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We modify the anomalous hydrodynamic equations of motion to account for dissipative effects due to
quantum chromodynamic (QCD) sphaleron transitions. By investigating the linearized hydrodynamic
equations, we show that sphaleron transitions lead to nontrivial effects on vector and axial charge transport
phenomena in the presence of a magnetic field. Due to the dissipative effects of sphaleron transitions, a
wave number threshold kCMW emerges characterizing the onset of chiral magnetic waves. Sphaleron
damping also significantly impacts the time evolution of both axial and vector charge perturbations in a
QCD plasma in the presence of a magnetic field. Based on our analysis of the linearized hydrodynamic
equations, we also investigate the dependence of the vector charge separation on the sphaleron transition
rate, which may have implications for the experimental search for the chiral magnetic effect in heavy
ion collisions.
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I. INTRODUCTION

Chiral transport phenomena have recently attracted a
significant amount of attention in experimental and theo-
retical studies, as they may have a significant impact on the
collective dynamics of systems possessing (approximately)
chiral fermions. Since such systems are ubiquitous in
nature, possible manifestations of these phenomena occur
across a diverse range of energy scales, with examples
including the dynamics of baryo- and magnetogenesis in
the early universe [1], the quark-gluon plasma (QGP) in
heavy ion collisions [2], and Dirac and Weyl semimetals
in condensed matter systems [3].
Unlike ordinary transport phenomena, which describe

the macroscopic dynamics of conserved energy-momentum
and (vector) charges on large time and distance scales,
novel chiral transport phenomena are linked to the dynam-
ics of axial charges, which generically are not conserved
due to quantum anomalies [4,5]. Despite the expected
importance of axial charge changing processes in high
temperature QCD plasmas, the effects of such processes for
describing anomalous transport phenomena in heavy-ion

collisions are frequently neglected in phenomenological
studies [6], and have only been explored to a limited extent
in the studies of [7,8]. The primary objective of this paper is
to clarify under which conditions anomalous charge trans-
port in high-temperature QCD plasmas can be described
macroscopically by anomalous relativistic hydrodynamics,
and to explore the extent to which the nonconservation of
axial charge due to QCD sphaleron transitions affects
transport processes in a QCD plasma.
Starting with a general discussion of axial charge

dynamics in high-temperature QCD plasmas in Sec. II,
we establish the conditions under which a macroscopic
description can be justified, and subsequently in Sec. III
demonstrate how to include axial charge changing proc-
esses due to sphaleron transitions in the anomalous hydro-
dynamic description of high-temperature QCD plasmas.
Based on this framework, we demonstrate in Sec. IV that
sphaleron transitions have a nontrivial effect on the coupled
hydrodynamic behavior of axial and vector charges in the
presence of a magnetic field. Strikingly, we observe that the
inclusion of the sphaleron damping term leads to the
emergence of a wave number threshold that characterizes
the hydrodynamic behavior of coupled charge modes and
indicates the formation of Chiral Magnetic Waves
(CMWs). Due to the particular form of the chiral anomaly,
the dissipative effects due to sphaleron transitions also
induce a nontrivial coupling between different species of
chiral fermions, which we discuss using the example of the
u, d light flavor sector of QCD. Subsequently, in Sec. V, we
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investigate the sensitivity of axial and vector charge trans-
port in the presence of a magnetic field to the sphaleron
transition rate. We provide illustrative examples of vector
and axial charge separation by numerically solving the
linearized hydrodynamic equations, as well as an analytic
expression for the vector charge separation in a space-time
homogeneous plasma that elucidates its dependence on the
sphaleron rate. We finally conclude in Sec. VI with a
summary of our findings and comments on the implications
for the experimental search for chiral transport phenomena
in heavy-ion collisions.

II. CHIRALITY CHARGE DYNAMICS
IN HIGH-TEMPERATURE QCD PLASMAS

Specifically, for an SUðNcÞ ×Uð1Þ gauge theory
coupled to Nf flavors of massless Dirac fermions, which
describes a high temperature QCD plasma in the presence
of electromagnetic fields, the nonconservation of the axial
current jμA;fðxÞ ¼ ψ̄fðxÞγ5γμψfðxÞ of each fermion flavor
takes the form of a local balance equation

∂μj
μ
A;fðxÞ ¼ −

ðeqfÞ2Nc

8π2
FμνðxÞF̃μνðxÞ

−
g2

16π2
Ga

μνðxÞG̃μν
a ðxÞ; ð1Þ

where e, g are the Uð1Þ and SUðNcÞ gauge couplings,
Fμν and Ga

μν denote the corresponding Abelian and non-
Abelian field strength tensors, F̃μν ¼ 1

2
ϵμναβFαβ and

G̃μν
a ¼ 1

2
ϵμναβGa

αβ, are their duals and qf is the electric
charge of each fermion flavor. By recognizing the terms on
the right-hand side (rhs) of Eq. (1) as the covariant
divergence of the respective Chern-Simons currents,

∂μQμðxÞ¼ e2

16π2
FμνðxÞF̃μνðxÞ, ∂μKμðxÞ¼ g2

32π2
Ga

μνðxÞG̃μν
a ðxÞ

the axial anomaly relation in Eq. (1) expresses the local
conservation of the overall chirality of fermions j0A;f and
gauge fields 2q2fNcQ0; 2K0 for each massless flavor. Since
anomalous transport phenomena such as the chiral mag-
netic effect (CME) [9] only occur when a net chirality
imbalance is present in the fermion sector ðj0A;f ≠ 0Þ, it is
thus important to understand how a chiral charge imbalance
is transferred and redistributed between fermions and gauge
fields on the macroscopic timescales of interest.
Due to their expected importance, different mechanisms

of chirality transfer have been explored in the context of
condensed matter physics [10], nuclear physics [11], and
cosmology [12]. Straightforwardly, in QED plasmas or
QED-like materials, a chiral charge imbalance in the
fermion sector can be created via the application of
(aligned) external electric and magnetic fields [3], while
spacetime-dependent fluctuations of (chromo-)electromag-
netic fields [12,13] can generate local fluctuations of the
chiral charge imbalance of fermions in QED and QCD

plasmas. Conversely, a chirality imbalance in the fermion
sector can generate chiral plasma instabilities in both QED
and QCD plasmas [14,15], which induce a transfer of
chirality from fermions to gauge fields. However, on
sufficiently large time and distance scales, the transfer of
chirality in non-Abelian gauge theories, such as QCD, is
believed to be dominated by so-called sphaleron transitions
between different topological sectors of the SUðNcÞ gauge
fields [11,13,16,17].
By virtue of the nontrivial topology of the SUðNcÞ gauge

field configurations in the physical real space R3 ∪ f∞g,
non-Abelian gauge theories such as QCD feature an infinite
number of topologically inequivalent but otherwise degen-
erate field configurations labeled by an integer Chern-
Simons number NCS ¼

R
d3xK0ðxÞ. In high-temperature

QCD plasmas, transitions between different topological
sectors are thermally activated by finite-energy configura-
tions called sphalerons. Sphaleron transitions between
different topological sectors result in a change in NCS by
plus/minus unity, which according to Eq. (1) results in
a change of the net-axial charge of fermions J0A;f ¼R
d3xJ0AðxÞ by plus/minus two units for each flavor.

While in charge-neutral plasmas the dynamics of sphaleron
transitions thus induces time dependent fluctuations of the
chiral charge imbalance JA0 ¼Pf j

0
A;f of fermions, spha-

leron transitions in a chirally imbalanced plasma ðJ0A ≠ 0Þ
exhibit a bias toward erasing any preexisting charge
imbalance JA0 [11,16], such that on asymptotically large
timescales any chiral charge imbalance of fermions will
disappear. Since a nonvanishing chiral charge imbalance is
however required to realize, e.g., the chiral magnetic effect,
one concludes that anomalous transport phenomena in
high-temperature QCD plasmas are in a sense intrinsically
nonequilibrium phenomena, which can only occur on
transient timescales before the chiral charge imbalance is
eventually erased.
Evidently, the typical timescale for which a chiral charge

imbalance can persist in a high-temperature QCD plasma
then crucially depends on the rate of sphaleron transitions.
Despite the fact that sphaleron transitions are known to
occur in high-temperature QCD plasmas, it is notoriously
challenging to compute the sphaleron rate from first
principles [17,18]. The sphaleron transition rate is defined
as the thermal expectation value of the zero frequency, zero
momentum limit of the Wightman correlation function of
G∂μKμ

∂μKμðω;kÞ as

Γsph ¼
Z

d4X

�
g2

32π2
Ga

μνG̃
μν
a ðXÞ g2

32π2
Ga

αβG̃
αβ
a ð0Þ

�
ð2Þ

and describes the occurrence of a Chern-Simons number-
changing process per unit volume per unit time [17].
Evaluated at weak coupling for SUðNcÞ gauge theories,
the sphaleron transition rate is parametrically given by

LILLIAN DE BRUIN and SÖREN SCHLICHTING PHYS. REV. D 109, 114022 (2024)

114022-2



Γsph ∝ α5ST
4, where αS ¼ g2=4π [17], while at strong

coupling, the rate of sphaleron transitions is computed
via the AdS=CFT correspondence for an N ¼ 4 super-
symmetric Yang-Mills plasma is given by N → ∞: Γsph ¼
ðg2NÞ2T4=256π3 [19]. Very recently, (quenched) lattice
QCD calculations [20] have determined the sphaleron
transition rates at temperatures T ¼ 1.5Tc to be on the
order of Γsph ¼ ð0.02–0.2ÞT4, with large systematic uncer-
tainties stemming from the analytic continuation of
Euclidean correlation functions to Minkowski space.
Even though the estimated rates from lattice QCD are
actually sizeable, we will demonstrate shortly that a more
careful assessment of their magnitude suggests that an
effective macroscopic description of axial charge transport
in high-energy heavy-ion collisions may still be warranted.
We note that, in this study, we consider the effect of

sphaleron transitions in the weak magnetic field regime.
Conversely, for strong magnetic fields, the sphaleron
transition rate explicitly depends on the magnetic field
strength, which becomes an independent thermodynamic
variable and also affects e.g. the equation of state [21].

III. HYDRODYNAMIC DESCRIPTION
OF ANOMALOUS TRANSPORT

IN QCD-LIKE THEORIES

Although chiral transport phenomena in high-temperature
QCD plasmas are in principle intrinsically nonequilibrium
phenomena, their possible macroscopic manifestations also
emerge naturally within the framework of anomalous hydro-
dynamics [22]. Indeed, if the process of axial charge
equilibration is slow compared to the typical kinetic equili-
bration of the QCD plasma, the axial currents jμA;f represent
additional slow variables whose dynamics can be described
macroscopically by introducing additional axial chemical
potentials μfA associated with the residual deviations of the
axial charge j0A;f from the genuine equilibrium state.
However, a meaningful hydrodynamic description based
on an expansion around transient equilibrium states with
nonvanishing axial chemical potentials (μfA ≠ 0) can only be
achieved if the equilibration of axial charge is slow compared
to the equilibration of the system.Certainly this is the case for
weakly-coupled SUðNcÞ plasmas, where the timescale of
axial charge relaxation due to sphaleron transitions τsph ≈
χAT
Γsph

∼ α−5S T3 [17] ismuch larger than the timescale associated

with the kinetic equilibration of the plasma, τkin ≈
4πη=s
T ∼

α−2S T−1 [23]. When considering the QGP created in
heavy ion collisions at RHIC and LHC energies, where
temperatures typically range up to ∼4Tc, one finds that with
the estimate of Γsph ≈ 0.1T4 from [20] τsph ∼ 10T−1 can be
larger, but not significantly larger than τkin ≈ 2T−1 fm=c for
favorable values of the transport coefficient η=s ¼ 0.16 [24].

Now that we have established the anticipated range of
applicability of an effective macroscopic description, we
proceed to develop the hydrodynamic description of anoma-
lous charge transport following previous works [22,25].
We consider a viscous relativistic fluid in 3þ 1
spacetime dimensions, governed by the Minkowski metric
gμν ¼ ð−1; 1Þ, with conserved Uð1Þ vector currents1 jμV;f ¼
hΨ̄fγ

μΨfi and Uð1Þ axial currents jμA;f ¼ hΨ̄fγ
μγ5Ψfi that

are not conserved due to the axial anomaly forNf flavors of
massless Dirac fermions. In the presence of a slowly
varying, nondynamical background electromagnetic field,
the conservation laws take the form

∂μTμν ¼
X
f

eqfFνλjVλ;f; ð3Þ

∂μj
μ
V;f ¼ 0; ð4Þ

∂μj
μ
A;f ¼ ðeqfÞ2CEμBμ −

g2

16π2
Ga

μνG̃
μν
a ; ð5Þ

where the right-hand side of Eq. (3) reflects work done on
the system by the external electromagnetic field.
Conversely, the right-hand side of Eq. (5) reflects the
nonconservation of axial charge, where effects due to the
Abelian chiral anomaly are described explicitly by the term
ðeqfÞ2CEμBμ with the anomaly coefficient C ¼ Nc=2π2.
Non-Abelian contributions to the axial anomaly are
described by the last term in Eq. (5), which—in accordance
with the discussion in Sec. II—tend to erase any preexisting
axial charge imbalance and hence leads to disspative
damping of the axial charge. By following the arguments
of Shaposnikov et al. [16], the expectation value of

h g2

16π2
Ga

μνG̃
μν
a i can be expressed in terms of the sphaleron

transition rate Γsph as�
g2

16π2
Ga

μνG̃
μν
a

�
¼ 4Γsph

X
f

μf;A
T

; ð6Þ

which in the presence of finite axial chemical potentialsP
f μf;A is manifestly nonzero. By inserting Eq. (6) into the

hydrodynamic equations, the nonvanishing expectation

value of h g2

16π2
Ga

μνG̃
μν
a i due to sphaleron transitions gives

rise to a damping rate for the axial charge γsph ¼
4Γsph=ðχATÞ, which we will refer to as the sphaleron
damping rate in the following sections. We additionally
note that even though individual sphaleron transitions
represent singular local events, which result in an integer
change of the net axial charge, the macroscopic description
in Eq. (5) is valid over large time and distance scales, where

1Note that the vector current is defined such that the electric
current is jμel;f ¼ eqfj

μ
V;f .
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on average multiple sphaleron transitions provide a dis-
sipative effect on the axial charge evolution of the fluid.
The electromagnetic fields are defined in Lorentz covar-

iant form,

Eμ ¼Fμνuν; Bμ ¼ 1

2
ϵμναβuνFαβ; ð7Þ

such that uμBμ ¼ uμEμ ¼ 0. Here, uμ denotes the rest-
frame velocity field, which, following Landau and Lifshitz,
is defined as the timelike eigenvector of the energy
momentum tensor: −uμTμν ¼ ϵuν such that u2 ¼ −1.
Besides uμ, we use local temperature T and chemical
potentials μVf=AÞf for each fermion flavor as thermody-
namic variables. We also define the vorticity,

ωμ ¼ 1

2
ϵμναβuν∂αuβ; ð8Þ

which must be included in the hydrodynamic description of
anomalous relativistic fluids [22].
Next, to obtain the complete set of hydrodynamic

equations of the system, we supplement Eqs. (3)–(5) with
the constitutive relations for the vector/axial currents jμV=A;f
and the energy momentum tensor Tμν, which, in the most
general form in the Landau frame, are written as

Tμν ¼ ðϵþ PÞuμuν þ Pgμν þ τμν; ð9Þ

jμV;f ¼ nV;fuμ þ νμV;f; ð10Þ

jμA;f ¼ nA;fuμ þ νμA;f; ð11Þ

where ϵ ¼ ϵðT; μV;f; μA;fÞ denotes the energy density and
P ¼ PðT; μV;f; μA;fÞ is the thermodynamic pressure. By
definition, τμν satisfies the relation uμτμν ¼ 0, and the
dissipative currents νμV=A;f are defined such that uμν

μ
V=A;f ¼

0 and nV=A;f ¼ uμj
μ
V=A;f is the vector/axial charge density in

the local rest frame of the fluid. We also note that, following
the common practice in the field of heavy-ion physics, we
take all of the above quantities to correspond to their
expectation values, and we will not consider thermody-
namic fluctuations in this study.
In this study, we restrict ourselves to studying the

dissipative corrections τμν and νμV=A up to first order in
gradients of the hydrodynamic variables and external fields.
The correction to Eq. (9) is then given by

τμν ¼ −ησμν − ζΔμν
∂ · u; ð12Þ

which corresponds to ordinary first-order viscous correc-
tions to energy-momentum transport, where η and ζ are the
shear and bulk viscosity, σμν ≡ ΔμαΔνβð∂αuβ þ ∂βuα −
2
3
gαβ∂ · uÞ is the transverse traceless symmetric shear-stress

tensor, and Δμν ¼ gμν þ uμuν denotes the spatial projector
orthogonal to the direction of fluid flow. Similarly, the first
order viscous corrections to Eqs. (10) and (11) take the
following general form

νμV;f ¼ −σff
0

VV

�
TΔμν

∂ν
μV;f0

T
− eqf0Eμ

�
ð13Þ

− σff
0

VATΔμν
∂ν

μA;f0

T
þ eqfσ

f
VBB

μ þ ξV;fω
μ;

νμA;f ¼ −σff
0

AV

�
TΔμν

∂ν
μV;f0

T
− eqf0Eμ

�
− σff

0
AATΔμν

∂ν
μA;f0

T
þ eqfσ

f
ABB

μ þ ξA;fω
μ; ð14Þ

and, if not stated otherwise, we will consider the
various conductivity tensors to be diagonal in flavor space
σff

0 ¼ σδff
0
, to comply with the SUðNfÞ × SUðNfÞ flavor

symmetry of a charge-neutral plasma in the chirally
symmetric phase. We note that the various coefficients
in Eqs. (13) and (14) have straightforward physical
interpretations, where σVV and σAA are the vector and axial
conductivities, while the “off-diagonal” transport coeffi-
cients σVA and σAV describe the coupled transport of
axial and vector charges associated with the chiral electric
separation effect [26], with σVA ¼ σAV due to the Onsager
relations [27]. The other coefficients are related to anoma-
lous chiral transport phenomena associated with the mag-
netic field and vorticity: σBV is the conductivity due to the
chiral magnetic effect [9], σBA is the conductivity due to
the chiral separation effect [28,29], ξV is the coupling
of the chiral vortical effect, and ξA is the spin-vorticity
coupling [22].
Evidently, the transport coefficients in Eqs. (12)–(14) are

constrained by the second law of thermodynamics, which
requires local entropy production to be non-negative. Based
on this requirement, it follows directly that the ordinary
transport coefficients satisfy the relations η ≥ 0 and ζ ≥ 0

for the shear and bulk viscosities in Eq. (12), as well as
Γsph ≥ 0, σVV ≥ 0 and σAA ≥ 0, while σAVσVA ≤ σAAσVV ,
for the sphaleron rate and the various conductivities in
Eqs. (13) and (14). Strikingly, as pointed out in a seminal
paper by Son and Surowka [22] and follow-up works [25],
the various anomalous chiral transport coefficients in
Eqs. (12)–(14) are constrained to an even greater extent
by the same condition. To show this, we quantify entropy
production via the entropy current,

Sμ ¼ suμþDBBμþDωω
μ−

μV;f
T

νμV;f−
μA;f
T

νμA;f; ð15Þ

where s is defined by the thermodynamic relation Ts ¼
ðϵþ PÞ − μV;fnV;f − μA;fnA;f and DB;ω are general func-
tions of temperature T and chemical potentials μV=A;f. By
exploiting the hydrodynamic equations and thermodynamic
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relations, we can then express the divergence of Sμ as (see
Appendix A for details)

∂μSμ ¼ −
1

T
∂μuντμν − νμV;f

�
∂μ

μV;f
T

−
eqf
T

Eμ

�

− νμA;f∂μ
μA;f
T

þ 4Γsph

�X
f

μA;f
T

�
2

−

 X
f

μA;f
T

ðeqfÞ2
!
CEμBμ þ ∂μðDBBμ þDωω

μÞ;

ð16Þ

and require positive entropy production with the condition

∂μSμ ≥ 0: ð17Þ

Dissipative effects due to shear (η) and bulk (ζ) viscous
corrections, vector and axial charge diffusion ðσV=AV=AÞ, as
well as sphaleron damping ðΓsphÞ contribute positively to
entropy production. Deferring the details of the calculation
to Appendix B (see also [22]), one finds that a thermo-
dynamically consistent description of the anomalous
transport phenomena associated with the coefficients
σVB; σBA; ξA; ξV , requires these phenomena to be non-
dissipative in the sense that their contribution to ∂μSμ

vanishes identically. Based on this requirement, following
the calculations in [22,25], one obtains the following
constraints on the anomalous transport coefficients in the
single-flavor case:

σVB ¼ C

�
μA −

nVμAμV
ϵþ P

�
; ð18Þ

σAB ¼ C

�
μV −

nAμAμV
ϵþ P

�
þ ðeqfÞ−1

∂

∂μ̄A
gðμ̄AÞ; ð19Þ

ξA ¼ C

�
μ2V −

nAμAμ2V
ϵþ P

�
þ ðeqfÞ−1

μV
T

∂

∂μ̄A
gðμ̄AÞ

þ ∂

∂μ̄A
Gðμ̄AÞ; ð20Þ

ξV ¼ 2C

�
μVμA −

nVμAμ2V
ϵþ P

�
þ ðeqfÞ−1gðμ̄AÞ; ð21Þ

where μ̄A ≡ μA=T and g and G are hitherto arbitrary
functions of μ̄A. These coefficients agree with the
single flavor calculations by [22,25] and with the con-
ductivities calculated microscopically in the original
works of [9,22,25,28–30]. While the positivity of entropy
production alone does not lead to such stringent con-
straints in the multiflavor case (see Appendix B), we will
assume that individual quark flavors behave independently
with respect to the chiral anomaly and entropy production

and employ the same transport coefficients for the multi-
flavor case for respective quark flavors.
Next, we take these coefficients and insert them into the

first order corrections to the constitutive relations in
Eqs. (13) and (14). We can then take the constitutive
relations with the conservation equations to obtain the
closed set of hydrodynamic equations that govern the
vector and axial charge dynamics in a high-temperature
QCD plasma.

IV. HYDRODYNAMIC EXCITATIONS IN
CHARGE-NEUTRAL PLASMA

Now that we have established the effective macroscopic
description of vector and axial charge transport in the
presence of QCD sphaleron transitions, we will study the
behavior of hydrodynamic excitations on a static equilib-
rium background, characterized by a fluid velocity field
uμ ¼ ð1; 0Þ, temperature T, and vanishing vector/axial
charge chemical potentials μVf

¼ μAf
¼ 0, which is typical

in high energy heavy ion collisions. In order to analyze the
hydrodynamic equations, we first perform a spatial Fourier
transform of the equations of motion, according to

uiðt;xÞ ¼
Z

d3k
ð2πÞ3 e

ik·xuikðt;kÞ; ð22Þ

and similarly for the other fields, then subsequently
linearize the equations of motion around the static equi-
librium background. In the presence of an external mag-
netic field B, the velocity field can be decomposed as

ui ¼ uk
ki

jkj þ uB
Bi

jBj þ uk×B
k ×B
jk ×Bj ; ð23Þ

such that the longitudinal and transverse components of the
fluid velocity fields are given by

uL ¼ ki

jkj u
i ¼ uk þ uB cosðθkBÞ; ð24Þ

ui⊥¼ uB

�
Bi

jBj− cosðθkBÞ
ki

jkj
�
þuk×B

ðk×BÞi
jk×Bj ; ð25Þ

and the transverse component can be further decomposed
into two components:

u⊥B ¼ uB

�
Bi

jBj − cosðθkBÞ
ki

jkj
�
; ð26Þ

u⊥⊥ ¼ uk×B
ðk ×BÞi
jk ×Bj : ð27Þ

We choose the hydrodynamic variables to be fluctu-
ations in energy density δϵ ¼ δT00, momentum density
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πi ¼ δuiðϵþ PÞ ¼ δT0i, and charge densities δnV;f ¼
δj0V;f and δnA;f ¼ δj0A;f, as these quantities can be defined
microscopically in the underlying theory of QCD. By using
thermodynamic relations, it is straightforward to express
intensive variables from T, uμ, and μV=A in terms of
extensive ones; in particular we can express changes in
charge density in terms of changes in chemical potential
according to

δni;f ¼ χff
0

ij δμj;f0 ; χff
0

ij ¼
�

∂
2P

∂μi;f∂μj;f0

�
T

; ð28Þ

while changes of the pressure are determined by the
equation of state as δP ¼ c2Sδϵ. Since we are considering
a charge-neutral background, all transport coefficients are
evaluated at μV;f ¼ μA;f ¼ 0. We also assume SUðNfÞ ×
SUðNfÞ flavor symmetry, such that χff

0
ij ¼ χiδijδ

ff0 . We
note that in this situation, the “off-diagonal” transport
coefficients, σVA ¼ σAV in Eqs. (13) and (14) also vanish,
since the leading-order contributions are ∝ μA;fμV;f [26],
i.e., of second order in the chemical potentials.
By imposing these conditions, we obtain the complete

system of linearized hydrodynamic equations:

∂tδϵþ ijkjπL ¼ 0; ð29Þ

∂tπL þ ijkjc2sδϵþ
4

3
γηk2πL ¼ 0; ð30Þ

∂tπ⊥B þ γηk2π⊥B ¼ 0; ð31Þ

∂tπ⊥⊥þ γηk2π⊥⊥−
X
f

ieqfjk×BjðDf
VδnV;fÞ¼ 0; ð32Þ

∂tδnV;fþDVk2δnV;fþeqfC
ik ·B
χA

δnA;f ¼ 0; ð33Þ

∂tδnA;fþDAk2δnA;fþeqfC
ik ·B
χV

δnV;f ¼−γsph
X
f

δnA;f;

ð34Þ

where γη ¼ η=ðϵþ PÞ is the shear diffusion coefficient,
Di ¼ σii=χi are the vector/axial charge diffusion coeffi-
cients and the coefficient γsph ¼ 4Γsph=ðχATÞ describes
dissipative effects due to sphaleron transitions. Since the
right-hand side of Eq. (34) contains a sum over all flavors,
this contribution leads to an explicit coupling of different
flavor components, which tends to erase the net axial
charge in the system.
We first observe that Eqs. (29) and (30) are coupled and

describe sound waves, whereas Eq. (31) describes a purely
diffusive shear mode. Equation (32) is also a diffusive shear
mode, coupled to Eqs. (33) and (34), which describe vector

and axial charge density modes. We restrict our analysis to
the coupled charge density equations, leaving out Eq. (32)
as the vector charge density fluctuations feed into the shear
mode but the shear mode does not feed back into the charge
density equations at linear order.

A. Single flavor dynamics

Before we address the more complex situation of
multiple flavors, we will analyze the effect of sphaleron
transitions on the coupled vector and axial charge dynamics
of a single fermion flavor (Nf ¼ 1) with charge qf in the
presence of a magnetic field.
We rewrite Eqs. (33) and (34) in matrix form, using

M
Nf¼1

ab ¼
�

Dk2 ieqfCχ−1A k ·B

ieqfCχ−1V k · B Dk2 þ γsph

�
ð35Þ

such that the fields ϕa ¼ ðδnV; δnAÞ satisfy the equation

∂tϕa þMabϕb ¼ 0: ð36Þ

By following standard procedure, the dispersion relations
of the linearized hydrodynamic equations are then found by
determining minus i times the complex eigenvalues asso-

ciated with the matrix M
Nf¼1

ab in Eq. (35).
Before studying the collective modes that emerge when

explicitly accounting for the dissipative contribution of
sphaleron transitions, we first address the dynamics of
vector and axial charges in the absence of sphaleron
transitions by setting γsph ¼ 0 in Eq. (35). The resulting
dispersion relations of the charge modes take the form

ω∓ ¼ −iDk2 ∓ ðeqfÞCffiffiffiffiffiffiffiffiffiffi
χAχV

p jk · Bj; ð37Þ

which are the known dispersion relations associated with
the CMWup toOðk2Þ [30]. We observe that the dispersion
relations have two distinct, competing parts, namely a
diffusive imaginary part and a propagating real part. Since
the diffusion constant D is fixed, the mechanism dominat-
ing the behavior of the excitations depends primarily on the
magnitude and orientation of the wavevector k of the
perturbation and on the strength of the magnetic field. In
the presence of a weak magnetic field, the dynamics of
charge modes will be governed by diffusion. As the
magnetic field increases in strength, the low k modes
oriented along the magnetic field will propagate with
decreasing influence from diffusion.
We can further characterize the modes by discussing the

associated eigenvectors,

v∓ ¼
�

cosΩ∓
eiϕ∓ sinΩ∓

�
; ð38Þ

LILLIAN DE BRUIN and SÖREN SCHLICHTING PHYS. REV. D 109, 114022 (2024)

114022-6



in which the subscripted sign corresponds to the sign of
the real part of the dispersion relations. The mixing angles
Ω∓ are

tanΩ∓ ¼
ffiffiffiffiffi
χV
χA

r
; ð39Þ

and the phases ϕ∓ are

eiϕ− ¼ −1; eiϕþ ¼ 1; ð40Þ

such that for equal vector/axial charge susceptibilities
χV ≈ χA, vector and axial evolution is maximally mixed.
When sphaleron transitions occur (γsph ≠ 0), the

dispersion relations can no longer be simply divided into
a diffusive and a propagating part. Instead, the inclusion of
sphaleron transitions associated with the term γsph leads to
the emergence of a wave number threshold,

kCMW ¼
ffiffiffiffiffi
χV
χA

r
2Γsph

ejqfjCjBj
; ð41Þ

which provides the minimum wave number above which a
propagating chiral magnetic wave (CMW) can form for a
given magnetic field strength. Hence it is convenient to
express the dispersion relations in terms of the character-
istic scale kCMW as

ωA¼−
i
2
ðγsphþ2Dk2Þ−γsph

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�jkjcosθkB
kCMW

�
2

−1

s
; ð42Þ

ωV ¼−
i
2
ðγsphþ2Dk2Þþγsph

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�jkjcosθkB
kCMW

�
2

−1

s
; ð43Þ

where ωA is the dispersion relation of the mode dominated
by axial charge diffusion and ωV is the dispersion relation
of the mode dominated by vector charge diffusion.
We plot the dispersion relations in Fig. 1 for three

different values of the magnetic field strength eB=T2 ¼
0.05, 0.15, 0.45 and further illustrate the behavior for
two different values of the sphaleron transition rate,
namely Γsph=T4 ¼ 0.001, corresponding to perturbative
estimates [17], and Γsph=T4 ¼ 0.01, which is on the order
of recent (quenched) lattice QCD results [20]. For illus-
trative purposes, we consider Nc ¼ 3 with the charge
susceptibilities of the free theory, given by

χA=VðT; μA=V ¼ 0Þ ¼ Nc
T2

3
¼ T2; ð44Þ

in a charge-neutral plasma.
Each plot shows two distinct regimes separated by their

respective value of kCMW. Below kCMW, CMWs cannot
form and modes are purely dissipative as the dynamics is
dominated by damping due to sphaleron transitions. On the
other hand, above kCMW, the dynamics of the modes
depends on the magnetic field strength. As eB=T2

decreases, the wave number threshold for the formation
of a CMW increases and dissipative effects increasingly
dominate the propagation due to charge mixing in the
presence of the magnetic field. At high kCMW, modes will

FIG. 1. Single-flavor dispersion relations ωA (42) and ωV (43) for different values of Γsph plotted for eB=T2 ¼ 0.05, 0.15, 0.45 (top to
bottom) respectively. Vertical dotted line represents kCMW for each case.
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form a CMW but is strongly damped due to the combined
effects of sphaleron damping and charge diffusion. Only at
sufficiently high eB=T2 can the CMWovercome the effects
of sphaleron damping and propagate without significant
dissipation, as seen in the lower left panel of Fig. 1 for a
small sphaleron transition rate and large magnetic field
strength. In the case of a large sphaleron rate, shown in the
right panel of Fig. 1 dissipative effects dominate for all
magnetic field strength considered. Even for the larger
magnetic field strength shown in the bottom right panel, the
dominant effect of the vector/axial charge mixing is not the
formation of a propagating CMW but rather the additional
dissipative effects due to sphaleron transitions.
We then investigate the extent of charge mixing by

analyzing the corresponding eigenvectors,

vi ¼
�

cosΩi

eiϕi sinΩi

�
: ð45Þ

for i ¼ A, V. The mixing angles ΩA=V , shown in Fig. 2,
characterize the mixing of vector and axial charged for the
two modes. While at k ¼ 0 vector and axial charge
dynamics is decoupled, a significant charge mixing already
builds up in the dissipative regime k < kCMW regime,
before for k > kCMW, the mixing angle is identical for
both modes, and the evolution of vector and axial charges is
maximally mixed.
The phases ϕA=V are shown in Fig. 3. In the regimewhere

k < kCMW, the phases are the same, ϕV=A ¼ −π=2.
However, for k > kCMW, as k increases, the phases diverge
toward a phase difference Δϕ ¼ π. That is, ϕA approaches
0, whereas ϕV approaches −π.

B. Multiflavor dynamics

We now move on and consider a two fermion-flavor
system with up and down quarks. In this case, the evolution

matrix for vector and axial charge dynamics of up and
down quarks is given by

M
Nf¼2

ab ¼

0
BBB@

M
Nf¼1

ab jqf¼qu

0 0

0 γsph

0 0

0 γsph
M

Nf¼1

ab jqf¼qd

1
CCCA; ð46Þ

whereM
Nf¼1

ab denotes the single-flavor matrix given in (35),
evaluated for the electric charge of the up quark and down
quark, respectively. The dynamics is then governed by
Eq. (36) for ϕa ¼ fδnV;u; δnA;u; δnV;d; δnA;dg, the vector
and axial charge densities for up and down quarks. We
emphasize that the dissipative term due to sphaleron
transitions couples the dynamics of the up and down quarks,
as can already be seen in Eq. (34), where the right-hand side
is proportional to the net axial charge imbalance of all
flavors.
The dispersion relations in the two flavor case are shown

in Fig. 4 for both a low and higher sphaleron rate, for three
different values of the magnetic field. As in the single-
flavor case, we can express the eigenvectors in terms of
mixing angles and phases. We parametrize the four
eigenvectors via

vi ¼

0
BBBBB@

cosθud cosΩu
VA

eiφ
u
VA cosθud sinΩu

VA

eiφud sinθud cosΩd
VA

eiφudeiφ
d
VA sinθud sinΩd

VA

1
CCCCCA; i¼f1;2;3;4g: ð47Þ

Based on this parametrization, we find the mixing angles
shown in Fig. 5 and the phases shown in Fig. 6, where the
mixing angle cos θud describes mixing between up and

FIG. 2. Mixing angle cosΩ2
A=V for the single-flavor case plotted

for eB=T2 ¼ 0.45, Γsph=T4 ¼ 0.001. Vertical dotted line repre-
sents kCMW.

FIG. 3. Phases for the single-flavor case plotted for
eB=T2 ¼ 0.45, Γsph=T4 ¼ 0.001. Vertical dotted line represents
kCMW.
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down flavors, while cosΩu;d
VA describe axial and vector

charge mixing. Since the general structure in Figs. 4–6 is
rather complicated, we discuss the analytic forms of the
vector/axial charge modes and dispersion relations in the
two-flavor system in the limiting cases of small and large
wave number.
In the large wave number limit, the sphaleron rate

becomes increasingly less important, such that the asymp-

totic case is described when we take γsph → 0 in M
Nf¼2

ab . In
this case, there is no mixing between up and down flavors,
such that the corresponding eigenvalues take the form

ωd∓ ¼ −iDk2 ∓ ejqdjCffiffiffiffiffiffiffiffiffiffi
χAχV

p jk ·Bj; ð48Þ

ωu∓ ¼ −iDk2 ∓ ejqujCffiffiffiffiffiffiffiffiffiffi
χAχV

p jk ·Bj; ð49Þ

which is identical to Eq. (37) and describes the independent
dynamics of up and down quarks. Conversely, in the small
wave number limit (k → 0) sphaleron damping plays a
prominent role. In this limit, the leading eigenvalues are

ω1 ¼ −2iγsph; ω2 ¼ ω3 ¼ ω4 ¼ 0; ð50Þ

where the first mode corresponds to the relaxation of the net
axial charge density (δnuA þ δndA) due to sphaleron tran-
sitions, while the axial charge difference between up
and down quarks (δnuA − δndA) is conserved, as well as
the corresponding vector quantities, (δnuV þ δndV) and
(δnuV − δndV). One can further disentangle the three degen-
erate eigenvalues by applying degenerate perturbation
theory to next-to-leading order. By assuming χa ¼ χV ¼
χ for simplicity, and leaving details of the calculation for
Appendix C, the eigenvalues to first order in perturbation
theory are given by

ω2 ¼ 0; ω3;4¼∓ eC

χ
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq2dþq2uÞ

q
jk ·Bj: ð51Þ

indicating the emergence of constant mode and conjugate
pair of propagating chiral magnetic waves, which is
indicated by a black line in the bottom right panel of Fig. 5.

FIG. 4. Dispersion relations in the multiflavor case for different values of Γsph plotted for eB=T2 ¼ 0.05, 0.15, 0.45 (top to bottom),
respectively. Black solid lines indicate the asymptotic limits of small or large wave number k.

FIG. 5. Mixing angles for two-flavor system, eB=T2 ¼ 0.45.
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Generally beyond these two simple limits, the coupled
dynamics is rather complicated, as can be inferred from
the rather complex structures seen in Figs. 4–6. Clearly, the
reason for this is that, in the multiflavor case, even in the
small k limit, all of the modes are associated with linear
combinations of u and d vector and axial charges, as can be
deduced the analytic expressions for the eigenvectors in
Appendix C as well as from the mixing angles and phases
in Figs. 5 and 6.

V. EFFECTS OF SPHALERON DAMPING ON
VECTOR AND AXIAL CHARGE DYNAMICS

Next, in order to assess the impact of sphaleron tran-
sitions on normal and anomalous transport phenomena in a
QCD plasma, we investigate the response of the system to
an initial charge inhomogeneity by solving the linearized
hydrodynamic equations (36) numerically. We orient the
magnetic field along the y-direction and study perturbations
in the x–y plane to loosely mimic the evolution in
the transverse plane in an off-central heavy-ion collision.2

We set the scale by setting temperature T ¼ 4TC, where
TC ¼ 155 MeV is the QCD cross-over temperature and
study the evolution over a timescale t ¼ 10 fm=c. We limit
ourselves to the single-flavor scenario (Nf ¼ 1) and con-
sider two magnetic field strength regimes: eB=T2 ¼ 1=16
and eB=T2 ¼ 1. The first of these regimes, where
eB=T2 ¼ 1=16, was chosen to correspond to m2

π , an
optimistic estimate for the magnetic field strength achieved
in a heavy ion collision [31]. The second, eB=T2 ¼ 1, was

chosen arbitrarily such that it was much stronger than
m2

π . We consider four different values of the sphaleron
rate Γsph for each magnetic field strength eB=T2, and
monitor the evolution of the vector/axial charge distribu-
tions along the magnetic field direction, i.e., nV=Aðy; tÞ ¼R
x;z nV=Aðx; y; z; tÞ, to probe how sphaleron transitions
affect vector and axial charge transport.

A. Vector charge perturbations

We first consider an initial vector charge perturbation,
given by a Gaussian distribution of width σ ¼ 0.4Rp,
Rp ¼ 1 fm, such that the width is on the order of the size
of a nucleon—the characteristic length scale of variations in
the transverse plane of a heavy-ion collision. By studying
the vector and axial charge profiles after t ¼ 10 fm=c of
evolution as depicted in Fig. 7, we observe that vector
charge diffuses while axial charge separates along the
direction of the magnetic field. At eB=T2 ¼ 1=16, the
vector charge diffuses with no discernible difference with
respect to the value of the sphaleron transition rate.
However, when the magnetic field strength is increased
to eB=T2 ¼ 1, the charge either purely diffuses or forms a
highly diffusive wave. This behavior depends on the
sphaleron transition rate. In fact, there is a clear transition
in behavior between the charge distribution for Γsph=T4 ¼
10−3 and Γsph=T4 ¼ 10−2; as the sphaleron rate increases,
the behavior of the vector charge changes from diffusive
propagation to purely diffusive. On the other hand, axial
charge separates in the same manner for both magnetic field
strengths, though the magnitude of charge separation is
greater for a strong magnetic field. One sees immediately
from Fig. 7 that the magnitude and distance of charge
separation depend on the value of the sphaleron transition
rate. Hence, as the rate of sphaleron transitions increases,
the magnitude and distance of separation decreases.

B. Axial charge perturbations

Next we consider an initial perturbation of the axial
charge density, which can be seen as a simple toy model for
dynamics of the chiral magnetic effect (CME) in heavy ion
collisions [9]. We employ the same parameters as for the
initial vector charge perturbation, and present our results
for the vector and axial charge profiles in Fig. 8. As can be
expected, the response to an initial axial charge perturba-
tion is significantly more sensitive to the sphaleron rate.
Specifically, for eB=T2 ¼ 1=16 shown in the left column,
the axial charge profile diffuses and decays and the decay
rate depends on the sphaleron rate. For eB=T2 ¼ 1, the
modes for each of the four sphaleron rates form a decaying
and highly diffusivewave. With regards to vector charge for
the initial axial distribution, one clearly observes a sepa-
ration of vector charges along the direction of the magnetic
field, albeit the amount of charge separation strongly

FIG. 6. Phases for two-flavor system, eB=T2 ¼ 0.45.

2When solving Eq. (36) numerically, in practice we discretize
the evolution on a two-dimensional spatial lattice (2562). The
lattice is scaled such that the length of the sides were 10 fm with
spacing aS ¼ 10=256 fm.
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depends on the sphaleron rate and the magnetic field
strength.
We also find that for the weaker field case, eB=T2 ¼

1=16where the magnetic field strength is relevant for heavy
ion collisions, the axial charge charge only diffuses and
there is no clear sign of propagating waves. Even though a
small amount of vector charge separation is still generated
also in this case, it is clear that dissipative effects dominate
in this case, and clearly need to be taken into account in a
realistic description of the dynamics of CME and CMW in
heavy-ion collisions.

C. Sensitivity of charge separation
to the sphaleron rate

Importantly, the vector charge separation along the
direction of the magnetic field has been suggested as
an experimental signature of the CME in heavy-ion

collisions [32]. Since this charge separation is sensitive
to the sphaleron transition rate, we will further quantify this
dependence by using the dipole moment. Specifically, we
consider vector charge separation as the result of an initial
axial charge perturbation, and determine the electric dipole
moment

DðB; tÞ ¼
Z

d3x
x ·B
jBj

X
f

eqfnV;fðt;xÞ; ð52Þ

which quantifies the amount of electric charge separation
along the direction of the magnetic field.
We first derive an expression for the dipole moment for

the case of a single quark flavor (Nf ¼ 1), rewriting
Eq. (52) as

FIG. 7. Spatial profiles of axial (nA) and vector (nV ) charge distributions for initial vector charge perturbation after an evolution for
t ¼ 10 fm=c. Different curves in each panel correspond to four different values of the sphaleron transition rate Γsph. Different columns
show the results for different magnetic field strength eB=T2 ¼ 1=16 in the left column and eB=T2 ¼ 1 in the right column.
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DðB; tÞ ¼
Z

d3x
x · B
jBj

Z
d3k
ð2πÞ3 e

ik·x

�
1

0

�t

× exp fMabðkÞðt − t0Þg
�
ñVðt0;kÞ
ñAðt0;kÞ

�
; ð53Þ

where we have used the notation ñV=AðkÞ to differentiate
between the charge distributions in coordinate space and
their Fourier-transformed counterparts. Recall, matrix Mab
is defined by Eq. (35). Then, switching the order of
integration,

DðB; tÞ ¼
Z

d3k
ð2πÞ3

Z
d3x

ð−i∂jkeik·xÞBj

jBj
�
1

0

�t

× exp fMabðkÞðt − t0Þg
�
ñVðt0;kÞ
ñAðt0;kÞ

�
; ð54Þ

which becomes

DðB; tÞ ¼
�Z

d3k
ð2πÞ3

Z
d3xeik·x

�
i∂jkBj

jBj
�
1

0

�t

× exp fMabðkÞðt − t0Þg
�
ñVðt0;kÞ
ñAðt0;kÞ

�

¼ i∂jkBj

jBj
�
1

0

�t

exp fMabðkÞðt − t0Þg

×

�
ñVðt0;kÞ
ñAðt0;kÞ

�				
k¼0

: ð55Þ

Evaluating Eq. (55) for an initial axial charge perturbation
and one quark flavor (Nf ¼ 1), we find the dipole moment

DðB; tÞ ¼ −eqfjBjCT
4Γsph



1 − e−4Γspht=ðχATÞ�δñ0A; ð56Þ

FIG. 8. Spatial profiles of axial (nA) and vector (nV ) charge distributions for initial axial charge perturbation after an evolution for
t ¼ 10 fm=c. Different curves in each panel correspond to four different values of the sphaleron transition rate Γsph. Different columns
show the results for different magnetic field strength eB=T2 ¼ 1=16 in the left column and eB=T2 ¼ 1 in the right column.
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where we use δñ0A ¼ δñAðt ¼ 0;k ¼ 0Þ to denote the initial
net axial charge imbalance.
Similarly, in the case of two quark flavors (Nf ¼ 2),

we find

DðB; tÞ¼−ejBjCðq2uþq2dÞT
16Γsph

�
1−e−

8Γspht
χAT

�
ðδñu;0A þδñd;0A Þ

−
ejBjCðq2u−q2dÞT

2Γsph

�
Γspht

χAT
e−

8Γspht
χAT

�
ðδñu;0A −δñd;0A Þ;

ð57Þ

where as before δñu=d;0A ¼ δñu=dA ðt ¼ 0;k ¼ 0Þ denote the
initial axial charge imbalance of u and d flavors, such that
the terms in the second line describe the response to a net
axial charge imbalance of both flavors, whereas the terms in
the third line describe the response to an axial charge
difference between u and d flavors. However, most
importantly, from Eqs. (56) and (57), we immediately
see the relationship between the sphaleron transition rate
Γsph and separation of charge, as quantified by the dipole
moment DðB; tÞ.
We illustrate the relations for both the single-flavor and

two-flavor case in Fig. 9, where we present the dependence
of the dipole moment DðB; tÞ on the sphaleron transition
rate Γsph. By normalizing the dipole moment to its value for
Γsph ¼ 0, the quantity DðΓsphÞ=DðΓsph ¼ 0Þ becomes in-
dependent of the magnetic field strength [cf. Eqs. (56)
and (57)] and can be viewed an overall suppression factor
of the charge separation signal due to sphaleron transitions.
When the sphaleron transition rate is large, all terms
proportional to e−#Γspht=χaT in Eqs. (56) and (57) can be
dropped and the charge separation is proportional to 1=Γsph.
By inspecting the results in Fig. 9 one finds that after an

evolution for 10 fm=c, the suppression for sphaleron rates
Γsph=T4 ≲ 0.01 is still rather modest. However, for values
on the order of the (quenched) lattice QCD estimates [20]
Γsph=T4 ≳ 0.02 there is in a significant suppression of the
signal, as well as a strong sensitivity of the result to the
actual value of the sphaleron transition rate. While such a
suppression may make it harder to detect possible signa-
tures of the CME and CMW in heavy-ion collisions, the
strong sensitivity to the sphaleron rate also suggests a
possible experimental avenue for constraining the spha-
leron rate using charge separation measurements associated
with chiral phenomena such as the CME and CMW.

VI. CONCLUSIONS AND OUTLOOK

Based on a general discussion of the criteria for the
validity of a macroscopic description of the axial charge
dynamics in high-temperature QCD plasmas, we modified
the anomalous hydrodynamic equations of motion to
explicitly include dissipative effects sourced by sphaleron
transitions. Within this framework, dissipation due to
sphaleron transitions is incorporated as a damping term
proportional to the sphaleron transition rate, which depletes
the net axial charge imbalance of all fermion flavors and
contributes positively to entropy production in the system.
Notably, in the case of multiflavors the dissipative contri-
bution from sphaleron damping also coupled the dynamics
of different flavors, as the dissipative term is proportional to
the sum of the axial charge density of all flavors.
By linearizing the hydrodynamic equations around a

space-time independent background, we investigated the
coupled dynamics of vector and axial charge perturbations
in a charge neutral background and contrasted our results
including sphaleron damping to the traditional behavior of a
chiral magnetic wave. When sphaleron damping is taken
into consideration, a characteristic wave number scale kCMW
emerges. Below kCMW, charge modes experience decaying
diffusive behavior as the dynamics is dominated by spha-
leron transitions. Conversely, above kCMW, the modes
behave like an ordinary CMW, albeit the latter is typically
strongly damped. The threshold kCMW ∼ Γsph=eB depends
on the sphaleron transition rate and magnetic field strength
and we expect that for typical values achieved in heavy-ion
collisions at RHIC and LHC energies dissipative effects
dominate and the decaying diffusive behavior is realized.
By studying the time evolution of linearized vector/axial

charge perturbations, we visualized the impact of the
sphaleron transition rate on vector and axial charge trans-
port in a QCD plasma in the presence of a magnetic field.
Strikingly, for sufficiently strong magnetic fields, the
sphaleron transition rate also has an impact on vector
charge transport, i.e. the vector charge response to a vector
charge perturbation, which may be interesting from the
point of view of extracting the QCD sphaleron rate on the
lattice. Second, in the presence of an axial charge

FIG. 9. Electric charge separation, quantified by the electric
dipole moment D for an initial axial charge distribution as a
function of Γsph for single- and two-flavor configurations of
various initial charge ratios at t ¼ 10 fm=c.
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imbalance, we observe the expected separation of vector
charges along the direction of the magnetic field. Even
though the amount of charge separation strongly depends
on the sphaleron rate and magnetic field strength, the
general phenomenon of charge separation persists. We
further quantified the amount of charge separation in terms
of the electric dipole moment, and determined its depend-
ence on the sphaleron rate. We find that for realistic values
of the sphaleron transition rate, the charge separation can
easily be suppressed by a factor of two compared to the
situation where dissipative effects due to sphaleron tran-
sitions are not taken into account.
Since the charge separation is highly sensitive to the

sphaleron transition rate, it is conceivable that experimental
measurements of charge separation can be used to constrain
the QCD sphaleron rate. Such constraints would not only be
useful to confront current state-of-the-art calculations, but
would provide a unique measurements that can elucidate
topological properties of QCD.Our results thusmotivate the
development of a more comprehensive treatment of axial
charge dynamics,where it would also be important to extend
the present framework to include fluctuations of axial charge
sourced by sphaleron transitions.
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APPENDIX A: DIVERGENCE OF ENTROPY
CURRENT, MAGNETIC FIELD, VORTICITY

Let us first derive the divergence of the entropy current.
The viscous correction to the entropy current in first order
hydrodynamics is

Sμ ¼ ðϵþ PÞ
T

uμ −
μV;f
T

jμV;f −
μA;f
T

jμA;f: ðA1Þ

Immediately, the divergence takes the form

∂μSμ ¼ ∂μ

�ðϵþ PÞ
T

uμ
�
− ∂μ

�
μV;f
T

nV;fuμ

þ μA;f
T

nA;fuμ þ
μV;f
T

νμV;f þ
μA;f
T

νμA;f

�
: ðA2Þ

We focus on the first term on the right-hand side of
Eq. (A2). From the longitudinal projection on the diver-
gence of the energy-momentum tensor, we have

∂μðϵþ PÞuμ ¼ uμ∂μP − τμνð∂μuνÞ − uνð∂μTμνÞ: ðA3Þ

Now, using the thermodynamic relations Ts ¼ ðϵþ PÞ −
μA;fnA;f − μV;fnV;f and dP¼ sdTþnA;fdμA;fþnV;fdμV;f,
we can express

1

T
uμ∂μP ¼ −ðϵþ PÞuμ

�
∂μ

1

T

�
þ nV;fuμ

�
∂μ

μV;f
T

�

þ nA;fuμ
�
∂μ

μA;f
T

�
: ðA4Þ

Dividing Eq. (A3) by T, and then combining with Eq. (A4),
we obtain

∂μ

�
ϵþ P
T

uμ
�

¼ −
1

T
τμνð∂μuνÞ −

1

T
uνð∂μTμνÞ

þ
X
j¼V;A

nj;fuμ
�
∂μ

μj;f
T

�
: ðA5Þ

We substitute this result into Eq. (A2), and obtain

∂μSμ ¼ −
1

T
τμνð∂μuνÞ −

1

T
uνð∂μTμνÞ

− ðjμV;f − nV;fuμÞ
�
∂μ

μV;f
T

�
−
μV;f
T

ð∂μJμV;fÞ

− ðjμA;f − nA;fuμÞ
�
∂μ

μA;f
T

�
−
μA;f
T

ð∂μJμA;fÞ: ðA6Þ

Identifying jμi − niuμ ¼ νμi , we evaluate

uνð∂μTμνÞ ¼ −
X
f

eqfEλðjλV;f − nV;fuλÞ; ðA7Þ

where in the last step we used the fact that Eμ is a spacelike
vector (i.e. uμEμ ¼ 0). After making the appropriate sub-
stitutions into Eq. (A6), it is straightforward to find

∂μSμ ¼ −
1

T
τμνð∂μuνÞ − νμV;f

��
∂μ

μV;f
T

�
−
eqf
T

Eμ

�

− νμA;f

�
∂μ

μA;f
T

�
−
μA;f
T

ð∂μJμA;fÞ: ðA8Þ

We now take into account external fields. The most general
modification we can make to the entropy current Eq. (A1)
in the presence of an external magnetic and vorticity field is

Sμext ¼ DBBμ þDωω
μ; ðA9Þ

with divergence
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∂μS
μ
ext ¼ ð∂μDBÞBμ þDB∂μBμ þ ð∂μDωÞωμ

þDω∂μω
μ: ðA10Þ

Substituting the divergence of axial current and adding the
divergences of the external vortical and magnetic fields into
Eq. (A8) yields the total divergence of the entropy current,
as expressed in Eq. (16).
Now, we can derive identities for the divergences of

vorticity ωμ and magnetic field Bμ found in Eq. (A10) using
the ideal hydrodynamic equations. We first note that both
fields Bμ and ωμ can be expressed in an analogous way in
terms of the components of the tensors Fαβ ¼ ∂αAβ − ∂βAα

and Ωαβ ¼ 1
2
ϵμναβ∂αuβ according to

Fαβ ¼ uαEβ − uβEα − ϵαβγδuγBδ; ðA11Þ

Ωαβ ¼ uλωβ − uβωα − ϵαβγδuγaδ; ðA12Þ

where

aμ ¼ 1

2
ϵμναβuνΩαβ ¼

1

2
uν∂νuμ ðA13Þ

is the acceleration of the fluid. Since for sufficiently smooth
fields ∂μΩμν ¼ 0, we can then express the derivatives as

∂μBμ ¼ 1

2
ϵμναβð∂μuνÞFαβ ¼ −2ωμEμ þ 2aμBμ; ðA14Þ

∂μω
μ ¼ ∂μðΩμνuνÞ ¼ ð∂μuνÞΩμν ¼ 4aμωμ: ðA15Þ

By transversely projecting the energy-momentum conser-
vation equation Δα

ν∂μTμν, one obtains

ðϵþ pÞuμ∂μuα ¼ −Δα
ν∂

νPþ
X
f

eqfΔα
νFνλjV;fλ

þ Δα
ν∂μτ

μν; ðA16Þ

which upon keeping only terms linear in gradients becomes

ðϵþ PÞuμ∂μuα ¼ −Δα
ν∂

νPþ
X
f

eqfnV;fEα

þOð∂2Þ: ðA17Þ

Collecting everything, one obtains the identities

∂μBμ¼−2ωμEμ−
Bμ

ϵþP

�
ð∂μPÞ−

X
f

eqfnV;fEμ

�
; ðA18Þ

∂μω
μ ¼ −

2ωμ

eþ p

�
ð∂μPÞ −

X
f

eqfnV;fEμ

�
: ðA19Þ

APPENDIX B: CONSTRAINTS
ON TRANSPORT COEFFICIENTS

In order to determine the constraints on the chiral
coefficients, following [22], we use the identities derived
in Appendix A that follow from the ideal hydrodynamic
equations:

∂μω
μ ¼ −

2ωμ

ϵþ P

�
∂μP −

X
f

eqfnV;fEμ

�
; ðB1Þ

∂μBμ ¼ −2ωμEμ þ
1

ϵþ P

�
−Bμ

∂μPþ
X
f

eqfnV;fEμBμ

�
:

ðB2Þ

By inserting Eqs. (B1) and (B2) and the expanded forms of
νμV=A [Eqs. (13) and (14)] into Eq. (16), one then finds
various contributions to the divergence of the entropy
current that are proportional to either ωμ, Bμ, Eμω

μ, or
EμBμ. Since neither of these terms has a definite sign, in
order to comply with a locally positive semidefinite entropy
production, the combinations of coefficients multiplying
them must vanish identically such that the effects asso-
ciated with the coupling to ωμ, Bμ, Eμω

μ, or EμBμ are in
fact nondissipative, yielding the equations

�
∂μDω−ξA;f∂μ

μA;f
T

−ξV;f∂μ
μV;f
T

−
2Dω

ϵþP
∂μP

�
ðωμÞ¼ 0;

ðB3Þ
�
eqfξV;f

T
−2DBþ

2Dω

ϵþP

X
f

eqfnV;f

�
ðEμω

μÞ¼ 0; ðB4Þ

�
∂μDB − eqfσ

f
AB∂μ

μA;f
T

− eqfσ
f
VB∂μ

μV;f
T

−
DB

ϵþ P
∂μP

�
× ðBμÞ ¼ 0; ðB5Þ

�X
f

e2q2fσ
f
VB

T
− C

X
f

μA;f
T

ðeqfÞ2 þ
DB

ϵþ P

X
f

eqfnV;f

�

× ðEμBμÞ ¼ 0: ðB6Þ

In order to evaluate these constraints more explicitly, it is
convenient to then switch variables from T and μA=V;f to
μ̄A=V;f ≡ μA=V;f=T and P. Based on the thermodynamic
relations Ts ¼ ϵþ P − μV;fnV;f − μA;fnA;f and dP ¼
sdT þ nV;fdμV;f þ nA;fdμA;f, one finds the relations

�
∂T
∂P

�
μ̄i

¼ T
ϵþ P

;

�
∂T
∂μ̄i

�
P;μ̄j

¼ −
niT2

ϵþ P
: ðB7Þ
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Expressing the derivatives of the various coefficients in
Eqs. (B3) and (B5) as

∂μX ¼
�
∂X
∂P

�
∂μPþ

�
∂X
∂μ̄V;f

�
∂μμ̄V;f

þ
�

∂X
∂μ̄A;f

�
∂μμ̄A;f; ðB8Þ

and exploiting the fact that variations of P and μ̄V=A;f are
independent of each other, one finds that Eq. (B3) splits
into 2Nf þ 1 equations:

∂Dω

∂μ̄V;f
¼ ξfV;

∂Dω

∂μ̄A;f
¼ ξfA;

∂Dω

∂P
¼ 2Dω

ϵþP
: ðB9Þ

Based on Eq. (B7), one then concludes that the solutions for
Eq. (B3) are of the form

Dω ¼ T2fωðμ̄V;f; μ̄A;fÞ; ðB10Þ

ξfV ¼ ∂

∂μ̄V;f



T2fωðμ̄V;f; μ̄A;fÞ

�
; ðB11Þ

ξfA ¼ ∂

∂μ̄A;f



T2fωðμ̄V;f; μ̄A;fÞ

�
; ðB12Þ

in which fωðμ̄V;f; μ̄A;fÞ is a hitherto arbitrary function of
μ̄V;f and μ̄A;f. Similarly, Eq. (B5) also splits into 2Nf þ 1

equations,

∂DB

∂μ̄V;f
¼ eqfσ

f
VB;

∂DB

∂μ̄A;f
¼ eqfσ

f
AB;

∂DB

∂P
¼ DB

ϵþP
;

ðB13Þ

which with the help of Eq. (B7) yields

DB ¼ TfBðμ̄V;f; μ̄A;fÞ; ðB14Þ

eqfσ
f
VB ¼ ∂

∂μ̄V;f



TfBðμ̄V;f; μ̄A;fÞ

�
; ðB15Þ

eqfσ
f
AB ¼ ∂

∂μ̄A;f



TfBðμ̄V;f; μ̄A;fÞ

�
: ðB16Þ

By taking into account Eqs. (B4) and (B6), one then finds

X
f

eqf
1

2

∂fω
∂μ̄V;f

¼ fBðμ̄V;f; μ̄A;fÞ; ðB17Þ

X
f

eqf
∂fB
∂μ̄V;f

¼ C
X
f

e2q2fμ̄A;f: ðB18Þ

Specifically, for the case of a single flavor (Nf ¼ 1), the
functions fω and fB can then be obtained directly via
integration

fBðμ̄V; μ̄AÞ ¼ eqfCμ̄Aμ̄V þ gðμ̄AÞ; ðB19Þ

fωðμ̄V; μ̄AÞ ¼ Cμ̄2V μ̄A þ μ̄V
eqf

gðμ̄AÞ þGðμ̄AÞ; ðB20Þ

where gðμ̄AÞ and Gðμ̄AÞ are hitherto arbitrary functions
of μ̄A.
Generalizing the single-flavor result to multiple inde-

pendent flavors and dropping the unspecified contributions
then yields

fBðμ̄V; μ̄AÞ ¼ C
X
f

eqfμ̄A;fμ̄V;f; ðB21Þ

fωðμ̄V; μ̄AÞ ¼ C
X
f

μ̄2V;fμ̄A;f: ðB22Þ

APPENDIX C: DEGENERATE PERTURBATION
THEORY CALCULATIONS

FOR MULTIFLAVOR DYNAMICS

Below we explain the calculation of the eigenmodes in
the two quark-flavor case. We focus for simplicity on the
case χV ¼ χA ¼ χ, where the matrix is symmetric and the
calculations can be carried out in a familiar fashion. One
finds that to leading order in the small k limit, the matrix

M
Nf¼2

ab [Eq. (46)] becomes

M
Nf¼2

k¼0 ¼

0
BBBB@

0 0 0 0

0 γsph 0 γsph

0 0 0 0

0 γsph 0 γsph

1
CCCCA; ðC1Þ

with eigenvalues

λ1 ¼ 2γsph; λ2 ¼ λ3 ¼ λ4 ¼ 0: ðC2Þ

We use degenerate perturbation theory to disentangle the
three degenerate eigenvalues and determine the perturba-
tions up to first order in k. By perturbing the matrix (C1)
with the first order contributions from (46), one obtains the
first-order matrix,
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MNf¼2jOðkÞ ¼

0
BBBB@

0 iequCχ−1k ·B 0 0

iequCχ−1k · B γsph 0 γsph

0 0 0 ieqdCχ−1k · B

0 γsph ieqdCχ−1k ·B γsph

1
CCCCA: ðC3Þ

We then can choose an orthonormal basis for the
leading order eigenvectors that diagonalizes the degenerate
subspace,

e1 ¼
1ffiffiffi
2

p f0; 1; 0; 1g; ðC4Þ

e2 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2d þ q2u
q fqd; 0; qu; 0g; ðC5Þ

e3 ¼
1ffiffiffi
2

p
8<
: −quffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2d þ q2u
q ;

1ffiffiffi
2

p ;
qdffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2d þ q2u
q ;−

1ffiffiffi
2

p
9=
; ðC6Þ

e4 ¼
1ffiffiffi
2

p
8<
: −quffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2d þ q2u
q ;−

1ffiffiffi
2

p ;
qdffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2d þ q2u
q ;

1ffiffiffi
2

p
9=
;: ðC7Þ

By projecting the matrix (C8) onto the leading order
eigenvectors in Eq. (C7), we obtain a matrix of the form

MNf¼2jOðkÞ ¼
�
2γ kv⃗T

kv⃗ kD

�
ðC8Þ

where the matrix D describes the mixing between the
degenerate leading order eigenvectors ði; j ¼ 2; 3; 4Þ,

kDij¼ eTi ðMNf¼2jOðkÞ−M
Nf¼2

k¼0 Þej;

kD¼

0
BBB@
0 0 0

0 − ieCk·B
χ
ffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2dþq2u

q
0

0 0 ieCk·B
χ
ffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2dþq2u

q
1
CCCA; ðC9Þ

and the vector v⃗ describes the coupling between the
degenerate eigenvectors (i ¼ 2, 3, 4) and the nondegenerate
state (j ¼ 1)

kv⃗i ¼ e⃗Ti ðMNf¼2

ab j0ðkÞ −Mk0Þe⃗1;

kv⃗ ¼

0
BBBBBB@

ieqdquC
ffiffi
2

p
k·B

χ
ffiffiffiffiffiffiffiffiffiffi
q2dþq2u

p
ieðq2d−q2uÞCk·B
2χ
ffiffiffiffiffiffiffiffiffiffi
q2dþq2u

p
ieðq2d−q2uÞCk·B
2χ
ffiffiffiffiffiffiffiffiffiffi
q2dþq2u

p

1
CCCCCCA
: ðC10Þ

From the diagonal components of the matrix in (C9),
we immediately obtain the first-order corrections to the
eigenvalues,

λ02 ¼ 0;

λ03 ¼ −
ieCk · B

χ
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2d þ q2u

q
;

λ04 ¼
ieCk · B

χ
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2d þ q2u

q
: ðC11Þ

Our shifted eigenvalues are λi;tot ¼ λi þ λ0i, and from the
relation ω ¼ iλ we obtain the shifted frequencies,

ω2;new ¼ 0; ðC12Þ

ω3;new ¼ −
eC

χ
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2d þ q2u

q
jk ·Bj; ðC13Þ

ω4;new ¼ eC

χ
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2d þ q2u

q
jk ·Bj: ðC14Þ

The first-order corrections to the eigenvectors take
the form

e1;new ¼ e1 þ
k
2γ

v⃗iei; ðC15Þ

ei;new ¼ ei −
k
2γ

v⃗ie1; ðC16Þ

for i ¼ 2, 3, 4. Using this prescription, we compute the
shifted eigenvectors,

e1;new ¼
�
ieCquk · B

γsphχ2
ffiffiffi
2

p ;
1ffiffiffi
2

p ;
ieCqdk ·B

γsphχ2
ffiffiffi
2

p ;
1ffiffiffi
2

p

; ðC17Þ
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e2;new ¼
�

qdffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2d þ q2u

q ;−
ieCqdquk ·B

χγsph2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2d þ q2u

q ;
quffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2d þ q2u
q ;−

ieCqdquk ·B

χγsph2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2d þ q2u

q
9=
;; ðC18Þ

e3;new ¼
8<
:−

quffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðq2dþq2uÞ

q ;
1

8

0
B@4−

ieC
ffiffiffi
2

p
k ·Bðq2d−q2uÞ

χγsph

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2dþq2u

q
1
CA;

qdffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðq2dþq2uÞ

q ;−
1

8

0
B@4þ ieC

ffiffiffi
2

p
k ·Bðq2d−q2uÞ

χγsph

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2dþq2u

q
1
CA
9=
;; ðC19Þ

e4;new ¼
8<
:−

quffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðq2dþq2uÞ

q ;−
1

8

0
B@4þ ieC

ffiffiffi
2

p
k ·Bðq2d−q2uÞ

χγsph

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2dþq2u

q
1
CA;

qdffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðq2dþq2uÞ

q ;
1

8

0
B@4−

ieC
ffiffiffi
2

p
k ·Bðq2d−q2uÞ

χγsph

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2dþq2u

q
1
CA
9=
;: ðC20Þ
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