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In this paper, we analyze the top-quark decay t → Wb up to next-to-next-to-next-to-leading order (N3LO)
QCD corrections. For the purpose, we first adopt the principle of maximum conformality (PMC) to deal with
the initial perturbative QCD (pQCD) series. Then we adopt the Bayesian analysis approach, which
quantifies the unknown higher-order terms’ contributions in terms of a probability distribution, to estimate
the possible magnitude of the uncalculated N4LO terms. In our calculation, an effective strong coupling
constant αsðQ�Þ is determined by using all nonconformal fβig terms associated with the renormalization

group equation. This leads to a next-to-leading-log PMC scale QðNLLÞ
� ¼ 10.3048 GeV, which can be

regarded as the correct momentum flow of the process. Consequently, we obtain an improved scale-invariant
pQCD prediction for the top-quark decay width, e.g., Γtot

t ¼ 1.3120� 0.0038 GeV, whose error is the
squared average of the uncertainties from the decay width of W-boson ΔΓW ¼ �0.042 GeV, the coupling
constant ΔαsðmZÞ ¼ �0.0009, and the predicted N4LO-terms. The magnitude of the top-quark pole mass
greatly affects the total decay width. By further taking the PDG top-quark pole mass error from cross-section
measurements into consideration, e.g., Δmt ¼ �0.7 GeV, we obtain Γtot

t ¼ 1.3120þ0.0194
−0.0192 GeV.

DOI: 10.1103/PhysRevD.109.114026

I. INTRODUCTION

The top quark is the heaviest elementary particle in the
Standard Model (SM), and it is remarkable for its decay
processes. Compared to other quarks, the top quark has a
much larger mass and a significantly shorter lifetime. It
does not have enough time to form any hadron before
decaying itself. The top quark’s substantial Yukawa
coupling with the Higgs boson exerts considerable influ-
ence on the SM observables. Furthermore, it serves as an
exceptional laboratory for probing fundamental inter-
actions at the electroweak (EW) symmetry-breaking scale
and beyond.
Within the SM, the top-quark decays almost exclusively

into a W-boson and a b-quark. Thus the top-quark total
decay width can be deduced from the partial decay width

Γðt → WbÞ and the branching fraction Bðt → WbÞ. In
2012, using the integrated luminosity of 5.4 fb−1, which
is collected by the D0 Collaboration at the Tevatron pp̄
Collider, Γt ¼ 2.00þ0.47

−0.43 GeV was extracted [1]. In 2014,
the CMS Collaboration provided a better determination of
the total width, Γt ¼ 1.36� 0.02ðstatÞþ0.14−0.11ðsystÞ GeV [2],
where “stat.” and “syst.” are short notations for statistical
and systematic errors, respectively. This measurement is
based on the assumption Bðt → WqÞ ¼ 1, which includes
the sum over all down-type quarks q ¼ ðb; s; dÞ. In 2017,
an initial direct measurement was conducted by an ATLAS
analysis, which involves the direct fitting of reconstructed
leptonþ jets events by using the integrated luminosity of
20.2 fb−1 at a center-of-mass energy of

ffiffiffi
s

p ¼ 8 TeV. This
resulted in Γt ¼ 1.76� 0.33ðstatÞþ0.79

−0.68ðsystÞ GeV [3]. In
2019, a measurement by the ATLAS Collaboration, using
the integrated luminosity of 139 fb−1 at the center-of-mass
energy of

ffiffiffi
s

p ¼ 13 TeV, employed a template fit to the
invariant mass of the lepton-b-quark in dilepton final
states. This yielded Γt ¼ 1.94þ0.52

−0.49 GeV [4]. The Particle
Data Group (PDG) reported the world average as
Γðt → WqÞ ¼ 1.42þ0.19

−0.15 GeV and Bðt → WbÞ ¼ Γðt →
WbÞ=Γðt → WqÞ ¼ 0.957� 0.034 [5].
Theoretically, the next-to-leading order (NLO) quantum

chromodynamics (QCD) corrections were first computed in
Refs. [6–9], while the NLO EW corrections were provided
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in Refs. [10–12]. The next-to-next-to-leading order (N2LO)
QCD corrections for the t → Wb decay had been done by
using the asymptotic expansion [13–17], and the complete
N2LO analytical results were available in Ref. [18].
The N2LO polarized decay rates were calculated in
Refs. [19,20]. Recently, the next-to-next-to-next-to-leading
order (N3LO) corrections in the large-NC limit have been
presented in Ref. [21], and the first complete high-precision
numerical results of N3LO QCD corrections have also been
given in Ref. [22]. Those two predictions agree well with
each other, indicating that the leading-color contributions
are dominant and the approximation of the large-NC limit is
highly reliable at least for this particular process.
Because of the large kinematic scale Q ∼OðmtÞ and the

small strong coupling constant αsðmtÞ ∼ 0.1, the perturba-
tive QCD (pQCD) series for the t → Wb total decay width
up to the N3LO-level exhibits good convergence. It,
however, still has a sizable renormalization scale depend-
ence due to the divergent renormalon terms [23–25].
Practically, one usually selects the renormalization scale
as μR ¼ mt so as to eliminate the divergent large loga-
rithmic terms such as ln ðμ2R=m2

t Þ, and then vary it within a
certain range such as μR ∈ ½mt=ξ; ξmt� with ξ usually being
chosen as 2, 3, 4, etc., to account for its uncertainty. This
treatment is referred to as the conventional scale-setting
approach. It is evident that this approach is arbitrary, and
the perturbative nature of the series heavily relies on the
choice of ξ, thereby diminishing the reliability of the final
theoretical prediction. As is well-known, the physical
observable, which corresponds to an infinite-order pertur-
bative series, should be scale invariant [26–29]; and it is
important to know whether such scale invariance can also
be achieved for a fixed-order series. Simply requiring the
fixed-order series to be scale invariant does not achieve this
goal, as it is not true and explicitly breaks standard
renormalization group invariance (RGI) [30]. This simple
requirement implicitly assumes that all uncalculated
higher-order terms contribute zero. Therefore, a proper
method needs to be introduced to improve the perturbative
series before applying the scale-setting procedures.
Many scale-setting approaches have been suggested

to improve the fixed-order series so as to achieve a
scale-invariant prediction. Especially, by using the nf
terms as a guide, the Brodsky-Lepage-Mackenzie (BLM)
approach [31] automatically resums the corresponding
gluons as well as the quark vacuum-polarization contribu-
tions, which then leads to a scheme-and-scale-invariant
prediction [32]. The NLO commensurate scale relations that
ensure the scheme-and-scale invariance at the NLO level
have also been given there. Those relations indicate that if
the expansion coefficients match well with the correspond-
ing αs, exactly scheme-independent predictions can be
achieved. Since the running behavior of αs is governed
by the renormalization group equation (RGE) or the β
function [33,34], to deal with the fβig terms involved in the

RGE is then more fundamental than to deal with the nf
terms. Lately, the BLM is developed to the principle of
maximum conformality (PMC) [35–39], which perfects the
idea behind BLM and offers a reliable extension of the BLM
to all orders. In the Abelian limit [40], BLM and PMC
reduce to the well-known Gell-Mann–Low approach [41]
for QED. Subsequently, the PMC single-scale-setting
approach (PMCs), as an effective alternative to the original
PMC multi-scale-setting approach, has also been proposed
in Refs. [42,43] from two distinct but equivalent perspec-
tives. It has been demonstrated that the PMC prediction
is independent of any choice of renormalization scheme
and scale [44], being consistent with the self-consistency
requirements of the renormalization group [45,46]. The
PMCs approach also greatly suppresses the residual scale
dependence [47] of the PMC predictions due to unknown
even higher-order terms of the pQCD series. In this paper,
we adopt the PMCs approach to deal with the t → Wb total
decay width up to N3LO QCD corrections.
For any perturbative series, there are some uncertainties

caused by the unknown higher-order terms (UHO-terms).
Since the exact pQCD result is unknown, it would be
helpful to quantify the UHO-terms’ contribution in terms
of a probability distribution. Following the idea of
Bayesian analysis (BA) [48–51], the conditional proba-
bility of the unknown perturbative coefficient is first given
by a subjective prior distribution, which is then updated
iteratively according to the Bayes’ theorem as more and
more information has been included. It has been found that
the generally more convergent and scheme-and-scale-
invariant PMC series provides a more reliable basis than
conventional series for estimating the contributions from
the UHO-terms [52–55]. In this paper, we adopt the BA
approach to estimate the contributions from the unknown
N4LO-terms of the PMC series.
The remaining parts of the paper are organized as

follows. Section II gives the formulas for the top-quark
decay process, t → Wb, up to N3LO QCD corrections, and
then shows how to apply the PMC scale-setting procedures
to the present process. Section III presents numerical results
and discussions for the top-quark decay. Section IV is
reserved for a summary.

II. CALCULATION TECHNOLOGY

By neglecting the corrections caused by the finite
b-quark mass and the off-shell W-boson effect, the total
decay width of the top-quark decay t → Wb up to N3LO
QCD corrections can be expressed as

ΓQCD
t→Wb ¼

GFm3
t jV tbj2

8
ffiffiffi
2

p
π

X3
i¼0

fiðω; μRÞαisðμRÞ; ð1Þ

where μR is the renormalization scale, GF is the
Fermi constant, mt is the top-quark pole mass, V tb is the
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Cabibbo-Kobayashi-Maskawa (CKM) matrix element, and
ω ¼ m2

W=m
2
t . The LO decay width that is caused by weak

interaction provides a dominant contribution to the total
decay width. Because the W-boson will decay promptly
into leptons or quarks, we rewrite the top-quark decay
width as

ΓQCD
t→W�b ¼ ΓLO½1þ RtðμRÞ�; ð2Þ

where W� indicates the W-boson may be off-shell and the
QCD corrections

RtðμRÞ ¼
X3
i¼1

riðμRÞαisðμRÞ þOðα4sÞ; ð3Þ

where for the coefficients ri (i∈ ½1; 3�), we have [6,18]

riðμRÞ ¼
1

ΓLO

GFm3
t jV tbj2

8
ffiffiffi
2

p
π

ωγ

π

Z
ε̄

0

fiðε; x; μRÞ
ðx − ωÞ2 þ ω2γ2

dx: ð4Þ

Here ε ¼ m2
b=m

2
t , ε̄ ¼ ð1 −mb=mtÞ2 and γ ¼ ΓW=mW with

ΓW being the W-boson total decay width. The LO decay
width is scale invariant and equals

ΓLO ¼ GFm3
t jV tbj2

8
ffiffiffi
2

p
π

ωγ

π

Z
ε̄

0

f0ðε; xÞ
ðx − ωÞ2 þ ω2γ2

dx: ð5Þ

To get the analytic expression, the integration involving the
polylogarithm functions can be accomplished with the
assistance of the POLYLOGTOOLS [56] and GINAC [57]
packages. In Eqs. (4) and (5), the finite b-quark mass
contributions have been included; e.g., the coefficients
fiðω; μRÞ in Eq. (2) have been replaced by fiðε;ω; μRÞ
and the upper limit of the integral in Eqs. (4) and (5)
becomes ε̄ instead of 1. Currently, the finite b-quark mass
effect is known only up to NLO accuracy [6]. For
convenience, we list the analytic coefficients f0 and f1
at the scale μR ¼ mt, including and excluding b-quark mass
effects, in Appendix A. The analytic form of the coefficients
f2 and f3 can be found in Refs. [18,21], where f3 contains
only the most dominant leading color contribution that gives
the most dominant contributions.
Following the standard PMC single-scale-setting proce-

dures [42,43], by using the QCD degeneracy relations
among different orders [58], one can distribute the original
nf series into conformal and nonconformal terms, and then
use the RGE-involved non conformal fβig terms to
determine an overall effective running coupling αsðQ�Þ
for t → Wb decay, where Q� is referred to as the PMC
scale, which can be viewed as the effective momentum flow
for the process. More explicitly, the coefficients ri in Eq. (2)
can be parametrized as follows:

r1 ¼ r1;0; ð6Þ

r2 ¼ r2;0 þ β0r2;1; ð7Þ

r3 ¼ r3;0 þ β1r2;1 þ 2β0r3;1 þ β20r3;2: ð8Þ

Here, ri;0 are scale-invariant conformal coefficients
and ri;jð≠0Þ are nonconformal coefficients. At present,
the fβig functions have been computed up to the five-
loop level in the modified minimal-subtraction scheme
(MS-scheme) [59,60], e.g., β0 ¼ ð11 − 2nf=3Þ=ð4πÞ and
β1 ¼ ð102 − 38nf=3Þ=ð4πÞ2 for nf active flavors.
After applying the PMC, the divergent renormalon

terms, which grow as various powers of β0 under the
approximation βi ≃ βiþ1

0 , have been removed, we then
obtain a more convergent pQCD series as

RtjPMC ¼
X3
i¼1

ri;0αisðQ�Þ þOðα4sÞ; ð9Þ

where Q� is fixed by requiring all nonconformal terms to
vanish. Using the present known pQCD series up to the
N3LO level, the PMC scale Q� can be fixed up to next-to-
leading-log (NLL) accuracy, i.e.,

ln
Q2�
Q2

¼ S0 þ S1αsðQ�Þ þOðα2sÞ; ð10Þ

where the coefficients S0;1 are

S0 ¼ −
r̂2;1
r̂1;0

; ð11Þ

S1 ¼
2ðr̂2;0r̂2;1 − r̂1;0r̂3;1Þ

r̂21;0
þ r̂22;1 − r̂1;0r̂3;2

r̂21;0
β0; ð12Þ

where r̂i;j ≡ ri;jjμR¼Q. Since all the nonconformal fβig
terms of the series (3) that are associated with the RGE have
been absorbed into αsðQ�Þ, the resulting pQCD series (9)
becomes a conformal series. The magnitude of αs then
matches well with the expansion coefficients of series,
yielding naturally scheme-independent theoretical predic-
tions at any fixed order [30,44,46,61,62].

III. NUMERICAL RESULTS AND DISCUSSIONS

For numerical calculations, the following values are
taken as the input parameters [5]:

mb ¼ 4.78 GeV; mt ¼ 172.5� 0.7 GeV;

mW ¼ 80.377 GeV; ΓW ¼ 2.085� 0.042 GeV;

mZ ¼ 91.1876 GeV; GF ¼ 1.1663788 × 10−5 GeV2;
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and αsðmZÞ ¼ 0.1179� 0.0009. The NLO EW correction
ΔEW can be calculated using the formulas given in
Refs. [11,12,63] together with the recently issued
Mathematica program TOPWIDTH [18,21]. By using the
above inputs, we obtain ΔEW ¼ 0.0249� 0.0004 GeV,
where the errors are for Δmt ¼ �0.7 GeV.

A. Basic properties

Using Eqs. (10), (11), and (12), we can obtain the wanted
LL-accuracy and NLL-accuracy PMC scales that corre-
spond to N2LO and N3LO pQCD series, respectively, e.g.,

QðLL;NLLÞ
� ¼ f15.2143; 10.3048g GeV: ð13Þ

Using the NLL-accuracy Q�, we then obtain the N3LO-
level pQCD approximant Rt under the PMC scale-setting
approach

RtjPMC ¼ −0.1146: ð14Þ

We observe that the improved pQCD series after applying
the PMC becomes independent to any choice of renorm-
alization scale. On the other hand, we observe that the scale
dependence of the original pQCD series does become
smaller when more loop terms have been included, being
consistent with conventional wisdom. As for the present
N3LO-level series, the net error under the conventional
scale-setting approach is small, which is about 2.5% for
μR ∈ ½mt=2; 2mt�, which will be extended to ≃4.8% for a
broader choice of scale range μR ∈ ½mt=4; 4mt�. More
explicitly, we give the N3LO-level conventional prediction
in the following:

RtjConv ¼ −0.1122þ0.0009þ0.0014
−0.0019−0.0013 ; ð15Þ

whose central value corresponds to μR ¼ mt; the first errors
are for μR ∈ ½mt=2; 2mt�, and the second ones are additional
errors by using a broader range μR ∈ ½mt=4; 4mt�. The net
N3LO Rt for conventional and PMC series are consistent
with each other under the proper choice of scale range for
the conventional scale-setting approach. Thus, we need to
be careful of discussing the scale uncertainties under the
conventional scale-setting approach. For convenience, if not
specially stated, we will adopt the usual choice of
μR ∈ ½mt=2; 2mt� to do our discussions. It is found that
the perturbative behavior of the conventional series still
depends heavily on the choice of scale. To show this
point more clearly, we define a κ-factor for the series
(3) or (9), i.e.,

κN
iLO

Conv ¼ riðμRÞαisðμRÞ
r1αsðμRÞ

; κðiÞPMC ¼ ri;0αisðQ�Þ
r1;0αsðQ�Þ

: ð16Þ

Numerically, we have

κConv ¼ f1; 0.1702; 0.0476g; μR ¼ mt=2; ð17Þ

κConv ¼ f1; 0.2450; 0.0792g; μR ¼ mt; ð18Þ

κConv ¼ f1; 0.3096; 0.1155g; μR ¼ 2mt; ð19Þ

κPMC ¼ f1; 0.1210; 0.0548g: ð20Þ

The scale-independent convergent behavior of the PMC
series (9) could be regarded as the intrinsic perturbative
nature of Rt. According to Eqs. (14) and (15), after
including the known NLO EW correction ΔEW, the total
top-quark decay widths of t → Wb are

Γtot
t jConv ¼ 1.3156þ0.0014

−0.0027 GeV; ð21Þ

Γtot
t jPMC ¼ 1.3120 GeV; ð22Þ

where the errors for the series under the conventional scale-
setting approach is for μR ∈ ½mt=2; 2mt�.
We present the top-quark total decay width Γtot

t up to
N3LO QCD corrections versus the renormalization scale μR
(divided by mt) before and after applying the PMC scale-
setting approach in Fig. 1. After applying the PMC, as
shown in Fig. 1, the scale dependence of the top-quark
decay width is eliminated at any fixed order. The difference
between N2LO-level and the N3LO-level PMC predictions
are much smaller than that of the conventional ones,
indicating that the convergence of the pQCD series is
significantly improved.

FIG. 1. The total top-quark decay width of t → Wb (Γtot
t ) up to

N3LO QCD corrections versus the renormalization scale μR using
conventional (Conv.) (black lines) and PMC (red lines) scale-
setting approaches, respectively.
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B. Predictions of the uncalculated N4LO contributions
using the Bayesian analysis approach

It has been noted that the improved series by using the
PMC scale-setting approach not only provides more precise
predictions for the fixed-order pQCD series but also
establishes a robust basis for estimating the potential
contributions from the UHO-terms, thus significantly
improving the predictive power of perturbation theory.
In the following, we adopt the BA to estimate the effects

from the uncalculated N4LO-terms from the known initial
N3LO-level series (3) and the PMC series (9), respectively.
The BA quantifies the contributions of the UHO-terms in
terms of a probability distribution. It becomes most
effective when the series has a good convergent behavior.
A detailed introduction to the BA can be found in
Refs. [48–51], and its combination with the PMC can
be found in Refs. [43,52–55]. Following the idea of the
BA, for a fixed degree-of-belief (DoB) or equivalently the
Bayesian probability, the estimated UHO-coefficient rpþ1,
given known coefficients fr1; r2;…; rpg, will fall within
the following specific credible interval (CI) rpþ1 ∈
½−rðDoBÞpþ1 ; rðDoBÞpþ1 �, where

rðDoBÞpþ1 ¼
(
r̄ðpÞ

pþ1
p DoB; DoB≤ p

pþ1

r̄ðpÞ½ðpþ1Þð1−DoBÞ�−1=p; DoB≥ p
pþ1

; ð23Þ

with r̄ðpÞ ¼ maxfjr1j; jr2j;…; jrpjg. For definiteness and
without loss of generality, we take DoB≡ 95.5% to
estimate the contributions from the UHO-terms.
Comparison of the calculated central values using

known series (simply labeled as “exact value”) of the
total top-quark decay width Γtot

t with the predicted credible
intervals of Γtot

t up to N4LO-level QCD corrections are
given in Fig. 2. Because of the scale dependence of the
coefficients ri>1 in the conventional pQCD series, the BA
can only be employed after specifying the renormalization
scale, which introduces additional uncertainties to the total
decay width. And in Fig. 2, we give two predictions for
μR ∈ ½mt=2; 2mt� and μR ∈ ½mt=4; 4mt�, respectively. In
contrast, the conformal coefficients ri;0 in the PMC series
are scale independent, providing a more reliable founda-
tion for constraining estimations from UHO contributions.
Figure 2 shows that the probability distributions become
more accurate, and simultaneously the resultant credible
intervals become smaller for the same DoB, when more
loop terms have been included. Practically, we can treat the
magnitude of unknown N4LO terms as one of the errors of
the given N3LO-level Γtot

t . If taking the scale range
μR ∈ ½mt=2; 2mt� to estimate the UHO contributions, such
errors by using the BA are

ΔΓtot
t jUHOConv ¼ ðþ0.0037

−0.0041Þ GeV; ð24Þ

ΔΓtot
t jUHOPMC ¼ �0.0035 GeV: ð25Þ

The predicted error range for the perturbative series under
the conventional scale-setting approach will be extended to
ΔΓtot

t jUHOConv ¼ ðþ0.0060
−0.0054Þ GeV for μR ∈ ½mt=4; 4mt�. The above

two equations show that after applying the PMC, the errors
ΔΓtot

t from the UHO-terms are only slightly smaller than
those of the pQCD series under the conventional scale-
setting approach. Both are small, e.g., κN

4LO ∼ 0.03 for all
cases, due to the fact that the N3LO-level QCD corrections
already show good convergent behavior as indicated by
Eqs. (17)–(20).

C. Uncertainties for the total decay width Γtot
t

In addition to the above-mentioned scale uncertainties
and the uncertainties caused by the UHO-terms, there are
also other error sources for the determination of t → Wb
decay width. When discussing the uncertainty for one of
the error sources, the other error sources are set to be their
central values.
We put the uncertainties arising from ΔαsðmZÞ ¼

� 0.0009, ΔΓW ¼ �0.042 GeV, and Δmt ¼ �0.7 GeV
under conventional and PMC scale-setting approaches in
Table I. It shows that the errors are dominated by Δmt,
whose effect to the total decay width is about 5 to 10 times
larger than those of other error sources. Thus, a more
precise mt will greatly improve the precision of the
theoretical predictions. The squared average of the uncer-
tainties to the total top-quark decay width arising from

FIG. 2. Comparison of the calculated central values of the total
top-quark decay width of t → Wb (Γtot

t ) for the known series
(labeled as “exact value”) with the predicted credible intervals of
Γtot
t up to N4LO-level QCD corrections. The blue hollow

diamonds and red hollow quadrates represent the calculated
central values of the fixed-order pQCD predictions using conven-
tional (Conv.) and PMC scale-setting approaches, respectively.
The blue stars, blue solid diamonds, and red solid quadrates with
error bars represent the predicted credible intervals using the
Bayesian approach based on the known Conv. series and the PMC
series, respectively. DoB ¼ 95.5%.
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μR ∈ ½mt=2; 2mt�, ΔαsðmZÞ, ΔΓW , and the predicted N4LO
terms are

Γtot
t jConv ¼ 1.3156þ0.0042

−0.0051 GeV; ð26Þ

Γtot
t jPMC ¼ 1.3120� 0.0038 GeV: ð27Þ

And if further including the uncertainty caused by Δmt, we
finally get

Γtot
t jConv ¼ 1.3156� 0.0195 GeV; ð28Þ

Γtot
t jPMC ¼ 1.3120þ0.0194

−0.0192 GeV: ð29Þ

Figure 3 depicts the relationship between the total decay
width Γtot

t and the top-quark pole mass mt, which indicates
an approximately proportional relationship between the
top-quark’s decay widths and its pole mass. The total decay
width is highly sensitive to the top-quark pole mass.
Figure 4 shows the total decay width Γtot

t for the theoretical
predictions given by Eqs. (28) and (29). As a comparison,

various experimental measurements [1–4] and the world
average value reported by the PDG [5] have been included
in Fig. 4. Clearly, while the top quark’s decay width is
highly sensitive to its pole mass, the large uncertainties in
experimental measurements preclude us from deriving a
reliable reference value for the top-quark pole mass from
these data.
In the above analysis, we have implicitly taken the CKM

matrix element jVtbj ¼ 1 to do our numerical calculation.
As a final remark, we give an inverse determination of the
CKM matrix element jV tbj by using the PDG averaged
values on the top-quark total decay width and the branching
fraction Bðt → WbÞ. That is, by using the PDG’s averaged
total decay width Γt;PDG ¼ 1.42þ0.19

−0.15 GeV [5], the branch-
ing fraction Bðt → WbÞ ¼ 0.957� 0.034, along with the
theoretical predictions (28) and (29) under conventional
and PMC scale-setting approaches, respectively, we
inversely obtain1

jV tbjConv ¼ 1.033þ0.144
−0.116 ; ð30Þ

jV tbjPMC ¼ 1.036þ0.144
−0.116 : ð31Þ

Both of them are consistent with the average value of the
Tevatron and LHC results, e.g., jV tbj ¼ 1.014� 0.029 [5].
By confining the prior within the SM region [0, 1], we then
establish a lower limit of jV tbj > 0.917 and jV tbj > 0.919

TABLE I. Additional uncertainties (in unit: GeV) arising
from ΔαsðmZÞ ¼ �0.0009, ΔΓW ¼ �0.042 GeV, and Δmt ¼
�0.7 GeV under conventional and PMC scale-setting app-
roaches, respectively.

ΔΓtot
t jΔαs ΔΓtot

t jΔΓW ΔΓtot
t jΔmt

Conv. �0.0015 �0.0004 ðþ0.0190
−0.0189 Þ

PMC �0.0015 �0.0004 ðþ0.0190
−0.0188 Þ

FIG. 4. Comparison between the theoretical predictions with
their errors given in Eqs. (28) and (29) and the experimental
measurements for the total decay width Γtot

t . The errors of
theoretical predictions are for the uncertainties arising from
μR ∈ ½mt=2; 2mt�, ΔαsðmZÞ, ΔΓW , Δmt, and the predicted
N4LO terms.

FIG. 3. Total decay width of t → Wb (Γtot
t ) versus the top-quark

pole mass mt, where the light-blue and dark-red bands are results
for conventional (Conv.) and PMC scale-setting approaches,
respectively. The dashed and solid lines are their central values.
The shaded bands are for the uncertainties arising from
μR ∈ ½mt=2; 2mt�, ΔαsðmZÞ, ΔΓW , and the predicted N4LO terms.

1The errors are estimated by using the usual error propagation
formulas. That is, the error of a quantity Z ¼ X=Y is calculated by
ΔZ ¼ ðX0=Y0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔX=X0Þ2 þ ðΔY=Y0Þ2

p
, where X ¼ X0 � ΔX,

Y ¼ Y0 � ΔY, and Z ¼ ðX0=Y0Þ � ΔZ.
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for conventional and PMC scale-setting approaches,
respectively.

IV. SUMMARY

In the paper, we have presented an improved analysis of
the total decay width of the top-quark decay t → Wb up to
N3LO QCD corrections by applying the PMC scale-setting
approach. In contrast to previous literature [64], our present
treatment is achieved after taking both the off-shell
W-boson contributions and the finite b-quark mass effects
into account. Because the N3LO-level QCD corrections to
the total decay width Γðt → WbÞ already show good
convergent behavior as indicated by Eqs. (17)–(20), the
predictions under the conventional scale-setting approach
are close to the PMC predictions. Especially because the
errors are dominated by Δmt, which dilute the great
improvements on the perturbative nature of the series by
applying the PMC. However, the improved pQCD series
after applying the PMC is independent of any choice of the
renormalization scale, which not only leads to a more
precise prediction but also provides a better basis for
estimating the contributions from UHO-terms. The errors
of the PMC series caused by ΔαsðmZÞ and the predicted
N4LO terms are comparable to each other, and there are also
sizable renormalization scale errors for the conventional

scale-setting approach. Figure 1 indicates that the
differences between the N2LO-level and the N3LO-level
PMC predictions are much smaller than the conventional
one, indicating that the convergence of the pQCD series is
significantly improved and the PMC prediction shows
quicker trends of approaching its physical/measured value.
Thus our present results emphasize the importance of using
proper scale-setting approaches to achieve precise fixed-
order pQCD predictions.
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APPENDIX: ANALYTIC EXPRESSIONS
FOR THE LO AND NLO COEFFICIENTS WITH

OR WITHOUT b-QUARK MASS EFFECTS

The first two scale-independent coefficients f0ðε;ωÞ and
f1ðε;ωÞ at the scale μR ¼ mt for t → Wb which contain
finite b-quark mass effects are [6]

f0ðε;ωÞ ¼ λ1=2ð1; ε;ωÞ½ð1− εÞ2 þωð1þ εÞ− 2ω2�; ðA1Þ

f1ðε;ωÞ ¼ −
CF

2π

n
½ð1 − εÞ2 þ ωð1þ εÞ − 2ω2�ð1þ ε − ωÞ

h
π2 þ 2Li2ðuWÞ − 2Li2ð1 − uWÞ − 4Li2ðuqÞ − 4Li2ðuquWÞ

þ ln
1 − uq
ω

lnð1 − uqÞ − ln2ð1 − uquWÞ þ
1

4
ln2

ω

uW
− ln uW ln

ð1 − uquWÞ2
1 − uq

− 2 ln uq ln ½ð1 − uqÞð1 − uquWÞ�
i

− 2f0ðε;ωÞ
�
lnωþ 3

2
ln ε − 2 ln λð1; ε;ωÞ

�
þ 2ð1 − εÞ½ð1 − εÞ2 þ ωð1þ εÞ − 4ω2� ln uW

þ 1

2
½ð3 − εþ 11ε2 − ε3Þ þ ωð6 − 12εþ 2ε2Þ − ω2ð21þ 5εÞ þ 12ω3� ln uq

þ 3

2
λ1=2ð1; ε;ωÞð1 − εÞð1þ ε − ωÞ ln εþ 1

2
λ1=2ð1; ε;ωÞ½−5þ 22ε − 5ε2 − 9ωð1þ εÞ þ 6ω2�

o
; ðA2Þ

where ω ¼ m2
W=m

2
t , ε ¼ m2

b=m
2
t , CF ¼ 4=3 is SUc(3)

color factor, the Källen function λðx; y; zÞ ¼ x2 þ
y2 þ z2 − 2ðxyþ xzþ yzÞ, the polylogarithm function
LinðzÞ ¼

P∞
k¼1 z

k=kn. The functions uq and uW are
defined as

uq ¼
1þ ε − ω − λ1=2ð1; ε;ωÞ
1þ ε − ωþ λ1=2ð1; ε;ωÞ ;

uW ¼ 1 − εþ ω − λ1=2ð1; ε;ωÞ
1 − εþ ωþ λ1=2ð1; ε;ωÞ : ðA3Þ

In the case where the b-quark mass effects have been
ignored, one has

f0ðωÞ≡ f0ð0;ωÞ ¼ ð1 − ωÞ2ð1þ 2ωÞ; ðA4Þ

f1ðωÞ ¼ −
CF

2π

n
f0ðωÞ½π2 þ 2Li2ðωÞ − 2Li2ð1 − ωÞ�

þ 2ωð1þ ωÞð1 − 2ωÞ lnω
þ ð1 − ωÞ2ð5þ 4ωÞ lnð1 − ωÞ

−
1

2
ð1 − ωÞð5þ 9ω − 6ω2Þ

o
: ðA5Þ
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