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We consider the axial-vector together with its induced pseudoscalar form factor of the nucleon as
computed from the chiral Lagrangian with nucleon and isobar degrees of freedom. The form factors are
evaluated at the one-loop level, where particular emphasis is put on the use of on-shell masses in the loop
expressions. Our results are presented in terms of a novel set of basis functions that generalize the
Passarino-Veltman scheme to the case where power-counting violating structures are to be subtracted. The
particularly important role of the isobar degrees of freedom is emphasized. We obtain a significant and
simultaneous fit to the available lattice QCD results based on flavor SU(2) ensembles for the baryon masses
and form factors up to pion masses of about 500 MeV. Our fit includes sizeable finite volume effects that are
implied by using in-box values for the hadron masses entering our one-loop expressions. We conclude that
from flavor SU(2) ensembles it appears not possible to predict the empirical form factor at the desired
precision. Effects from strange quarks are expected to remedy the situation.
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I. INTRODUCTION

The flavor SU(2) chiral Lagrangian properly formulated
with nucleon and isobar degrees of freedom plays an
important role in the understanding of lattice QCD results
on the form factors of the nucleon [1-7]. Such a framework
is designed to be applied to lattice QCD ensembles at fixed
physical heavy-quark masses, but unphysical values of the
masses of the up and down quarks [8—13].

The use of the flavor SU(2) chiral Lagrangian with
nucleon and isobar degrees of freedom has a long history
[1-7]. Still, there is some controversy as to what is the most
effective framework to tackle such systems. Different
assumptions on how to include and consider the isobar
field are possible [4,7,14,15]. Here lattice QCD simulations
are expected to help identifying the optimal framework.

At this stage most useful are somewhat older lattice
QCD data on flavor SU(2) ensembles [11-13] as analyzed
already by our group in [7]. This is so since here the
convergence properties of the chiral approach are not
affected by possible intricate strange quark mass effects.
One should keep in mind, however, that one should not
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expect to obtain from such lattice QCD data an accurate
reproduction of the empirical form factor at physical up,
down and strange quark masses. It would be quite a
surprise if the strange quarks do not play any role. An
evaluation of the axial-vector form factor showed that the
impact of the pion-isobar loop effects is significant.
Therewith a large sensitivity on the used framework
was illustrated. The success of the study [7] rests on the
novel feature of insisting on the use of on-shell hadron
masses inside the loop expressions. Application of more
conventional approaches to such SU(2) flavor lattice data
have not been documented in the literature so far. Since our
approach is not mainstream yet, it is nevertheless useful to
scrutinize it against further quantities measurable on lattice
QCD ensembles. We note however, that there are some
works [16,17] based on flavor SU(3) ensembles that
applied more conventional chiral extrapolation techniques
like proposed in [18]. In this case, however, an application
of flavor SU(2) chiral extrapolation formulas may be
questioned since the LEC will have a dependence on
the not-so-well known variation of the chiral strange quark
masses of such ensembles.

In the present work we will consider the induced
pseudoscalar form factor of the nucleon. It offers a unique
further test bed of our approach as it is largely determined
by the set of low-energy constants (LEC) that enter the
axial-vector form factor already. For the first time we
derive results in terms of a novel generalization of the
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Passarino-Veltman scheme that permits a systematic
subtraction of power-counting structures without generat-
ing kinematical singularities nor acausal structures [19].
A chiral expansion is implied by using approximated

II. THE INDUCED PSEUDOSCALAR
FORM FACTOR OF THE NUCLEON

The axial current in a nucleon state is parametrized by an

ey 2 : 2
coefficient functions in front of the generalized basis loop axial-vector, G (g”), and an induced pseudoscalar, Gp(q7),

functions that are evaluated in terms of on-shell hadron form factor
masses rather than bare masses.
|
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with ¢> = (p — p)? and p? = p?> = M% (see e.g. [20]). Using exact isospin symmetry the form factors are introduced in
terms of the conventional Pauli matrices z;. They can be conveniently expressed as a Dirac trace over the amplitude
Fﬁ( P, p) in space-time dimensions d, where we recall the form relevant for our current work [7].

The chiral Lagrangian with nucleon and isobar degrees of freedom was developed in a series of works [4,6,7,21-29].
Initially the heavy-baryon chiral perturbation theory [21-23] was applied. The relativistic form of the chiral Lagrangian was
used in [24-27]. Less well explored is the role of the isobar degrees of freedom [4,6,7,28,29]. We will use the conventions
of [7,19,30], in which a renormalization scheme based on a generalized Passarino—Veltman reduction scheme [31] was
propagated. Altogether, at the one-loop level we find
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where we encounter some low-energy constants (LEC) and loop integrals J¥ (p, p). Contributions from two-loop diagrams
are relevant at chiral order Q*. Unlike in our previous works on G4 (g?) our focus here is on the induced pseudoscalar form
factor Gp(g?). In turn additional contributions are required that were not considered by us before. The wave-function factor,

not only for the nucleon, Zy, but also for pion Z, together with the LEC [, is encountered. We use the one-loop expression
as given by [24] in Egs. (33)—(35) with
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in terms of the renormalization scale ¢ of dimensional regularization. Explicit expressions for the form of the nucleon wave
function factor Z, are given in [7].

Like in a computation of G, (g?) the leading order LEC gy, hy, f s but also some subleading order LEC g, g, » butnow in
addition g, , are needed in (2). Given the specific form of the form factor in (2) it is straight forward to match our convention
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for the LEC to other choices in the literature. Further two-body LEC gs, gy, g7, gz and f, f, are involved in the loop
functions, which we will specify in terms of their integrands

a‘
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with the baryon propagators
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The main target of our current work is the derivation of the induced pseudoscalar form factor Gp(g?) as implied by (5) and

properly expanded into its chiral moments. We will apply our counting rules formulated in terms of on-shell hadron
masses [7,30].

III. CHIRAL EXPANSION OF THE FORM FACTOR

In this section we will express the loop functions as introduced with (5) in terms of a generalized Passarino-Veltman
reduction scheme [7,19,31]. In a first step we apply the projection scheme (1) that avoids the need to consider tensor-type
loop integrals. Such a projection is always possible. We write
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where for any loop function J¥ (p,p) — 4M% JE(1)/
(t —m2) and J* (p, p) = JA(t) we introduced their suit-
ably projected forms. It is convenient to monitor the
consequences of the chiral Ward identities, which imply
in particular a correlation of the pseudoscalar and axial-
vector loop functions. In the chiral limit it should hold

t
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which we verified by explicit computations in our renorm-
alization scheme.

The contributions to the form factor G, (¢) and Gp(t) are
computed in application of a novel reduction scheme [19],
in terms of scalar loop functions only. Recently the
Passarino—Veltman scheme was supplemented systemati-

cally by a set of additional basis functions that leads to
|
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expressions free of kinematical constraints and that comply
with the expectation of dimensional counting rules [19].
Such an extension is required once triangle loop contribu-
tions are considered. While in our previous work [7] the
Passarino-Veltman set was extended by one specific loop
function in an evaluation of G4(¢) only, it turned out that
the more general scheme as proposed in [19] is required for
Gp(f). Our truncated expressions are implied by an
expansion of the coefficient functions in chiral moments

<1+A> ~Q%  (10)

where we keep the on-shell masses unexpanded. The chiral
limit value of the nucleon and isobar masses are M and
M + A respectively.

While we detail all axial-vector loop functions in
the Appendix, the so-far unknown pseudoscalar ones are
given here
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with r = A/M and aﬁlf’ — 1 atr — 0. In Table I we provide specific values for such coefficients as needed in our global fit
scenario. The coefficients o, characterize the corresponding loop functions J% (1) as they are detailed in the Appendix.
Particularly important are af, and af, that differ significantly from their limit value.

The set of basis loop functions are

- m2 m2

I, =—" log—=~ Q2
P 16ﬂ20gﬂ2 0
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where we introduced some subtraction terms for later convenience. We recall from [19] that it suffices to consider / (L%) (1)

~ 0,

7er =

VLnR

12
16 22M? (12)

I (1) =

and [ (L’;?Q (t) as additional basis functions. All remaining terms can be decomposed in terms of those without running into
kinematical constraints or power-counting violating structures.

AtyR — 0and y,”%’ — 0 our renormalized loop functions follow the expectation of dimensional counting with A/M =
r ~ Q as indicated in (12). In this case all bubble and triangle contributions in (8) start at order Q3. The only Q? term is
implied by the pion tadpole contribution. While such a counting is well justified for somewhat larger pion masses with
m, ~ A, it loses its efficiency in the chiral domain with m, <« A. Here one may integrate out the isobar degrees of freedom

and expand in m,/A. In order to properly treat both domains in our scheme we use the subtraction terms

1
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TABLE L. Values of the af, and afjb in our global fit with » = 0.343.
/) 1.164/1.185 by ol ab 1239
a’lq3, aly 1.194 ag.ab . ab, 0.761
a5/ 0.715/0.612 ay,, b, b, 0.949
o, b, 0.533 ol o, 1.554
o). ). 1.044 ol /ab, 2.783/3.481
ok, 0.932 ol als 1399
oy faly 1.276/1.250 oy ab) 1.034
A 1.494 ab, 0.977
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which are crucial in the chiral domain, since if not included
an explicit evaluation of a class of two-loop diagrams
would be needed [32]. Now we are in line with dimensional
counting rules

2

- m - m
La(M3) ~ i~ @ I (0~ s~ 0.
2
=(m, m
100 (1) ~A2—]7(42N Q% (14)

that arise in the chiral domain with m_ /A ~ Q.

IV. LEC FROM LATTICE QCD DATA

We consider QCD lattice data on two-flavor ensembles
from ETMC [33,34], CLS [11,35], and RQCD [10] QCD
lattice collaborations. While all such references provide the
nucleon pion and nucleon masses together with the form
factor G4(7) on their ensembles, only the ETMC provides
in addition the isobar mass. This is unfortunate since the
latter play a crucial role in the understanding of such form
factors. Moreover, results on Gp(t) are provided on CLS
and RQCD ensembles only. After a comparison of their
ratios

t = mz Gp(1)
4My Ga(t)’

(15)

it is evident that their results are largely incompatible for
Gp(t). This follows, since in our previous work we found
that their results on G4(7) appear quite compatible. As
explained in [11,35] the form factor Gp(t) is suffering from
sizeable and difficult-to-control excited state contamination
at small pion masses. While we made an attempt to fit the
results of [10] with our scheme we badly failed to recover
their results for Gp(1).

In the following we discuss the results of global fits to
the available dataset, where we excluded all results for
Gp(t) from [10]. We use the evolutionary fit algorithm
GENEVA [36] with the recently implemented mpi con-
sumer [37]. With this significant update it is possible now
to call the evolutionary algorithm as a heterogeneous mpi
job. As compared to previous versions a much better
scaling behavior in the number of involved cores is
observed. Our results are typically obtained on 2830 cores
from reserved nodes on the Green Cube at GSI.

Our fit strategy was detailed already in our previous
work [7]. We adjust the LEC to our expressions for the
nucleon and isobar masses, My and M, (with finite-
volume effects included following Ref. [38]), and for the
nucleon axial-vector form factor, G,(¢) and Gp(r) from
(7), (8) (without explicit finite-volume effects), to the
lattice data. As explained, we use on-shell in-box meson
and baryon masses in the loop expressions throughout this
work. We coin such volume effects as implicit volume

TABLE II. Lattice scales as determined in our global fit.
Group Scale (fm) This work Lattice group
ETMC ap-3s 0.1095(10900%)  0.0995(7) [33]
ap—39 0.0941(F3:0002) 0.089(5) [34]
Ap=4.05 0.0736(% 50002 0.070(4) [34]
dp=42 0.0590(%:5005) 0.056(4) [34]
CLS aps2 0.0850(*355%) 0.079 [11]
ap=s3 0.0705 (105665 0.063 [11]
aps.s 0.0525(105000) 0.050 [11]
RQCD ps> 0.0834(10:3%02) 0.081 [10]
p=529 0.0704(105607) 0.071 [10]
dp=s5.4 0.0598(*50005) 0.060 [10]

effects mostly driven by the volume dependence of the
in-box isobar mass.

The results depend on the pion mass and box size of a
given ensemble. It is important to have accurate values for
the QCD lattice scales available on all considered lattice
ensembles. Distinct QCD f values are associated with
distinct lattice scale parameters. We consider the various
lattice scales as free parameters in our global fit where we
isospin averaged empirical baryon masses as the scale
setting condition. Such a strategy was successfully used in
various global fits to lattice data [7,38—40]. Our results for
all lattice scales are shown in Table II. The scales given by
the ETMC and CLS collaborations differ significantly from
our values. There is, however, a clear trend that the smaller
the lattice scale, the closer our fitted scales get to the ones
given by the lattice collaborations. The RQCD scales, on
the other hand, can be reproduced quite accurately. Since
the lattice set up of the CLS and RQCD groups coincide,
one would expect identical lattice scales on the ff = 5.2
ensembles in Table II. Within uncertainties this is the case
for our results.

We include in the fit ensembles with pion masses up to
500 MeV and for lattice sizes with m L > 4.0. MeV. For
the form factor we include the data points up to momentum
transfer ¢ = —0.36 GeV2. The fit minimizes the least-
squares differences y? of our expressions with respect to
the lattice data points. In this y? determination, all
available lattice points that meet our requirements con-
tribute with equal weight. The y? per lattice point reached
is 72 /Ngaa = 0.799. With 124 used lattice data points
and 32 degrees of freedom (22 LEC and 10 lattice scales),
we reach for the total y? per degree of freedom

22 /Nge = 99.12/(124 — 32) = 1.077, (16)
which signals a fair description of the available lattice data.

As compared to [7] the improvement of the QCD lattice
data reproduction is a consequence of using an updated
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TABLE III.

Low-energy constants as determined in our fit. The * parameters are not fitted to the lattice data. While b, and d,, are

adjusted to the isospin-averaged masses of the nucleon and the isobar at the physical point, the value of hy, =9 g4 — 6 f's is implied by
its large-N, sum rule. The renormalization scale u is set to a conventional value.

LEC Fit result LEC Fit result LEC Fit result

f Mev] 83.43(2037) by [GeV™'] —0.6805(X0605) g5 [GeVv~] 0.9163(50072)
M [MeV] 893.79(%532) d; [GeV™!] —0.3224(X5019%) gy [GeV~2] —0.8096(15770%)
M+ A [MeV] 1200.42(%073) ¢, [GeV~] 1.4627(100559) gr [GeV™] 1.5035(109%3)
o LOCIRE) e Gev 12609(9012) 01 [GeV 7] L1233C 0
fs 1.5857(203176) g¢ [Gev™?] ~3.9827(*00523) hs [GeV~] 0.7748(55703)
m 0.7893(0113) g7 [Gev?] ~02752(:28%) hy [Gev-) 1.9760(*2152)
fi(Gev] 0.6949(%5313) fu [GeV] —0.7335(*04350) fx[Gev] —~0.0617(*)5653)
I3 0.0193(Z35063) Ly ~0.0151(*0000) K [MeV] 770

n 0.2277(13%0) Za ~0.0180(*20%)

evaluation of the loop functions but also by consideringa  hy =9g, — 6 f5. Depending on the values of g4, >0

large set of data, that includes the form factor G4(t) and
Gp(t). We search for local minima of our chi-square
function where we are interested only in those minima,
which have naturally sized LEC. This is easily possible
within our evolutionary algorithm.

In Table III we collect the values for the LEC from our
global fit. We give asymmetric one-sigma error bars. They
are based on a one standard deviation (¢) change for the
value of y2. (i.e., an increase by 1). We determined the
region for the LEC meeting this range, from which follow
the errors for the LEC. While our results are in qualitative
agreement with previous studies there are important
differences. For instance it shows an expected value for
Iy [41,42]. Also our values for f, M, M + A, and g, are
within range of [42]. On the other hand we find values for
gs and gy that disagree significantly from previous SU(2)
works like Refs. [41,43]. However, in most papers the
constants gg and gy are determined in a theory without
isobars.

A comparison of our /3 and I, in Table III with values
listed in [44] reveals a striking tension. While our I3
translates into an [; value of about ~3.07 our value for
I, has a sign opposite to typical values from [44]. We
scrutinized our results for [, by performing further fits by
selecting ensembles with m, <450 MeV but also
m, < 550 MeV. In both cases the fit quality is changed
slightly only. While the LEC change somewhat outside the
tiny 1-sigma error band none of the striking features of our
best fit scenario in Table III with m, < 500 MeV is altered.
In particular our /, remains negative always.

It is interesting to observe that in our current fit the sign
of h, changed as compared to [7]. A negative sign was also
obtained previously in [14] from a study of loop corrections
in pion-nucleon scattering. While at leading orderina 1/N.,.
expansion one may favor a large and positive iy ~9 g, /5
value, at subleading order its sign is not fixed with

and fg¢ > 0 it may turn positive or negative. In the axial-
vector form factor the contribution ~h4 f%J,a,(f) probes
the sign of /4. A possible more direct strategy to determine
such a phase was suggested recently in [45]. The fact that
we find a strong sensitivity of /4, on the detailed form of
how to incorporate the isobar degrees of freedom, we may
speculate that the specifics of loop corrections in pion-
nucleon scattering may be subject to similar effects. Here
the novel development [19] may turn out instrumental.

In Table IV we list additional observable quantities as
they are implied by our set of LEC. Most interesting is our
prediction for the axial-vector coupling constant, which is
significantly below its empirical value G4 (0) = 1.2732(23)
[46]. We interpret this discrepancy as the effect from the
neglected strange-quark mass effects in our approach.

The axial radius may be compared with its empirical value
(r3) = 0.46(24) fm? [47,48], where we find our value to be
roughly consistent with its empirical expectation. Previous
lattice values show quite some spread [6,11,12,49] but tend
to prefer also a small radius with for instance (ri) =
0.213(6)(13)(3) fm? from [49]. Similarly the empirical
value for gp = 10.6(2.7) from [50]

TABLE IV. Observables as determined in our fit.

Observable Fit results
GA(0) 1.2284(*350%)
(r3) [fm?] 0.20137 (56052
9r 8.2521(*00%)
ozv [MeV] 42.22(109%)
oza [MeV] 35.27(1 901
frz [MeV] 84.96(107)
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m
gp = 21‘;N Gp(~0.877m2), (17)

is surprisingly close to our range in Table IV. So one may
expect that the effect of strange quarks is less visible here.

Most striking we find our value for the pion-nucleon
sigma term

d
—m-Z M. 18
OzN m()m N ( )

and the pion decay constant which both show a significant
conflict with the empirical value o,y = 58(5) MeV
from Ref. [51-53] and the PDG value f, = (92.21 +
0.14) MeV [54]. Our sigma term also differs significantly
from our previous value obtained [7], which we take as
strong hint that details how to incorporate the isobar
degrees of freedom are crucial for such observables. Our
current value is quite consistent with previous analysis
[55,56] that obtained o,y =41(5)(4) MeV based on a
flavor-SU(2) extrapolation of an older set of lattice data for
the nucleon mass [34,57-59]. While some recent fits of
flavor SU(3) lattice QCD data in [60,61] appear compatible
with the empirical value, there is a large spread in values in
the literature based on different assumptions and datasets
(see, e.g., [39,40,62,63]).

This raises the question on the role of strange quarks in
the sigma term but also in the pion decay constant. The
reason for our discovery in the decay constants stems to a
large extent in the sign of /4. In contrast to previous works
based on flavor SU(2) ensembles as listed in [44], in our
work we determined /, from the pseudoscalar induced form
factor of the nucleon for the first time. Setting the lattice
scale for SU(2) ensembles by the empirical decay constant,
a rather popular scheme, may masks the potential discovery
of such an effect. Lattice studies with a scale set to the
nucleon mass would be much preferred in this case.

V. SUMMARY AND OUTLOOK

In our work we presented a chiral extrapolation study of
lattice QCD data based on flavor SU(2) ensembles of CLS,
RQCD, and ETMC. Our emphasis is the role of the isobar
in a computation of the axial-vector form factor of the
nucleon. Here the evaluation of one-loop effects involving
the isobar was worked out in a novel chiral framework, that

Ja(t) = =1, + O(QY),

permits a systematic subtraction of power-counting terms,
but still use on-shell hadron masses. For the first time we
achieved a simultaneous reproduction on QCD lattice data
for both components of that form factor on ensembles with
pion masses up to 500 MeV.

Our results indicate the crucial importance of strange
quark effects on the axial-vector form factor. Lattice data in
the absence of active strange degrees of freedom do not
seem to be able to reproduce the empirical form factors at
the physical point. The axial-vector coupling constant of
the nucleon is underestimated, but also the pion-nucleon
sigma term turns out to be much below its empirical value.
While our current fit to the available dataset is already
excellent it cannot be ruled out that our conclusions are
affected upon a full consideration of finite-box effects or a
further improved dataset.

It is an open challenge to generate and analyse further
lattice QCD data at fixed strange quark masses, which can
be extrapolated faithfully to the physical pion masses and
volumes. Only then a significant comparison with empiri-
cal results is convincing. Given this challenge it is of utmost
importance to generate high statistic data on the isobar
masses for such systems on ensembles with varying
volumes and pion masses. On our side we plan to provide
a full computation of finite box effects for such form
factors. We expect that with those it may be possible to also
consider further discretization effects by the spurion field
approach.
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APPENDIX: LOOP FUNCTIONS FOR G4

We confirm the form of the axial-vector loop functions as
derived in [7]. A revision of such results is required as to
arrive at results that comply with (9) and (11). The
following form is found

- - 4 _
Jan (1) + I, (1) = 2 m; <—1 + gMN(gs - 29T)>1n1v + O(0%),

jﬁlﬂN([) = jﬂ + m72r 771'N + O(Q4)’
8

TAs(0)+ 4,00 =5

(2575 [-m2 ey + 26 My rafs| + 13| -mi2 oy + 26 My ray] + 87 rztag‘l)MN T +O(QY),
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J J 16 1 7 2 Myr -
J?/ﬂA(l) * JgﬂN(t) - —Em,z, (IﬂN - 05?2 IﬂA) 9 <Vtaf1 +86My 0‘?3 + lszfSN ta?1>IﬂA
8feMyr =(1.0 ~(0.1 4 -(2.0 ~(02
+3 EfSN tag My, (I(sz)(t) +1§M)(r)> gt M (1<MN>(;) Hgm)(t)) +0(0%),

- 2 5 10 - 4 - -
Ha(0) =3 (27l + 3z = oMwaly Vo + 31003 (120 + T2 ) + 0@, (D

together with the rational functions @* and a” which take the form

B (2+7r)2(20 4 24r + 1972 + 37%)

ol
12 80(1 +r)? ’
o (2 +r)3(20 4 36r +297% + 5r%)
B 160(1 + r)* ’
_ 2+ r)2(4 - = 3r3)
2 16(1 + r)? ’
o = 2+ r)34-5r7-57)
2o 32(1 +r)? ’
2+ r)t
o = 2+
16(1 4 r)?
o (2+r)2(1 —1—r—r2)
4l 4(1+r)? '
o — (2+7r)34+4r+3r7)
2 32(1+r)?
2+t +2r+217)
w 16(1 + r)? ’
ot Q+7r)?@B+4r+4r2 +1r%)
o 12(1 4 r)? ’
247r)?
ot = ,
o414 r)?
Q2+r1+r+1r?)
aA —
7 2(1+r)?
g (2 +7r)3(18 + 60r + 297> + 4r3)
81 144(1 + r)? ’
o (2 +7)(20 + 212r + 39872 + 3257° + 130r* + 197°)
2 40(1 4 r)* ’
e r)?(30 + 1307 4 31912 4 418° 4 296" 4 107r° 4 14r°)
8 120(1 + )3 ’
o (2+7r)%(6+6r+r?)
o 24(1 +r)?
b (24 7)%(40 + 48r + 4277 4+ 1877 + 9r* + 21°)
a = )
12 160(1 + r)?
o (24 r)3(20 + 367 + 2972 + 577)
o 160(1 + r)’ ’
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24128 =612 =18 —=9r* =27
P

2= 3201+ 1) ’
» 241r)3@-52-57)
e T
4
oy = % o = af),
240 4r-r)
Ty
p Q4@+ 12r+77+57 + 1)
% = 32(1+ 1) ’
» 24t +2r+2r%)
%3 = 16(1 + )} ’
2 2 3
o = 24 (132?1‘:’: :L)jr * ) ’ af, = af),
2
R e
2
ay) = @+ ;zgl_:—r;z_‘_ r) ) ahy = ay,
o — (2+7r)3(18 4+ 60r + 297> + 4r%)
8 144(1 + r)? ’
p (24 7r)(20+236r 4 518/ + 60317 + 442r* + 187r° 4 40r° 4 317)
T2 = 40(1 + r)’? ’
» (24 7)2(30+130r + 319r% 4 4187 +296r* 4 1077 + 14r°)
% = 120(1 + 1)’ ’
» (2+7r)%(6+6r+1r?)
U VY SIS A
2 2
o, = 2+ r;(?:j; ) (A2)

The expectation (9) implies specific relations among the coefficients

— P _ P _ P P P P — P
afy =ab, forn=1,...,9, and af, =df. ak, =al}, af, =al|,

— _
aly=al, forn=1,...9, (A3)

which is indeed verified by our explicit computations. Note that the identities in the second line (A3) are accidental and not
related to the chiral Ward identities.
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