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We calculate the perturbative T-odd contributions to the lepton angular distribution in the Drell-Yan
process. Using collinear factorization, we work at the first order in QCD perturbation theory where these
contributions appear, Oðα2sÞ, and address both W� and γ=Z0 boson exchange. A major focus of our
calculation is on the regime where the boson’s transverse momentum QT is much smaller than its mass Q.
We carefully expand our results up to next-to-next-to-leading power in QT=Q. Our calculation provides a
benchmark for studies of T-odd contributions that employ transverse-momentum dependent parton
distribution functions. In the neutral-current case we compare our results for the T-odd structure functions
to available ATLAS data.
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I. INTRODUCTION

There is a long history of the study of T-odd asymmetries
in QCD hard-scattering processes, starting with the seminal
papers [1–6] that showed how T-odd effects may be
generated by absorptive parts of QCD loop diagrams.
T-odd behavior refers to noninvariance of observables
under so-called naive time reversal, that is, under reversal
of momenta and spins without interchange of initial and
final states. As shown in the early papers, such behavior can
occur even in theories that are manifestly invariant under
true time reversal. Subsequent work [7–22] explored T-odd
QCD phenomena in a wide range of scattering reactions,
among them especially the Drell-Yan process. In Ref. [8]
it was proposed to study T-odd asymmetries appearing
in the angular distributions of the charged leptons from
the decay of W� bosons produced with high transverse
momentum at hadron colliders. The asymmetries manifest
themselves as terms proportional to sinϕ or sin 2ϕ in the
lepton distribution, where ϕ is a suitably defined azimuthal
angle between the lepton plane and the hadron plane.
The T-odd part of the spin-averaged differential cross
section for W� production was expanded in [8] in terms
of three structure functions which were computed to

lowest order of perturbation theory. The results were later
obtained independently in Ref. [10] and extended to the
case of longitudinal polarization of one of the initial
hadrons in [15,21].
In parallel developments, it was realized that T-odd

effects in QCD may also arise in hadronic matrix elements,
especially in parton distribution functions (PDFs) [23–26],
where they are associated with correlations among three-
momenta, transverse momenta, and polarizations of partons
and hadrons and again generate azimuthal-angle dependent
terms. This has given rise to an intensive experimental
program aiming at the extraction of such T-odd transverse-
momentum dependent parton distributions (TMDs) (for a
recent review, see Ref. [27]), either in semi-inclusive lepton
scattering (SIDIS) or via the Drell-Yan process.
The precise connection between T-odd effects in per-

turbative (collinearly factorized) hard scattering on the one
hand and T-odd TMDs on the other has been an area of
active research as well. This issue is important both theo-
retically and for phenomenology, where it is central for the
“matching” of resummed calculations based on TMDs to
fixed-order perturbation theory. While much progress has
been made for leading-twist observables [28–39], it was
also realized that for many of the azimuthal-angle depen-
dent terms in the Drell-Yan and SIDIS cross sections—both
T-odd and T-even—this matching is nontrivial and
will involve TMD PDFs at next-to-leading power in the
hard scale [40,41]. Correspondingly, TMD factorization
theorems at next-to-leading power were developed in the
literature [42–46].
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In the present paper, we advance this area of research by
specifically exploring the low-transverse momentum limit
of the T-odd terms appearing in the Drell-Yan hard-
scattering calculation. The work is carried out in the spirit
of Ref. [22] that addressed T-odd effects in SIDIS, but goes
well beyond it in terms of calculational techniques. For our
purpose, we first perform an independent new analytical
calculation of the lowest-order T-odd terms in the Drell-
Yan cross section, recovering results at this order from the
previous literature [8,10], but also extending them by
presenting results for pure Z-boson exchange and γ − Z
interference. As one application, we will compare our
results to available ATLAS data [47] for the T-odd angular
terms taken around the Z resonance. Our main focus,
however, is to carefully expand the results for low Q2

T=Q
2,

where QT and Q are the boson’s transverse momentum and
mass, respectively. We do this to first and second power in
this ratio, identifying logarithmic behavior as well. As a
byproduct we also uncover a novel simple relation between
two of the T-odd structure functions valid at leading power
in Q2

T=Q
2 for both partonic channels, qq̄ annihilation and

qg Compton scattering.
We hope that our explicit results will be useful in testing

TMD factorization at next-to-leading power and ultimately
contribute to a better understanding of the matching
between the TMD and collinearly factorized regimes. As
has been shown in Refs. [48–50], at leading power γ=Z
interference generates a sin 2ϕ azimuthal dependence in the
unpolarized Drell-Yan cross section, entering with the
Boer-Mulders function [24], while a term proportional to
sinϕ is not generated. Effects beyond leading power have
been investigated in Ref. [51].
In more general terms, TMD factorization theorems

make a prediction also for the large-QT “tail” of the
transverse-momentum distribution they provide, which
may be confronted with the terms generated by the colli-
nearly factorized cross section expanded to low QT=Q. An
important issue is whether there is an overlap region of QT
where the two approaches agree. This decides whether the
TMD and collinear contributions to the cross section are
manifestations of the same physical origin, or should be
regarded as genuinely separate pieces. While such an
overlap has been demonstrated in a few important cases,
notably the Sivers function [31,32,38], the situation is not
clear for next-to-leading power observables [40], especially
for those that arise only from loop corrections in the
collinear-factorization case. In any case, knowledge of
both the TMD and the large-QT (collinear) parts of the
cross section is vital for phenomenology, in order to obtain
a formalism that encompasses the full range ofQT . We will
not address the potential ramifications of our results for
TMDs in this paper, but rather view our work as providing
a part of a “library” of hard-scattering functions at low
transverse momenta. We stress that our techniques for
expanding the cross sections for lowQ2

T=Q
2 are completely

general and may also be used in a variety of other settings,
such as for T-even contributions, collisions of polarized
hadrons, and so forth, or perhaps even at the next order in
perturbation theory, as available from [18].
Our paper is organized as follows. In Sec. II we present

the definition of the structure functions parametrizing the
lepton-angular distribution for the Drell-Yan process and
the main ingredients for the perturbative calculation
of the T-odd contributions. In Sec. III we collect the
analytic results, and subsequently in Sec. IV the small
QT expansion is performed. In Sec. V we compare our
results with the ATLAS data. Section VI concludes our
paper. Some calculational details are collected in
Appendixes A–C, and the lengthy results for the small-
QT expansion to next-next-to-leading-power are presented
in the Supplemental Material [52].

II. T-ODD STRUCTURE OF THE DRELL-YAN
HADRONIC TENSOR

The hadronic tensor Wμν for the Drell-Yan process
can be written in terms of nine structure functions Wi.
The most straightforward decomposition of this tensor is
obtained by using the helicity formalism proposed in
Ref. [53] for reactions with photon exchange and extended
in Ref. [10] to the electroweak case. The results of Ref. [10]
for the expansion of Wμν can be conveniently rewritten

using a basis of orthogonal unit vectors Tμ ¼ qμ=
ffiffiffiffiffiffi
Q2

p
¼

ð1; 0; 0; 0Þ, Xμ ¼ ð0; 1; 0; 0Þ, Zμ ¼ ð0; 0; 0; 1Þ, Yμ ¼
ϵμναβTνZαXβ ¼ ð0; 0; 1; 0Þ, proposed in Ref. [53] and
constructed from the hadron and virtual-boson momenta.
This expansion reads as

Wμν¼ðXμXνþYμYνÞWTþ iðXμYν−YμXνÞWTP
þZμZνWL

þðYμYν−XμXνÞWΔΔ−ðXμYνþYμXνÞWΔΔP

−ðXμZνþZμXνÞWΔ−ðYμZνþZμYνÞWΔP

þ iðZμXν−XμZνÞW∇þ iðYμZν−ZμYνÞW∇P
; ð1Þ

where q is the momentum of the gauge boson γ,W�, or Z0,
with q2 ¼ Q2 its Minkowski momentum squared, and ϵμναβ

is the four-dimensional Levi-Civita tensor defined via
trðγ5γμγνγαγβÞ ¼ 4iϵμναβ, with ϵ0123 ¼ −ϵ0123 ¼ −1.
The number of structure functions, 9 ¼ 3 × 3, is deter-

mined by the number of possible helicity settings of the
gauge boson in the amplitude and its complex conjugate.
In the case of the purely weak Drell-Yan reactions or for
γ − Z0 interference we have nine functions, while in the
case of the purely electromagnetic Drell-Yan we have only
four T-even structure functions. In general, the Drell-Yan
hadronic structure functions may be classified as
(a) two transverse functions, the P-even WT and the

P-odd WTP
;

(b) one longitudinal function WL which is P-even;
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(c) two transverse-transverse interference (double-spin-
flip) functions, the P-even WΔΔ and the P-odd
WΔΔP

; and
(d) four transverse-longitudinal interference (single-spin-

flip) functions, the P-even WΔ, W∇ and the P-odd
WΔP

, W∇P
.

The lepton angular distribution dN=dΩ is expanded in
terms of the hadronic structure functions as

dN
dΩ

¼ 3

8πð2WT þWLÞ
�
gTWT þ gLWL þ gΔWΔ

þ gΔΔWΔΔ þ gTP
WTP

þ g∇P
W∇P

þ g∇W∇
þ gΔΔP

WΔΔP
þ gΔP

WΔP

�
; ð2Þ

where gi ¼ giðθ;ϕÞ denote the angular coefficients

gT ¼ 1þ cos2θ; gL ¼ 1 − cos2θ; gTP
¼ cos θ;

gΔΔ ¼ sin2θ cos 2ϕ; gΔ ¼ sin 2θ cosϕ; g∇P
¼ sin θ cosϕ;

gΔΔP
¼ sin2θ sin 2ϕ; gΔP

¼ sin 2θ sinϕ; g∇ ¼ sin θ sinϕ; ð3Þ

with θ and ϕ being the polar and azimuthal angles of one of
the decay leptons in the center-of-mass system (c.m.s.) of
the lepton pair. The angle ϕ may be taken to define the
orientation of the lepton plane with respect to the hadron
plane. In Fig. 1 we show the polar and the azimuthal angles
for the Drell-Yan process in the Collins-Soper frame.
The six angular coefficients gi (i ¼ T, L, ΔΔ, Δ, ΔΔP,

ΔP) in (3) are invariant under the P-parity transformation
θ → π − θ and ϕ → π þ ϕ, while the other three coefficients
gi (i ¼ TP, ∇, ∇P) change their sign in that case. Therefore,
the six partial lepton angular distributions dNi=dΩ (i ¼ T,
L, ΔΔ, Δ, TP, ∇P) are also P invariant, whereas the other
three distributions dNi=dΩ (i ¼ ΔΔP,ΔP,∇) areP odd and
also T odd. As can be seen from Eq. (3), the latter
distributions are all proportional to either sinϕ or sin 2ϕ.
We note in passing that two other commonly employed,

and equivalent, parametrizations of the lepton angular
distribution are [10,41,53–55]

dN
dΩ

¼ 3

16π

�
1þ cos2θþ A0

2
ð1− 3cos2θÞ þ A1 sin 2θ cosϕ

þ A2

2
sin2θ cos2ϕþ A3 sin θ cosϕþ A4 cos θ

þ A5sin2θ sin2ϕþ A6 sin 2θ sinϕþ A7 sin θ sinϕ
�
;

ð4Þ
and

dN
dΩ

¼ 3

4π

1

λþ 3

�
1þ λcos2θþ μ sin2θ cosϕ

þ ν

2
sin2θ cos2ϕþ τ sin θ cosϕþ η cos θ

þ ξsin2θ sin2ϕþ ζ sin2θ sinϕþ χ sin θ sinϕ

�
: ð5Þ

The relations between the three sets of structure functions
are recalled in Appendix A.

The T-odd structure functions W∇, WΔΔP
, and WΔP

are
generated at Oðα2sÞ in the strong coupling constant αs by
the absorptive parts of parton scattering amplitudes. The
leading contributions arise from the interference of one-
loop and tree-level diagrams. The relevant channels are
quark-antiquark annihilation and quark-gluon Compton
scattering. Their one-loop diagrams providing an absorp-
tive part for photon exchange in Drell-Yan are shown in
Figs. 2 and 3; the diagrams with Z0 and W� bosons are
generated analogously. The ensuing T-odd effects were
first studied in Ref. [8] and later recalculated in [10]. Here
we will present an independent derivation that will allow us
to explore the low-QT limit of the results.
For our calculation of the T-odd structure functions we

use a convenient orthogonal basis of vectors P, R, K [56],
defined by

Pμ ¼ ðp1 þ p2Þμ;
Rμ ¼ ðp1 − p2Þμ;

Kμ ¼ kμ1 − Pμ P · k1
P2

− Rμ R · k1
R2

¼ −qμ þ Pμ P · q
P2

þ Rμ R · q
R2

; ð6Þ

FIG. 1. Definition of the polar and the azimuthal angles for the
Drell-Yan process in the Collins-Soper frame. The hadron plane
is depicted in blue, the lepton plane in red.
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which obey the conditions

P2 ¼−R2 ¼ ŝ; K2 ¼−
û t̂
ŝ
; P ·R¼P ·K ¼R ·K ¼ 0:

ð7Þ

Here p1, p2, and k1 are the momenta of the two initial
partons and the final-state parton, respectively, satisfying
the momentum conservation relation p1 þ p2 ¼ k1 þ q.
Furthermore, ŝ¼ ðp1 þp2Þ2, t̂¼ ðp1 − qÞ2, û¼ ðp2 − qÞ2,
with ŝþ t̂þ û ¼ Q2 the parton-level Mandelstam
variables.

The ðP;R;KÞ and ðT; X; Y; ZÞ bases are related by

Xμ ¼ Tμ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρ2

p
ρ

−
Pμzþ12 þ Rμz−12
2Qρ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρ2

p
¼ ρðPμzþ12 þ Rμz−12Þ

2Q
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρ2

p −
Kμ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρ2

p
Qρ

;

Zμ ¼ Pμz−12 þ Rμzþ12
2Q

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρ2

p ;

Yμ ¼ −ϵμPRK
z1z2

Q3ρð1þ ρ2Þ ; ð8Þ

FIG. 2. One-loop diagrams for qq̄ → gγ that produce an absorptive part.

FIG. 3. One-loop diagrams for qg → qγ that produce an absorptive part.
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where z�12 ¼ z1 � z2, Q ¼
ffiffiffiffiffiffi
Q2

p
, and ϵμPRK ¼

ϵμναβPνRαKβ. We have zi ¼ xi=ξi, with the momentum
fractions ξi of the partons defined by pi ¼ ξiPi, and with
the momentum fractions of the light-cone components of
the gauge boson,

x1;2 ¼ e�y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þQ2

T

s

r
; ð9Þ

at nonzero QT . We also introduce the variables

x01;2 ¼ e�y Qffiffiffi
s

p ð10Þ

relevant in the QT ¼ 0 limit.
The hadronic structure functions Wðx1; x2; ρ2Þ for the

Drell-Yan process with colliding hadrons H1 and H2

are related to the parton-level structure functions
wabðx1; x2; ρ2Þ by the QCD collinear factorization formula

Wðx1; x2; ρ2Þ ¼
1

x1x2

X
a;b

Z
1

x1

dz1

Z
1

x2

dz2wabðz1; z2; ρ2Þ

× fa=H1

�
x1
z1

�
fb=H2

�
x2
z2

�
; ð11Þ

where fi=HðξÞ is the PDF describing the ξ distribution of
partons of type i in hadron H. We are suppressing here the
scale dependence of the PDFs.
We may project onto the parton-level T-odd structure

functions in the following way (here we drop parton labels):

wΔΔP
¼ −

1

2
ðXμYν þ XνYμÞwμν

¼ − z1z2
4Q4ρ2ð1þ ρ2Þ3=2

�
ϵμPRKðPνzþ12 þ Rνz−12Þ

þ ϵνPRKðPμzþ12 þ Rμz−12Þ
�
wμν; ð12Þ

wΔP
¼ −

1

2
ðYμZν þ YνZμÞwμν

¼ z1z2
4Q4ρð1þ ρ2Þ3=2

�
ϵμPRKðPνz−12 þ Rνzþ12Þ

þ ϵνPRKðPμz−12 þ Rμzþ12Þ
�
wμν; ð13Þ

w∇ ¼ i
2
ðXμZν − XνZμÞwμν

¼ i z1z2
2Q2ρð1þ ρ2Þ ðP

νRμ − PμRνÞwμν: ð14Þ

In the evaluation of the absorptive parts of the one loop
diagrams we use the following set of imaginary parts of
scalar one-loop integrals [56,57]:

ImB0ðQ2Þ ¼ ImB0ðŝÞ ¼ π; ImB0ðûÞ ¼ ImB0ðt̂Þ ¼ 0;

ImC0ðŝ; 0Þ ¼
π

ŝ

�
1

ϵ̄
− log

ŝ
μ2

�
; ImC0ðû; 0Þ ¼ ImC0ðt̂; 0Þ ¼ 0;

ImC0ðQ2; 0Þ ¼ π

Q2

�
1

ϵ̄
− log

Q2

μ2

�
; ImC0ðQ2; ŝÞ ¼ −

π

Q2 − ŝ
log

Q2

ŝ
;

ImC0ðQ2; ûÞ ¼ π

Q2 − û

�
1

ϵ̄
− log

Q2

μ2

�
; ImC0ðQ2; t̂Þ ¼ π

Q2 − t̂

�
1

ϵ̄
− log

Q2

μ2

�
;

ImC0ðŝ; ûÞ ¼
π

ŝ − û

�
1

ϵ̄
− log

ŝ
μ2

�
; ImC0ðŝ; t̂Þ ¼

π

ŝ − t̂

�
1

ϵ̄
− log

ŝ
μ2

�
;

ImD0ðQ2; ŝ; ûÞ ¼ −
2π

ŝ û
log

Q2 − û
Q2

; ImD0ðQ2; ŝ; t̂Þ ¼ −
2π

ŝ t̂
log

Q2 − t̂
Q2

;

ImD0ðQ2; t̂; ûÞ ¼ 2π

û t̂

�
−
1

ϵ̄
þ log

Q2

μ2
− log

ðQ2 − ûÞðQ2 − t̂Þ
û t̂

�
; ð15Þ

where B0 denotes the two-propagator (bubble) diagram,
C0 the three-propagator (triangle) diagram, and D0 the
four-propagator (box) diagram. We have used dimensional
regularization with D ¼ 4 − 2ϵ space-time dimensions;
as usual 1=ϵ̄ ¼ 1=ϵþ logð4πÞ þ γE with the Euler-
Mascheroni constant γE.
We note that in the cases of the electroweak contributions

to wΔΔP
and wΔP

we have to deal with an odd number of γ5

matrices in the relevant Dirac traces. We adopt the Larin
scheme for treating γ5; details are discussed in Appendix B.

III. ANALYTICAL RESULTS FOR THE PARTONIC
T-ODD STRUCTURE FUNCTIONS

In this section we present our analytical results for the
parton-level T-odd structure functions wΔΔP

, wΔP
, and w∇.
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We first introduce some notation. We use the QCD color
factors CF ¼ ðN2

c − 1Þ=ð2NcÞ ¼ 4=3, CA ¼ Nc ¼ 3, TF ¼
1=2, C1 ¼ CF − Nc=2 ¼ −1=ð2NcÞ ¼ −1=6, which at
large Nc scale as OðNcÞ, OðNcÞ, Oð1Þ, Oð1=NcÞ, respec-
tively. Specifically, the color factors for qq̄ annihilation and
qg scattering are Cqq̄ ¼ CF=Nc ¼ ðN2

c − 1Þ=ð2N2
cÞ ¼ 4=9

and Cqg ¼ TF=Nc ¼ 1=ð2NcÞ ¼ 1=6. Furthermore, it is

convenient to introduce the coupling factors gqq̄;i ¼
Cqq̄g

Zγ=W
EW;i e

2
qα

2
s=ð4πÞ and gqg;i ¼ Cqgg

Zγ=W
EW;i e

2
qα

2
s=ð4πÞ,

where i ¼ 1, 2. Here, eq is the electric charge of a quark
of flavor q. The electroweak couplings gEW;1 and gEW;2,
which incorporate the products of couplings of the gauge
bosons (W�, Z0, γ) with quarks and leptons, are given by

gZγEW;1 ¼ 2gAZq
�
gVZqððgVZlÞ2 þ ðgAZlÞ2ÞjDZðQ2Þj2

þ gVZlRe½DZðQ2Þ��;
gZγEW;2 ¼ 2gAZl

�
gVZlððgVZqÞ2 þ ðgAZqÞ2ÞjDZðQ2Þj2

þ gVZqRe½DZðQ2Þ��; ð16Þ

in the case of electrically neutral gauge bosons (Z0, γ) and

gWEW;1 ¼ 2gVWqq0g
A
Wqq0

�ðgVWlÞ2 þ ðgAWlÞ2
�jVqq0 j2jDWðQ2Þj2;

gWEW;2 ¼ 2gVWlg
A
Wl

�ðgVWqq0 Þ2 þ ðgAWqq0 Þ2
�jVqq0 j2jDWðQ2Þj2;

ð17Þ

in the case of the W� gauge bosons, where

gVWl ¼ gAWl ¼ gVWqq0 ¼ gAWqq0 ¼
1

2 sin θW
ffiffiffi
2

p ;

gVZl ¼ −
1 − 4sin2θW
2 sin 2θW

; gAZl ¼ −
1

2 sin 2θW
;

gVZu ¼
1 − 8=3sin2θW
2eq sin 2θW

; gVZd ¼ −
1 − 4=3sin2θW
2eq sin 2θW

;

gAZu ¼
1

2eq sin 2θW
; gAZd ¼ −

1

2eq sin 2θW
: ð18Þ

In the above expressions, Vqq0 is the relevant element of the
Cabibbo-Kabayashi-Maskawa (CKM) matrix, and θW is the
Weinberg angle measured to be sin2 θW ¼ 0.23121 [58].
Furthermore, DGðQ2Þ (G ¼ W�; Z0) denotes the product of
the Breit-Wigner propagator of a weak gauge boson andQ2.
Its real and imaginary part are given by

Re½DGðQ2Þ� ¼ ðQ2 −M2
GÞQ2

ðQ2 −M2
GÞ2 þM2

GΓ2
G
;

Im½DGðQ2Þ� ¼ MGΓGQ2

ðQ2 −M2
GÞ2 þM2

GΓ2
G
: ð19Þ

The masses MG and total widths ΓG of the bosons, taken
from the Particle Data Group [58], are MW� ¼ 80.377�
0.012 GeV, MZ0 ¼ 91.1876� 0.0021 GeV, ΓW� ¼
2.085� 0.042 GeV, and ΓZ0 ¼ 2.4955� 0.0023 GeV.
Note that in Eqs. (16) and (17) the terms proportional to
the squares of the Breit-Wigner propagators (jDZðQ2Þj2 and
jDWðQ2Þj2) correspond to the purely weak ZZ and WW
contributions to the couplings, while the terms proportional
to the real part of the Breit-Wigner Z boson propagator
Re½DZðQ2Þ� correspond to γ-Z interference.
As a final ingredient, we note that all one-loop partonic

structure functions contain a factor δððŝþ t̂þ û −Q2Þ=ŝÞ
arising from phase space and corresponding to the fact that
the recoil in the final state consists of a single massless
parton. It is convenient to write

wabðz1; z2; ρ2Þ ¼ w̃abðz1; z2; ρ2Þδ
�ðŝþ t̂þ û −Q2Þ=ŝ�:

ð20Þ

With this notation in place, we obtain the following
partonic T-odd structure functions. For the qq̄ annihilation
subprocess, we find

w̃qq̄
ΔΔP

¼ gqq̄;1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2ŝ

ðQ2 − ûÞðQ2 − t̂Þ

s 	
−
CF

2

�
Q2 − t̂
Q2 − û

þQ2 − û
Q2 − t̂

�

þ C1

�
Q2 − t̂

t̂

�
1 −

ŝ
t̂
log

Q2 − û
ŝ

�
þQ2 − û

û

�
1 −

ŝ
û
log

Q2 − t̂
ŝ

��

; ð21Þ

w̃qq̄
ΔP

¼ gqq̄;1
2

Q2ŝffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðQ2 − ûÞðQ2 − t̂Þû t̂

p 	
CF

�
Q2 − t̂
Q2 − û

−
Q2 − û
Q2 − t̂

�

þ C1

�
Q2 − û

û
log

Q2 − t̂
ŝ

−
Q2 − t̂

t̂
log

Q2 − û
ŝ

�

; ð22Þ
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w̃qq̄
∇ ¼ gqq̄;2

ffiffiffiffiffiffiffiffi
Q2ŝ
û t̂

r 	
CF

2

ð2Q2ŝþ û t̂ÞðQ2 þ ŝÞðû − t̂Þ
ðQ2 − ûÞ2ðQ2 − t̂Þ2

þ C1

�
−

Q2ðû − t̂Þ
ðQ2 − ûÞðQ2 − t̂Þ þ

ŝ
û
log

Q2 − t̂
ŝ

−
ŝ
t̂
log

Q2 − û
ŝ

�

: ð23Þ

For qg scattering we have

w̃qg
ΔΔP

¼ gqg;1
2

û
ŝ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2ŝ

ðQ2 − ûÞðQ2 − t̂Þ

s 	
CF

2

2Q2 þ ŝ
Q2 − t̂

− C1

�
Q2

Q2 − û
þQ2 − û

ŝ
log

ðQ2 − ûÞðQ2 − t̂Þ
û t̂

þQ2 − t̂
t̂

�
1 −

Q2 − û
t̂

log
Q2 − û

ŝ

��

; ð24Þ

w̃qg
ΔP

¼ gqg;1
2

Q2ûffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðQ2 − ûÞðQ2 − t̂Þû t̂

p 	
CF

2

t̂ − 2û
Q2 − t̂

− C1

�
û

Q2 − û
þQ2

ŝ
−
ðQ2 − ûÞû

ŝ2
log

ðQ2 − ûÞðQ2 − t̂Þ
û t̂

�

; ð25Þ

w̃qg
∇ ¼ gqg;2

û
ŝ

ffiffiffiffiffiffiffiffi
Q2ŝ
û t̂

r 	
−
CF

2

2Q2ûþ ŝ t̂
ðQ2 − t̂Þ2

− C1

�
2Q2ŝ

ðQ2 − ûÞ2 −
Q4 − û t̂

ðQ2 − ûÞðQ2 − t̂Þ þ
û
t̂
log

Q2 − û
ŝ

−
û
ŝ
log

ðQ2 − ûÞðQ2 − t̂Þ
û t̂

�

: ð26Þ

We note that in the large Nc limit the terms proportional to C1 in the structure functions are suppressed by a factor 1=N2
c

relative to those proportional to CF and CA. The results for gq̄ scattering are obtained from the ones for the qg process by
interchange of momenta, p1 ↔ p2, which corresponds to an interchange of Mandelstam variables u ↔ t.
For calculating the hadronic structure functions via the factorization formula (11) and subsequently investigating their

smallQT behavior, it is convenient to express our results in terms of the variables z1 ¼ x1=ξ1, z2 ¼ x2=ξ2, and ρ2 ¼ Q2=Q2
T .

Using

ŝ ¼ Q2 þQ2
T

z1z2
; Q2 − t̂ ¼ Q2 þQ2

T

z1
; Q2 − û ¼ Q2 þQ2

T

z2
;

û t̂
Q2ŝ

¼ ρ2;
ðQ2 − ûÞðQ2 − t̂Þ

Q2ŝ
¼ 1þ ρ2; ð27Þ

one gets for qq̄ annihilation

w̃qq̄
ΔΔP

¼ −
gqq̄;1
4z1z2

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρ2

p 	
CA

z21 þ z22
2

þ C1ðz21F1ðz2Þ þ z22F1ðz1ÞÞ


; ð28Þ

w̃qq̄
ΔP

¼ −
gqq̄;1
2z1z2

1

ρ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρ2

p 	
CA

z21 − z22
2

þ C1ðz21F2ðz2Þ − z22F2ðz1ÞÞ


; ð29Þ

w̃qq̄
∇ ¼ −

gqq̄;2
z1z2

1

ρ

	�
CA −

ρ2

1þ ρ2
CF

�
z21 − z22

2
þ C1ðz1F2ðz2Þ − z2F2ðz1ÞÞ



; ð30Þ
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and for qg scattering

w̃qg
ΔΔP

¼ −
gqg;1
2

1 − z2
z1z2

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρ2

p 	
CF

2
z1

�
1þ 2z1z2

1þ ρ2

�
þ C1z1z2

��
F1ðz1Þ −

1 − ρ2

1þ ρ2

�
z2
2
þ z1 log

ρ2

1þ ρ2

�

; ð31Þ

w̃qg
ΔP

¼ −
gqg;1
2

1 − z2
z1z2

1

ρ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρ2

p 	
CF

2
z1ð1þ z1 − 2z2Þ þ C1z2

�
1 − z2 −

z21z2
1þ ρ2

þ z21ð1 − z2Þ log
ρ2

1þ ρ2

�

; ð32Þ

w̃qg
∇ ¼ −gqg;2

1− z2
z1z2

1

ρ

	
CFz1

�
z1ð1− z2Þ
1þ ρ2

þ 1− z1
2z2

�
þC1z2

�
z21 − 2z2
1þ ρ2

þ z1ð1− z2Þ log
ρ2

1þ ρ2
− ð1− z2ÞF2ðz1Þ

�

: ð33Þ

Here, the functions F1 and F2 are defined as

F1ðzÞ≡ 1þ z
1 − z

þ 2z logðzÞ
ð1 − zÞ2 ¼ 2

X∞
N¼1

ð1 − zÞN
ðN þ 1ÞðN þ 2Þ ¼ Oð1 − zÞ;

F2ðzÞ≡ 1þ z logðzÞ
1 − z

¼ 1 − z
2

ð1þ F1ðzÞÞ ¼
X∞
N¼1

ð1 − zÞN
NðN þ 1Þ ¼ Oð1 − zÞ: ð34Þ

They obey F1ð1Þ ¼ F2ð1Þ ¼ 0 and F1ð0Þ ¼ F2ð0Þ ¼ 1. For later reference, we have also given their expansions
around z ¼ 1.
We now have

Wðx1; x2; ρ2Þ ¼
1

x1x2

X
a;b

Z1
x1

dz1

Z1
x2

dz2w̃abðz1; z2; ρ2Þδ
�
ð1 − z1Þð1 − z2Þ −

ρ2

1þ ρ2
z1z2

�
fa=H1

�
x1
z1

�
fb=H2

�
x2
z2

�
: ð35Þ

This factorization is formally valid when QT is of order Q,
that is, for ΛQCD ≪ Q ∼QT. For QT ≪ Q the appropriate
factorization formalism is TMD factorization. Here, wewill
take the collinear factorization and extrapolate to small
values of QT by formally expanding the result about
QT ¼ 0. This will result in an expansion in powers of
ρ2 which can be matched to TMD results in the region of
intermediate QT for a smooth transition from the TMD to
the collinear regime. We will perform the expansion in ρ2

beyond the leading power, which has been the main focus
in the existing literature, to provide information about
which higher-power corrections are accounted for in the
collinear formalism.

IV. SMALL-QT EXPANSION

In the expansion of hadronic structure functions of the
form in Eq. (35) we have three contributions. First, there is
the direct dependence of the partonic structure function
on QT . Second, the phase space delta function has non-
trivial QT dependence. Third, the variables x1, x2 have
implicit QT dependence. The first type of contribution may
be straightforwardly taken into account by simple expan-
sion of the partonic structure functions. The second and
third contributions require more discussion.

The phase space delta function in (35) is well known in
the literature, see, e.g., Refs. [41,54,59]. Its expansion to
leading power in ρ2 ¼ Q2

T=Q
2 was also given in that

reference and reads as

δ

�
ð1 − z1Þð1 − z2Þ −

ρ2

1þ ρ2
z1z2

�

¼ δð1 − z1Þ
ð1 − z1Þþ

þ δð1 − z2Þ
ð1 − z2Þþ

− δð1 − z1Þδð1 − z2Þ

× log ρ2 þOðρ2Þ: ð36Þ

Here the “plus” distribution is defined by

Z
1

0

dz
fðzÞ

ð1 − zÞþ
≡
Z

1

0

dz
fðzÞ − fð1Þ

1 − z
; ð37Þ

for a function f that is regular at z ¼ 1. We note in passing
that in Ref. [60] a general method for the expansion of
distributions was developed, based on Mellin integral
techniques. Building on these ideas, we recently formulated
[61] an algorithm for the small-QT expansion of singular
functions valid to arbitrary order of ρ2 and arbitrary number
of radiated partons. This will be presented in a separate
publication. Here we are only concerned with the
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expansion of integrals containing the phase space delta function in (36). For a general regular function φðz1; z2Þ such an
integral can be expanded for small QT including Oðρ4; ρ4 log ρ2Þ terms in the following way:

I0 ≡
Z1
x1

dz1

Z1
x2

dz2δ

�
ð1 − z1Þð1 − z2Þ −

ρ2

1þ ρ2
z1z2

�
φðz1; z2Þ

¼
Z1
x1

dz1

Z1
x2

dz2ðδð1 − z2ÞG1ðz1; z2Þ þ δð1 − z1ÞG1ðz2; z1Þ

þ δð1 − z1Þδð1 − z2ÞG2ðz1; z2ÞÞφðz1; z2Þ þOðρ6; ρ6 log ρ2Þ; ð38Þ

with

G1ðz1; z2Þ ¼
ð1þ ρ2Þð1þ ρ2∂z2Þ þ ρ4∂2z2=2

ð1 − z1Þþ
−
ρ2ð1þ ρ2 þ ð1þ 3ρ2Þ∂z2 þ ρ2∂2z2Þ

ð1 − z1Þ2þ;1
þ ρ4ð1þ 2∂z2 þ ∂

2
z2=2Þ

ð1 − z1Þ3þ;2

;

G2ðz1; z2Þ ¼ ρ2
�
1þ ρ2

�
1

2
þ ∂z1 þ ∂z2 þ ∂

2
z1z2

��
− log ρ2

�
ð1þ ρ2Þ�1þ ρ2ð∂z1 þ ∂z2 þ ∂

2
z1z2Þ

�

þ ρ4

2
ð∂z1 þ ∂z2Þ2 þ ρ4∂2z1z2

�
1þ ∂z1 þ ∂z2 þ

∂
2
z1z2

4

��
: ð39Þ

Here 1=ð1 − zÞmþ;m−1 is a generalized plus distribution of
power m, defined by

Z
1

0

dz
fðzÞ

ð1 − zÞmþ;m−1
≡
Z

1

0

dz
fðzÞ − T m−1

z¼1 fðzÞ
ð1 − zÞm ; ð40Þ

where fðzÞ is again a sufficiently regular test function and
T m−1

z¼1 fðzÞ denotes the Taylor polynomial of fðzÞ about
z ¼ 1 to order m − 1,

T m−1
z¼1 fðzÞ ¼

Xm−1

k¼0

ð−1ÞkfðkÞð1Þ
k!

ð1 − zÞk: ð41Þ

A lower integration bound of x instead of zero introduces
additional boundary terms of the form

Z1
x

dz
fðzÞ

ð1 − zÞmþ;m−1
¼
Z1
x

dz

	
1

ð1 − zÞmþx;m−1
þ δð1 − zÞ

× logð1 − x1Þ
ð−1Þm−1

ðm − 1Þ! ∂
m−1
z

− δð1 − zÞ
Xm
j¼2

ð−1Þm−j

ðj − 1Þðm − jÞ!

×

�
1

ð1 − x1Þj−1
− 1

�
∂
m−j
z



fðz1Þ;

ð42Þ

where fðzÞ=ð1 − zÞmþx;m−1 is the generalized plus distri-
bution defined for an integral starting at a finite lower
limit x, i.e.,

Z
1

x
dz

fðzÞ
ð1 − zÞmþx;m−1

≡
Z

1

x
dz

fðzÞ − T m−1
z¼1 fðzÞ

ð1 − zÞm : ð43Þ

Comparing Eq. (38) with (36) one can see that we re-
produce the known leading terms, while the terms of order
ρ2, ρ2 log ρ2, ρ4, and ρ4 log ρ2 are new.
Substituting the small-QT expansion of the parton-level

structure functions wabðz1; z2; ρ2Þ for the various partonic
channels into Eq. (11) we get for the contributions to the
small-QT expansion of the hadronic structure function
Wðx1; x2; ρ2Þ:

Wδ−fct:ðx1; x2; ρ2Þ ¼ W0ðx1; x2; LρÞ þ ρ2W1ðx1; x2; LρÞ
þ ρ4W2ðx1; x2; LρÞ þOðρ6Þ; ð44Þ

were we have abbreviated

Lρ ≡ log ρ2: ð45Þ

The expansion coefficients with i ¼ 1, 2, 3 have the
structure
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Wiðx1; x2; LρÞ ¼
1

x1x2

X
a;b

�
Rab;iðx1; x2; LρÞfa=H1

ðx1Þfb=H2
ðx2Þ þ ðPba;i ⊗ fb=H2

Þðx2; x1; LρÞfa=H1
ðx1Þ

þ ðPab;i ⊗ fa=H1
Þðx1; x2; LρÞfb=H2

ðx2Þ
�
; ð46Þ

where

ðP ⊗ fÞðx; y; LρÞ ¼
Z

1

x

dz
z
Pðz; y; LρÞf

�
x
z

�
ð47Þ

denotes a generalized convolution, Riðx1; x2; LρÞ,
Pba;iðz2; x1; LρÞ, and Pab;iðz1; x2; LρÞ are perturbative co-
efficient functions containing differential operators acting
on the PDFs fa=H1

ðx1Þ and fb=H2
ðx2Þ. We note that the

generalized convolution (47) reverts to the ordinary one,

ðP ⊗ fÞðxÞ ¼
Z

1

x

dz
z
PðzÞf

�
x
z

�
; ð48Þ

when Pðz; y; LρÞ does not depend on y and Lρ. Details are
given in Appendix C. We stress that, as indicated in
Eq. (44), the functions Wi may carry dependence on
log ρ2, on top of the overall power of ρ that they multiply.

However, Eq. (44) is not yet the complete expansion. As
mentioned above, we need to take into account that x1 and
x2 are defined at finiteQT [see Eq. (9)] and hence must also
be expanded about their respective values at QT ¼ 0, x01
and x02 in (10). Therefore, we substitute xi ¼ x0i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρ2

p
as arguments of the structure functions Wi and perform
the ρ2 expansions of the latter. We now present our final
result for the full small-QT expansion of the hadronic
structure functions, including the leading-power (LP) term
WLPðx01; x02; LρÞ, the next-to-leading-power (NLP) term
WNLPðx01; x02; LρÞ, and the next-next-to-leading-power
(NNLP)term WNNLPðx01; x02; LρÞ:

Wðx1; x2; ρ2Þ ¼ WLPðx01; x02; LρÞ þ ρ2WNLPðx01; x02; LρÞ
þ ρ4WNNLPðx01; x02; LρÞ þOðρ6Þ; ð49Þ

where

WLPðx01; x02; LρÞ ¼ W0ðx01; x02; LρÞ; ð50Þ

WNLPðx01; x02; LρÞ ¼ W1ðx01; x02; LρÞ þ
1

2

�
x01∂x01W0ðx01; x02; LρÞ þ x02∂x02W0ðx01; x02; LρÞ

�
; ð51Þ

WNNLPðx01; x02; LρÞ ¼ W2ðx01; x02; LρÞ þ
1

4
x01x

0
2∂x01

∂x0
2
W0ðx01; x02; LρÞ −

1

8

�
x01∂x01W0ðx01; x02; LρÞ − 4x01∂x01W1ðx01; x02; LρÞ

− ðx01Þ2∂2x0
1

W0ðx01; x02; LρÞ
�
−
1

8

�
x02∂x02W0ðx01; x02; LρÞ − 4x02∂x02W1ðx01; x02; LρÞ

− ðx02Þ2∂2x0
2

W0ðx01; x02; LρÞ
�
: ð52Þ

Here ∂mx1∂
n
x2Wiðx1; x2; LρÞ denotes the mth partial derivative with respect to x1 and the nth partial derivative with respect to

x2. The calculational techniques for taking these derivatives are discussed in Appendix C.
Explicitly we obtain the following analytical results for the LP contributions WLP;ab

J ðx01; x02; LρÞ to the T-odd hadronic
structure functions (here ab ¼ qq̄; qg and J ¼ ΔΔP;ΔP;∇):

WLP;qq̄
ΔΔP

ðx01; x02; LρÞ ¼
gqq̄;1
4x01x

0
2

CA

�
Lρ þ

3

2

�
q1ðx01Þq̄2ðx02Þ −

gqq̄;1
4x01x

0
2

CA

2CF

�
q1ðx01ÞðPqq ⊗ q̄2Þðx02Þ þ ðPqq ⊗ q1Þðx01Þq̄2ðx02Þ

�
−

gqq̄;1
4x01x

0
2

C1

�
q1ðx01Þðf1 ⊗ q̄2Þðx02Þ þ ðf1 ⊗ q1Þðx01Þq̄2ðx02Þ

�
; ð53Þ

WLP;qq̄
∇ ðx01; x02; LρÞ ¼ 2βWLP;qq̄

ΔP
ðx01; x02Þ

¼ −
gqq̄;1
ρx01x

0
2

CA

2CF

�
q1ðx01ÞðP̃qq ⊗ q̄2Þðx02Þ − ðP̃qq ⊗ q1Þðx01Þq̄2ðx02Þ

�
−

gqq̄;1
ρx01x

0
2

C1

�
q1ðx01Þðf2 ⊗ q̄2Þðx02Þ − ðf2 ⊗ q1Þðx01Þq̄2ðx02Þ

�
; ð54Þ
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WLP;qg
ΔΔP

ðx01; x02; LρÞ ¼ −
gqg;1
4x01x

0
2

qðx01ÞðP0
qg ⊗ gÞðx02Þ; ð55Þ

WLP;qg
∇ ðx01; x02; LρÞ ¼ 2βWLP;qg

ΔP
ðx01; x02; LρÞ

¼ −
gqg;1
ρx01x

0
2

qðx01ÞðP00
qg ⊗ gÞðx02Þ; ð56Þ

where

β ¼ gEW;1

gEW;2

;

PqqðzÞ ¼ CF

	
1þ z2

ð1 − zÞþ
þ 3

2
δð1 − zÞ



;

P̃qqðzÞ ¼ CFð1þ zÞ;
P0
qgðz; LρÞ ¼ CFð1þ 2zÞ þ C1zð2Lρ − zÞ;

P00
qgðz; LρÞ ¼ CFð1 − zÞ þ C1zðLρð1 − zÞ þ 1 − 2zÞ; ð57Þ

and

fiðzÞ ¼
FiðzÞ
1 − z

; ð58Þ

with Fi as defined in Eq. (34). Note that the fi are regular
functions with f1ð1Þ ¼ 1=3, f2ð1Þ ¼ 1=2.
As shown in (56), there is an interesting relation

between the structure functions WLP;ab
∇ ðx01; x02; LρÞ and

WLP;ab
ΔP

ðx01; x02; LρÞ:

WLP;ab
∇ ðx01; x02; LρÞ ¼ 2βWLP;ab

ΔP
ðx01; x02; LρÞ; ð59Þ

valid both for the qq̄ and the qg subprocess at leading
power. The NLP and NNLP contributions to the T-odd
hadronic structure function are listed in the Supplemental
Material [52].
To illustrate the numerical behavior of these expansions,

we consider the qq̄ contribution to the hadronic double-flip
structure function, Wqq̄

ΔΔP
ðx1; x2Þ, as an example. In Fig. 4

we compare the full expression without QT expansion with
the LP, NLP, and NNLP results. Here we use the CTEQ
6.1M PDFs of Ref. [62], taken from LHAPDF [63], along
with their MANEPARSE [64] Mathematica implementation.
We choose

ffiffiffi
s

p ¼ 8 TeV, Q ¼ 100 GeV, as representative
of the kinematics in the ATLAS measurements [47], and
the renormalization and factorization scales in the calcu-
lations are set to μ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þQ2

T

p
. As one can see, the LP

piece describes the full result only at low QT and rapidly
departs from it forQT > 10 GeV or ρ2 > 0.01. By contrast,
already inclusion of the NLP term leads to excellent agree-
ment with the full result out to QT ¼ 40 GeV (ρ2 ¼ 0.16),
only marginally further improved by the NNLP contribu-
tion. In particular, for QT ¼ 20 GeV, the LP result deviates

from the full one by about 20%, whereas at NNLP the
relative deviation is only ∼0.4%.

V. COMPARISON TO ATLAS DATA

As shown in Eq. (4), the Drell-Yan cross section can be
expressed in terms of eight angular coefficients Ai¼0;…;7.
The relations of these coefficients to the hadronic helicity
structure functions are recalled in Appendix A. Previous
experimental and phenomenological studies mostly
focused on the first five Ai coefficients [18,47,65–71]
which are related to the T-even structure functions. The
T-odd structure functions have received less attention.
Experimentally, it has not yet been possible to measure
the T-odd angular coefficients in W boson production,
but results in neutral-current scattering in the vicinity of
the Z-boson mass peak are available from the ATLAS
Collaboration [47]. Specifically, the measurement was
performed in the Z-boson invariant mass window of
80–100 GeV, as a function of QT , and also in three
bins of rapidity y: (a) jyj < 1, (b) 1 < jyj < 2, and
(c) 2 < jyj < 3.5. We note that near Q ¼ mZ the contri-
bution by γ − Z0 interference is suppressed relative to that
for pure Z0 exchange. In the following, we compare our
results for the angular coefficients A5, A6, and A7 to the
ATLAS data. Here we use the full expressions at Oðα2sÞ for
the helicity structure functionsWΔΔP

;WΔP
, and W∇. In the

denominator of the coefficients, we use the OðαsÞ expres-
sions for the transverse and longitudinal structure functions
WT andWL (see details in Refs. [41,54,72]). This approach
thus consistently gives the leading contribution to A5, A6,
and A7, which is of order αs.
To begin with, we investigate the rapidity and QT

dependences of the angular coefficients A5, A6, A7 near
the Z0 pole. As in the previous section the calculation is
done using

ffiffiffi
s

p ¼ 8 TeV and μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þQ2

T

p
. Figure 5

shows the rapidity distribution for fixed QT , while Fig. 6

FIG. 4. Comparison of the full analytical result for the quark-
channel contribution to WΔΔP

[black solid line, taken from
Eq. (30)] with expansions to LP (dashed), NLP (dot-dashed),
NNLP (blue solid) as given in the Supplemental Material [52].
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presents the results as functions of QT in one of the three
rapidity bins accessed by ATLAS. As the plots show, the
coefficients are overall small, reaching at most 0.1–0.2%
near QT ∼mZ or toward larger jyj. This finding does not
really come as a surprise: Small values of the T-odd A5;6;7

coefficients have been predicted in Refs. [8,10] also for W
boson production. In the case of Z boson production A5;6;7

are further suppressed because of the smallness of the
corresponding weak couplings, relative to the couplings
appearing in WT and WL.
The increase of A5;6;7 at larger values of rapidity in

Fig. 5—which is consistent with the leading-power relation
between W∇ and WΔP

we found in Eq. (59)—follows the
trend observed in Ref. [8] for W boson production in pp̄
collisions at

ffiffiffi
s

p ¼ 540 GeV. Likewise, a similar depend-
ence on rapidity was found for the angular coefficients in

Refs. [47,66]. At fixed rapidity, the T-odd coefficients are
small for small QT and then increase, peaking when QT is
near the Z mass (see Fig. 6). We also show in the figure the
individual contributions by qq̄ and qg scattering, the latter
dominating for all kinematics. Among the T-odd structure
functions, WΔΔP

, being symmetric under interchange
z1 ↔ z2, has the largest contribution from quark-antiquark
annihilation.
Figure 7 explores the role played by the pair mass Q for

the QT distribution. We show results for Q ¼ 80 GeV,
Q ¼ mZ, and Q ¼ 100 GeV, which span the range of Q
used for the ATLAS measurements. As one can see, A5 and
A6 are rather insensitive to Q, whereas A7 exhibits a strong
dependence, even turning negative at highQ. This suggests
that A7 will be quite sensitive to smearing effects if data are
sampled over a sizable range in Q.

FIG. 5. T-odd angular coefficients A5, A6, and A7 for various transverse momentaQT of the lepton pair, as functions of pair rapidity at
Q ∼mZ and

ffiffiffi
s

p ¼ 8 TeV.

FIG. 6. QT dependence of the angular coefficients A5, A6, and A7 for the rapidity interval 1 < jyj < 2 atQ ∼mZ and
ffiffiffi
s

p ¼ 8 TeV. We
also show the individual qq̄ and qg contributions.

VALERY E. LYUBOVITSKIJ et al. PHYS. REV. D 109, 114023 (2024)

114023-12



We now turn to the actual comparison with the ATLAS
data [47]. Of their three rapidity bins (jyj < 1; 1 < jyj < 2,
and 2 < jyj < 3.5) we only use the two with higher jyj
since, as we saw above, the angular coefficients are very
small for jyj < 1. We note that ATLAS presents the data in
two ways, as an “unregularized” and a “regularized” set.
The regularization smoothes the data by correcting for bin
migration. This procedure involves the use of Monte-Carlo
pseudo data which are at lowest-order accuracy. Details
about the data regularization method are presented in
Appendixes C and E of Ref. [47].
Figures 8–10 show the comparison. Neither the regu-

larized nor the unregularized data are in particularly good

agreement with our theoretical predictions. At best, there is
qualitative agreement in that the theoretical results show
positive values for all three T-odd angular coefficients, with
a similar trend in the data. In particular, for the bin 1 <
jyj < 2 one observes a rise of A5;6;7 with QT up to about
QT ∼mZ, exactly as predicted theoretically. Quantitatively,
however, the regularized data—which is the set primarily
to be used for comparisons—shows overall much higher
coefficients than obtained in our calculation. We note that
ATLAS used the DYNNLO package [73] to obtain theoretical
results for A5;6;7. DYNNLO predicts values of up to 0.005
for the coefficients A5;6;7. However, as stated in [47], the
prediction of nonzero values is at the limit of sensitivity of

FIG. 7. QT dependence of the angular coefficients A5, A6, and A7 for rapidity 1 < jyj < 2 at
ffiffiffi
s

p ¼ 8 TeV and for different Q.

FIG. 8. Comparison of our result for A5 to ATLAS data [47] at Q ∼mZ. The black and red experimental points denote the
unregularized and regularized data, respectively, and show their statistical error. The left panel shows the results for 1 < jyj < 2, while
the right is for 2 < jyj < 3.5. (The scale on the y axis has been chosen for better visibility of the small values of the coefficient; as a
result, some data points fall outside the plot range. The full dataset is shown in the left lower inset in each plot).
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both the theoretical calculation and the data. Hence it seems
preliminary to delve into a detailed analysis of the visible
discrepancies between our result and the existing data.
More robust conclusions regarding the agreement of

data and theory for the T-odd structure functions will only
become possible after significant improvements of both
the experimental results and the theoretical description. A
natural question to ask is whether higher-order (say, NLO)
QCD corrections to the angular coefficients could lead
to a better agreement with the data. In this context it is
important to keep in mind that the T-odd coefficients
effectively carry an overall factor αs. This immediately
means that they will be more susceptible to QCD correc-
tions than ratios of cross sections would normally be.
Just to give a simple estimate: For the values of QT rele-
vant here, varying the scale in αs from QT=2 to 2QT
easily generates differences of �15% or more in the
calculated coefficients. On top of this, there will be smaller
uncertainties associated with the scale dependence and

uncertainties of the PDFs. One would thus expect the NLO
corrections to A5;6;7 to be overall non-negligible, even
though judging by the sizeable discrepancy in magnitude
and shape between the existing data and our result it would
come as a surprise if higher -order corrections were to
account for the entire difference. We note that NLO
corrections could in fact be obtained from Ref. [18].
Clearly, a phenomenological study of A5;6;7 at NLO will
be an interesting project for the future. Along with hope-
fully improved future data it would open the door to careful
assessments of the validity of fixed-order perturbation
theory for the T-odd angular coefficients.

VI. CONCLUSION

We have performed a detailed analysis of perturbative
T-odd effects in charged- and neutral-current Drell-Yan
processes, taking into account W� and Z0 exchange, as
well as γ − Z0 interference. To this end, we have computed
the relevant T-odd structure functions for the qq̄ annihi-
lation and qg Compton channels at orderOðα2sÞ, where they
become nonvanishing thanks to absorptive contributions to
loop amplitudes. While the corresponding results are not
new, we have used them in novel ways. Foremost, we have
presented a new formalism to expand the results for low
transverse momentum, or low ρ ¼ QT=Q, with the goal of
facilitating comparisons to frameworks that analyze T-odd
effects in terms of TMDs, especially at nonleading power.
Our new formalism is completely general and can in
principle be used to obtain expansions to arbitrary order
in QT=Q. As a proof of concept, we have applied it to the
T-odd structure functions and expanded them to order
Oðρ4Þ. In doing so, we uncovered a new relation between
two of the T-odd structure functions, WLP∇ ðx1; x2Þ and
WLP

ΔP
ðx1; x2Þ, valid at leading power in the small-QT

expansion. Although in the present paper we have not
attempted to connect our results to calculations based on

FIG. 9. Same as Fig. 8, but for the coefficient A6 for rapidity
1 < jyj < 2.

FIG. 10. Same as Fig. 8, but for the coefficient A7.
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TMD factorization, we think that our paper has much to
offer for such comparisons in the future.
We have also presented numerical results for the validity

of the expansion in ρ2, and we have compared our full
results for the T-odd structure functions to available data
from the ATLAS experiment. We found that in the present
situation it is impossible to draw any quantitative con-
clusions from this comparison.
In the present paper we have restricted our analysis to the

case of the T-odd effects in the Drell-Yan process with
unpolarized beams. Extensions to the T-even sector and to
polarized scattering will be natural extensions of our work.
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APPENDIX A: RELATIONS AMONG DIFFERENT
SETS OF THE STRUCTURE FUNCTIONS

The three sets of structure functions fAig, fWig, and
fλ; μ; ν;…g are related as [10,41,53–55]

λ ¼ WT −WL

WT þWL
¼ 2 − 3A0

2þ A0

; μ ¼ WΔ

WT þWL
¼ 2A1

2þ A0

; ν ¼ 2WΔΔ

WT þWL
¼ 2A2

2þ A0

;

τ ¼ W∇P

WT þWL
¼ 2A3

2þ A0

; η ¼ WTP

WT þWL
¼ 2A4

2þ A0

; ξ ¼ WΔΔP

WT þWL
¼ 2A5

2þ A0

;

ζ ¼ WΔP

WT þWL
¼ 2A6

2þ A0

; χ ¼ W∇
WT þWL

¼ 2A7

2þ A0

; ðA1Þ

and

A0 ¼
2WL

2WT þWL
¼ 2ð1 − λÞ

3þ λ
; A1 ¼

2WΔ

2WT þWL
¼ 4μ

3þ λ
; A2 ¼

4WΔΔ

2WT þWL
¼ 4ν

3þ λ
;

A3 ¼
2W∇P

2WT þWL
¼ 4τ

3þ λ
; A4 ¼

2WTP

2WT þWL
¼ 4η

3þ λ
; A5 ¼

2WΔΔP

2WT þWL
¼ 4ξ

3þ λ
;

A6 ¼
2WΔP

2WT þWL
¼ 4ζ

3þ λ
; A7 ¼

2W∇
2WT þWL

¼ 4χ

3þ λ
: ðA2Þ

APPENDIX B: TREATMENT OF γ5 MATRIX
IN CALCULATION OF STRUCTURE

FUNCTIONS

In the calculation of the T-odd structure functions we
have to deal with the γ5 matrix in dimensional regulariza-
tion. We encounter two different cases:
(a) Dirac traces with an even number (in practice, two) of

γ5 matrices in case of w∇; and
(b) Dirac traces with an odd number (in practice, one) of

γ5 matrices in case of wΔΔP
and wΔP

.
For case (a), it is permissible even in dimensional regu-
larization to anticommute the two γ5 matrices toward each
other and to use ðγ5Þ2 ¼ 1. As a result, the contributions of
[vector ⊗ vector] and [axial-vector ⊗ axial-vector] cou-
plings to w∇ are identical.

In case (b) we use techniques established in the literature
for the treatment of γ5 in dimensional regularization.
In particular, for the axial-vector spin matrix we use the
Larin prescription [74–77], expressing γ5 as the product
of the four-dimensional Levi-Civita tensor ϵμναβ and three
gamma matrices:

γμγ5 ¼ i
6
ϵμναβγνγαγβ: ðB1Þ

Next, in order to evaluate the structure functions wΔΔP
and

wΔP
, we apply the method proposed in Ref. [77] for the

contraction of two Levi-Civita tensors. One Levi-Civita
tensor occurs in the definition of the structure functions
wΔΔP

and wΔP
[see Eqs. (12) and (13)], and the other
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appears because of the Larin substitution (B1). In general,
the product of two Levi-Civita tensors must be evaluated in
terms of the D-dimensional Kronecker tensor δμν in order to
preserve Lorentz invariance [77]:

ϵμ1μ2μ3μ4ϵν1ν2ν3ν4 ¼ − det

����������

δμ1ν1 δμ1ν2 δμ1ν3 δμ1ν4
δμ2ν1 δμ2ν2 δμ2ν3 δμ2ν4
δμ3ν1 δμ3ν2 δμ3ν3 δμ3ν4
δμ4ν1 δμ4ν2 δμ4ν3 δμ4ν4

����������
: ðB2Þ

For our purposes we need to evaluate two types of
contractions [see Eqs. (12) and (13)],

iϵμPRKγμγ5 ¼ −
1

6
ϵμPRKϵμραβγ

ργαγβ; ðB3Þ

and

iϵμPRKγνγ5 ¼ −
1

6
ϵμPRKϵνραβγ

ργαγβ: ðB4Þ

Using Eq. (B2) we get

iϵμPRKγμγ5 ¼ ðD − 3ÞPRK; ðB5Þ

and

iϵμPRKγνγ5 ¼ δμν;⊥PRK þ γμ⊥
�
PνKR þ RνPK þ KνRP

�
;

ðB6Þ

where D ¼ 4 − 2ϵ and δμν;⊥ and γμ⊥ are the perpendicular
D-dimensional Kronecker tensor and gamma matrices,
respectively, defined as

δμν;⊥ ≡ δμν −
PμPν

P2
−
RμRν

R2
−
KμKν

K2
;

γμ⊥ ≡ δμν;⊥γν ¼ γμ −
PμP
P2

−
RμR
R2

−
KμK
K2

; ðB7Þ

which are manifestly orthogonal to all momenta of the basis
ðP;R;KÞ. The obey the following conditions:

δμν;⊥δνμ;⊥ ¼ δμν;⊥δνμ ¼ δμμ;⊥ ¼ D − 3;

δμν;⊥Pμ ¼ δμν;⊥Rμ ¼ δμν;⊥Kμ ¼ 0: ðB8Þ

Similarly one can define the perpendicular D-dimensional
metric tensor gμν⊥ introduced in Ref. [56],

gμν⊥ ¼ gμν −
PμPν

P2
−
RμRν

R2
−
KμKν

K2
: ðB9Þ

One should mention that the identities (B4) and (B6) are
generalizations of (B3) and (B5), respectively. In particular,
Eq. (B5) follows from (B6) for ν → μ. In this limit,

δμμ;⊥ ¼ D − 3, the second term on the rhs of Eq. (B6)
vanishes, and we arrive at the identity (B5).
We also stress that using the orthogonal basis ðP;R;KÞ

along with the orthogonal metric tensors and gamma
matrices turns out to be very useful and economical in
our analytical calculations. In addition, we note that the
use of identity (B6) is further simplified in the case of the
evaluation of wΔΔP

and wΔP
. The reason is that the Levi-

Civita tensor ϵμPRK on the lhs of Eq. (B6) is accompanied
by the basis vector Pν or Rν [see Eqs. (12) and (13)].
Therefore, the first Lorentz structure δμν;⊥PRK on the rhs of
Eq. (B6) vanishes thanks to Pνδμν;⊥ ¼ Rνδμν;⊥ ¼ 0. The
second Lorentz structure γμ⊥ðPνKRþ RνPK þ KνRPÞ
on the rhs of the identity (B6) is also simplified because
of the orthogonality of the ðP;R;KÞ basis. In particular,
depending on the accompanying momentum Pν or Rν, we
deduce from the identity (B6) two simplified identities
useful for the calculation of wΔΔP

and wΔP
:

iϵμPRKPγ5 ¼ γμ⊥KRP2;

iϵμPRKRγ5 ¼ γμ⊥PKR2: ðB10Þ

APPENDIX C: CALCULATIONAL TECHNIQUE
FOR THE PARTIAL DERIVATIVES OF THE

STRUCTURE FUNCTIONS Wiðx1; x2Þ
In this appendix we discuss the calculational technique

for the partial derivatives of the structure functions
Wiðx1; x2Þ defined in Eq. (46), which have the following
form:

Wiðx1; x2; LρÞ

¼ 1

x1x2

X
a;b

�
Rab;iðx1; x2; LρÞfa=H1

ðx1Þfb=H2
ðx2Þ

þ ðPba;i ⊗ fb=H2
Þðx2; x1; LρÞfa=H1

ðx1Þ
þ ðPab;i ⊗ fa=H1

Þðx1; x2; LρÞfb=H2
ðx2Þ

�
; ðC1Þ

where Rab;iðx1; x2; LρÞ, Pab;iðz1; x2; LρÞ, and
Pba;iðz2; x1; LρÞ are perturbative coefficient functions con-
taining differential operators acting on the PDFs fa=H1

ðx1Þ
and fb=H2

ðx2Þ. In particular, the functions Rab;iðx1; x2; LρÞ,
Pab;iðz1; x2; LρÞ, and Pba;iðz2; x1; LρÞ can be expanded
using the set of the differential operators to factorize the
dependence on the variables x1 and x2, z1 and x2, z2 and x1,
respectively (see detailed discussion in the Supplemental
Material [52]). One can see thatWiðx1; x2; LρÞ is composed
of three main terms, one term proportional to the pertur-
bative function Riðx1; x2; LρÞ times the PDFs, and two
terms each containing a single integral representation of the
convolution of the perturbative functions Pa;iðz1; LρÞ, and
Pb;iðz2; LρÞ with the PDFs. Also the latter terms depend on
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the second variable xi ¼ x1 or x2 via the simple form of a
product of fðxiÞ with some polynomial in xi.
The first term can be trivially differentiated with respect

to x1 and x2 to the desired order. In the case of the other
two terms one can straightforwardly differentiate the non-
integral terms. It remains to specify how to take the partial
derivative of the terms with integrals. Let us discuss the
treatment of such terms by considering the following
integral:

JðxÞ ¼ IðxÞ
x

; IðxÞ ¼ ðP ⊗ fÞðxÞ ¼
Z1
x

dz
z
PðzÞf

�
x
z

�
:

ðC2Þ

The nth derivative of the integral JðxÞ can be taken using
the binomial formula

∂
nJðxÞ
∂xn

¼
Xn
m¼0

n!
m!

ð−1Þn−m
xn−mþ1

∂
mIðxÞ
∂xm

: ðC3Þ

Therefore, we only need to derive an analytical formula
for the nth derivative of the integral IðxÞ, where n is an
arbitrary natural number. In our derivation we will consider
two possible choices for the function PðzÞ:
(a) PðzÞ ¼ RðzÞ is a regular function of the variable z, and
(b) PðzÞ ¼ ½1=ð1 − zÞm�þ;m−1 is the generalized plus

distribution of power m, defined in Eq. (40) in the
main text.

We first consider the simpler case (a). Here, the first-
order derivative of IðxÞ reads as

∂IðxÞ
∂x

¼ ∂

∂x

Z1
x

dz
z
RðzÞf

�
x
z

�
¼ ∂

∂x

Z1
x

dξ
ξ
Rðx=ξÞfðξÞ

¼−
Z1
x

dξ
ξ
δðξ−xÞRðx=ξÞfðξÞþ

Z1
x

dξ
ξ

∂Rðx=ξÞ
∂x

fðξÞ

¼−
Z1
x

dξ
ξ2

δð1−x=ξÞRðx=ξÞfðξÞþ
Z1
x

dξ
ξ2

∂Rðx=ξÞ
∂ðx=ξÞ fðξÞ

¼−
1

x

Z1
x

dzδð1− zÞRðzÞf
�
x
z

�
þ1

x

Z1
x

dz
∂RðzÞ
∂z

f

�
x
z

�

¼ 1

x

	
−Rð1ÞfðxÞþ

Z1
x

dzR0ðzÞf
�
x
z

�

; ðC4Þ

where R0ðzÞ ¼ ∂RðzÞ=∂z.
One can prove by induction that the nth derivative of

IðxÞ is given by

∂
nIðxÞ
∂xn

¼ −
Xn
k¼1

�
fðxÞ
xk

�ðn−kÞ

x
Rðk−1Þð1Þ

þ 1

xn

Z1
x

dzzn−1RðnÞðzÞf
�
x
z

�
; ðC5Þ

where

RðkÞðzÞ ¼ ∂
kRðzÞ=∂zk; ð� � �ÞðkÞx ¼ ∂

kð� � �Þ=∂xk: ðC6Þ

For case (b) we recall the definition for the generalized
plus distribution when applied to a PDF fðx=zÞ:

Z1
x

dz
fðxzÞ

ð1 − zÞmþ;m−1
¼
Z1
x

dz

	
1

ð1 − zÞmþx;m−1
þ δð1 − zÞ

× logð1 − xÞ ð−1Þ
m−1

ðm − 1Þ! ∂
m−1
z

− δð1 − zÞ
Xm
j¼2

ð−1Þm−j

ðj − 1Þðm − jÞ!

×

�
1

ð1 − xÞj−1 − 1

�
∂
m−j
z



f

�
x
z

�
:

ðC7Þ

The x dependence of fðx=zÞ=ð1 − zÞmþx;m−1 induces a
subtraction of the (m − 1)-th order Taylor polynomial
T½fðx=zÞ�m−1

z¼1 evaluated at z ¼ 1,

fðxzÞ
ð1 − zÞmþx;m−1

¼ fðxzÞ − T
�
f
�
x
z

��
m−1
z¼1

ð1 − zÞm ;

T

	
f

�
x
z

�

m−1

z¼1

¼
Xm−1

k¼0

ðz − 1Þk
k!

∂
k
zf

�
x
z

�����
z¼1

¼ fðxÞ þ
Xm−1

k¼1

Xk
l¼1

Cl−1
k−1ð1 − zÞk x

l

l!
fðlÞðxÞ;

ðC8Þ

where Cl
m ¼ m!=ðl!ðm − lÞ!Þ is the binomial coefficient

and fðlÞðxÞ ¼ ∂
lfðxÞ=∂xl. Note that the partial derivatives

δð1 − zÞ∂m−j
z fðx=zÞ with respect to z in Eq. (C7) can be

simplified and reduced to derivatives with respect to x as

δð1 − zÞ∂mz f
�
x
z

�
¼ δð1 − zÞ

Xm
l¼1

ð−1ÞmCl
m

×
ðm − 1Þ!
ðl − 1Þ! x

lfðlÞðxÞ: ðC9Þ

In all cases the derivatives ∂nIðxÞ=∂xn can be easily taken
by changing the integration variable z → x=ξ and, after
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some simplifications, returning back to the integration over
z. We stress that the choice PðzÞ ¼ RðzÞ½1=ð1 − zÞm�þ;m−1,
where RðzÞ is a regular function, can be reduced to
case (b) by carrying out a Taylor expansion of RðzÞ
around z ¼ 1:

RðzÞ ¼
X∞
k¼0

ðz − 1Þk
k!

RðkÞð1Þ; ðC10Þ

where RðkÞð1Þ ¼ ð∂kRðzÞ=∂zkÞz¼1, which results in the
cancellation of the respective powers of (1 − z) between

the numerator and the denominator of the integrand of IðxÞ.
In particular, the distribution PqqðzÞ defined in Eq. (57)
contains the term ð1þ z2Þ=ð1 − zÞþ, which can be repre-
sented as the sum of a regular term corresponding to case
(a) and a single distribution 2=ð1 − zÞþ corresponding to
case (b),

1þ z2

ð1 − zÞþ
¼ −ð1þ zÞ þ 2

ð1 − zÞþ
: ðC11Þ

In case (b) the nth derivative of the integral IðxÞ reads as

∂
nIðxÞ
∂xn

¼ −lim
z→1

Xn
k¼1

 
1

xk
∂
k−1

∂zk−1

	
1
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