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We construct the equation of state (EOS) of QCD based on the finite chemical potential information from
the functional QCD approaches with the results at zero chemical potential being calibrated by lattice QCD
simulations. Specifically, the construction is achieved by parametrizing the order parameters from the
functional QCD data into the EOS, namely, the dynamical quark mass for the chiral phase transition and the
Polyakov loop for the deconfinement phase transition. The obtained EOS is consistent with the up-to-date
results of the QCD phase diagram, including a phase transition temperature at zero chemical potential
of T ¼ 155 MeV, the curvature of the transition line κ ¼ 0.016, and also a critical end point at
ðT; μBÞ ¼ ð118; 600Þ MeV. We also implement the EOS in hydrodynamic simulations to compute the
particle yields and ratios and find that our obtained EOS agrees well with the commonly used one based on
the combination of lattice QCD simulation and hadron resonance gas model.
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I. INTRODUCTION

One of the main goals of the relativistic heavy-ion
collision experiments is to search for the critical end point
(CEP) of the QCD matter and to explore the thermody-
namic properties of the strong interaction matter at finite
temperature and chemical potential [1–6]. To build the
bridge between these measurements and the theoretical
studies, the key element is the equation of state (EOS) of
the QCD matter [7–13], since the EOS plays a crucial role
as the input in hydrodynamic simulations for the evolution
of the fireballs produced in heavy-ion collisions.
On the theoretical side, the QCD phase diagram has

been widely studied via effective models [14–27] and the
QCD approaches like lattice QCD simulation [28–30] and
functional QCD (fQCD) methods including the Dyson-
Schwinger equations (DSEs) [31–38] and functional renorm-
alization group (fRG) approach [39–41]. Among them, the
functional QCD methods have delivered a comprehensive

investigation on the phase diagram and, especially, on the
location of the CEP at large chemical potential. The current
computations have given the phase transition line which is
consistent with the lattice QCD simulation at small chemical
potential. The functional QCD approaches also provided an
estimate of the CEP at about μB ≈ 600 to 650 MeV [36–39].
However, there is still no complete computation for the EOS
which matches these up-to-date results for the phase tran-
sition line and is accessible for the hydrodynamics simu-
lations. The estimated CEP is not even incorporated in the
commonly applied EOS.
In this article, we then take advantage of different

theoretical approaches to obtain an improved construction
on the EOS. It incorporates the order parameters from the
functional QCD results, including a quantitatively reliable
phase transition line with the pseudocritical temperature, the
curvature at small chemical potential, and the location of the
CEP at large chemical potential, together with the assistance
of the lattice EOS at zero chemical potential. The constructed
EOS is also required to satisfy the constraints from the
current results of the thermodynamic quantities. All the
elements in the construction are formularized analytically,
making the further application of the EOS accessible and
convenient.We also incorporate our EOS into hydrodynamic
simulations to compute the experimental observables like the
particle yields, collective flow, and so on.
The article is organized as follows. In Sec. II, we discuss

the order parameters of the QCD phase transitions and their
parametrizations from the functional QCD data. In Sec. III,
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we present the framework of constructing the EOS from the
obtained order parameters. In Sec. IV, we show the
numerical results of EOS in the (μB, T) plane and also
the Maxwell construction in the first-order phase transition
which stablizes the evolution. This then enables us to
present the results of particle yields after incorporating with
the hydrodynamic simulation. In Sec. V, we summarize the
main results and discuss a few things.

II. QCD PHASE STRUCTURE AND THE ORDER
PARAMETERS

Over the past few years, the functional QCD approaches,
i.e., the DSEs approach [31,35,42,43] and the fRG
approach [40,44], has been well developed and applied
to the study on the QCD phase structure at finite temper-
ature and baryon chemical potential. At small chemical
potential, the two functional approaches have met the
lattice QCD results quantitatively, in particular for the
QCD chiral phase transition line:

TcðμBÞ
Tcð0Þ

¼ 1 − κ

�
μB

Tcð0Þ
�

2

þ κ4

�
μB

Tcð0Þ
�

4

þ � � � : ð1Þ

For the (2þ 1)-flavor case, the consistent results (central
averages) are Tcð0Þ ¼ 155 MeV, κ ¼ 0.016 [28–30,37,39].
On the other hand, at large chemical potential, the two
functional approaches are also converging with each other,
including an estimation on the small fourth-order curvature
jκ4j ≃Oð10−4Þ and the location of the CEP at about μCEPB ≈
600 to 650MeV [37–39,45].More specifically, Ref. [38] and
a series of studies such as Ref. [46] have also demonstrated
the emergent hadrons effect on the chiral phase transition,
particularly for the pseudo-Goldstone modes. Such an effect
is included in the quark gap equation through the hadron
resonance channel,which is found to be subleadingwith only
a small effect on the chiral phase transition temperature and
the CEP location. This gives then a strong constraint on the
order parameter of chiral phase evolution.
There are also some predictions on the deconfinement

phase transition from the functional approaches which have
shown some connections to the chiral phase transition; see,
e.g., Refs. [33,39,47]. In this work, we then focus on the
chiral phase transition and the deconfinement phase tran-
sition, which characterizemainly the physics processes in the
heavy-ion collision experiment with typical temperature T ≳
100 MeV and baryon chemical potential μB ≲ 750 MeV.
From a macroscopic view, the QCD phase transitions are

characterized by the order parameters. More specifically, the
chiral and the deconfinement phase transitions correspond to
the chiral condensate hq̄qi and the Polyakov loop Φ,
respectively. Microscopically, the two order parameters are
embedded in the Green’s functions, i.e., the full quark
propagator (inverse) in the language of functional approaches,

S−1q ðpÞ ¼ iðω̃n þ gA0Þγ4ZE
q ðp; ω̃nÞ

þ iγ · pZM
q ðp; ω̃nÞ þ ZE

q ðp; ω̃nÞMqðp; ω̃nÞ; ð2Þ

where ω̃n ¼ ωn þ iμq withωn being the Matsubara frequen-
cies, μq being the quark chemical potential, and p being the
spatial momentum, along with ZE

q , ZM
q , and Mq being the

dressing functions and A0 being the gluon condensate. First,
quite a number of studies have shown that the chiral
condensate hq̄qi is most dominantly related to the quark
mass function Mq, and the validity of taking the Mq as the
order parameter of chiral phase transition has been well
known. Second, the gluon condensate A0 is related to the
Polyakov loop Φ as [47,48]

Φ½A0� ¼
1

Nc
trPei

R
β

0
dx0A0 ; ð3Þ

with β ¼ 1=T, which is connected to the center symmetry
breaking and thus the deconfinement. However, there are still
ongoing quests for the functional approaches to connect the
microscopic dynamics to the macroscopic thermodynamic
observables, which involves explicitly an extraction of the
QCD thermodynamic functions from the full momentum and
Matsubara frequency dependent Green’s functions; see, e.g.,
Refs. [49,50] for the recent progress.
In this work, we propose first a simplified framework of

such a calculation with the approximation on the dressing
functions at each ðT; μqÞ in Eq. (2):

ZE;M
q ðp; ω̃n;T; μqÞ → 1;

Mqðp; ω̃n;T; μqÞ → Mqð0;T; μqÞ: ð4Þ
In particular, taking the quark mass function at zero
momentum, i.e., the infrared limit, is a typical approxima-
tion to take care of the physics in the nonperturbative QCD
regime; this leads then to a simplified expression for the
quark propagator as:

S−1q ðpÞ ¼ i½ω̃n þ gA0ðT; μqÞ�γ4 þ iγ · pþMqðT; μqÞ; ð5Þ
in the expression, we have left out the momentum index in
Mq and labeled the T and μq dependence in A0 and Mq

explicitly. Also, the expectation value of the gluon con-
densate A0 can be converted into the Polyakov loop
expectation value Φ since we will eventually apply the
quark propagator to compute the number density. The
general framework takes then two steps:

(i) The temperature and chemical potential dependence
of the order parameters, namely, MqðT; μqÞ (at zero
momentum) and ΦðT; μqÞ, are taken from the func-
tional QCD calculations [37,39,51], which incorpo-
rates the nonperturbative quantum, thermal, and
density fluctuations. To note, the functional QCD
method has also incorporated the full mesonic and
baryonic effects, which is achieved in terms of
dynamical quarks and gluons degrees of freedom.
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For the convenience of further applications, a para-
metrized form of the order parameters is very help-
ful, which will be discussed in the remaining part of
this section.

(ii) The obtained order parameters are installed into the
quark propagator for a further calculation on theQCD
EOS. We will see in the next section that the
approximation equation (4) provides a simple ana-
lytical form available for the thermodynamic func-
tions. Such a construction is the main purpose of
this article, which has great advantages for further
applications.

Now, for the quark mass function at zero momentumMq,
it is found that the functional QCD data [37,39] fit well with
the feature of the three-dimensional (3D) Ising parametri-
zation [52,53], by taking the CEP of chiral phase transition
as the origin. We note that such a parametrization is
phenomenologically motivated, considering that the CEP
is recognized to be in the Zð2Þ universality class. Moreover,
the (preudo-)Goldstone modes become relevant near the
CEP, which would also drive the CEP into the Ising
universality class. Nevertheless, in principle, one can apply
any reasonable parametrization numerically on the func-
tional QCD data for the same purpose. The parametrized
form of the quark mass function reads

MqðT; μqÞ ¼
M0

2
½1 −MIsingðT; μBÞ�: ð6Þ

The typical mass scale for the light-flavor quarks M0 ¼
350 MeV suggested by the lattice [54,55] and functional
QCD [39,56] is naturally incorporated. The ðT; μBÞ
dependence in the QCD phase diagram is connected to
the Ising parameters ðr; hÞ as

MIsing ¼ M0Rβθ; ð7Þ

h ¼ h0Rβδh̃ðθÞ; ð8Þ

r ¼ Rð1 − θ2Þ; ð9Þ

with the typical parameters β ¼ 0.326, δ ¼ 4.80, h0 ¼
0.394, and h̃ðθÞ ¼ θð1 − 0.76201θ2 þ 0.00804θ4Þ as given
in Ref. [52] and where M0 is the normalization constant.
The complete mapping procedure is ðT; μBÞ → ðR; θÞ →
ðr; hÞ. To match the phase transition line Eq. (1) precisely,
one can take a nonlinear mapping as

μB − μCEPB

μCEPB
¼ −rωρ cos α1 − hω cos α2;

T − TCEP

TCEP ¼ fPTðrÞ þ hω sin α2; ð10Þ

with α1 ¼ tan−1ð2κμCEPB =Tcð0ÞÞ ¼ 7.0° and α2 ¼ α1 þ 90°
in our case. The mapping function fPT is calibrated so that

at h ¼ 0 Eqs. (10) become exactly the parametric equations
of the phase transition line in Eq. (1), which requires

fPTðrÞ ¼
μCEPB

2TCEP ð2 − rωρ cos α1Þrωρ sin α1: ð11Þ

Intuitively, the Ising parameter h is related to the “distance”
toward the chiral phase transition temperature, and r is the
projection coordinate on the chiral phase transition line.
The fit parameters for the dynamical mass Mq are listed in
Table I, together with the position of the CEP at μB ¼
600 MeV which is taken from Ref. [37]. We note that such
a CEP location corresponds to the quark chemical poten-
tials μu ¼ μd ¼ μB=3 and μs ¼ 0 in the functional QCD
approaches. In the following sections, the CEP location is
then fixed in the investigation of charge (Q) and strange-
ness (S) conditions with different chemical potential setups;
i.e., the μQ and μS dependence of the CEP location is
neglected. Such treatment on μQ is suitable due to the small
isospin asymmetry in the heavy-ion collisions. As for μS,
better knowledge is required about the strangeness effect on
the light-flavor condensate via the gluon propagator and also
via the hadron resonance channel, especially the hyperon and
kaon channels, and the related study is planned in the future.
For the Polyakov loop expectation value, we take the

fRG result at zero chemical potential from Ref. [51], which
is denoted as ΦðT; 0Þ ¼ LðtÞ with t ¼ T=Tcð0Þ. The fit
function is taken as

LðtÞ ¼ 2

�
1þ exp

�
1þ l1t3

m1tþm2t6

��−1
; ð12Þ

with l1 ¼ 2.732, m1 ¼ 0.5495, and m2 ¼ 1.831. For the
Polyakov loop at finite chemical potential, we follow
Ref. [47] to take the center average approximation on A0

so that it involves the Cartan generator τ3, with the
eigenvalues ϕ ¼ f�φ=2; 0g:

A0 ¼
2πT
g

ϕτ3; Φ ¼ 1

3
½1þ 2 cosðπφÞ�: ð13Þ

Such an approximation is supported by the small deviation
between the conjugated Polyakov loops Φ and Φ†, typi-
cally for μB ≲ 500 MeV as shown in Ref. [39]. One
advantage of the approximation is that the phase transition
line can also be embedded in a straightforward way:

ΦðT; μqÞ ¼ LðtΦÞ; ð14Þ

TABLE I. The mapping parameters of the light-flavor dynami-
cal mass equations (6) to (10) to match the functional QCD
results. The position of CEP is also attached for completeness.

ω ρ M0 ðTCEP; μCEPB Þ (MeV)

1.0 2.0 0.75 (118.1, 600)
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tΦ ¼ T
Tcð0Þ

þ κ

�
3μq
Tcð0Þ

�
2

: ð15Þ

By taking Tcð0Þ and κ for the deconfinement phase
transition the same as those for the chiral phase transition,
which has been indicated by Refs. [33,39,57], the obtained
Φ is consistent with the functional QCD data to a semi-
quantitative level. In fact, such chemical-potential scaling
behavior of the thermodynamic functions is also supported
by other studies; see, e.g., Refs. [58–60].
To sum up, the parametrized form of the functional QCD

based MqðT; μqÞ and ΦðT; μqÞ is obtained and is shown
explicitly in Fig. 1. In addition, the phase transition lines,
i.e., the (pseudo)critical temperature as a function of μB for
the two phase transitions, are calculated and shown in
Fig. 1 and are defined at the peak of the susceptibility,

χO ¼ ∂O
∂T

; ð16Þ

with O ¼ −Mq for the chiral phase transition and O ¼ Φ
for the deconfinement phase transition. The current
results are consistent with the phase transition line
obtained by lattice QCD simulations at small chemical
potential [28–30] and functional QCD methods [37–39]
with a CEP at ðT; μBÞ ¼ ð118; 600Þ MeV [37–39,45].
Note that the chiral and deconfinement phase transition
lines are not necessarily identical, which may induce
some new phases like the quarkyonic phase [57,61–63].
Since the QCD phase transition is mainly characterized
by the chiral phase transition, deviation of the two phase
transitions may only induce some delicate changes in the
observables, which require further investigations in the
future.

III. CONSTRUCTION OF THE EOS IN A
FUNCTIONAL QCD-BASED SCHEME

Lattice QCD simulations have delivered solid compu-
tations on the QCD EOS at vanishing chemical potential
[64–66]. However, because of the sign problem, it is
difficult for lattice QCD to reach real chemical potentials
directly. The Taylor expansion approach [67–70] or alter-
native expansion scheme [58,71–73] is also limited in the
small chemical potential region, and the latest lattice QCD
results can only cover up to μB=T ≤ 3.5. On the other hand,
the large chemical potential region is accessible by the
functional QCD approaches, especially for the order
parameters discussed in the last section. Therefore, one
may combine the advantages of the two methods.
In this work, this is done by calculating the finite

chemical potential effect through the integral relation
between the QCD pressure P and the quark number
densities fnqg [74–76],

PðT; μÞ ¼ PðT; 0Þ þ
X
q

Z
μq

0

nqðT; μÞdμ; ð17Þ

with the assistance of lattice QCD EOS data at zero
chemical potential PðT; 0Þ, which has now been well
determined from the lattice QCD simulations through
the form of the trace anomaly IðTÞ [65],

PðT; 0Þ=T4 ¼
Z

T

0

dT 0ðIðT 0Þ=T0Þ; ð18Þ

IðTÞ¼ e−h1=t−h2=t
2

·

�
h0þf0 ·

tanhðf1tþf2Þþ1

1þg1tþg2t2

�
; ð19Þ

with t ¼ T=ð200 MeVÞ, h0 ¼ 0.1396, h1 ¼ −0.1800,
h2 ¼ 0.0350, f0 ¼ 2.76, f1 ¼ 6.79, f2 ¼ −5.29, g1 ¼
−0.47, and g2 ¼ 1.04 for 2þ 1 flavor. Therefore, the
key quantity for the EOS at finite chemical potential is
the quark number density. In general, it is related to the full
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FIG. 1. The functional QCD based parametrization of the two
order parameters Mq and Φ as functions of temperature T and
chemical potential μq for light-flavor quarks. The two phase
transition lines are shown as the black-dashed curve.
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momentum dependent quark propagator Sq in Eq. (2) as

nq ¼ −T
X
n

Z
d3p
ð2πÞ3 trC;D½γ4Sqðp;ωnÞ�; ð20Þ

with the trace taken over the color index and the Dirac
structure. Now, with the approximation equations (4) and
(5), a simple analytical form is available for the number
density. Specifically, the quark number density nq in the
ðT; μqÞ plane can be expressed by the two order parameters
Mq and Φ as follows:

nqðT; μqÞ ¼ 2Nc

Z
d3k
ð2πÞ3 ½f

þ
q ðk;T; μqÞ − f−q ðk;T; μqÞ�;

ð21Þ

f�q ¼ ΦðT; μqÞx2� þ 2ΦðT; μqÞx� þ 1

x3� þ 3ΦðT; μqÞx2� þ 3ΦðT; μqÞx� þ 1
; ð22Þ

x�ðk;T; μqÞ ¼ exp ½ðEqðk;T; μqÞ ∓ μqÞ=T�; ð23Þ

Eqðk;T; μqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

qðT; μqÞ
q

: ð24Þ

Taking the results of MqðT; μqÞ and ΦðT; μqÞ from Sec. II,
this then completes our functional QCD based framework
for the EOS, which incorporates the up-to-date knowledge
of the QCD phase structure through the order parameters.
As we will demonstrate in the following, the obtained EOS
is comparable with the lattice QCD prediction and the
experimental observations quantitatively at small chemical
potential, which opens an access of quantitative estimations
on the QCD thermodynamic properties toward the chemical
potential region of the possible CEP and the first-order
phase transitions.

IV. NUMERICAL RESULTS OF THE EOS WITH
FIRST-ORDER PHASE TRANSITION

We proceed with an investigation on the (2þ 1)-flavor
QCD EOS, which involves the baryon, electric charge, and
strangeness chemical potentials ðμB; μQ; μSÞ. These chemi-
cal potentials are associated with the quark chemical
potentials as

μu ¼
1

3
μB þ 2

3
μQ; ð25Þ

μd ¼
1

3
μB −

1

3
μQ; ð26Þ

μs ¼
1

3
μB −

1

3
μQ − μS: ð27Þ

To be consistent with the hydrodynamic simulations,
we first consider the three-flavor degenerate case (case B)

with μu ¼ μd ¼ μs ¼ μB
3
, which is the conventional case

often applied in the hydrodynamics simulations. With the
obtained pressure PðT; μBÞ and number density nqðT; μBÞ
and using thermodynamic relations, one can compute
the entropy density s ¼ ∂P=∂T, the energy density
ε ¼ Ts − Pþ μBnB, and so on. We show thus the 3D plot
in terms of temperature and chemical potential for the
pressure, baryon number density, entropy density, and
energy density in Fig. 2. The isentropic speed of sound
squared c2s is also calculated by

c2s ¼
�
∂p
∂ε

�
s=nB

¼ n2B∂
2
TP − 2snB∂T∂μBPþ s2∂2μBP

ðεþ PÞ½∂2TP∂2μBP − ð∂T∂μBPÞ2�
; ð28Þ

and the result is given in Fig. 3.
Now, one may take a closer look at the EOS [strictly

speaking, its slope defined with Eq. (28)] at different
chemical potentials as depicted in Fig. 3. For small chemical

FIG. 2. Calculated 3D plots for the pressure, number density,
entropy density, and energy density in terms of the temperature
and chemical potential, normalized to a dimensionless form by
the temperature T with the respective power.

FIG. 3. Calculated speed of sound squared as a function of
temperatureT at several values of the baryon chemical potentialμB.
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potentials, the speed of sound is a smooth function with a
minimum around c2s ∼ 0.12 at phase transition point. As the
chemical potential becomes larger, the speed of sound
becomes more oscillated near the transition temperature.
At the CEP and the first-order phase transition region, the
speed of sound at the phase transition point becomes zero.
For the first-order phase transition, since one has dP ¼ 0 and
a finite dε during the phase transition, the curve becomes
discontinuous for the two phases. The speed of sound in the
vicinity of the phase transition point is still finite, and only a
few points reach zero drastically. More interestingly, as the
chemical potential increases, there appears a peak nearly
above the phase transition temperature. The maximum value
of the peak gradually grows and saturates to the conformal
limit c2s ¼ 1=3, which implies a new feature of theQCDEOS
at high densities.
In the ideal case of the first-order phase transition, there

exists discontinuity in the number density, entropy density,
and also energy density. The discontinuity would be
affected by the nonequilibrium effects in the dynamical
evolution and will cause problems in the hydrodynamics
simulation. Here, we consider the Maxwell construction to
fill the discontinuity with simply a linear transition of the
thermodynamic functions from one phase to the other. This
construction leads to a vanishing speed of sound during
the first-order phase transition. To consider the spinodal
decomposition, one may need a construction described in
Ref. [52], and the speed of sound will be negative in the
instable region. In Fig. 4, we show the construction for the
pressure as the function of energy density. Using this
construction, one can convert the thermodynamic quantities
from the ðT; μBÞ dependence into the ðε; nBÞ dependence,
which is then accessible for the hydrodynamic simulations.
At last, we check the conserved charge conditions

satisfied in the heavy-ion collisions. Considering the three
light flavors f ¼ u, d, s, the conditions are

nS ¼ 0; nQ=nB ¼ r; ð29Þ

with conserved charges nB;Q;S which stand for the baryon,
electric, and strangeness densities, respectively, and where
r is the charge-to-mass ratio of the collided nuclei,
e.g., rAuþAu ≈ 0.4.
In this sense the three-flavor-degenerate scenario is

equivalent to μQ ¼ μS ¼ 0 in Eqs. (25) to (27); i.e., only
the baryon chemical potential is considered. On the other
hand, for the (2þ 1)-flavor scenario, Eq. (29) is equivalent to

ns ¼ −nS ¼ 0; ð30Þ

2nuðT; μuÞ − ndðT; μdÞ
nuðT; μuÞ þ ndðT; μdÞ

¼ r: ð31Þ

Therefore, for the charge conserved case, the remaining
task is to consistently solve Eqs. (25), (26), and (31).

The parameters in Table I are implemented for both u and
d quark densities in Eq. (31).
We show the calculated isentropic trajectories with

s=nB ¼ const in Fig. 5, for the three-flavor-degenerate
case, which is denoted as B (baryon), and the charge-
conserved case with the constraint of the conserved charge
conditions, which is denoted as BS (baryon strange). The
obtained isentropic trajectories are in good agreement with
the lattice QCD result [70]. It shows that the strangeness
neutrality pushes the trajectories into the higher chemical
potential region, which may have an impact on the initial
conditions of heavy-ion collisions [77–80].
Moreover, we investigate the baryon number fluctua-

tions, i.e., the μB susceptibilities:

χBk ¼ ∂
kðP=T4Þ
∂ðμB=TÞk

; k ¼ 1; 2;…: ð32Þ

FIG. 4. Obtained pressure as a function of the energy density at
several given temperatures; the Maxwell construction is dis-
played as the dashed lines.
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FIG. 5. Calculated isentropic trajectories at s=nB ¼ 420, 144, 51,
and 30, with the three-flavor-degenerate EOS (B) and the charge-
conserved EOS (BS). The scatter points are the trajectories
obtained from lattice QCD calculation [70] at these s=nB values.
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Reference [81] shows within an up-to-date functional QCD
framework that the high-order susceptibilities can be well
compared to the lattice QCD results. Therefore, a quanti-
tative check of the susceptibilities is helpful for the validity
of the present simplification in Eqs. (4). First, we compare
our result of the leading susceptibility χB2 at vanishing μB, in
the BS case, for example, which is in good agreement with
the corresponding lattice QCD results obtained from the
Taylor expansion scheme (continuum limit) [69,70] in
Fig. 6. Second, we further checked higher-order suscep-
tibilities such as χB4 with lattice QCD results, and the
comparison is less satisfied than the χB2 , with an overall
deviation of about 20% for different temperatures. This
implies then the limitation about the simplification equa-
tions (4), as it is better suited to describe the lower-order
thermodynamic functions,

∂
i
T∂

j
μBP for iþ j ≲ 2; ð33Þ

and for not very high μB. Fortunately, the comparison given
in Fig. 5 already shows that the framework is suitable at
least up to μB ¼ 400 MeV, which corresponds to an
intermediate collision energy. Also, the speed of sound
squared Eq. (28) satisfies the condition of Eq. (33), which is
the key ingredient for the application on hydrodynamical
simulations.
In addition, one may also consider the cross-correlators

such as χBQ and χBS, which reflect the properties of
conserved charges: the baryon charge (B), electric charge
(Q), and strangeness (S). This corresponds explicitly to
the coupling between the baryon number to the electric
charge and/or strangeness numbers, which involves an

evaluation on the chemical potential derivatives, e.g., ∂μQ
∂μB

and ∂μS
∂μB

. However, as discussed in Sec. II, this has not yet
been implemented systematically in our work, which
essentially requires knowledge on the μS and μQ effects

on the light-flavor quark condensate, and moreover, on
the Polyakov loop. Hence, the cross-correlators require
further improvements beyond the present framework.
To evaluate the applicability of the constructed fQCD

EOS in realistic dynamical evolution, we implement the
relativistic viscous hydrodynamic model MUSIC [82,83] to
calculate the observables of thermal particles without
hadronic scattering or decay effects. See Ref. [84] for
more details of the model. Figure 7 shows the identified
particle yields and their ratios in 0%–5% Auþ Au colli-
sions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 19.6 GeV. It is apparent that the present
fQCD results are consistent with those from the NEOS-B,
which is an EOS based on a combination of the lattice QCD
simulation result at high and intermediate temperatures and
the hadron resonance gas model result at low temperature
[85]. These particle yields together with other checks, for
instance, about the elliptic flow and pT spectra, show
evidently that, in the crossover region, changing the EOS
will not make an obvious difference to the bulk evolution.
In addition, this fQCD EOS also works stably at the high
baryon number density region, including the case of a first-
order phase transition, which is useful in future studies
when combined with the bulk viscosity and other non-
equilibrium effects.

100 150 200 250 300
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0.10

0.15

0.20

�B 2

T [MeV]

this work: BS
Bazavov et al. 2017
Guenther et al. 2017

FIG. 6. Calculated baryon number susceptibility χB2 at μB ¼ 0,
compared with the lattice results extracted from the Taylor
expansion [69,70].

FIG. 7. Identified thermal particle yields (upper panel) and their
ratios (lower panel) in 0%–5% Auþ Au collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼
19.6 GeV. The scatters represent the model calculations NEOS-B
(lattice QCD + hadron resonance gas model, see Ref. [85]) and
fQCD equations of state on the freeze-out surface, respectively.
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To close this section, we note that the EOS data as a
function of T and μB together with the MUSIC input format
for both B and BS cases are available on GitHub (fQCD-
EoS-PhaseDiagramMap) [86].

V. CONCLUSIONS

We proposed a construction on the QCD EOS in a
functional QCD based scheme, which utilizes the knowl-
edge of the QCD phase diagram and the order parameters at
finite density from functional QCD approaches, i.e. the
phase transition line and the location of the CEP. By
implementing the zero-momentum approximation, the
quark number density is expressed analytically, which
ensures then that the EOS can be analytically calculated
and is convenient for further applications.
We computed the thermodynamic quantities such as the

pressure, the energy density and the entropy density, and
eventually the speed of sound as a function of temperature
and chemical potential. For small chemical potentials, the
obtained minimum around c2s ∼ 0.12 at the phase transition
point is consistent with the results of lattice QCD simu-
lation. As the chemical potential increases, the speed of
sound drops drastically to zero at the phase transition point.
Moreover, the speed of sound at large chemical potential

shows a conformal limit behavior right after the first-order
phase transition, which implies a new feature of the QCD
EOS at high density.
We also combine the EOS with the hydrodynamic

simulation. For Auþ Au collisions at
ffiffiffiffiffiffiffiffi
sNN

p ¼ 19.6 GeV,
our results on the particle yields and ratios are in good
agreement with the results from the commonly used NEOS.
Moreover, we have tested that with the current EOS it is
possible for the hydrodynamic simulations to reach the first-
order phase transition region. A more realistic dynamical
description of the first-order phase transition will be inves-
tigated in the future.
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