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We investigate the gravitational form factors of charmonium. Our method is based on a Hamiltonian
formalism on the light front known as basis light-front quantization. The charmonium mass spectrum and
light-front wave functions were obtained from diagonalizing an effective Hamiltonian that incorporates
confinement from holographic QCD and one-gluon exchange interaction from light-front QCD. We
proposed a quantum many-body approach to construct the hadronic matrix elements of the energy
momentum tensor 7+ F and 7+, which are used to extract the gravitational form factors A(Q?) and D(Q?).
The obtained form factors satisfy the known constraints, e.g., the von Laue condition. From these
quantities, we also extract the energy, pressure and light-front energy distributions of the system. We find

that hadrons are multilayer systems.
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I. INTRODUCTION

The year 2023 marked the 50 year anniversary of
quantum chromodynamics (QCD). However, our under-
standing of the strong interaction remains incomplete [1].
One of the challenges is the strong-coupling nature of
QCD. As such, the strong force within hadrons is dramati-
cally different from what the QCD Lagrangian naively tells
us, in contrast to weakly coupled systems, e.g., the hydro-
gen atom. The primary operators that describe the distri-
bution of stress within a system are the energy-momentum
tensor (EMT) T# [2]. These operators also dictate how the
system gravitates, and, conversely, how it responds to the
gravitational field [3]. The access to the hadronic matrix
elements (HME) of the EMT has been a hot topic in recent
literature. Kumano et al. extracted the EMT of the pion
from the process y*y — 7°2° measured on Belle [4].
Burkert et al. obtained the stress inside the proton using
deeply virtual Compton scattering data and deeply vector
meson production data collected from Jefferson Lab [5-9].
Duran et al. accessed the gluon contributions for the proton
using near-threshold electroproduction of J/y [10]. The
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precision of these experiments is expected to dramatically
improve in the forthcoming era of electron-ion colliders
[11-13]. Lattice simulation of the nucleon and the pion
EMT are recently available with a pion mass M, =
170 MeV [14,15] (cf. [16—-19]). The hadronic EMT were
also investigated in various theories and phenomenological
models, e.g., [20-54]. See Refs. [55,56] for recent reviews.

One of the challenges to access the hadronic EMT is that
TH contains the interaction, which is strong at low energy.
In this work, we present the first calculation of the
charmonium EMT. Charmonium, first discovered 50 years
ago in the November revolution, is an ideal system to probe
the properties of the strong force. This system consists of a
pair of charm and anticharm quarks. Since m. > Agcp and
the strong coupling a,(m,.) < 1, phenomena occurring at
the scale ~m_. may be treated perturbatively. On the other
hand, with the binding energy a,m. 2 Agcp, a nonpertur-
bative treatment is required to describe the properties of the
QCD bound states including the stress within. Hence, this
bound system involves the interplay of the perturbative and
nonperturbative physics of QCD. It is sometimes dubbed as
the “hydrogen atom of QCD” [57].

Our method is based on basis light-front quantization
(BLFQ) [58]. This method stems from the light-front
Hamiltonian formalism, which finds its roots from two
lineages [59-68]. One is Dirac [69] and Weinberg’s [70]
efforts to simplify relativistic dynamics, which leads to the
discovery of the front form of quantum field theory [71-84].

Published by the American Physical Society
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The other is the light-cone current algebra [85-90] and
Feynman’s parton model [91-95] emerging in deep inelastic
scattering [96,97]. These two complementary perspectives
are unified in the light-front Hamiltonian formalism, which
allows us to tackle QCD as a quantum many-body problem,
as described by discretized light-cone quantization [98] and
BLFQ [58].

BLFQ was successfully applied to a number of systems
including charmonium, and to a number of hadronic
observables including mass spectra, radiative transitions,
parton distributions and transverse momentum distributions
[49,99-140]. For charmonium, the effective Hamiltonian
combines confinement from holographic light-front QCD
[141] for the long-distance physics as well as one-gluon
exchange interaction from light-front QCD [101] for the
short-distance physics [108]. The computed mass spectrum
is shown to be within 40 MeV deviation with the particle
data group compilation [109,113,115,116]. For the ground
state 7., the mass deviation is about ~15% of the total
binding energy. The obtained light-front wave functions
(LFWFs) were used to investigate a variety of observables,
including the decay constants [108,109], electromagnetic
form factors [112], parton distribution functions [114], and
GPDs [112]. In particular, the parameter-free predictions of
the radiative transition widths and radiative transition form
factors are in remarkable agreement with the experimental
measurements whenever available [117-119].

The rest of the article is organized as follows. Section II
briefly introduces the light-front Hamiltonian formalism
including the basis function representation chosen for
BLFQ. Section III describes the energy-momentum tensor
and the light-front densities associated with these operators.
The light-front wave function representation of the gravi-
tational form factors A(Q?) and D(Q?) are presented in
Sec. IV. We present the numerical results in Sec. V. Finally,
we conclude in Sec. VL

II. HAMILTONIAN FIELD THEORY ON THE
LIGHT FRONT

In light-front QCD, the quantum state of a hadron |y,)
can be obtained by solving the light-front Schrodinger
equation [62],

. 0 1

la)c_+|1//h(x+)> =3P wa(x")). (1)
Here, we adopt the light-front coordinates, x* = x° & x3,
X, = (x', x?). The hadronic state vector |y (p. j.m;)) can
be further classified by its momentum p*, total spin j and
spin magnetic projection m;, viz. [62,142],

P”|’l/h(17,j7 mj)> = P”|l//h(P,ja m;)> (2)

Slwu(p.jom)) = j(j + Dlwa(p. jomy)).  (3)

SHlwi(p.j,m;j)) = mjly,(p, j.m;)), (4)

where, P* is the 4-momentum operator, S* = W?2/P? is the
total spin operator, constructed from the Pauli-Lubanski
vector W# =1em°P, ], where J* is the generalized
angular momentum operator, i.e., the generator of the
Lorentz symmetry, and St = W*/P* is the magnetic
projection of the total spin operator, also known as the
light-front helicity operator. The light-front energy for a
free hadron is p~ = (p3 + M?)/p*, where M is the
invariant mass of the particle.

These operators are not all kinematical; i.e., some of these
operators contain interactions. The dynamical nature of
operators depends on the choice of the initial surface, i.e.,
the quantization scheme. Light-front quantization with initial
surface x™ = 0 turns out to be equipped with the maximal
number (7) of kinematical operators out of the 10 Poincaré
generators [69]. The remaining three generators originate
from the same local interaction in quantum field theory [63],

Pl = a)"/d“xé(a)-x)Him(x), (5)

Ji = /d4x5(a) - x) (¥ — 'x" ) Hin(x).  (6)
Here, o* = (0", 0™, @) = (0,2, (1) is the null vector that
indicates the orientation of the light-front quantization sur-
face. On the other hand, the Poincaré generators stem from
the Noether currents, e.g.,

pr— / BxTH(x), (7)

where T is the EMT. In particular, the density of the light-
front interaction energy H;,, is related to the +— component
of the EMT, H,, = %Tifn_ . Momentum conservation (2)

imposes constraints on the forward HMEs of the EMT. It
is straightforward to show

<Wh(p’ j’ m;) |T+ﬂ(0)|l//h(pv jv mj)> = 2p+p”6n1j,n1}' (8)

Similar constraints can be obtained from the conservation of
the angular momentum (3)—(4) as shown by Lorcé et al. [143].

In QCD, the force is strong and we need a nonperturba-
tive approach to solve the eigenvalue problems (2)—(4).
Inspired by the success of ab initio nuclear structure theory,
especially the no-core shell model [144], Vary et al.
proposed BLFQ as a nonperturbative computational frame-
work to solve light-front QCD [58]. In BLFQ, the light-
front Schrodinger equation is cast into a matrix eigenvalue
equation,

ZHijl//j = le/’i» (9)
J
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where H;; = (i|H|j) and y; = (i|y). Here [i) is the basis

state and |y) is the state vector of a hadron, and H =
PTP™ — f’i is equivalent to the light-front Hamiltonian

operator P~ since P* and 133_ are kinematical. The basis
states are chosen to retain the maximal kinematical sym-
metries of the system. A convenient choice is the 2D
harmonic oscillator function in the transverse direction and
Jacobi polynomials in the longitudinal direction. The
many-body basis is then constructed from the tensor
product of the single-particle basis. Other choices are also
available, such as the discretized momentum basis adopted
in discretized light-cone quantization [145], conformal
basis functions employed in Hamiltonian conformal trun-
cation method [146], and coherent basis in light-front
coupled cluster method [147]. These bases have been
shown successful in applications to low-dimensional or
simpler quantum field theories [67].

In BLFQ, one adopts an effective Hamiltonian suitable for
the finite basis space with low resolution. Two approaches are
adopted. In the top-down approach, one starts from QCD
and perform a similarity renormalization group evolution
[148-151,186]. In the bottom-up approach, one starts with a
phenomenological effective Hamiltonian that embodies the
key physics of the system [108,109]. The latter is similar to
the nuclear shell model in nuclear structure calculations,
where the role of the first approximation, the nuclear shell
model, is played by holographic light-front QCD, as shown
by Brodsky and de Téramond [141].

In this work, we adopt the phenomenological
effective Hamiltonian with a confining interaction from
light-front holographic QCD. The form is remarkably
simple, V5 o x(1 — x)r?, where, x = p4 /Py is the longi-
tudinal momentum fraction of the quark, and 7, is the
relative transverse separation of the quark and antiquark.
This potential generates a 2D harmonic oscillator wave
functions as the eigenfunction, which coincides with the
basis function in BLFQ in the transverse direction which
provides computational advantages such as enabling fac-
torization of the center-of-mass motion and facilitation of
the transformation between relative and single-particle
coordinates. A longitudinal interaction of the 't Hooft type
is supplemented to generate confinement in the longi-
tudinal direction [105,106,152,153]. We further supple-
ment confinement with a one-gluon exchange interaction
obtained from light-front QCD. This piece of interaction is
essential for describing the short-distance physics as well as
the spin structure [101].

The basis functions are the eigenfunctions of the con-
fining interactions. Their analytic forms are

- I im —— m 1]2
¢nm(vl) = Nan_l< ) 0 o | |< J2_>’ (10)
K K

21(x) = Npd(1 = )i (2x - 1), (11)

C(I+D)C(lI4a+p+1) _
\/471' 21+(X+ﬂ+1) T(+a+D(+p+1) Nnm -

\ /(H‘fn‘)., ¥, = p./+/x(1 = x) is the holographic momen-

tum, and v, = |V,|, and 0 = arg¥,, x = p*/P" is the
longitudinal momentum fraction. The basis parameters
a=2my(m, + my)/x*, p=2m,(m, +my)/K* where k
is the strength of the confining interaction and m, = mg =
m,. is the effective quark mass. Then effective Hamiltonian

for the cc system is

where N,=

Hy = Zh,a,a, +3 Z Virrdidsapayp. (12)
LJ.1'J

Here, I,J,I',J" each represent a collection of single-
particle quantum numbers: radial quantum number n,
angular quantum number m, longitudinal quantum number
[, spin s, color i, and parton flavor f, e.g., [ =
{n,m,1,s,i, f}. The one-body effective Hamiltonian h; =
4m?+2k*(2n+ |m|+143)+ (k*/4m2)1(1+ 1) incorporates
the kinetic energy as well as the long-distance interactions,
i.e., confinement. We adopted the one-gluon exchange
interaction as the two-body effective interaction, which
is the dominant physics at short distance for charmonium.
For charmonium, we further impose a valence approxima-
tion, i.e., keeping only the c¢ Fock sector.

BLFQ adopts the N, basis truncation scheme to render
the basis space finite. Specifically for charmonium, we
impose the conditions

2n+ |m| 4+ 1 £ Npax 0<1< Ly

(13)

N« defines the UV and IR regulators of the basis space as
Apv = V/Npaxk and g = k/v/Npmax- Lmax defines the
resolution of the longitudinal momentum fraction
ox = L;l.. For simplicity, we have tied the basis scale
parameter to the confining strength «.

We diagonalized the Hamiltonian with different N,
L,.x to obtain the mass squared eigenvalues and the
LFWFs. The model parameters «, and m,. were fit to the
charmonium mass spectrum below the DD threshold, which
is a good approximation for states with narrow resonance.
Since radiative corrections are neglected, we adopt N, ,.x =
L...x = 8 for observables that are sensitive to the short-
distance quantum fluctuations, which corresponds to a UV
resolution Ayy ~ M ;. To estimate the uncertainty associated
with the basis resolution, we quote the difference between the
Nmax = Lmax = 8 results and the N, = L. = 16 results.
The details of the model can be found in Ref. [109].

From the basis functions, we can reconstruct the valence
LFWEFs,

Zqu/h n,m, l ¢nm kl/\/ 1_ )(l

n.m,l

st/h X, kl

(14)
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where wE'Z%(nml) are the basis coefficients obtained

from the diagonalization. The state vector can be repre-
sented by the LFWFs as

> a2k,
wn(P.gm;) Z 2x1 —X) 271)2

(m;
Ww/

A1)

—x)P*,—kl+(1—x)13l)|0>. (15)

xdy((1

Here, P = (P~, P*, P, ) is the 4-momentum of the bound

state h. k L =p— xP | is the relative transverse momen-
tum, and x = p*/P" is the longitudinal momentum
fraction. The charmonium LFWFs are available in
Mendeley Data repository [154].

III. ENERGY-MOMENTUM TENSOR

By virtue of Poincaré symmetry, the HMEs of the EMT
for a spin-0 particle, such as 7, and y .o, can be parametrized
in terms of covariant tensors [55],

1
P+
(e

— 2PHPHA(

1
T (0) ‘P - —q>
2
1
—¢’) +3(¢"¢" - ¢’9*)D(=¢*).  (16)
where Lorentz scalar functions A(—¢?) and D(—¢*) are
known as the gravitational form factors (GFFs).
The 2D Fourier transform of the HMEs in the Drell-Yan

frame g+ = 0 can be interpreted as the hadronic EMT on
the transverse plane [46,155-161],

- d’q, _
OGP = [ GG, (17

where (g, ;P) is the normalized hadronic matrix ele-
ments,

N 1 1 1
@i P) = g (P10 P=3a). (19

The factor 1/(2P7) is due to the normalization of the state
vector:

(P'lp) =2p*(2n)*s(p™ — p'")S*(pL - p).  (19)

Note that % (hence 7%) depends on the c.m. momen-
tum P* of the hadron [157]. The density of the light-front
longitudinal momentum PV is [159,162]

- d? o
TP =P [ SR TG, (@)

Similarly, the density of the light-front transverse momen-
tum P is

- g,
TH(F;P) =P / (2;];2 eTTIA(gY).  (21)

From these expressions, the Fourier transform of GFF
Aq?),

dqu —iqg, Ty 2
A(rl) = (27[>2 e A(QJ_) (22)
can be interpreted as the matter density. In
Refs. [159,160,162], this density is called the internal

light-front longitudinal momentum density. We emphasize
that A(r, ) describes the convective distribution of all three
momenta. Note that for spm—f particles, such as the
nucleon, there is an extra contribution from spin,

-

THFLP) = PLA(r) + (V xS(r)) L. (23)

Here, E(rl) =2J(r,)s is the spin density, 5 = s2, and
J (r}) is the 2D Fourier transform of the GFF J(Q?), which
exists for spin-} particles. 7 (r, ) is normalized to 1/2. The

— >
spin current V x S is nonconvective.
Momentum conservation (8) implies the conservation of
matter,

A0)=1e / &r Alr,) = 1. (24)

The 3D root-mean-square (rms) radius of the matter
distribution is

A=3 / CriRA(r) = —64'0). (25

The distribution of the light-front energy P~ =
(P% + M?)/P" in a hadron state with mass M reads [46]

PLA(ry) + M?(ry)

To(rsp) = AT g
where
2 d*q. —iGL T A2 (A2
M) = [ e, 27)

M*(q%) = (M2 +%Qi>A(Qi) +%QiD(qi)- (28)

The first term A(r,)P?/P* represents the light-front
energy due to the motion of the particle. Here, we have
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introduced a new form factor M?(g? ) and its 2D light-front
density M?(r ). In Refs. [159,160], this density [Eq. (27)]
is termed the internal light-front energy density. For spin—%
particles, the spin term also contributes to the light-front
energy density 77 (r,),

PLA(ry) + M2(ri) + P - (V x 8(r1))

T_?;_(rl; P ) = P+
(29)
The last term vanishes upon integration.
Light-front energy conservation (8) implies [46]
M?(0) = M? & /dzrlMQ(rl) =M. (30)
From (28), the above condition is equivalent to
lim g3 D(¢%) = 0. (31)

q,—0

As we will see later, this forward limit constraint is
a necessary condition for the force equilibrium of a
hadron [26,55]. It is useful to define the rms radius of
the (internal) light-front energy distribution as

5 3

W =2 (32)

I

/ &rora M3 (r),

= ——/1 2(1+2D). (33)

Here, A = 1/M is the Compton wavelength of the hadron.
D = D(0) is called the D term, also called the Druck term,
and is dubbed as the last global unknown of hadrons [55].
The above definitions show the advantage of light-front
formalism in extracting frame-independent hadronic den-
sities. In general, the hadronic EMT can be parametrized by
(the proper) energy density &(x), pressure P(x), and
(traceless) shear T1%(x) as [46,163]
TP = (€ + P)uu’ — Py’ + 11, (34)
Here, u* = P%/ VP2 is the 4-velocity vector. The energy
density can be extracted as

quL —ig, 7L 2
E(ry) = 2n7 ¢ E(q1), (35)
where the energy form factor E(g3) is defined as
B) = (M+ ) a@) + i), (36)
+ AM AM

For spin—% particles, the energy form factor should include a
spin contribution,

2

)= (w4 aed) + L (et 37)

)=2J(q1)]-

This is in contrast to M?(g? ), the light-front energy form
factor, in which, the spin contribution is absent. The
energy-momentum conservation (24) and (30) [or (31)]
implies

E(O):Mﬁ/dzrlg(m) =M, (38)

i.e., energy density is normalized to the total energy in local
rest frame, i.e., the mass. The 3D rms radius of the energy
distribution is

%_ZM/der'rlg r)=ri- —/12( +D). (39)
The pressure can be extracted as

1 d’q _in
_6_M/(277,')J_2€ T q1D(q7).

The forward limit constraint (31) implies that hadrons are in
mechanical equilibrium,

P(ry) = (40)

/ @ P(r,) = 0. (41)
The shear is also related to the GFF D(g?),
W(7,) = 4y [ S ein (@2)
Y am | (2n)?
i J 1 ij 2 2
x14q.191 _55 q1 )D(q1). (43)
(5j - 3’1"]¢)P(’l)7 (44)

\S) |

where 7 = ri /r,. The shear is “traceless,” A zI1% = 0,
where A% = u®u? — ¢*¥ is the spatial metric tensor. In fact,
pressure and shear are the trace and traceless parts of the
Cauchy stress tensor C% = 1% — PA%,

Note that the energy density £(r ) is related to the light-
front energy density M?(r, ) through

Me(r) =m[g)=3P00) @9)
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Physically, the proper energy density & is generally
assumed positive, a constraint known as the weak energy
condition, which provides a constraint on D:

2
DggMzrf,—l. (46)

These conditions are trivially satisfied for negative D,
which is conjectured for stable systems such as the proton
[164,165].

A related quantity of interest is the scalar density,
60 = 7%, which obeys the classical relation [166]

O(ry) =E(ry) —3P(ry). (47)

The scalar radius is rj = r3 —3%(1 +3D).
The D term is related to the second moment of the
pressure,

D=DO) =¥ [ ErAPE). @

It is conjectured that D < 0 for a mechanically stable
system [164,165]. Intuitively, a negative D represents a
repulsive core along with an attractive periphery. A
negative D term suggests a chain of inequalities,

rg > ryp > rg. (49)

For charmonium, as we will show below, D ~ —5. Then,
rg > ry for this system. Then, we obtain a layered picture
of charmonium as shown in Fig. 1.

The layered picture is consistent with the physics of QCD.
From the LFWF representation in Sec. [V, partons with large-
x contribute most to the matter density A(r ). Therefore, at
the core of a charmonium are the valence quarks. For the
light-front energy density M?(r ), small-x partons, known
as “wee partons,” also have a significant contribution since
the light-front energy p~ o (p + m?)/xP*. The fact that
rye > r, implies that the distribution of the wee partons is
broader than the valence quarks. The scalar trace 79,
contains the anomalous gluon fields, whose radius is largest.
Therefore, at the outermost of a charmonium, there are
glueballs and meson clouds. Note that the quark and the
antiquark in our model are effective degrees of freedom. Even
though there is no explicit gluons, some effects of them have
been incorporated.

In the literature, it is popular to consider the decomposition
of the hadron mass into contributions from different species
(quarks and gluon), with each contribution defined from a
gauge-invariant operator. Since mass in relativity is not
additive, what actually gets decomposed is the proper energy
E. Toremove the kinetic energy contributions, each species is
assumed to be stationary. Physically, this decomposition is in
analogy to the hydrostatics of coupled multifluids [166,167].

)Y
=000
I
AT £ry) M2(rL) 9(ry) Py
fm—2 15 10 5.0 0 -5.0
IR RRTNARED

FIG. 1. A 3D picture of the normalized matter density A(r, ),
energy density £(r, ), light-front energy density M?(r ), scalar
density 0(r ), and pressure P(r ) on the light front. All of these
densities, except the pressure, are normalized to unity upon
integration over the transverse plane. For the pressure, we
plot P(r.)/M.

In principle, the light-front energy can be decomposed in a
similar fashion, except that there is no need to assume that the
hadron or its components are at rest since the total internal
light-front energy M? is a Lorentz scalar. In the previous
work [46], some of us proposed to decompose the light-front
energy into a free (or kinetic) part and an interaction (or
potential energy) part. This decomposition is more familiar in
classical and quantum mechanics although it is not gauge
invariant as is the case of the Coulomb potential.
Nevertheless, it provides insights into the strong force within
charmonium, as we will show in Sec. V.

IV. LIGHT-FRONT WAVE FUNCTION
REPRESENTATION

A. Gravitational form factor A

In principle, the GFFs A(—g?) and D(—g?) can be
extracted from any two independent HMEs % =
(P+3q|T*(0)|P —1q)/(2PT). We adopt the energy-
momentum density 7 to extract these form factors.
These components provide the correct value of the GFFs
in the forward limit as long as the 4-momentum is
conserved [46]. Furthermore, covariant light-front analysis
shows that the hadronic matrix elements of these compo-
nents are free of spurious zero-mode contributions [46]. In
the Drell-Yan frame g™ = 0,

(G : P) = PTA(qY). (50)
(g P) = PLA(q7), (51)

_ PiA(g1) + M*(42)

(4. P) P ;

(52)

where, recall, M?(¢3) = (M*> +14%)A(43) + 145 D(q3).
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The GFF A can be extracted from either 7+ or T
Indeed, the former is the traditional “good current.” Since
T++ and T*' do not contain the interaction, A(Q?) can be
represented in terms of the LFWFs as [168]

Al =30 [ancl,
no{si}
Xijl//n({xi’]_éiJ_vsi})Wn({xhl_éi,jJ_vSi})v (53)

spectator :

i #]

struck parton: i = j

B { ki — x4,
ijL — - N
kin +(1=x:)q.,

tant]

(54)

And the n-body integration measure is defined as

/[dxd k], H/—25<Zi:x,-— 1)
X / ? k’L 7)3* (Zk,l> (55)

where S, is the symmetry factor. Using the coordinate
space representation developed in our previous work [46],
A(g?%) becomes

M@=ZZ/M&@
no{s;}

X|l/~/n<{xi77iJ_9si})Pijei?jL‘h’ (56)
J
where
1
2
/[dxd ritl, =5 ] (Zx—l)
X /dzru_éz (Z'xi?ij_>' (57)

Then, the matter distribution becomes a one-body density,

M@—ZZ/mﬁ&MW%MMZ

XD XL =) (58)
J
And the corresponding rms matter radius is
o L dA(Q?)
ETVA0) A0 gy
=—ZZ/ i (PP
(59)

X E xjrjj_.
J

As we mentioned, the matter density mainly samples
contributions from the large-x partons, i.e., valence quarks.

In this work, we only consider the valence Fock sector
contribution. The LFWF representation in this ansatz can
be written as

I dx a2k,
:Z/) 2X(1—x)/(2ﬂ)3"’ﬂ(x ki ){(1—x)

X yris(x, l—éL —xq ) + xy(x, /;L +(1=x)g.)}
(60)

Similarly, the matter density reads
1 dx
7)) = E = -
AL /0 4zx(1 —x) {( %)

| ! o

ldx
Wil Dyps(nn.d) [ 3
s,5,n,0n' 1 0

« [ ok a=ni, (5- 1)

- 1—x_ S
50 (h*‘\/xxﬂﬂ%m(h)-

Note that m =m'=m;—s—5 according to angular
momentum conservation but is otherwise arbitrary though
limited by the total angular momentum of the state. Similarly,
the basis representation of the matter density A(7 | ) reads

In basis representation,

>

(62)

B. Gravitational form factor D: Kinetic part

The GFF D(g?%) and the light-front energy form factor
M?(g?%) can be extracted from either the light-front energy
density 7+, or the transverse stress 7'! + 722 and 7'2. In
practical model calculations, such as this work, truncations
and approximations are introduced which result in the loss of
some Poincaré symmetries. One then deals with a system
with a reduced number of symmetries, and GFFs extracted
from different current components are no longer equivalent.
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One possible way to extract the form factors is to parametrize
the HMEs in terms of the reduced symmetry. Effectively, one
introduces additional Lorentz tensor structures. Form factors
associated with noncovariant structures are called spurious
ones. See Ref. [46] and the references therein for a
discussion on this approach to the EMT. From the covariant
light-front dynamics analysis [46], T'! + 7% and T'? are
contaminated by spurious form factors and may violate the
von Laue condition.! T~ is the light-front energy density
and it contains the interaction. While this operator is more
involved, it is constrained by energy conservation which
ensures the von Laue condition even after model truncation.
We therefore use 77~ to extract GFF D. Our method is
general enough and can be applied to other bound-state
systems. The HME of 7~ consists of two parts:

PIA(g%) +M*(q7)

-
= P

(64)

In the Breit frame P, = 0, only the light-front energy form
factor M?(g?% ) survives. Form factor M?(g?%) is related to
GFFs A and D as given in (28).

In Ref. [46], we propose to split 77~ into two parts
TT~ =Ty~ + T; :afree part Ty~ and an interaction part
T . We adopt the light-cone gauge A" =0 and in this
gauge, the kinetic part 7~ is simple. The corresponding
light-front energy form factor is also split into two pieces,
M*(q%) = M3(g%) + M2,(g%). The free energy density
T, is diagonal in Fock space, and the corresponding
light-front energy form factor admits an exact LFWF

representation,

M§(q1) = /[dxidzkij_]nzl//:;({xiv]_éer_vsi})
J

-

kG +m?-1qk =
X%Wﬂ({xi’ki,.jivsi})y (65)
J
where

e { 75@ +3Xiq1, spectator: i # j
=1 ’
! kiy = % (I —x;)qg,, struck parton: i = j

= /zu - jxic_ij_, spectator: i # j

kl JJ_ 7 - . L

k,¢+%(1 —Xx;)q,, struck parton: i = j

The integrand is the n-body kinetic energy with an extra
term — 3 ¢ . This term accounts for the recoil effect, which

has the same origin as the D term as one can see from the
free boson case [2] (cf. [46]).

'We recently discovered a new symmetry that may protect 7''2
from the contamination of the spurious form factor [169]. It is not
clear whether this symmetry is applicable to the present system.

Using the coordinate space LFWFs, M3 (g%
cally simplified as

:ZZ/[dxidzriJ_]nlI’Z({xiv?iJ_asi})
no{s;}

) is dramati-

1,2
/L+m 391

_>
X E elerqL
X:

J

S0 ({xi Fip,si})-
(66)

Its Fourier transform gives the one-body density of the free
light-front energy,

MO /dxd rlJ_ans jJ_—rJ_

n {s;}
o

~ - - a8 m

X{"’”({xl”wfﬂ’—. (e )
J

1 ~ -
AL SRl (67

Y

For charmonium,

D=3 [5iy

d’k 1 -
X / (2”;_ {Wss ()C kJ_ 2 (1 - x)qj_)
k2 +m >

2 =241 P 1
/7 <x, ki +§(1 —X)CIL>

x
- 1 N\ +mi-13
TV (JC, ki + E)“IJ_> 1—_qx

> 1 .
XYWy <X, kL - 2qu> } (68)

In basis representation,

= Y wilnm\l)

Idx
ll/xx(”,m,l)/ 4
s.s.n,ln'l 0

<] [, (-3 4)

M3(4%)

(2
m2—1.2
q - 1 [1-x_
|:(1 x)k2 q44l:|¢nm<kl+_ —QL)
X 2 X
* 7 1 / xS 2 m%_iqi
+¢n/mr <kL+2 l—qu) |:xkl+ l—x
1 X
X¢nm( 175 EQL)}- (69)
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C. Gravitational form factor D: Interaction part

The interaction part of the EMT in coordinate space can be
formally represented in Fock space using LFWFs. However,
the expression is not particularly useful in quantum field
theories, since it involves particle number changing.
Furthermore, the interaction v,,,,, also has to be renormalized.
The effective interactions, such as the one-gluon exchange
we employed, are nonlocal in general. It may seem that a
local interaction density has to be obtained from an under-
lying field theory. On the other hand, in nonrelativistic
quantum many-body theory, the Hamiltonian density can
also be obtained by localizing the Hamiltonian operator, viz.
inserting 5 (r — r;) for the ith constituent. For example, the
charge density can be obtained by localizing the charge,

0= Zei = p(r) = Z€i53(’”— ri).

The above method can be generalized to the relativistic
quantum many-body systems. In relativistic quantum theory,
particles cannot be consistently localized.” Fortunately, there
is one way to circumvent this problem using light-front
dynamics. In light-front dynamics, particles can be localized
on the transverse plane using the Dirac-0 prescription
8%(ry —r;), which is sufficient to extract the transverse
densities. For example, the transverse charge density can be
obtained by localizing the charge on the transverse plane,

0= Zei = p(r) = Ze,ﬁz(rl —rig). (71

(70)

One can show that the charge density obtained in this way
reproduces the Drell-Yan-West formula [172,173]. Similarly,
the matter density can also be obtained using particle
localization on the light front.

The effective interaction we employed is a two-body
potential,

1
V:EZU(X, Fil = TjL)s (72)
ij

where, 7| is the transverse coordinate of the ith parton.
Based on the localization prescription, we can write down
the corresponding energy density as

1
V(ry) = EZv(x, riL—71j1)
ey

1
X 5{52(r¢ —ri) + 8 (r =)} (73)
Here, the interparticle energy density is evenly distrib-
uted between the two interacting constituents. The above
many-body expression can be converted into the

*For mildly relativistic systems (v/c ~0.1), Newton-Wigner
operator can be used to localize particles [170]. The application of
this operator to QCD can be found in Ref. [171].

corresponding operator following the standard second
quantization rule.

To obtain the interparticle energy v(x, r;; — r; ), we first
observe that the interaction energy in the forward limit

admits a diagonal representation,

M0 = S [lndkilwi(nFus))  (04)
no{s;}
Xll’n({xhl_éu_vSi})”n({xhlzu})v (75)
= ZZ/{dxidzriL}nl/?:({xi’7iiasi}) (76)
no{s;}
v, ({2 =iV (i Fosi ). (77)

where the n-body potential energy is expressed in terms of
the mass eigenvalue and the kinetic energy

- n l_<>21_+m2
Un({xi’kil}) = M2 - Z%

j=1 J

(78)

This representation is exact and can be obtained directly
from the Schrodinger equation (2).

To generalize the above expression to the off-forward case,
we need to specify the locations of the interactions. We adopt
the impulse ansatz that all interactions happen at the same
instant in light-front time. This ansatz is certainly held for
local interactions. In Ref. [46], we rigorously showed that
this ansatz is valid in a pion cloud model where all scattering
appears at the location of the nucleon. For small-size systems,
such as charmonium, this ansatz is expected to be a good
approximation. For effective interactions, this ansatz requires
neglecting the propagation of the intermediate particles,
which is widely adopted in nonrelativistic systems. Since
we do not incorporate dynamical gluons and sea quarks in
this work, this ansatz is consistent with our approximation.

The interaction form factor in this ansatz becomes

1 P
Miula) = Y005 [ wi(Fisi)
n {s:}

P frd N
x Zewu’lvn({xi’ =iV D ({xi Firsi}).
J

(79)

assuming the interaction is two-body. For charmonium, the
above expression becomes

1 dx
2 2\ 2 ~ % >4
M (1) ) Eﬁ /47”(1 _x)/d rips(x.rL)

x [T g o |p(x, Fy, =iV | s (x, 7L,

(80)
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where Fllzlslﬂ—(l—x)ﬂ:(l—X)Vl, ry =R, —x 7 =
—xr| and

Vi +m? ~ Vi +m;

X 1—x

- ~
v(x,7,—iV ) = M?* -

(81)

In terms of the momentum-space LFWFs, the above
expression can also be written as

In the forward limit (¢> = 0), it is evident that

M3(0) + M?

mt(o) = MZ’ (84)
from the LFWF representation. From (28), this condition
implies

lim g3 D(q%) = 0.

43 =0

(85)

Therefore, the forward limit constraint is satisfied.

V. NUMERICAL RESULTS

We substitute the charmonium LFWFs obtained from
BLFQ [154]. As mentioned, the form factors are evaluated
with N .« = Lnax = 8. The uncertainty associated with the
basis resolution is quoted as the difference between the
N max = Lax = 8 results and the N, = L.« = 16 results.

Figure 2 shows the GFFs A(Q?), D(Q?) for the ground-
state pseudoscalar charmonium #,... From these results, we
can extract D and radius r4. The results are listed in Table 1.
Also listed in Table I are the radii, rg, rye, ry, as
combinations of these two primary quantities. A somewhat
surprising result is the large contribution from terms
proportional to A- = 1/M = 0.066 fm. Naively, for quar-
konium, this term is expected to be small. However, the
matter radius is roughly proportional to the inverse of the
binding energy r4 ~ B~! ~ a;!'1¢, where the strong cou-
pling constant a; ~ 0.3 for charmonium. Therefore, r, and
Ac are actually of the same order of magnitude.

1 dx d’k
Min(a1) :E;/Zx(l —x)/<2;z)l3

X [ys (e k+(1=x)q 1) +yis(x, kL —xq )]
K3 + m? ~ K3 + m%

X : I—x ]wsg(x,li). (82)

X [Mz—

In basis representation,

) | %%@(Mz—ki‘x(r -%x>>

(83)

Ne

o
w-

10 15
0* [GeV?]

20 25

| Tlc | |
0 5 10 15 20
0% [GeV?]

|
%)

25

FIG. 2. GFFs A(Q?) (top) and D(Q?) (bottom) of ground-state
pseudoscalar charmonium #.. The central value is based on
N = 8 wave functions and the difference between N, = 8
and N,,,, = 16 results is shown as the bands to indicate the basis
sensitivity.
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TABLE 1.

BLFQ prediction of the D term and the radii of charmonium 7., 7., and y.,. We adopt the N,,, = 8

results as the central values, which corresponds to a UV resolution about the same as the hadron mass. In
parentheses we quote the difference between N, = 8 and N,,,, = 16 results as the basis sensitivity.

D ry (fm)

rg (fm)

rye (fm) ro (fm) 2(T)/(V)

fe —5.05(8) 0.18(1)
e -7.1(3) 0.35(2)
Xco —-6.95(2) 0.24(2)

0.26(3)
0.40(4)
0.29(2)

0.33(3)
0.452(1)
0.39(1)

0.39(1)
0.50(2)
0.44(1)

~1.7(6)
—14(16)
—3.0(1.1)

Figure 3 compares the GFFs for 7, with those for its
radial and angular excitations, viz. .. and y.,. Radial and
angular nodes appear for excited states as expected. The
corresponding D term and the radii are extracted and
collected in Table I. From these numbers, the matter radius
r, of the P-wave charmonium y, is larger than that of 7,
by 30%. The radius r, of the 7., the radial excitation,
almost doubles that of the ground state.

From these form factors, we can extract physical
densities. One of the advantages of the BLFQ approach
is that the coordinate-space density can be obtained in
closed form. This avoids the problem of numeric fitting or
numerical Fourier transform, which introduces large and
uncontrollable numerical errors. The extracted pressure is
shown in Fig. 4 for 7., 1., [i.e., 7.(2S)] and yy. The total

1.0 T T T T

—1c
772 _
""" Xc0

=
[o2e]
I

5

o
T
1

1 1 1 1
0 5 10 15 20 25

0* [GeV?]

_3 ] ] ] ]
0 5 10 15 20 25

0” [GeV?]

FIG. 3. Comparison of GFFs A(Q?) (top) and D(Q?) (bottom)
of charmonia 7., 7., and .. The uncertainty bands are
determined as described in the caption to Fig. 2.

27r 1 P(r1) [fm™?]

—40 | | | | |
0.0 0.1 0.2 0.3 0.4 0.5 0.6

80 |- n. .

27r 1 P(r1) [fm™2]

80| XcO .

27r 1 P(r1) [fm™2]

—40 | | 1 | |
0.0 0.1 0.2 0.3 04 0.5 0.6

r1 [fm]

FIG. 4. Comparison of the pressure within 7, (top), 7. (middle),
and y. (bottom). The uncertainty bands are determined as
described in the caption to Fig. 2.
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pressure vanishes as a result of the von Laue condition. For
all three states, the pressure is positive (repulsive) at the
center of the meson and negative (attractive) near the edge,
satisfying the stability conjecture [164,165]. The pressure
profile of the radial excited charmonium 7. shows two
additional nodes [22]. Note that the uncertainty of the
pressure at small r is large. This is because our basis has a
finite UV coverage. The effective UV cutoff for N, = 8
is Ayy = kv/Npax = 2.8 GeV, corresponding to a spatial
resolution of 0.07 fm. Smaller than this distance, the
pressure starts to show large uncertainty, i.e., stronger
basis dependence.

We have mentioned the difference between the proper
energy distribution £(r ) defined from the instant form
and the light-front energy distribution M?(r,) obtained
on the light front. The former is normalized to the total
energy of a hadron at rest, i.e., its rest mass M, whereas
the latter is normalized to the invariant mass squared M?>
of the hadron. Figure 5 compares the normalized energy
distribution of 7, and its normalized light-front energy
distribution. The energy distribution is positive, consis-
tent with the weak energy condition. However, the light-
front energy distribution becomes negative at short dis-
tance r |, although at the short distance, the results suffer
from slow basis convergence as indicated by the wide
bands. Similar quantities can be extracted and compared
for n. and y., as shown in Fig. 6. Within basis
uncertainty, the energy distributions £(r ) are consistent
with the weak energy condition that the energy densities
are positive.

We have so far introduced several densities: the matter
density A(r,), energy density E(r), light-front energy
density M?(r ), and scalar density 6(r, ). Both £(r, ) and
A(r ) are strictly positive as required by the weak and null
energy conditions. The energy conditions impose con-
straints on D (46), which are satisfied by a negative D.

2ar 1 Er )M [fm™!]

0.0 0.1 0.2 0.3 0.4 0.5 0.6
71 [fm]

FIG. 6. Comparison of the energy distributions (top) and the
distribution of the light-front energy (bottom) of #.. and yy. The
uncertainty bands are determined as described in the caption
to Fig. 2.

We have argued that a negative D suggests a hierarchy of
the radii associated with these densities:
ry <rg <nrp <rg. (86)

Figure 7 compares these densities for 7, after the normali-
zation; i.e., all densities are normalized to unity. Both the

12 I I I I
i n Sr/M ]
g |- ¢ e MG )/IMP
T
g f < T
= 4t -
3 LS TN 1
Y g .
LS T Ll o
4 S
N b 4
I
N 4 ]
1 1 1 1 1

0.0 0.1 0.2 0.3 0.4 0.5 0.6
71 [fm]

FIG. 5.
the normalized distribution of the light-front energy within ..

The uncertainty bands are determined as described in the caption

to Fig. 2.

Comparison of the normalized energy distribution and

12 T T T T T
—Ary) i
|z Ne EruM |
o - M2(r)/M?

0(r1)/M

2rr 1 p(ry) [fm™!]

0.0 0.1 0.2 0.3 0.4 0.5 0.6
rl [fm]

FIG.7. Comparison of normalized densities of 7. The densities
are computed with LFWFs with N, =8 (see texts). The
corresponding radii are indicated by arrows.
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27 M2(r)/M?* [fm™1]

2 MG(rL)/M? (™'

__________
Ca
7
4

% »

27 ME(r)/M? [fm1]
L
T

_6 ] ] ] ] ]
0.0 0.1 0.2 0.3 0.4 0.5 0.6

rl [fm]

FIG. 8. Top: decomposition of the light-front energy density of
n. into the free part and the interacting part. Middle: comparison
of the free light-front energy densities for 7., 11.., and y . Bottom:
comparison of the interacting light-front energy densities for 7.,
1., and y .. The uncertainty bands are determined as described in
the caption to Fig. 2.

light-front energy density M?(r,) and the scalar density
0(r ) become negative at the center of the meson.

As we mentioned, in the light-front Hamiltonian for-
malism, we are also able to access the light-front kinetic
energy and light-front potential energy separately. The
distributions of the free light-front energy as well as the
interacting light-front energy for ., ., and y . are shown
in Fig. 8. Note that M3(r ) does not remain positive for all

2
wob-Me .0 Am;
am?
|
5| (T)
9
0___ _________________

FIG. 9. Decomposition of charmonium light-front energy in
terms of the total quark mass squared 4m2, kinetic light-front
energy (T) and potential light-front energy (V). See text.

distance for 7. and y .. This is caused by the recoil term
—g? /4x in (66). The interaction density M3, (r,) of 7.
becomes positive at some large distance, consistent with the
positive confining potential 2 dominant at large parton
separation.

Nonrelativistically, for particles within a potential of
the form V(r) = ar", the virial theorem® suggests n =
2(T)/(V). Inspired by this result, we introduce a virial
scaling index

2(T)

vy~

where we define the kinetic energy, i.e., the virial, as the
free energy M3 = M3(Q? = 0) subtracting the square of
the total quark mass,

n (87)

(T) = M§(Q* = 0) — (m, + my)*. (88)

The potential energy is simply the interacting energy,

(V) = M2,(Q* = 0), (89)
This index n characterizes the shape of the interparticle
force under spatial dilation. In nonrelativistic limit, our
effective interaction is a harmonic oscillator 7> at large
distance plus a Coulomb 7~! at short distance. One would
expect a virial index close to —1 for deep bound state, e.g.,
1., and 41 for bound state with large size [175]. The
obtained indices are collected Table I. Within the sizable
basis uncertainty, these numbers are in agreement with the

*Lorcé et al. generalized the virial theorem to QFT and showed
that it is equivalent to von Laue condition [174].
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prediction from the nonrelativistic virial theorem. Figure 9
shows the decomposition of the light-front energy of
charmonia 7., 7., and y. into quark mass contribution,
kinetic energy contribution, and the potential energy
contribution.

VI. SUMMARY AND OUTLOOK

In this work, we investigate the gravitational form factors
of the charmonium system. Starting from the light-front
wave functions obtained previously in basis light-front
quantization, we construct the wave function representation
of GFFs A and D. The former is extracted from the operator
T+ while the latter is from 77~ with an impulse ansatz.
The obtained GFFs satisfy the known global constraints
such as A(0) = 1, and the von Laue condition.

From these two primary quantities, we also define
physical densities on the light front, including the pressure
P(r.), the (proper) energy density £(r,), light-front
energy density M?(r ), and trace scalar density 6(r)).
We also identify the positive-defined density A(r ), the
Fourier transform of GFF A(Q?), as the (convective) matter
density. The energy density £(r, ) is also positive and is
consistent with the weak energy condition. These densities
provide rich information of the system. For example, we
find that there is a hierarchy for the sizes of the system:
rqa < rg < ryp < rg, implying an onionlike structure of
hadrons. Finally, we investigate the virial scaling index
2(T)/(V), which provides a quantitative measure of the
strong force within charmonium. The obtained values are
consistent with the nonrelativistic picture.

We note that the method we proposed in this work is
general enough and is applicable to states with a different
spin such as J/y, and to other systems, such as the nucleon.
The same method was applied to the pion in the context of
holographic light-front QCD [49]. It is interesting to
observe the cancellation between the scalar and tensor
glueballs and the emergence of scalar meson dominance
within the pion. It is interesting to note that the scalar
meson coupling to D comes from the recoil term —g? /4x.
A closely related set of observables are the gravitational
transition form factors [52-54,176-185], which describe
hadron production in gravity. These observables can also be
accessed using the methods proposed in this work.

One of the interesting questions is the comparison
between GFF D extracted from 77~ and from 7'? and
from T!' + T%2. Operators T'', T?? also contain inter-
actions and need to be renormalized. However, for practical
calculations on the light front, including perturbative or

nonperturbative, counterterms computed from the light-
front Hamiltonian are not sufficient to renormalize these
operators. This is in sharp contrast to 7, which shares the
same counterterms as its conserved charge, the light-front
Hamiltonian. 72 is interaction free. It is tempting to extract
GFF D from T'> [51]. However, covariant light-front
dynamics analysis shows that T'!, 722, T'? are all asso-
ciated with a spurious GFF—a structure that breaks the
Poincaré symmetry. The GFF D extracted from 72 is likely
to differ from what we obtained from 7, which does not
suffer from the contamination of the spurious GFFs.

Our model does not contain dynamical gluons or sea
quarks. Therefore, we are not able to perform decompo-
sition in terms of quarks and gluons. Incorporating
dynamical gluons and sea quarks are necessary next steps
in basis light-front quantization [136—-140]. How to tame
the computational complexity as well as the nonperturba-
tive renormalization arising in these problems are critical
challenges to be tackled.
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