Wy, 1s varied.

Next, we consider the sum rule at NLO in a,-expansion,
Eq. (78). As in LO sum rule, good stability is obtained for
t ~(0.5-2.0 and the stability is much worse for r < 0. We fix
t =0.5 for the same reason as in LO sum rule. Borel
window opens for wy, 2 1.2 GeV. The lower bound of the
window is M ~0.31 GeV. M-dependence of A for wy, =
1.2-1.5 GeV is plotted in Fig. 6. Although A does not
stabilize as wy, is varied, the stability is slightly improved
and A is reduced from that in LO sum rule. Since the
stability plateau does not appear, we cannot make any
reliable prediction of /_\A( +), and we give conservatively
only the lower bound:

An1) 2 0.6 GeV. (91)

The value of the lower bound is A at M = 0.31 GeV and
oy = 1.2 GeV, where the Borel window starts to show up.

For comparison, we show M-dependence of A at LO,
that with NLO correction only to dimension O term, and

14 | ]
1.2 | E
_ 1
3 0.8
< 06
4l 0=1.6 GeV
04 1.7 GeV — —
0.2 1.8 GeV E
1.9 GeV
O 1 1 1 1
025 03 035 04 045 05 0.55
M [GeV]
FIG. 5. Borel parameter (M) dependence of A for A(+) at LO

in ag-expansion, Eq. (51).
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14 f
1.2 | E
— 1 I 1
% 0.8 - i
<) —_—
< 0.6 /
04 | wth=1.2 GeV
1.3GeV — —
0.2 1.4 GeV e
1.5 GeV
0 1 1 1 1 1
025 03 035 04 045 05 055

M [GeV]

FIG. 6. M-dependence of A for A(+) at NLO in a,-expansion,
Eq. (78).

that with the corrections to both of dimension 0 and 3 terms
in Fig. 7. We see that the correction to dimension 3 term is
more important than that to dimension 0 term.

B. A(-)

In this subsection, we consider negative parity A. Since
A depends on ¢p and ty, via their ratio, we write ¢y, /tp = t.

First we consider the sum rule at LO in ay, Eq. (51) for
A(=). In this case A is weakly dependent on ?, since
Eq. (51) for A(—) depends only on 73 and #}. Note that
Eq. (51) for A(+) has not only 73 and #3 but also the cross
term ¢yt and therefore 7-dependence is stronger than that
for A(—). For any value of ¢, Borel window opens
for wy, = 2.5 GeV. Therefore we fix = 0.5. In Fig. 8§,
we plot A as a function of M for several values of y, in the
range oy, = 2.5-3.1 GeV. We see A stabilizes for
oy ~2.9 GeV, and the Borel window is found to
be 0.42 GeV <M < 0.5 GeV.

Next we turn to NLO sum rule, Eq. (78) for A(-).
t-dependence is very weak. The reason is the same as that
for LO sum rule. For any f, Borel window opens for
oy 2 1.9 GeV. So we fix t = 0.5. We plot M-dependence
of A in Fig. 9 for wy, = 1.9-2.5 GeV. A stabilizes for

14 | 1
1.2 | 1

1
0.8
0.6
04

A [GeV]

LO —— |
0.2 NLO (dim.0) — — -
0 NLO (di‘m.O ang 3)
025 03 035 04 045 05 055
M [GeV]

FIG. 7. M-dependence of A for A(+) at LO, that with NLO
correction only to dimension 0 term, and that with the corrections
to dimension 0 and 3 terms. w, is taken to be 1.6 GeV, 1.4 GeV,
and 1.2 GeV, respectively.

3
25
3
o 2r
1<
151 0p=2.5 GeV |
: 2.7 GeV — —
2.9 GeV
3.1 GeV
1 | | | |
03 035 04 045 05 055 06
M [GeV]

FIG. 8. M-dependence of A for A(=) at LO in a,-expansion,
Eq. (51).

3
‘ m‘th= Gev

19
21GeV — —
2.3 GeV
25 2.5 GeV ]
>
8 2¢ -
< N
15 | :
1 | | | | |

03 035 04 045 05 055 06
M [GeV]

FIG. 9. M-dependence of A for A(=) at NLO in @,-expansion,
Eq. (78).

oy ~ 2.1 GeV, and the Borel window is found to be
0.35 GeV <M £0.40 GeV. For this value of wy and
the Borel window, /_\A(_> is estimated to be

An()=1.6—1.7 GeV. (92)

In Fig. 10, we show A for the above two cases for
comparison, from which we see the a,-correction signifi-
cantly reduce the value of A and improve the stability.

3
25 | .
3
o 2r 1
< N~
15 .
L0 —
NLO — —
1 1 1 1 1 1
03 035 04 045 05 055 06

M [GeV]

FIG. 10. M-dependence of A for A(—) at LO and NLO. w,;, was
taken to be 2.9 GeV and 2.1 GeV, respectively.
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C.2Z(+)

In this subsection we analyze the sum rule of £(+). We
define ¢ =t;/ty, since A depends on t, and t; via
their ratio.

We begin with the sum rule at LO in ay, Eq. (51) for
Y(+). The best stability is obtained for 7= 1.0. Borel
window opens for wy, = 1.7 GeV. M-dependence of A for
wgq = 1.7-2.0 GeV is plotted in Fig. 11.

A at NLO in ay, Eq. (78) for £(+), is most stable for
t ~ 1.0. Borel window opens for wy, 2 1.4 GeV. The lower
bound of the window is M ~0.33 GeV. M-dependence of
A is plotted in Fig. 12 for @y, = 1.4-1.7 GeV. The curve
does not stabilize as wy, is varied. As in the case of A(+),
we can determine only the lower bound of A:

As(y) 2 0.9 GeV. (93)

The value of the lower bound corresponds to A at M =
0.33 GeV and wy = 1.4 GeV, above which the Borel
window opens.

In Fig. 13, we show M-dependence of A at LO, that with
NLO correction only to dimension 0 term, and that with the
corrections to both of dimension 0 and 3 terms. We see that
the stability is slightly improved by including the ay-
correction and the correction to dimension 3 term is more
important than that to dimension 0 term.

14 1
12 | Lo .
=
3 0.8 1
< 06 1
4+ 0)m=1.7 GeV -
0 1.8GeV — —
0.2 1.9 GeV -
2.0 GeV
0 1 1 1 1
03 035 04 045 05 055 06
M [GeV]
FIG. 11. M-dependence of A for X(+) at LO, Eq. (51).
14 -
12 | E
(E‘ 0.8 7/ -
< 06 1
e op=1.4 GeV
04 1.5GeV — —
0.2 | 1.6 GeV B
1.7 GeV
0 1 1 1 1 1
03 035 04 045 05 055 06
M [GeV]
FIG. 12. M-dependence of A for X(+) at NLO, Eq. (78).

14 i
12 F —
1 7/ =
08 F .
0.6 |- .
0.4 |- .

LO —
02 L NLO (dim.0) — — -
0 1 1

NLO (di‘m.O ang 3)
03 035 04 045 05 055 06
M [GeV]

A [GeV]

FIG. 13. M-dependence of A for X(+) at LO in comparison
with that including NLO correction only to dimension 0 term and
that to dimension 0 and 3 terms. w,, was taken to be 1.7 GeV,
1.6 GeV, and 1.4 GeV, respectively.

D. X(-)

In this subsection, we consider the sum rule for negative
parity .

We begin with LO sum rule, Eq. (51) for X(-). The
dependence on ¢ is weak, because of the absence of the
cross term, f4fp. For any #, Borel window opens for
g 2 2.5 GeV. We fix t = 1.0. For wy = 2.5-3.1 GeV,
M-dependence of A is plotted in Fig. 14.

The NLO sum rule, Eq. (78) for X(—), is also weakly
dependent on f. For any ¢, Borel window opens for
oy 22.1GeV. So We fix tr=1.0. For wy =
2.1-2.4 GeV, M-dependence of A is plotted in Fig. 15.
At g, ~2.2 GeV, A stabilizes and Borel window is
0.36 GeV <M <040 GeV. We can make an estimate
of /_\Z(_) from the A for wy, and the Borel window found
above,

As(-y=1.7-1.8 GeV. (94)
In Fig. 16, we show A for the above two cases for

comparison, from which we see the a,-correction signifi-
cantly reduce the value of A and improve the stability.

MY
25 |
>
o 2r
1<
151 =25 GeV i
2.7 GeV — —
2.9 GeV
] ‘ ‘ 3.1 (FeV
03 035 04 045 05 055 06
M [GeV]

FIG. 14. M-dependence of A for X(—) at LO, Eq. (51).
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3

op=2.1 GeV
22GeV — —

i 2.3 GeV i

25 2.4 GeV

3
& 2¢ -
< e e N
15 F .
1 1 1 1 1 1

03 035 04 045 05 055 06

M [GeV]
FIG. 15. M-dependence of A for X(—) at NLO, Eq. (78).
3
25 1
S
3 2 ,\\ ]
1< N~ — ]
15 | 1
LO —
NLO — —
1 1 1 1 1 1
03 035 04 045 05 055 06

M [GeV]

FIG. 16. M-dependence of A of £(—) at LO and NLO. o,;, was
taken to be 2.9 GeV and 2.2 GeV, respectively.

V. SUMMARY AND DISCUSSION

We have formulated the QCD sum rules for positive and
negative parity states of heavy baryon containing one heavy
quark in the framework of HQET. Choice of the interpolat-
ing field is a crucial problem in the QCD sum rule
approach. We used the general interpolating field of
positive intrinsic parity without covariant derivatives for
given isospin and included the components that couple with
negative parity states, which were discarded in the previous
studies. It has been shown that by applying parity projec-
tion onto the correlation function of the interpolating fields
the sum rules for respective parity states can be constructed.
The sum rule enables us to evaluate the positive or negative
parity heavy baryon masses relative to the heavy quark
mass, A. We have applied the method to A and  channels.
In the OPE we have taken into account the operators up to
dimension 6 and included a,-corrections to the terms of the
leading dimension and those of the next dimension.

The effects of a,-correction were found to be significant,
especially for negative parity states. For positive parity
states, by including a,-corrections the Borel parameter
(M)-stability is slightly improved, but the improvement is
not enough to give any reliable predictions of A. It is
allowed to give only a lower bound of A:

Ar1) 206 GeV, Ay 209 GeV.  (95)
For negative parity states significant improvement of
M-stability and large reduction of A were found. In fact,
stability plateau appears, which allows us to give an
estimation of A:

Apo) = 1.6-1.7 GeV, /_\z(—) ~1.7-1.8 GeV. (96)

The mass of the heavy baryon is given by mp = mg, + A
at leading order of 1/m, expansion in HQET, where m,, is
the current mass of the heavy quark Q. When we use the
MS masses of ¢ and b quark [32],

m.=127GeV,  m,=418GeV.  (97)

we obtain the lower bound of the masses of positive parity
states,

my,4+) 2 1.87 GeV,
ms () 2 2.17 GeV,
my,+) 2 478 GeV,
ms, (1) 2 5.08 GeV, (98)

which do not contradict the masses of the observed
JP =1/2% states [32]: A.(2286), X.(2455), A,(5620),
%,(5811). For the masses of negative parity states, we
obtain,

my, () = 2.87-2.97 GeV,
my, ) ~2.97-3.07 GeV,
mp, () = 5.78-5.88 GeV,
my, ) ~5.88-5.98 GeV. (99)

Observed JP =1/27 states of A are A.(2595) and
A,(5912) [32]. Our prediction of m,,_y is close to the
experimental value, while that of m, -y is not. The
deviation may be attributed to the fact that for charmed
baryons HQET is inappropriate and 1/m correction is
important. Our predictions of my _y and my, _) suggest
that observed X.(2800) and X,(6097) [32], whose spin-
parity has not yet been specified, can be the candidates of
JP =1/27 states.

A notable feature of the heavy baron sum rule, which is
not seen in the light baryon sum rule, is that the sum rule for
the negative parity states do not have chiral odd conden-
sates. Chiral odd condensates contribute only through the
nondiagonal correlators, owing to the property of the light
diquark. On the other hand, since the heavy quark field
couples only with positive parity states, the nondiagonal
correlators have only positive parity component. Therefore,
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in the heavy quark limit, it is inevitable that the negative
parity states do not depend on chiral odd condensates.

If the mass of the heavy quark is large but finite and
heavy quark condensation occurs, the diagonal correlators
yield heavy quark condensate (QQ) terms while the
nondiagonal correlators (gg) terms. As a result, the chiral
odd term of the correlation function reads

Mehiral oad ~ (QO) (P — P_) + (qq) (P} + aP_) +---,
(100)

where the ellipsis denotes higher dimensional terms and «
is a coefficient suppressed by powers of y/m . In the heavy
quark limit, Eq. (100) is reduced to

Mehiral oda ~ (@) P+ + -+, (101)
and accordingly the chiral odd condensates do not appear in
the sum rule for negative parity.
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APPENDIX A: CALCULATION OF THE
DIAGRAMS WITH a,-CORRECTION
(FIGS. 3 AND 4)

In this appendix, we explain briefly how the calculation
of the diagrams including a,-correction shown in Figs. 3
and 4 is performed and present the full results.

Although a little bit lengthy, the calculation can be
performed straightforwardly by exploiting the method
invented by Grozin [31]. It is convenient to calculate the
diagrams in momentum space. The diagrams in Figs. 3 and
4 can be expressed with the integrals of subdiagrams shown
in Fig. 17(a) or 17(b). Figure 17(a) is the massless particle
diagram, whose explicit expressions are defined by

dPkdPl
D} Dy D} Dy DY

= _ﬂD(_qz)D_ZiniG(nl ) n27 n37 n4’ ns),

(A1)
|

gchCF ( )5 (-(D) 3(D=4)
— —w _

yy (@), 3 = 32,3072

k /
y n,
ns &k —1
nl nZ

q q+k q+1 q

(a) (b)

FIG. 17. Subdiagrams of Figs. 3 and 4. The single (double) line
stands for the massless (heavy) particle propagator.

where
D1:—k2, D2:_12,
Dy=—(k—q)*, Dy=-(l—-q)*, Ds=—(k—1)*. (A2)

Figure 17(b) is the diagram of heavy particle defined by

/ dPkdP1
D|'Dy*DyD}*D¢

= —”D(—2%)2@_"3_"4_”5)1(”1, ny,n3,ny,ns),  (A3)
where

k l
D, = o+(]0’ D2:0+Clo7
490 490
Dy=-k2, Dy=-  Ds=—(k—1? (Ad)

Therefore we first calculate those subdiagrams, namely G
or / in the above equation, which can be expressed in terms
of more easily calculable diagrams [31]. Next, integrating
the subdiagrams, we finally obtain the expressions of
Figs. 3 and 4.

The results of Figs. 3(a), 3(c), and 3(d) are summarized
as follows,

I'(D/2)[(7 - 3D)

U I'(6-2D)
s [20(1,1,0,1,1) = I1(1,1,1,1,0) = 21(0, 1, 1, 1, 1) + I(1, 1,1, 1, 1)]M,, (AS)
2 3(D-4 2
#N,C —\ 34 T(D/2)’T'(7 - 3D)['(3 — D)I(D/2 — 1)
My @ 30 = s (-1 7(-0)° (=) ficalon Ma (a0
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2N —\ 3(D=4) (9 _ _ _ —_1)2
g s - S554 o (2) " C DO a0

where the matrix M, is given by

4P, (XY = SS, PP)

e 4[P. + (D - 1)P<] (XY = VV,AA)
> ) 8(D-1)]2P, + (D-2)P_] (XY =TT)
0 (XY = else)

The result of Fig. 3(b) has more complicated form. For each component they are given by

u
x {4[-G(0,1,1,1,1) - G(1,0,1,1,1) - G(1,1,0,1,1) = G(1,1,1,0,1) + G(1,1, 1,1, 1)]

—2(D-=4)G(1,1,1,1,0) + 2(D - 2)[G(0,1,1,0,1) + G(1,0,0, 1, 1)]},

2AN.Cy —\ 30 T(3D/2 - 3)I(7 - 3D)
s pp(®)gig. 35) = 6473072 (o)’ — I'(3-D)

N.C —0\¥P-9T(3D/2 - 2)T(7-3D
va.AA(w)Fig. 3(b) = 21”513/1; (-w)° (_60> ( (D/— l)F)(3(— D) )

r
x { {AVA +27(3_7_31D))BVA}1@ +(1-D) [AVA +ﬁBV*‘]P¢}’

2 3(D—4
#N.Cy —w\3¥P-4T(3D/2 - 3)['(7 - 3D)
77 (@), 3(b) T T35 ,5D/2 (-o)’ <_> r'3-D)

x{(l— )[ZAT+83 3D BT]P+ (2—D)[(1— )AT+73 453413}

where Ay,, Bys, A7 and Bp are given in terms of G,

Ay =22°(D = 2)[AG(=1,1,1,0,1) +2(D = 5)G(0,1,1,0,1) — (D = 8)G(1,1,1,1,0)
—8G(0,1,1,1,1) +2G(1,1,1,1,-1) + 2G(1,1,1,1,1)],

By, = —2zP(D = 2)[4DG(~1,1,1,0,1) =8G(0,1,1,0,1) — (D — 8)G(1,1,1,1,0)
—8G(0,1,1,1,1) +2G(1,1,1,1,-1) + 2G(1,1,1, 1, 1)],

27P
(D-1)(D-2)
+8(D-2)(D-3)G(0,1,1,1,1) +2[28+2D(D - 7) — (D = 2)(D — 4)(D - 5)]G(1,0,0, 1, 1)
+[2(D - 8) + (D —4)(D?> - 13D +20)]G(1,1,1,1,0) = 2(D = 2)(D = 3)G(1, 1,1, 1, 1)},

Ay = {8(D —4)2G(~1,1,1,0,1) —=4(D = 3)(D = 4)G(1,1,1,1,-1)

27P
GRS
_8(D=22G(0,1,1,1,1) —8(D? = 6D + 10)G(1,0,0, 1, 1)
_[D(D —8)2 = 80]G(1,1,1,1,0) + 2(D = 2)*G(1,1,1,1,1)}.

By = {4D(D - 4)>G(-1,1,1,0,1) +2(D — 4)>G(1,1,1,1,-1)
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The results of Fig. 4 are summarized as follows,

—g CF( o) - 2(D-4)
1287 u

[y (w)Fig. 4(a) =

x [2I(1,1,0,1,1) = I(1,1,1,1,0) +21(0, 1, 1,1, 1) + I(1,1,1,1, 1)|M5,, (A16)
_2 —o) 2(D—4 _ — -
=g Cp 5[~ I'(D/2-1)I(D/2)I'(4—-D)I'(6 —2D)
HXY(w)Fig. 4b) = 37,0 (o) <’u> I'(5-D) Ms,, (A17)
=g ’Cr , (—0\2P-9T(3-D/2)[(D/2—-1)’T'(6 — 2D)
In - — M, AlS8
XY(a))Flg. 4e) T 256D 5 (= —w) < P ) [(4-D/2) 32 ( )
2 7-D 2(D-4
g*Cr(—-1 -\ 2D-4)
My @ a0 = - o) — (-2 (22) " DrD/2 - 200/ 6 - 2000 (A19)
2 —o) 2(D-4) — - -
_gCp 5[~ r'(b/2-1)I(D/2)I'(6 —2D)I'(3 —D)
Hyy(@)pig. ae) = @(—0)) <7> (5 —D) Ms,, (A20)
2 D -
g Cp(-1) , (—o\*P-9T(D/2-1)I'(D/2)I'(6 —2D)I'(2 - D/2)
My (@)pig. 4(r) = W(—w) i rG=D)2) Ms,. (A21)
where the matrices M3, and M3, are given by
4P, (XY =8V,VS)
Ms, = ((au) + (dd)) x { 8(D—1)P,. (XY = AT, TA) (A22)
0 (XY = else)
HD=2)D6DEY) p (XY = SV, VS)
My, = (@) + (@d)) x { SODO2050 p vy _ a7 74) (A23)
0 (XY = else)
|
. o : (L.7s) (X =P)
Following the description in Ref. [31], the subdiagram
integral, G and [ appearing in Eq. (AS), Egs. (A9)—(Al1) (s, 1) (X =1S)
and Eq. (A16), can be reduced to some combinations of the Ty, T) = < (¥s¥u: ") (X=V) (B2)
diagrams which can be easily calculated. The procedure is (Ve 775) (X = A)
straightforward, but the results are so lengthy that we >
cannot help omitting them here. (0. 0"rs) (X =T)

APPENDIX B: RENORMALIZATION OF
INTERPOLATING FIELD

In this appendix, we calculate a,-corrections of the
interpolating fields, Eqgs. (13)—(17), in D =4+ 2¢
space-time dimension, and determine the corresponding
renormalization constants.

The interpolating field under consideration is

nx = (qCTxq)Ixh,

(X=5.P,V.A.T), (Bl)

where Fg) is

Renormalization constant of the interpolating field, Z, , is
defined by

B

ni =7, 1%, (B3)

where 7% and 5% denote the bare and renormalized
interpolating fields, respectively. Then Eq. (B3) can be
rewritten as

114032-16
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u u u
&G &
d d d
(a) (b) (©

FIG. 18. Diagrams corresponding to a -corrections to the
interpolating field, Eq. (B1).

n§ = (q*CTxq®)yh"

(A

O 1) (grergr e (B

nx
with Z, and Z; respectively being the wave function

renormalization of the light quark and the heavy quark
field given by

oy a

Z =1+C .
g tCr 4ze

Zh — 1 _2CF

) B5
4re (B5)
Z,, 1s determined so that the counterterm [the second term
in Eq. (B4)] cancels the UV-pole of the a,-correction of #y.
The diagram corresponding to ag-correction of 7y are
depicted in Fig. 18, and its UV-pole reads

UV-pole of Fig. 18

1\ a1
= k(1) % e T (B0
where the coefficient k for each channel is given by
2 (X=8.P)
k=143 (X=V,A) (B7)
bx=1)

q

q

FIG. 19. Diagrams corresponding to a,-corrections to gq.

Z,, 1s chosen so that the counter term in Eq. (B4) is equal to
the minus of Eq. (B6). Z, obtained in this way are
Egs. (64)—(60).

APPENDIX C: RENORMALIZATION OF gq

In this appendix, we determine the renormalization
constant of ggq.
Renormalization constant of gq, Z;,, is defined by

(C1)

where (gq)? and (gq)® denote the bare and renormalized
operators, respectively. Then Eq. (C1) can be rewritten as

(WW=$%+(EL%>ff- (€2)

Zaq

On the other hand, UV-pole of a,-correction of gg, shown
in Fig. 19, reads

1
UV-pole of Fig. 19 = —CF%—E]q. (C3)
me

Z3, 1s determined so that the counter term [the second term
in Eq. (C2)] cancels the UV-pole of the a,-correction of gg,
Egq. (C3). Thus we obtain Zg, as in Eq. (75).
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