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We compute the energy loss of heavy fermions moving in a plasma, taking into account the modification
of the photon collective modes induced by collisions using a Bhatnagar-Gross–Krook collisional kernel.
We include contributions from both hard and soft scatterings of the heavy fermion using a collisionally
modified hard-thermal-loop resummed propagator. Using this method, one does not need to introduce a
separation scale between hard- and soft-momentum exchanges. To place our calculation in context, we
review other theoretical approaches to computing the collisional energy loss of fermions and discuss the
systematics and results obtained in each approach compared to using a resummed propagator for both hard
and soft momentum exchanges. Our final results indicate that self-consistently including the effect of
collisions in the self-energies of the resummed propagator results in an increased energy loss compared to
using collisionless hard-thermal-loop propagators. The effect becomes larger as the magnitude of the
coupling constant and the velocity of the fermion increase.
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I. INTRODUCTION

The study of energy loss in high-temperature plasmas is
important for understanding the jet suppression in the
quark-gluon plasma (QGP) generated in relativistic
heavy-ion collisions [1,2]. In his seminal work on this
topic, Bjorken predicted that collisional energy loss would
result in suppression of jets in relativistic heavy-ion
collisions, which began the consideration of this as a
key signature for the production of a QGP [3]. It was later
realized that radiative parton energy loss would be the
dominant mechanism for the suppression of jets at asymp-
totically high collision energies [4–24]; however, at cur-
rently achievable heavy-ion collision energies at the
Relativistic Heavy Ion Collider (RHIC) and the Large
Hadron Collider (LHC), both collisional and radiative
energy loss are important and must be included to properly
interpret experimental observations of the suppression of
jets in such collisions [25–27]. In particular, when consid-
ering heavy quarks, due to the dead-cone effect, elastic

scatterings that induce collisional energy loss are more
important to take into account [28–31]. When both effects
are included, one can understand the observations of jet
suppression at both RHIC and LHC collision energies in a
manner consistent with expectations from perturbative
quantum chromodynamics (QCD) [32–40].
Early works on collisional energy loss of high-energy

partons propagating through the QGP included hard or
soft momentum exchanges separately within perturbative
QCD [3,5,41,42]. In Ref. [43], Braaten and Thoma
presented a systematic method for including both hard
and soft momentum exchanges by introducing a momen-
tum separation scale q⋆, above which a diagrammatic
calculation of heavy-quark energy loss with bare propa-
gators was performed, and below which a hard-thermal-
loop (HTL) [44–46] resummed propagator was used. The
inclusion of this separation scale made the calculations in
the hard and soft sectors manifestly finite in the infrared
(IR) and ultraviolet (UV) limits, respectively; however,
the hard part was logarithmically IR divergent as q⋆

decreased and the soft part was logarithmically UV
divergent as it increased. Braaten and Thoma showed
that these two divergences canceled exactly, so that the
sum of the hard and soft parts was independent of the
separation scale at leading order in the QCD coupling
constant. It was also found that without introducing the
separation scale, the divergent contributions in the hard
and soft parts also canceled when the dimensional
regularization was used [47,48].
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Despite this key progress, an issue remained with the
calculation of Braaten and Thoma, namely that for small
velocities that were still within the region of applicability of
their calculation, their asymptotic evaluation of the inte-
grals lead to the collisional energy loss being negative in an
equilibrium QGP, resulting in energy gain instead of energy
loss at small velocities. This unphysical behavior was later
eliminated by direct numerical evaluation of the necessary
integrals that appear at leading order in the coupling
constant [49,50]. One caveat of the method introduced
inRefs. [49,50]was that at finite gauge coupling, therewas a
residual dependence on the cutoff scale q⋆ separating hard
and soft momentum exchanges. The residual dependence
went to zero as the gauge coupling constant went to zero. At
large values of the coupling constant relevant to QGP
physics, the dependence of the total collisional energy loss
on the separation scaleq⋆ allowed the authors to quantify the
theoretical uncertainty associated with the introduction of a
theta function like separation scale q⋆ between the hard and
soft contribution to the collisional energy loss.
An alternative approach to computing collisional energy

loss was proposed in the original paper of Braaten and
Thoma [43], which consisted of evaluating it using the
diagrammatic method, but using HTL-resummed propa-
gators in the t-channel diagrams for all momentum
exchanges. This alternative did not require the introduction
of a separation scale and would give a manifestly IR and
UV finite result; however, it was not implemented in their
paper. The method was eventually applied by Djordjevic
and Gyulassy in Ref. [19], allowing them to compute the
collisional energy loss without having to resort to separate
calculations in the hard and soft sectors. Similarly to
Refs. [49,50] they found that this approach eliminated
the unphysical energy gain at low velocities (momentum).
In all of these prior works [19,43,49,50] the authors

made use of HTL-resummed propagators that were
obtained in the collisionless limit from computations of
the HTL self-energies. However, when collisions are
included, the HTL self-energies are modified, resulting
in direct damping of the quasiparticle modes and a shift of
the Landau damping cut into the lower half of the complex
energy plane [51–53]. In Refs. [51–53], the effect of
collisions on the soft-scale self-energies was performed
using a number-conservingBhatnagar-Gross–Krook (BGK)
collisional kernel. This collisional kernel is a modified
form of the relaxation time approximation collisional kernel
and models collisions through the inclusion of a collision
rate ν. Using the same method as used by Djordjevic and
Gyulassy [19], in this paper we compute the collisional
energy loss using the diagrammatic method, but using
BGK-modified HTL (BGK-HTL) self-energies instead of
collisionless HTL self-energies. In this way, we can self-
consistently include the effect of collisions on soft- and hard-
momentum exchanges without introducing an explicit
separation scale.

This is to be contrasted to prior work using BGK-HTL
self-energies. In Refs. [54,55], the authors computed only
the soft contribution to collisional energy loss of heavy
quarks using the BGK-HTL self-energies. In Refs. [56,57],
the authors also computed only the soft contribution to
collisional energy loss of heavy quarks within a quasipar-
ticle model of QCD at zero and finite chemical potential.
Finally, we mention that Ref. [58] considered the effect of a
finite relaxation time on the soft contribution to collisional
energy loss using a polarization tensor that was derived
within an effective hydrodynamic theory. In all of these
previous works, the authors found that the inclusion of
collisional effects into the resummed gauge propagator
resulted in an increase in the collisional energy loss.
Our work goes beyond these prior studies by including

the hard contribution to the collisional energy loss in a self-
consistent manner. In addition to this, we emphasize again
that the formalism we use does not require the introduction
of an explicit separation scale for hard and soft momentum
exchanges and we do not approximate the integrals
using asymptotic limits. As a consequence, similarly to
Refs. [19,49,50] we avoid the problem of unphysical
energy gain. Finally, to assess the dependence of our
results on the calculational scheme used, we provide
explicit comparisons between the collisional energy loss
obtained using the Braaten-Thoma [43] and Romatschke-
Strickland [49,50] methods. In order to demonstrate the
general method, we focus herein on the calculation in QED
since this is somewhat more straightforward than the full
QCD calculation and postpone the consideration of the
full QCD calculation to a forthcoming paper. Within this
context, we prove that the resulting energy loss is gauge-
independent and evaluate it numerically. Our final results
indicate that, in QED using couplings consistent with those
expected to be generated in the QGP (αs ∼ 0.3), the
inclusion of collisional effects in the gauge boson propa-
gator results in an approximately 10% increase in the heavy
fermion collisional energy loss at high momentum.
The structure of our paper is as follows. In Sec. II, we

make systematic comparisons between the theoretical
methods for computing the collisional energy as developed
in Refs. [19,43,49,50] and demonstrate that different
methods lead to the same result in the weak-coupling limit,
while a moderate discrepancy exists for a realistic QCD
coupling constant relevant at temperatures not far above the
critical temperature, where the effect of collisions among
medium partons is expected to be more pronounced. In
Sec. III, we carry out the calculation of the collisional
energy loss of a heavy fermion propagating through a hot
QED plasma by using a resummed gauge-boson propagator
that uses the BGK-HTL self-energies. With a phenomeno-
logical estimate of the collision rate entering into the BGK
collisional kernel, we present our numerical results for the
energy loss with emphasis on the enhancement caused by
the collision effect. In addition, we compare our results
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with results obtained in prior works. Finally, our conclu-
sions and outlook are presented in Sec. IV.

II. THEORETICAL METHODS TO COMPUTE
THE COLLISIONAL ENERGY LOSS

OF A HEAVY FERMION IN A HOT PLASMA

Considering a high-energy fermion with mass M and
momentum p propagating through a hot QED plasma at a
temperature T, it may lose energy through interactions with
the medium partons. The rate of energy loss dE=dx per
distance traveled is given by

−
dE
dx

¼ 1

v

Z
∞

M
dE0ðE − E0Þ dΓ

dE0 ; ð1Þ

where the velocity of the incident heavy fermion with
energy E is given by v ¼ p=E and the interaction rate ΓðEÞ
can be expressed in terms of the Feynman diagrams. For
example, the contribution to ΓðEÞ from scattering by a
thermal electron is given by

ΓðEÞ ¼ 1

2E

Z
d3p0

ð2πÞ32E0

Z
d3k

ð2πÞ32k nFðkÞ

×
Z

d3k0

ð2πÞ32k0 ½1 − nFðk0Þ�

× ð2πÞ4δ4ðPþ K − P0 − K0Þ
�
1

2

X
spins

jMj2
�
: ð2Þ

In the above equation, P ¼ ðE;pÞ and P0 ¼ ðE0;p0Þ are
the four-momenta of the incoming and outgoing fermion,
respectively. The four-momenta of the medium partons that
scatter off the incident fermion are denoted by K ¼ ðk;kÞ
and K0 ¼ ðk0;k0Þ. In addition, the phase space is weighted
by a Fermi-Dirac distribution nFðkÞ ¼ ðek=T − 1Þ−1 and a
Pauli-blocking factor 1 − nFðk0Þ for the incoming and
outgoing electrons, respectively. Similarly, to get the
contribution to ΓðEÞ from scattering by a thermal photon,
one should use the Bose-Einstein distribution nBðkÞ ¼
ðek=T þ 1Þ−1 and replace 1 − nFðk0Þ with the Bose-
enhanced factor 1þ nBðk0Þ in the above equation. To
obtain the energy loss −dE=dx, one only needs to insert

ðE − E0Þ=v≡ ω=v into the integrand of the above equation
for the interaction rate.
Let us focus on elastic scattering e−μ → e−μ where the

incident fermion is assumed to be a massive muon. For the
hard scattering process with large momentum transfer ∼T,
we can only consider the tree-level Feynman diagram, as
shown in Fig. 1. On the other hand, when the momentum of
the exchanged photon is on the order of eT, self-energy
insertion into the bare photon propagator has to be taken
into account. Thus, for the soft process, one needs to use an
effective photon propagator, i.e., the hard thermal loop
resummed propagator. In the covariant gauge, it reads

DμνðQÞ ¼ 1

Q2 − ΠTðω̂Þ
Aμν þ 1

q2 − ΠLðω̂Þ
ω2q2

Q4
Bμν

−
η

Q4
QμQν; ð3Þ

where η is the gauge parameter and the four momentum of
the exchanged photon is denoted by Q ¼ K0 − K ¼ ðω;qÞ.
The transverse and longitudinal part of the photon self-
energy are given by

ΠLðω̂Þ ¼ m2
γ

�
−1þ ω̂

2
ln
ω̂þ 1þ iϵ
ω̂ − 1þ iϵ

�
;

ΠTðω̂Þ ¼
ω̂2

2
m2

γ

�
1 −

ω̂2 − 1

2ω̂
ln
ω̂þ 1þ iϵ
ω̂ − 1þ iϵ

�
: ð4Þ

which are complex valued for ω̂2 < 1 and the two projec-
tors are defined as

Aμν ¼ −gμν þQμQν

Q2
þ M̃μM̃ν

M̃2
;

Bμν ¼ −
Q2

ðM ·QÞ2
M̃μM̃ν

M̃2
: ð5Þ

In the above equations, ω̂≡ ω=q and the screening mass is
defined by m2

γ ¼ e2T2=3. In addition, Mμ is the heat bath
vector, which in the local rest frame is given by
Mμ ¼ ð1; 0; 0; 0Þ. The part that is orthogonal to Qμ is
denoted as

(a) (b) (c)

FIG. 1. Leading order Feynman diagrams for the elastic scattering e−μ → e−μ and γμ → γμ. (a) t-channel Coulomb scattering.
(b) s-channel Compton scattering. (c) u-channel Compton scattering.
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M̃μ ¼ Mμ −
M ·Q
Q2

Qμ: ð6Þ

At large momentum transfer, the resummed propagator is
reduced to the bare one provided that the coupling constant
is small. As a result, the squared matrix element computed
based on the resummed propagator is expected to be valid
for both hard and soft processes. Thus, in terms of the
integral variables k, q, and ω, the collisional energy loss of
the fast fermion can be expressed as

−
�
dE
dx

�
¼ e4

4π3v2

Z
∞

0

dknFðkÞ
�Z

2k=ð1þvÞ

0

dqq2
Z

vq

−vq
dωω

þ
Z

2k=ð1−vÞ

2k=ð1þvÞ
dqq2

Z
vq

q−2k
dωω

�

×

�
jΔLðQÞj2f1ðk; q;ωÞ þ

Q4

q4
jΔTðQÞj2

×
�
f2ðk; q;ωÞ − f1ðk; q;ωÞ

��
; ð7Þ

where

ΔTðQÞ ¼ 1

Q2 −ΠTðω̂Þ
; ΔLðQÞ ¼ 1

q2 −ΠLðω̂Þ
; ð8Þ

and

f1ðk; q;ωÞ ¼ 2k
ωþ k
q2

þ ω2=q2 − 1

2
;

f2ðk; q;ωÞ ¼ 3
k2 þ kωþ ω2=4

q2

− ð1 − v2Þ k
2 þ kωþ q2=2

q2 − ω2
−
v2

4
: ð9Þ

To obtain the above result, we make use of the fact that in
an isotropic medium, the energy loss is independent of the
direction of v. In addition, besides the assumption M ≫ T,
we also assume v ≫ T=E and E ≪ M2=T. These assump-
tions, together with the energy and momentum conserva-
tion lead to a constraint on the energy of the outgoing
medium parton, k0 ∼ T. As a result, the transferred energy
ω ¼ k0 − k and momentum q ¼ k0 − k are also on the
order of T or even smaller. To leading order in T=M, we can
take P ≈ P0 and the contributions to the energy loss from
Compton scattering1 are suppressed by ðT=MÞ2 which have
been neglected in our calculation. On the other hand, when
the transferred energy and momentum is very large, for

example, q ∼ E, one should consider the opposite limit
E ≫ M2=T which corresponds to the ultrarelativistic limit
v → 1. In this case, a complete treatment of the collisional
energy loss can be found in Ref. [59] where the Compton
scattering cannot be neglected anymore.
The above method which uses a resummed gluon propa-

gator in the calculations of the squared matrix element has
been adopted in Ref. [43] as an alternative way to study the
soft contributions to −dE=dx. Then it has been generalized
to arbitrary momentum exchange in Ref. [19]. In addition to
a well-defined energy loss, the most important advantage of
this method is that there is no need to introduce an artificial
cutoff q⋆ to define the so-called hard and soft contributions
to the collisional energy loss.
In Refs. [43,49], by following a similar procedure as the

above, the hard contributions to −dE=dx are obtained with
the resummed propagator replaced by the bare one. The
result is given by

−
�
dE
dx

�
hard

¼ e4

4π3v2

Z
∞

0

dknFðkÞ
�Z

2k=ð1þvÞ

0

dqq2

×
Z

vq

−vq
dωωþ

Z
2k=ð1−vÞ

2k=ð1þvÞ
dqq2

Z
vq

q−2k
dωω

�

×
2ω

ðω2 − q2Þ2
�
2ðk − v · kÞ2 þ 1 − v2

2

× ðω2 − q2Þ
�
δðω − v · qÞ: ð10Þ

However, an infrared divergence would appear as q → 0,
and thus an extra constraint θðq − q⋆Þ on the integral
variable q has to be introduced. Explicitly, we need to
perform the following integrals

1

2ð2πÞ2
Z

d3k
k

Z
d3k0

k0
θðq−q⋆Þ

→
Z

∞

1þv
2
q⋆
dk

Z
2k
1þv

q⋆
qdq

Z
vq

−vq
dωþ

Z
∞

1þv
2
q⋆
dk

Z
2k
1−v

2k
1þv

qdq
Z

vq

q−2k
dω

þ
Z 1þv

2
q⋆

1−v
2
q⋆

dk
Z

2k
1−v

q⋆
qdq

Z
vq

q−2k
dω: ð11Þ

In Ref. [43], by assuming q⋆=T ≪ 1, the following
integrals haven been used instead

1

2ð2πÞ2
Z

d3k
k

Z
d3k0

k0
θðq−q⋆Þ

→
Z

∞

0

dk
Z 2k

1þv

q⋆
qdq

Z
vq

−vq
dωþ

Z
∞

0

dk
Z 2k

1−v

2k
1þv

qdq
Z

vq

q−2k
dω:

ð12Þ

Clearly, those q⋆’s in (11) which do not lead to divergence
have been set to be zero in (12). This is valid due to the fact

1The Compton scattering in QED involves the s- and u-
channel diagrams as shown in Fig. 1. Notice that the muon is not
thermalized due to its large mass and one can use the bare fermion
propagator to compute the matrix element for these two channels.

GUO, QIU, ZHAO, and STRICKLAND PHYS. REV. D 109, 114025 (2024)

114025-4



that the typical momentum of the medium partons is on the
order of T. Therefore, in the small q⋆ region, the hard
contribution to the energy loss from Ref. [43] which used
(12) to perform the integrals (denoted as BT result) agrees
with that from Ref. [49] which used (11) to perform the
integrals (denoted as RS result). However, as the cutoff gets
smaller, both results show a logarithmic enhancement, see
Fig. 2 and have an obvious discrepancy as compared the
hard contribution based on Eq. (7).2 This is actually very
easy to understand, since for a soft momentum exchange, it
is necessary to use the resummed propagator, which
regulates the infrared divergence. In fact, in the limit
q⋆ → 0, the result based on Eq. (7) corresponds to the
total energy loss. On the other hand, the hard contribution is
expected to vanish as q⋆ → ∞. In this limit, BT result
becomes negative as the assumption q⋆=T ≪ 1 does not
hold any more.
The interaction rate Γ can be also expressed as

ΓðEÞ ¼ −
1

2E
Tr½ð=PþMÞImΣðPÞ�

¼ −
e2

4π2v

Z
∞

0

dqq
Z

vq

−vq
dω

�
1þ nBðωÞ

�
Im½ΔLðQÞ

þ ðv2 − ω̂2ÞΔTðQÞ�; ð13Þ

where the fermion self-energy ΣðPÞ is given by the
Feynman diagram in Fig. 3(a). In Ref. [43], by using the
HTL resummed photon propagator, the soft contribution to
−dE=dx is found to be

−
�
dE
dx

�
soft

¼ e2m2
γ

8πv2

Z
q⋆

0

dq
Z

vq

−vq
dωω2

�
jΔLðQÞj2

þ 1 − ω̂2

2
ðv2 − ω̂2ÞjΔTðQÞj2

�
: ð14Þ

In the above equation, we have expanded the Bose-Einstein
distribution function nBðωÞ for ω ∼ eT ≪ T and kept only
the nonvanishing leading order contribution. It can be
proven that Eq. (14) is equivalent to the soft contributions
obtained in Ref. [49], where the energy loss was calculated
based on the classical energy loss formula [41]. On the
other hand, by introducing a cutoff q⋆ for the transferred
momentum q, the integrals in Eq. (7) become

1

2ð2πÞ2
Z

d3k
k

Z
d3k0

k0
θðq⋆−qÞ

→
Z

∞

1þv
2
q⋆
dk

Z
q⋆

0

qdq
Z

vq

−vq
dωþ

Z 1þv
2
q⋆

0

dk
Z 2k

1þv

0

qdq
Z

vq

−vq
dω

þ
Z 1þv

2
q⋆

0

dk
Z 2k

1−v

2k
1þv

qdq
Z

vq

q−2k
dω

þ
Z 1þv

2
q⋆

1−v
2
q⋆

dk
Z

q⋆

2k
1þv

qdq
Z

vq

q−2k
dω: ð15Þ

For soft processes, the upper limit of q should be much
smaller than T. Therefore, only the first term contributes
and the above integrals can be simplified as

1

2ð2πÞ2
Z

d3k
k

Z
d3k0

k0
θðq⋆ − qÞ

→
Z

∞

0

dk
Z

q⋆

0

qdq
Z

vq

−vq
dω: ð16Þ

Notice that although jMj2 becomes complicated with the
use of the resummed propagator, Eq. (7) can be further
simplified by requiring that the integrand should be
symmetric in ω. Consequently, the integral over k can

FIG. 2. Hard and soft contributions to the collisional energy loss as a function of q⋆=T obtained from different methods.

2To make comparisons among different theoretical methods,
we introduce θðq − q⋆Þ in Eq. (7) to define the corresponding
hard contribution. Similarly, with θðq⋆ − qÞ, one can obtain the
soft contribution based on Eq. (7). Notice that in both cases, the
squared matrix element is obtained using the resummed HTL
propagator.
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be carried out analytically, which gives the prefactor m2
γ in

Eq. (14). In fact, it can be easily shown that with (16), the
energy loss from Eq. (7) is identical to Eq. (14).
At this point, it is also useful to extend the above analysis

to the case of QCD. The corresponding soft contributions
which come from the t-channel quark-quark and quark-
gluon scatterings can be obtained fromEq. (14) by replacing
e by the strong coupling g, multiplying by a color factor
CF ¼ 4=3, and replacing the screening mass m2

γ with its
QCD counterpart m2

D ¼ g2T2ð1þ Nf=6Þ, where Nf is the
number of light flavors in the medium [43]. The same result
should be obtained when the interaction rate ΓðEÞ is defined
in terms of the squared matrix element as shown in Eq. (2),
which is then computed by using the resummed gluon
propagator. According to the origin of the prefactor m2

γ in
Eq. (14), we can expect the following change in QCD

2e2
Z

knFðkÞdk→ 2g2nf

Z
2

3
knFðkÞdkþg2

Z
4knBðkÞdk:

ð17Þ

It can be easily shown that the above integrals lead to the
screening mass m2

γ for QED and CFm2
D for QCD, up to a

same and trivial constant. InEq. (17), the color factors for the
quark-quark and quark-gluon scatterings are given by 2=3
and 4, respectively. In the case of a Fermi-Dirac distribution
function, there is an extra factor of 2 because scatterings
from thermal positrons or antiquarks also need to be
included. Based on the above discussions, the squared
matrix element computed with resummed gluon propagator
becomes identical for the quark-quark and quark-gluon
scatterings provided that the momentum of the exchanged
gluon is soft.
If one further assumes q⋆ ≫ eT, the integrand in

Eq. (14) can been expanded. Keeping the leading order
results, the q⋆-dependent part in the soft contributions can
be analytically calculated. An important conclusion in
Ref. [43] is that the cutoff dependence is completely
canceled between the hard and soft contribution.3

However, the expansion breaks down when q⋆ ∼ eT, so
the BT result becomes negative as q⋆ → 0 where the
energy loss approaches zero due to the increasingly smaller
integral region in Eq. (14). See Fig. 2 for a numerical
demonstration.
For very large q⋆, on the other hand, Fig. 2 also shows

that the soft contribution from Eq. (14) has a logarithmic
divergence, while the result from Eq. (7) is finite and
corresponds to the total energy loss as q⋆ → ∞. It is not
surprising to see such an unphysical behavior because
Eq. (14) only holds in the HTL approximation and thus is
not valid for a hard process. In contrast, the interaction rate
given in Eq. (13) is general provided that one uses a
resummed photon propagator without the HTL approxi-
mation. Taking into account the hard contribution to
−dE=dx, Eq. (13) can be expanded because the self-energy
correction to the (inverse) bare-photon propagator can be
treated as a small perturbation. To leading order in the
expansion, ΓðEÞ corresponds to the Feynman diagram as
shown in Fig. 3(b) which relates to the imaginary part of the
one-loop photon self-energy ImΠðKÞ. Clearly, the calcu-
lation of the self-energy has to be carried out beyond the
HTL approximation, and the exact result for ImΠðKÞ
involves the Fermi-Dirac distribution functions ∼ðnFðkÞ−
nFðkþ ωÞÞ. Using the identity ð1þ nBðωÞÞðnFðkÞ−
nFðkþ ωÞÞ ¼ nFðkÞð1 − nFðkþ ωÞÞ, one can show the
equivalence between Eqs. (2) and (13).
According to the above discussions, we find that in the

small coupling limit where eT ≪ q⋆ ≪ T can be well
satisfied, there is good agreement for the total energy loss
computed based on different theoretical methods. However,
when extrapolating to moderate couplings, discrepancies
appear. This has been numerically checked and the results
are presented in Fig. 4. Notice that the RS result of the
energy loss depends on the cutoff q⋆, we use the variational
approach to eliminate this ambiguity. Therefore, the cor-
responding energy loss is the minimum of −dE=dx when
varying q⋆.
Finally, we discuss the gauge dependence when using the

HTL resummed propagator to calculate the squared matrix
element. In general linear gauges, including covariant,
Coulomb, and temporal axial gauges, the gauge-invariant
part in the bare propagator is given by −gμν=Q2. On the
other hand, the gauge-dependent terms are proportional to
either QμQν or QμMν þQνMμ. It can be shown that these
gauge dependent terms do not contribute to the squared
matrix element. Notice that one Dirac trace associated with
the incident heavy fermion is Tr½ð=P0 þMÞγμð=PþMÞγμ0 �,
when contracted with Qμ, one obtains zero. Similarly, the
other Dirac trace associated with the medium light fermion
is Tr½=K0γν=Kγν0 � which also leads to zero when contracted
with Qν. As a result, the squared matrix element is gauge-
independent as expected.
The above analysis also applies to the case where the

resummed propagator is used. Since it has the same Lorentz

(a) (b)

FIG. 3. Feynman diagram for the fermion self-energy. (a) with
resummed photon propagator. (b) two-loop diagram.

3Based on Eq. (14), the expanded energy loss is referred to as
the BT result in Ref. [43], while the unexpanded one is the RS
result in Ref. [49].
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structure as the bare propagator, the gauge-dependent terms
in the resummed propagator have no contributions for the
same reason as discussed above. It should be pointed out
that besides a term proportional to gμν, there is another
gauge-independent contribution proportional to MμMν in
the resummed propagator. Therefore, to calculate the
matrix element, one only needs to consider the gauge
independent terms in Eq. (3) which are given by

D̃μνðQÞ ¼ −gμν

Q2 − ΠTðω̂Þ

þ
�

1 − ω̂2

Q2 − ΠTðω̂Þ
þ 1

q2 − ΠLðω̂Þ
�
MμMν: ð18Þ

Using Eq. (18), we can calculate the squared matrix
element. In the approximations thatM ≫ T and p ≫ T, the
result can be expressed as4

1

2

X
spin

jMj2 ¼ 16e4
�jΔLðQÞj2E2ðkk0 þk ·k0Þ

þ 2Re
�
ΔLðQÞΔTðQÞ��E	k�p ·k0 − ðp · q̂Þ

× ðk0 · q̂Þ�þ k0
�
p ·k− ðp · q̂Þðk · q̂Þ�


þ jΔTðQÞj2	2�p ·k− ðp · q̂Þðk · q̂Þ�
×
�
p ·k0 − ðp · q̂Þðk0 · q̂Þ�

þ ðkk0 −k ·k0Þ�p2 − ðp · q̂Þðp · q̂Þ�
�; ð19Þ

where q̂ ¼ q=q and the second and third lines do not
contribute to the energy loss after averaging over the
direction of v.

III. THE COLLISIONAL ENERGY LOSS
OF A HEAVY FERMION IN A HOT PLASMA

WITH A BGK COLLISIONAL KERNEL

To incorporate the collision effect in the calculation of the
fermion energy loss, a feasible way is to derive the photon
self-energy from the kinetic equation with a specified
collisional kernel, and then compute the corresponding
resummed propagator through the Dyson-Schwinger equa-
tion. Based on Eq. (7), the collisionally-modified resummed
propagator is apparently the key ingredient to study the
energy loss in a collisional plasma. We use the BGK
collisional kernel, which is given by

Cðk; XÞ ¼ −ν
�
fðk; XÞ −

R
k fðk; XÞR
k nFðkÞ

nFðkÞ
�
; ð20Þ

where ν is the collision rate, which is inversely proportional
to the equilibration rate of the plasma under collisions
between the hard partons. The BGK collisional kernel
ensures an instantaneously conserved number of particles,
which improves the relaxation time approximation. In the
above equation, we use the shorthand notation

R
k ≡R

d3k=ð2πÞ3 and fðk; XÞ ¼ fðkÞ þ δfðk; XÞ where the
fluctuation δfðk; XÞ presents a slight deviation of the
distribution function from its homogeneous values fðkÞ.
According to the Maxwell equation, the induced current

JμindðXÞ is given by JμindðXÞ ¼ e
R
k V

μδfðk; XÞ, and thus
can be obtained by solving the linearized kinetic equation
for the fluctuation δfðk; XÞ which, in momentum space,
reads

ið−ωþ q · vÞδfðk; QÞ � eVμFμνðQÞ∂νfðkÞ ¼ Cðk; QÞ;
ð21Þ

where V ¼ ð1; vÞ with v ¼ k=k. The field strength tensor
is Fμν ¼ ∂

μAν − ∂
νAμ. Furthermore, the þ and − signs

correspond to electrons and positrons, respectively.
The photon self-energy is determined by functional

differentiation of the induced current with respect to the

FIG. 4. Collisional energy loss as a function of v for e2=ð4πÞ ¼ 0.1 (left) and e2=ð4πÞ ¼ 0.3 (right) obtained from different methods.

4Notice that the squared matrix element obtained in Ref. [43]
has a wrong sign before the term ðkk0 − k · k0Þ, but this sign
is irrelevant to the soft contributions because the approximation
k ≈ k0 holds.
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gauge field and the result can be expressed as

ΠμνðQÞ¼δJμindðQÞ
δAνðQÞ ¼e2

Z
k
Vμ

∂
ðkÞ
l fðkÞg

lνðω̂− q̂ ·vÞ−Q̂lVν

ω̂− q̂ ·vþ iν̂

þe2ðiν̂Þ
Z

dΩ
4π

Vμ

ω̂− q̂ ·vþ iν̂

×
Z
k0
∂
ðk0Þ
l fðk0Þg

lνðω̂− q̂ ·v0Þ−Q̂lV 0ν

ω̂− q̂ ·v0 þ iν̂
W−1ðω̂; ν̂Þ:

ð22Þ

In the above equation, v0 ¼ k0=k0. We also define the
following dimensionless quantities ν̂¼ ν=q and
Q̂ ¼ ðω̂; q̂Þ. In addition, Wðω̂; ν̂Þ is given by

Wðω̂; ν̂Þ¼ 1−
iν̂
2

Z
1

−1
dx

1

ω̂−xþ iν̂
¼ 1þ iν̂

2
ln
z−1

zþ1
: ð23Þ

with z≡ ω̂þ iν̂. As discussed in Ref. [53], it can be
proven that the above self-energy is transverse so that
QμΠμν ¼ QνΠμν ¼ 0. However, it is not symmetric in
Lorentz indices due to the appearance of the BGK colli-
sional kernel. Notice that the distribution function fðkÞ in
Eq. (22) is completely arbitrary and an anisotropic hard
parton distribution in momentum space will lead to a rather
complicated structure of the photon self-energy which
requires five structure functions in the decomposition.
However, such a symmetry can be restored if an isotropic
distribution is considered. In this work, we consider the
thermal equilibrium distribution, i.e., fðkÞ ¼ 2nFðkÞ
where the factor 2 comes from taking into account electrons
and positrons with vanishing chemical potential. As a
result, the photon self-energy can be decomposed as
ΠμνðQÞ ¼ ΠTAμν þ ΠLω̂

2Bμν where the transverse and
longitudinal parts of the photon self-energy are given by

ΠTðω̂; ν̂Þ ¼
m2

γ

4
ω̂

�
2zþ ðz2 − 1Þ ln z − 1

zþ 1

�
;

ΠLðω̂; ν̂Þ ¼ −
m2

γ

2

1

Wðω̂; ν̂Þ
�
2þ z ln

z − 1

zþ 1

�
: ð24Þ

As compared to the collisionless limit, the Lorentz
structure of the photon self-energy with the BGK colli-
sional kernel is unchanged,5 therefore, the corresponding
transverse and longitudinal resummed propagators remain
the same as those given in Eq. (8), provided that one uses
Eq. (24) for the photon self-energy. It is obvious that our
previous discussions concerning the gauge invariance
based on Eq. (7) still hold in the presence of the BGK
collisional kernel. As a result, one can directly use Eq. (7)

to evaluate the energy loss and investigate the influence of
collisions between medium partons on −dE=dx.
In general, a QED plasma is weakly coupled because the

typical values of the coupling constant are rather small.
Consequently, the effects of collisions become negligible,
and no significant influence on the energy loss can be
expected. On the contrary, considering such an influence
on the heavy-quark energy loss in a QCD plasma is
certainly more interesting because the strong coupling
constant g could become moderate in a deconfined plasma
with temperatures not far above the critical temperature.
Similarly as the fermion energy loss, an energetic heavy
quark may also lose energy when passing through the QGP
by scattering off the light quarks and gluons. Up to a trivial
color factor, the above results can be generalized to the
quark-quark elastic scattering in QCD. We postpone the
study on the quark-gluon scattering to the future, since it
requires a new calculation of the squared matrix element as
well as a nontrivial verification on the gauge invariance
when the resummed propagator is used.
In a collisional QCD plasma, we can estimate the heavy-

quark energy loss due to quark-quark scattering based on
Eq. (7) where the coupling e should be replaced by g and
the gluon self-energy can be obtained from Eq. (24) with
m2

γ set to be the two-flavor QCD screening mass
m2

D ¼ 4g2T2=3. In addition, a color factor 2=3 should be
also included. However, due to the lack of the contributions
from the quark-gluon scattering, our results cannot serve as
a quantitative assessment on −dE=dx. On the other hand,
since we are interested in the collision effect on the energy
loss of a heavy-quark, we can actually focus on the ratio of
the energy loss with and without the collisions. It needs to
be noted that the energy loss ratio based on quark-quark
scattering can provide a qualitative estimate on the energy
loss ratio for full QCD including both quark-quark and
quark-gluon scatterings. This is because these two scatter-
ing processes have a roughly equal energy loss ratio.
As a rough estimate, we can assume the momentum

transfer is large enough for hard processes, while small
enough for soft processes.6 With only the hard contribu-
tions, the energy loss ratio should be very close to 1 as the
collision effect is negligible for large momentum transfer.
Furthermore, when considering soft momentum transfers,
the squared matrix element computed with the resummed
gluon propagator becomes identical for both quark-quark
and quark-gluon scatterings according to our previous
discussions. As a result, with only the soft contributions,
these two scattering processes also have an identical energy
loss ratio because the collision-induced modifications are
entirely encoded in jMj2 through the resummed gluon
propagators ΔLðQÞ and ΔTðQÞ. Combining the hard and

5The same is not true when an anisotropic distribution function
fðkÞ is used.

6In our calculation, there is no need to introduce a cutoff scale
for the momentum transfer. However, one can formally define the
hard and soft processes as we did in Fig. 2.
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soft contributions, a roughly equal energy loss ratio for both
quark-quark and quark-gluon scatterings can be expected
provided that in the collisionless limit, the relative impor-
tance of the hard and soft contributions to the energy loss
has no significant difference between these two different
scattering processes. This is found to be true according to
the known results [43].
The effects of collisions are very sensitive to the value of

the collision rate chosen in numerical evaluations.
However, as a phenomenological model for equilibration,
the BGK collisional kernel cannot be derived from first
principles. Therefore, determining the collision rate ν
seems to be a rather challenging task. On the other hand,
because the energy loss has an explicit dependence on the
coupling constant, introducing a g-dependent collision rate
turns out to be very reasonable. In this work, we adopt
the parametrization for the collision rate as used in
previous literature [52], ν=T ≈ 5.2α2s lnð1þ 0.25=αsÞ with
αs ¼ g2=ð4πÞ. Therefore, the dimensionless collision rate
ν̃ ¼ ν=mD can be written as

ν̃ ≈ 1.27α3=2s lnðcþ 0.25=αsÞ: ð25Þ

In the above equation, the constant c varies from 1 to 2 in
our numerical results. For a non-Abelian gauge theory
which has the feature of asymptotic freedom, according to
Eq. (25), the collision rate vanishes in the high-temperature
limit where αs → 0. This is actually an expected behavior.
In the temperature region close to the critical temperature,
choosing a typical value of the coupling constant αs ¼ 0.3,
the collision rate ν̃ ≈ 0.13–0.22 which is also consistent
with the values commonly used. We note that the collision
rate (25) is the one appropriate at the timescale associated
with successive hard-momentum exchanges. There are
more frequent soft-momentum exchanges that result in
small-angle scatterings and these are the source of the
logarithm in Eq. (25). Here, the constant c that adds to the
logarithm is taken to be an adjustable parameter to gauge
the sensitivity of our results to its precise value.

In Fig. 5, we show the numerical results of the collisional
energy loss due to quark-quark scattering as a function of
the heavy-quark velocity. To avoid introducing any speci-
fied temperature dependence of the coupling constant
which is not necessary for our purpose, we have scaled
the energy loss by a factor 1=ð4παsTÞ2. For comparison, the
scaled energy loss with and without the collisions are both
presented in this figure. We choose two different values of
the coupling constant, αs ¼ 0.3 and αs ¼ 1=ð4πÞ. The
former corresponds to a deconfined plasma near the critical
temperature, where the collision rate is relatively large,
ν̃ ≈ 0.177 when taking c ¼ 1.5. The latter corresponds to
the high-temperature limit, where the collision rate in the
weakly coupled plasma becomes rather small, ν̃ ≈ 0.044
with c ¼ 1.5. It is clear to see that given a small coupling
constant applicable to very high temperatures, the collision
rate determined by Eq. (25) does not have a notable
influence on the heavy-quark energy loss. However, for
lower temperatures or larger collision rates, collisions
among the medium partons can play a role in the evaluation
of the collisional energy loss. Despite the lack of the
explicit calculation of the quark-gluon scattering, we can
still expect a qualitatively similar behavior between the two
different scattering processes. Therefore, in general the
heavy quark loses more energy in a collisional plasma and
the enhancement of −dE=dx is more significant when the
incident velocity v becomes large.
As we already mentioned before, a more direct way to

see the effects of collisions on the heavy-quark energy loss
is to study the ratio of −dE=dx with and without collisions.
Our numerical results in Fig. 6 further confirm that in the
high-temperature limit, the collisions among thermal par-
tons result in corrections to −dE=dx are at most ∼5% when
αs ¼ 1=ð4πÞ. On the other hand, for a realistic coupling
constant near the critical temperature, the influence on the
energy loss becomes moderate, and the corrections can
reach ∼10% for large incident velocities. Note that these
magnitudes are strongly dependent on the parameterization
of the collision rate ν as we used in the evaluation.

FIG. 5. Comparisons of the velocity dependence of the heavy-quark energy loss due to quark-quark scattering with and without
collisions. Left: αs ¼ 0.3 and the corresponding ν̃ ≈ 0.177. Right: αs ¼ 1=ð4πÞ and the corresponding ν̃ ≈ 0.044.
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Therefore, a more accurate determination of the values
of ν turns out to be very crucial to draw a quantitative
conclusion on the energy loss in a collisional plasma. In
addition, we also find that although it has a significant
deviation from unity only in the large v region, the energy
loss ratio is not a monotonic function of the velocity and
there exists a turning point at some very large velocity
where the effects of collisions are most pronounced. This is
actually true for both small and large coupling constants.
In order to see the flavor dependence of the collision

effects on the heavy-quark energy loss, in Fig. 7 we show
the scaled energy loss due to quark-quark scattering and the
energy loss ratio as a function of the heavy-quark momen-
tum p for both charm and bottom quarks with a strong
coupling constant αs ¼ 0.3. The quark masses are chosen
to be mc ¼ 1.3 GeV and mb ¼ 4.7 GeV for the charm and
bottom quark, respectively. In general, the mass hierarchy
of the collisional energy loss, i.e., that the charm quark
loses more energy than the bottom quark, is also observed
in a collisional plasma. Roughly speaking, when compared
to the energy loss in a collisionless plasma, the increase in
−dE=dx of a charm quark is comparable to that of a bottom

quark when the momentum becomes large. Therefore, a
more significant correction to the energy loss can be
expected for the bottom quark in the large-momentum
region. However, in the small p region, the opposite is true
according to the plot on the right-hand side of this figure.
Of course, the maximum of the energy loss ratio has no
flavor dependence, a ∼10% correction induced by the
collisions among thermal partons is found for both charm
and bottom quark.
Finally, we compare our results with those obtained in

Ref. [54] where the authors also considered the heavy-
quark energy loss in the quark-gluon plasma with the same
BGK collisional kernel. However, with a similar collision
rate ν ≈ 0.1 ∼ 0.2mD, the corrections to −dE=dx in the
collisionless limit found in [54] are much larger than
∼10%. The discrepancy originates from the different
theoretical frameworks adopted in these two works. In
Ref. [54], the energy loss formula given by Eq. (14) was
used to calculate −dE=dx, and thus one has to introduce an
upper cut for the transferred momentum to eliminate
logarithmic divergence in the final results. According to
the discussions in Sec. II, this is because this formula

FIG. 6. The energy loss ratio as a function of the heavy-quark velocity. Left: αs ¼ 0.3 and the corresponding ν̃ ≈ 0.177. Right:
αs ¼ 1=ð4πÞ and the corresponding ν̃ ≈ 0.044.

FIG. 7. Left: comparisons of themomentum dependence of the energy loss due to quark-quark scatteringwith andwithout collisions for
charm and bottom quark at αs ¼ 0.3. Right: the energy loss ratio as a function of the momentum for charm and bottom quark at αs ¼ 0.3.
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cannot properly deal with the hard processes. The maxi-
mum of the transferred momentum was simply set to be the
Debye mass in [54], therefore, we can naturally conjecture
that the overestimated corrections to the energy loss are
related to the missing contributions from hard processes.
Unlike the soft contributions, self-energy insertion into the
bare propagator, which encodes all the information about
the collisions among thermal partons, becomes less accen-
tuated for scatterings with large momentum transfer. In the
current work, we treat both the hard and soft scatterings in a
unified framework, which self-consistently includes the
effect of collisions and is free of any artificial cutoff. As a
result, a more reliable estimate of the corrections to the
heavy-quark energy loss can be expected.

IV. CONCLUSIONS AND OUTLOOK

In this work, we considered the collisional energy loss of
a high-energy fermion passing through a hot and dense
plasma. The equilibration of the plasma was described by
the BGK collisional kernel, which led to a modification on
the photon/gluon collective modes and thus affected the
propagator in the resummed perturbation theory. In par-
ticular, we studied the effects of collisions on the energy
loss of a fast fermion in a QED plasma by calculating the
contributions from both hard and soft scatterings in a
unified theoretical framework where collision effects were
self-consistently encoded in a modified hard-thermal-loop
resummed propagator. Based on our results, we investi-
gated the heavy-quark energy loss in a collisional quark-
gluon plasma through a simple generalization from QED to
QCD. Numerical results showed that the energy loss of a
heavy quark increased after including collisions among
medium partons. The magnitude of the increase became
negligible in the weak-coupling limit. However, near the
critical temperature, according to our parametrization of the
collision rate, taking into account the collisions gave rise to
a moderate correction to the heavy-quark energy loss in the
collisionless limit, which could result in a ∼10% increase at
large incident velocities. In addition, for heavy quarks
carrying large momenta, the collision-induced correction
was more pronounced for a bottom quark, while the
opposite occurred in the small momentum region where
the energy loss of a charm quark became more sensitive to
the collisions. Irrespectively of this, a mass hierarchy of the
energy loss was observed in a collisional plasma.
Although the method adopted in this work did not

require the introduction of an explicit separation scale
for the momentum exchanges, there are alternative theo-
retical approaches to computing the collisional energy loss
including the effects of both hard and soft exchanges.

We made systematic comparisons with these different
approaches and demonstrated that, in the weak-coupling
limit, the results for the collisional energy loss obtained
from various theoretical approaches became identical. In
this limit, the dependence on a cutoff q⋆ introduced in
Ref. [43], which separates the hard and soft processes,
cancels exactly when considering the total energy loss.
However, when the coupling constant was increased, we
found differences among these approaches, and an uncer-
tainty in the energy loss related to the choice of the
separation scale also emerged. In addition to not requiring
the introduction of a separation scale, when compared with
other approaches, one important advantage of the approach
used herein was that the self-energy insertion naturally goes
to zero in the high-momentum limit. Therefore, there was
no sharp transition from the soft processes involving a self-
energy resummation to the hard processes, where instead
the bare propagator was used. Finally, we presented a proof
that our results are manifestly gauge-invariant.
A complete calculation of the heavy-quark energy loss in

a collisional QCD plasma still needs to be carried out in the
future where the gauge invariance of contributions from
quark-gluon scatterings should be considered when using a
resummed gluon propagator. In addition, determination of
the collision rate of the quark-gluon plasma in a concrete
manner is very important, not only for the evaluation on the
energy loss, but also for many other phenomenological
studies.
In closing, we note that the coupling dependence of the

collision rate found herein suggests that a moderate
enhancement of the energy loss is expected only for
temperatures not far above the critical temperature,
which is termed as “semi”-QGP due to the fact that
the QGP may only be partially deconfined at these
temperatures [60]. We point out that in such a partially
deconfined phase, nontrivial holonomy for Polyakov
loops could also affect the collisional energy loss sig-
nificantly [61,62]. Therefore, a comprehensive under-
standing of this issue will be challenging, and further
work will be needed in the future.
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