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To access information on the internal structure of the nucleon, data from a variety of scattering
experiments can be analyzed in regimes where the information factorizes from an otherwise known
scattering amplitude. A recent development, promising new insight, is the study of exclusive reactions in
the backward kinematical region, where the information can be encoded in transition distribution
amplitudes. We model the photon-to-nucleon transition distribution amplitudes, entering the factorized
description of backward timelike Compton scattering, using techniques of light-front dynamics to integrate
information from a quark model for the photon and the nucleon. We include the results of numerical
predictions that could inform further experiments at Jefferson Lab and the future Electron-Ion Collider.
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I. INTRODUCTION

Hard exclusive processes offer invaluable insight into
unraveling the parton structure of hadrons. Notable exam-
ples include deeply virtual Compton scattering (DVCS) and
timelike Compton scattering (TCS). The former is the
scattering of a high-virtuality spacelike photon off a
nucleon target, resulting in the production of a real photon
and the recoiling nucleon, while the latter sees a real photon
scatter off the nucleon target into a high-virtuality timelike
photon. In the forward kinematical region, characterized by
small absolute values of the Mandelstam variable t and
large absolute values of the Mandelstam variable u,
information on the internal structure of the nucleon is
encoded in generalized parton distributions (GPDs) [1–11].
These are related to matrix elements of a bilocal operator
between the initial and final nucleon states, and represent
the amplitude of transferring momentum to the hadron
through the exchange of two partons.
The situation is more complex in the backward kin-

ematical region, where juj is small and jtj is large.
Currently, there is no formal proof of the factorization
for backward DVCS and TCS, but the hypothesis is
supported by the analogy with the well-established case
of forward scattering. The analysis of existing data from

Jefferson Lab is also in agreement with the outset of
factorization in the backward region of exclusive reactions
involving mesons [12–14]. The variable u characterizes the
transition between a real photon and a nucleon, which can
be encoded in transition distribution amplitudes (TDAs)
[15–17]. These are related to matrix elements of a trilocal
operator between the photon and nucleon states, and
represent the amplitude of transferring momentum and
one unit of baryon number through the exchange of three
partons.
The focus of the present work is on backward TCS,

which remains relatively unexplored compared to other
processes involving TDAs [18–22]. The experimental
study of TCS is a recent development, with data published
for the first time in 2021 by the CLAS collaboration at
Jefferson Lab for the forward region [23]. Moreover,
backward TCS is especially appealing, since the electro-
magnetic Bethe-Heitler background, where the initial
photon directly couples to a lepton-antilepton pair in the
final state, is significantly suppressed (except for very
narrow regions of solid angle for the produced lepton) [16].
To compare the factorized description against experimental
results and to guide further phenomenological studies, a
model for the photon-to-nucleon TDAs is required, begin-
ning with the leading contributions.
The model developed in this work is based on the

framework of light-front dynamics (LFD) [24–27], where
the interacting particles are described in the Fock space in
terms of light-front wave functions (LFWFs). In Sec. II, the
backward kinematical region of TCS is analyzed, and the
factorized description of the scattering amplitude is intro-
duced. The photon-to-nucleon TDAs are defined, and their
expressions in terms of matrix elements of a trilocal
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operator between the initial photon and the final nucleon
states are derived. Section III is dedicated to modeling the
photon-to-nucleon TDAs, specifically in the support region
where the description in terms of the leading Fock-
components of the photon and nucleon LFWFs is suitable.
The photon is treated as a light quark-antiquark pair, while
the Fock representation of the nucleon is truncated to the
three valence quarks, in a constituent quark model that has
already been applied to GPDs [28–33] and to nucleon-to-
neutral-pion TDAs [22]. Given the impracticality of the
complete formulas, the analytical results of the model
calculation are illustrated schematically, giving the various
components alongside instructions for combining them into
the final formulas. Numerical predictions for a selected set
of TDAs and their first Mellin moments are discussed in
Sec. III C. Concluding remarks and an outlook on further
developments are given in the final Sec. IV.

II. BACKWARD TIMELIKE
COMPTON SCATTERING

A. The backward kinematical region

Timelike Compton scattering refers to the scattering of a
photon (γ) off a nucleon (N) into a virtual photon ðγ�Þ and
the recoiling nucleon ðN0Þ, schematically

γðqÞ þ NðpNÞ → γ�ðq0Þ þ N0ðp0
NÞ; ð1Þ

where in brackets are the four-momenta of the particles.
The virtual photon is timelike and produces a lepton-
antilepton pair in the final state. The Mandelstam variables
of the process are defined as

s ¼ ðqþ pNÞ2 ¼ ðq0 þ p0
NÞ2; ð2Þ

t ¼ ðp0
N − pNÞ2 ¼ ðq0 − qÞ2; ð3Þ

u ¼ ðp0
N − qÞ2 ¼ ðq0 − pNÞ2: ð4Þ

We are interested in the kinematical region where

ðq0Þ2; s; jtj ≫ juj; m2
N; ð5Þ

where mN is the mass of the nucleon.
Introducing light-cone (LC) coordinates, for an arbitrary

four vector v we write v� ¼ ðv0 � v3Þ and v⃗⊥ ¼ ðv1; v2Þ,
and give all components as vμ¼ðvþ;v−;v⃗⊥Þ. Furthermore,
we adopt the T subscript for the transverse part of the
four vector, i.e., vT ¼ ð0; 0; v⃗⊥Þ. The LC decomposition
of a four vector can be written in a Lorentz covariant
fashion using two lightlike vectors pμ ∝ ð1; 0; 0⃗⊥Þ and
nμ ∝ ð0; 1; 0⃗⊥Þ such that 2p · n ¼ 1. We have

vμ ¼ vppμ þ vnnμ þ vμT; ð6Þ

where vp ¼ 2ðn · vÞ, vn ¼ 2ðp · vÞ, and p ·vT¼n ·vT¼0.

In a reference frame where the z axis is along the
direction of the colliding real photon and proton, the
momenta involved in the process are

q ¼ ð1þ ξÞp; ð7Þ

pN ¼ m2
Nð1þ ξÞ
s −m2

N
pþ s −m2

N

ð1þ ξÞ n; ð8Þ

p0
N ¼ ð1 − ξÞpþm2

N − Δ2
T

ð1 − ξÞ nþ ΔT; ð9Þ

Δ ¼ p0
N − q ¼ −2ξpþm2

N − Δ2
T

ð1 − ξÞ nþ ΔT; ð10Þ

q0 ¼ pN − Δ; ð11Þ

where ξ is the skewness variable, with 0 ≤ ξ < 1. It will
also be useful to define the mean momentum

P ¼ p0
N þ q
2

¼ pþm2
N − Δ2

T

2ð1 − ξÞ nþ ΔT

2
; ð12Þ

so that

pþ ¼ Pþ ð13Þ

and

ξ ¼ −
ðp0

N − qÞ · n
ðp0

N þ qÞ · n ¼ −
Δ · n
2P · n

: ð14Þ

We also have

u ¼ Δ2 ¼ −2ξ
m2

N − Δ2
T

ð1 − ξÞ þ Δ2
T; ð15Þ

so juj is smaller forΔT ¼ 0, i.e., when the trajectories of the
outgoing particles are aligned with the incoming particles,
and for ξ close to zero.

B. Interpretation of the photon-to-nucleon
transition distribution amplitudes

Following Refs. [15,16], we apply a collinear factorized
description of the TCS amplitude in the kinematical
region (5). Owing to the high-energy scale of the final
photon and the low-energy scale juj ¼ jp0

N − qj2, we can
isolate from the rest of the scattering amplitude a transition
from the initial photon to the final nucleon. We can imagine
this transition happening through an exchange of partons
between the initial photon and the initial nucleon, which,
once extracted, take part in a perturbative subprocess that
produces the final photon. This elementary scattering is
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described by coefficient functions (CFs). The splitting of
the initial nucleon into its constituent quarks is described by
nonperturbative objects called nucleon distribution ampli-
tudes (DAs), while the transition from the initial photon to
the final nucleon is encoded in photon-to-nucleon (Nγ)
TDAs. This factorized description of the amplitude of
backward TCS is sketched in Fig. 1.

In the context of collinear factorization, there are three
fundamentalways inwhich the photon-to-nucleon transition
can happen, schematically illustrated in Figs. 2(a)–2(c),
where the photon is represented by the left (orange) oval
shape and the nucleon by the right (violet) one. If the photon
splits into a light (up or down) quark-antiquark pair, the
antiquark is emitted and two absorbed quarks take its place
(so that the result is a color singlet) to make up the nucleon
[Fig. 2(a)]. The photon could also split into two quark-
antiquark pairs, with a quark taking the place of the
antiquarks in the final nucleon [Fig. 2(b)], or into three
pairs, the emitted antiquarks leaving behind the nucleon
[Fig. 2(c)]. Additional quark-antiquark pairs (of any flavor)
or gluons can be directly absorbed by the nucleon, and
should give rise to higher-order corrections to the three
fundamental contributions. The three classes of contribu-
tions are characterized by different values of the fractions of
longitudinalmeanmomentum (12) carried by the exchanged
partons, with positive values corresponding to emitted
antiquarks and negative values interpreted as absorbed
quarks. The first and second support regions are called
DGLAP I and DGLAP II, respectively, as they are governed
by a generalization of the Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi evolution equations [34–36]. The third
region is called ERBL, being controlled by a generalization
of the Efremov-Radyushkin-Brodsky-Lepage evolution
equations [37–41].

C. Definition of the photon-to-nucleon transition
distribution amplitudes

In order to define the photon-to-nucleon TDAs, we start
by considering the matrix element of the trilocal operator

FIG. 1. Sketch of the factorized amplitude of backward
TCS. The central (pink) oval shape represents the high-energy
elementary scattering, described by CFs. The upper and lower
(light blue) oval shapes represent the nonperturbative subpro-
cesses, encoded in photon-to-nucleon TDAs and nucleon DAs,
respectively.

FIG. 2. Sketch of the leading contribution to photon-to-nucleon TDAs in the DGLAP I (a), DGLAP II (b), and ERBL (c) support
regions.
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that allows the transition between the initial photon and
final nucleon, i.e.,

hp0
N; s

0
N jÔABCðλ1n; λ2n; λ3nÞjq; λi; ð16Þ

where λ; s0N are the LC helicities of the photon and the
nucleon, respectively, and the operator ÔABC for a final
proton is defined as

ÔABCðλ1n; λ2n; λ3nÞ
¼ ϵjklψ̄u;jAðλ1nÞψ̄u;kBðλ2nÞψ̄d;lCðλ3nÞ: ð17Þ

In Eq. (17), ψ̄u; ψ̄d are the Dirac adjoints of the field
operators for up and down quarks, respectively, A, B, C are
Dirac indices, j, k, l are summed (anti)quark-color indices,
and ϵjkl is the antisymmetric Levi-Civita symbol. For a final
neutron, we just need to switch all up and down quarks, so
we will only perform the calculations for the proton case. In
general, we would have to insert Wilson lines between the
local operators to ensure gauge invariance. However,
choosing the LC gauge Aþ ¼ 0, these lines become trivial
along the direction of n.
We Fourier transform the matrix element of the trilocal

operator with the transformation

F ½…� ¼ ðp · nÞ3
Z �Y3

a¼1

dλa
2π

�
½…�ei

P
3

b¼1
xbλbðp·nÞ: ð18Þ

In the LC decomposition of Eqs. (7)–(14), the result has the
following structure:

F hp0
N;s

0
N jÔABCðλ1n;λ2n;λ3nÞjq;λi

¼ δðx1þx2þx3−2ξÞmN

4

×
X
I

ðsNγ
I ÞABCðq;λ;p0

N;s
0
NÞSNγ

I ðx1;x2;x3;ξ;uÞ; ð19Þ

where the factor of mN=4 is for convenience. The fractions
of longitudinal momentum of the exchanged partons are in
the following range:

ξ − 1 ≤ xb ≤ ξþ 1; b ¼ 1; 2; 3: ð20Þ

When xb is positive, it corresponds to the fraction of
released longitudinal momentum in the photon-to-proton
transition carried by an emitted antiquark, while, when
negative, its absolute value is the fraction carried by an
absorbed quark. In agreement with this interpretation, the
xs are constrained to add up to 2ξ. When one x variable is
positive and two are negative, we are in the DGLAP I
support region [Fig. 2(a)], when two are positive and one is
negative in the DGLAP II region [Fig. 2(b)], and when all
three are positive in the ERBL region [Fig. 2(c)]. The sum
in Eq. (19) is over a set of independent Dirac structures, and

the coefficients are the photon-to-nucleon TDAs, which
turn out to be dimensionless and real, and also depend on a
collinear factorization scale. We will only consider the
leading-twist TDAs, i.e., the contribution to the matrix
element (19) with the highest power of Pþ. It comes from
the LC good components of the spinors (A8), and has a
twist of 3.
The Dirac structures are related to the ones for the

nucleon-to-photon (γN) transition of DVCS, listed in
Appendix B of Ref. [16], by

ðsNγÞABC ¼ −ðγ0⊤ÞAA0 ðsγN†ÞA0B0C0γ0B0Bγ
0
C0C: ð21Þ

Note that our formula corrects the analogous Eq. (17) of
Ref. [16], which misses a minus sign. In exactly backward
TCS, where ΔT ¼ 0, only four Dirac structures are non-
zero. For convenience, we reproduce them below

ðvγN1E ÞABC ¼ ðp̂CÞABðγ5ϵ̂�UþÞC; ð22Þ

ðaγN1E ÞABC ¼ ðp̂γ5CÞABðϵ̂�UþÞC; ð23Þ

ðtγN1E ÞABC ¼ ðσpμCÞABðγ5σμϵ
�
UþÞC; ð24Þ

ðtγN2E ÞABC ¼ ðσpϵ�CÞABðγ5UþÞC; ð25Þ

where C is the charge conjugation matrix (A2), ϵμ is the
photon polarization vector (41), Uþ is the good component
of the nucleon spinor, and

p̂ ¼ pνγ
ν; ð26Þ

σνμ ¼ 1

2
½γν; γμ�; ð27Þ

σpμ ¼ pνσνμ; ð28Þ

σpϵ� ¼ pνϵ�μσνμ: ð29Þ

If we define the helicity amplitudes

T
s0N;λ
ABC ¼ mN

4
ððvNγ

1E ÞABCVNγ
1E þ ðaNγ

1E ÞABCANγ
1E

þðtNγ
1E ÞABCTNγ

1E þ ðtNγ
2E ÞABCTNγ

2E Þ; ð30Þ

then we can express the TDAs as linear combinations of the
helicity amplitudes, i.e.,

VNγ
1E ¼

ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffi
1 − ξ

p ðPþÞ32mN

ðT↑;þ1
322 þ T↑;þ1

232 Þ; ð31Þ

ANγ
1E ¼

ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffi
1 − ξ

p ðPþÞ32mN

ðT↑;þ1
322 − T↑;þ1

232 Þ; ð32Þ
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TNγ
1E ¼

ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffi
1 − ξ

p ðPþÞ32mN

ðT↑;þ1
223 − T↑;−1

333 Þ; ð33Þ

TNγ
2E ¼

ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffi
1 − ξ

p ðPþÞ32mN

ðT↑;þ1
223 þ T↑;−1

333 Þ: ð34Þ

The choice of Dirac indices in the above equations fixes the
components of the Dirac adjoints of the spinors in the
expansions of the local fields in the trilocal operator (17).
Since we are focusing on the good components (A8), an
index value of 2 gives a nonzero contribution from a quark
with spin −1=2 or antiquark with spin þ1=2, while a quark
with spin þ1=2 or an antiquark with spin −1=2 contribute
when the index is 3. Therefore, the helicity amplitudes in
Eqs. (31)–(34) correspond to transitions where the total LC
helicity is conserved without any transfer of orbital angular
momentum between the photon and the proton, which is
compatible with ΔT ¼ 0. For example, considering T↑;þ1

322

and the photon splitting into a down-antidown pair, we
have a photon and two up quarks of LC helicity
þ1;þ1=2;−1=2, respectively, transitioning into a proton
and an antidown both of helicity þ1=2, for a conserved
total helicity of þ1. Note that the down quark could have
helicity þ1=2, corresponding to no orbital angular momen-
tum between the partons in the photon nor in the proton, or
it could have helicity −1=2, for a third component of orbital
angular momentum of þ1 both in the photon and in the
proton. We can interpret the other cases in an analogous
fashion.

III. MODELING PHOTON-TO-NUCLEON
TRANSITION DISTRIBUTION AMPLITUDES

In the following, we focus on the study of the leading
contribution to the TDAs in the DGLAP I region, corre-
sponding to the probing of the qq̄ and qqq components of
the photon and proton states, respectively, as represented in
Fig. 2(a). We first introduce a model for the LFWFs of the
photon and proton states, and then give the structure of the
analytical results for the TDAs from the model calculation.
We conclude with numerical predictions for a selected set
of TDAs and their first Mellin moments.

A. A light-front dynamical model for the photon
and the nucleon

In LFD, we can represent interacting states on a basis of
Fock states, provided that we avoid particles with zero
longitudinal momentum (see, e.g., Refs. [26,42]). If A
labels a strongly interacting particle with on-shell four-
momentum P and LC helicity Λ, then we can write

jA;P;Λi ¼
X
N;β

Z �
dxffiffiffi
x

p
�
N
½d2k⊥�NΨA;Λ

N;βðfxi; q⃗i⊥gÞ

× jN;p1;…; pN; βi; ð35Þ

where N ¼ ng þ nq þ nq̄ labels the number of partons with
discrete quantum numbers collectively denoted by β. In
Eq. (35), the integration measures are defined as

�
dxffiffiffi
x

p
�
N
¼

YN
i¼1

dxiffiffiffiffi
xi

p δ

�
1 −

XN
j¼1

xj

�
; ð36Þ

½d2k⊥�N ¼ 1

ð2ð2πÞ3ÞN−1

YN
i¼1

d2ki⊥δð2Þ
�XN

j¼1

k⃗j⊥
�
; ð37Þ

where, for every parton with four-momentum pi, we
defined the fraction xi of longitudinal momentum with
respect to Pþ and the transverse momentum k⃗i⊥ with
respect to P⃗⊥, i.e.,

pþ
i ¼ xiPþ; ð38Þ

p⃗i⊥ ¼ xiP⃗⊥ þ k⃗i⊥: ð39Þ

The coefficients ΨA;Λ
N;β in Eq. (35) are the LFWFs that give

the probability amplitude to find the N-parton Fock state in
the hadron A. They only depend on the relative variables
ðxi; k⃗i⊥Þ and are thus Lorentz invariant.
We model the initial photon as a quark-antiquark pair,

with flavor either up (u) or down (d). The corresponding
LFWF can be obtained by the tree level diagram of Fig. 3
(see, e.g., Ref. [27]). We have

Ψγ;λ
ff̄;78

¼ −efe
ffiffiffi
2

p �
m2 þ k27⊥

x7
þm2 þ k28⊥

x8

�−1� m
x7x8

δλs7δs7s8 þ
ffiffiffi
2

p
ϵ⃗λ⊥ ·

�
k⃗7⊥
x7

δλ−s7δ−s7s8 þ
k⃗8⊥
x8

δλs7δs7−s8

��
; ð40Þ

where the subscripts 7,8 collectively denote the LC helicity and the momentum of quark and antiquark, respectively, the
Kronecker deltas only check the sign of the parton helicities, ef is the charge of quark flavor f in units of the positron charge
e, and m is the light-quark mass. In Eq. (40), ϵ⃗λ⊥ is the transverse part of the photon polarization vector, i.e.,

ϵμλðqÞ ¼
�
0;
2q⃗⊥ · ϵ⃗λ⊥

qþ
; ϵ⃗λ⊥

�
; ϵ⃗λ⊥ ¼ −

1ffiffiffi
2

p ðλ; iÞ; ð41Þ
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with λ ¼ þ1;−1 corresponding to counterclockwise and
clockwise polarization, respectively.
For the proton, we use the constituent-quark LFWFs

introduced in Ref. [28] and expanded in terms of eigenstates
of orbital angular momentum in Ref. [43]. The model was
applied to calculate the orbital-angular-momentum content

of transverse-momentum-dependent distributions [43,44],
and to predict the spin asymmetries in semi-inclusive deep-
inelastic scattering [45,46]. The energy scale at which the
nucleon is well represented by the constituent valence quarks
was derived in Ref. [46], and is about 0.5 GeV.
For convenience, we report below the results for a proton

with LC helicity þ1=2, the only needed for Eqs. (31)–(34),
numbering the three valence quarks as 4,5,6. The proton
state is given by

jp0
N;↑i ¼ jp0

N;↑iLz¼0 þ jp0
N;↑iLz¼þ1 þ jp0

N;↑iLz¼−1

þ jp0
N;↑iLz¼þ2; ð42Þ

where Lz is the third component of the total orbital
angular momentum of the three valence quarks. Every
orbital-angular-momentum component corresponds to one
of the possible combinations of LC helicities of the quarks,
so that the third component of total angular momentum
Lz þ

P
i¼4;5;6 si ¼ þ1=2. They are given by

jp0
N;↑i0 ¼

Z �
dxffiffiffi
x

p
�
3

½d2k⊥�3ðψ ð1Þð4; 5; 6Þ þ iðk14k25 − k24k
1
5Þψ ð2Þð4; 5; 6ÞÞ

×
1ffiffiffi
6

p ϵxyzu
†
↑xð4Þðu†↓yð5Þd†↑zð6Þ − d†↓yð5Þu†↑zð6ÞÞj0i; ð43Þ

jp0
N;↑iþ1 ¼

Z �
dxffiffiffi
x

p
�
3

½d2k⊥�3ðkþ4⊥ψ ð3Þð4; 5; 6Þ þ kþ5⊥ψ ð4Þð4; 5; 6ÞÞ

×
1ffiffiffi
6

p ϵxyzðu†↑xð4Þu†↓yð5Þd†↓zð6Þ − d†↑xð4Þu†↓yð5Þu†↓zð6ÞÞj0i; ð44Þ

jp0
N;↑i−1 ¼

Z �
dxffiffiffi
x

p
�
3

½d2k⊥�3ð−1Þk−5⊥ψ ð5Þð4; 5; 6Þ × 1ffiffiffi
6

p ϵxyzu
†
↑xð4Þðu†↑yð5Þd†↑zð6Þ − d†↑yð5Þu†↑zð6ÞÞj0i; ð45Þ

jp0
N;↑iþ2 ¼

Z �
dxffiffiffi
x

p
�
3

½d2k⊥�3ð−1Þkþ4⊥kþ6⊥ψ ð6Þð4; 5; 6Þ × 1ffiffiffi
6

p ϵxyzu
†
↓xð4Þðu†↓yð5Þd†↓zð6Þ − d†↓yð5Þu†ð6Þ↓z Þj0i; ð46Þ

where k�j⊥ ¼ k1j⊥ � ik2j⊥, with j ¼ 4, 5, 6. In Eqs. (43)–(46), u†sxðjÞ ðd†sxðjÞÞ is the creation operator for on-shell u (d)
quarks, with LC helicity s ¼ ↑;↓ corresponding toþ1=2;−1=2, respectively, x is the color, and the argument (j) stands for
ðxj; kj⊥Þ. The functions ψ ðiÞ, with i ¼ 1; 2;…; 6, are given by (see Ref. [43])

ψ ð1Þð4; 5; 6Þ ¼ 1ffiffiffi
3

p ψ̃ðfxj; k⃗j⊥gÞ
Y
j

1ffiffiffiffiffiffi
Nj

p ð−a4a5a6 þ ð2a4 þ a6Þk⃗4⊥ · k⃗5⊥ þ 2a4k25⊥Þ; ð47Þ

ψ ð2Þð4; 5; 6Þ ¼ 1ffiffiffi
3

p ψ̃ðfxj; k⃗j⊥gÞ
Y
j

1ffiffiffiffiffiffi
Nj

p ð2a4 þ a6Þ; ð48Þ

ψ ð3Þð4; 5; 6Þ ¼ 1ffiffiffi
3

p ψ̃ðfxj; k⃗j⊥gÞ
Y
j

1ffiffiffiffiffiffi
Nj

p ð−a4a5 − k25⊥Þ; ð49Þ

FIG. 3. Photon to quark-antiquark pair at tree level.
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ψ ð4Þð4; 5; 6Þ ¼ 1ffiffiffi
3

p ψ̃ðfxj; k⃗j⊥gÞ
Y
j

1ffiffiffiffiffiffi
Nj

p ð−a4a5 − 2a4a6 þ k24⊥ þ 2k⃗4⊥ · k⃗5⊥Þ; ð50Þ

ψ ð5Þð4; 5; 6Þ ¼ 1ffiffiffi
3

p ψ̃ðfxj; k⃗j⊥gÞ
Y
j

1ffiffiffiffiffiffi
Nj

p a4a6; ð51Þ

ψ ð6Þð4; 5; 6Þ ¼ 1ffiffiffi
3

p ψ̃ðfxj; k⃗j⊥gÞ
Y
j

1ffiffiffiffiffiffi
Nj

p a5; ð52Þ

where Nj¼a2jþk2j⊥ and aj¼mþxjM0, with M0 the mass
of the noninteracting three-quark system, i.e., M0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

6
i¼4 ðm2 þ k2i⊥Þ=xi

q
. For the function ψ̃ , we use

ψ̃ðfxj; k⃗j⊥gÞ ¼ 2ð2πÞ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M0

Y6
i¼4

ωi

xi

vuut N0

ðM2
0 þ β̃2Þγ̃ ; ð53Þ

where N0 is a normalization and ωi ¼ ðm2 þ k2i⊥Þ=xi is the
free-quark energy. The parameters β̃; γ̃, as well as the light-
quarks mass m, are taken from Ref. [47], and are the result
of a fit to the electromagnetic form factors. We have

m ¼ 0.263 GeV; β̃ ¼ 0.607 GeV;

γ̃ ¼ 3.5; Ñ ¼ 0.047 GeV−4: ð54Þ

B. Structure of the transition distribution amplitudes

We can now calculate the matrix elements of the trilocal
operator in Eq. (17) by inserting the model for the photon
and proton LFWFs described in Sec. III A. Taking into
account the quark-antiquark pair in the initial photon and

the three valence quarks of the final nucleon, we end up
evaluating matrix elements of the form

hq4xq5yq6zj
1ffiffiffi
6

p ϵxyzϵjklψ̄u;jAðλ1nÞψ̄u;kBðλ2nÞψ̄d;lCðλ3nÞ

× jq7iq̄8ii; ð55Þ

where x, y, z are summed color indices and the index i runs
over color for the quark or the corresponding anticolor
for the antiquark. Each number in the sets 4,5,6 and 7,8
collectively denotes the other quantum numbers of a quark
in the color-antisymmetric three-quark Fock component of
the proton and in the quark-antiquark-pair Fock component
of the photon, respectively. Focusing on the leading twist
three and expanding the fields in terms of ladder operators,
the only nonzero contributions come from annihilating an
antiquark and creating two quarks between the initial and
final states. We have two possibilities: the photon splits into
a down-antidown pair (dd̄) or into an up-antiup pair (uū).
In the first case, we annihilate the d̄ and create two u, and
we are left with

hq4xq5yq6zj
1ffiffiffi
6

p ϵxyzÔABCðλ1n; λ2n; λ3nÞjd7id̄8ii ¼ −
ffiffiffi
6

p
ðūu;s4Aðk4Þūu;s5Bðk5Þeiðλ1n·k4þλ2n·k5Þ

þ ūu;s5Aðk5Þūu;s4Bðk4Þeiðλ1n·k5þλ2n·k4ÞÞ
× v̄d;s8Cðk8Þe−iλ3n·k8ð2πÞ32kþ7 δs6s7δðkþ6 − kþ7 Þδð2Þðk⃗6⊥ − k⃗7⊥Þ: ð56Þ

In the second case, we annihilate the ū and create u, d, so that

hq4xq5yq6zj
1ffiffiffi
6

p ϵxyzÔABCðλ1n; λ2n; λ3nÞju7iū8ii

¼ −
ffiffiffi
6

p
ðv̄u;s8Aðk8Þūu;s5Bðk5Þe−iðλ1n·k8−λ2n·k5Þ þ ūu;s5Aðk5Þv̄u;s8Bðk8Þeþiðλ1n·k5−λ2n·k8ÞÞ

× ūd;s6Cðk6Þeiλ3n·k6ð2πÞ32kþ7 δs4s7δðkþ4 − kþ7 Þδð2Þðk⃗4⊥ − k⃗7⊥Þ
−

ffiffiffi
6

p
ðv̄u;s8Aðk8Þūu;s4Bðk4Þe−iðλ1n·k8−λ2n·k4Þ þ ūu;s4Aðk4Þv̄u;s8Bðk8Þeþiðλ1n·k4−λ2n·k8ÞÞ

× ūd;s6Cðk6Þeiλ3n·k6ð2πÞ32kþ7 δs5s7δðkþ5 − kþ7 Þδð2Þðk⃗5⊥ − k⃗7⊥ÞÞ: ð57Þ
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For the contribution from the proton LFWFs, we
introduce the following notation for a proton with LC
helicity þ1=2 ð↑Þ made up of three quarks:

↑→ ↑↓↑þ 0 ¼ ψ ð1Þð4; 5; 6Þ þ iðk14k25 − k24k
1
5Þψ ð2Þð4; 5;6Þ;

ð58Þ

↑ → ↑↓↓þ 1 ¼ kþ4⊥ψ ð3Þð4; 5; 6Þ þ kþ5⊥ψ ð4Þð4; 5; 6Þ; ð59Þ

↑ → ↑↑↑ − 1 ¼ ð−1Þk−5⊥ψ ð5Þð4; 5; 6Þ; ð60Þ

↑ → ↓↓↓þ 2 ¼ ð−1Þkþ4⊥kþ6⊥ψ ð6Þð4; 5; 6Þ; ð61Þ

where the sets of three arrows represent the up ð↑Þ and
down ð↓Þ LC helicities of the quarks, which combine with
the possible components of orbital angular momentum
Lz ¼ 0;�1;þ2 to give the proton LC helicity.
To obtain the final expressions for the photon-to-nucleon

TDAs, we need to combine Eqs. (56) or (57) and (40) with
Eqs. (58)–(61), and to sum and integrate over the quantum
numbers of intermediate partons. Depending on the helicity
amplitude (30) that we want to calculate, the result is a sum
of many terms that we find impractical to write out in full.
Instead, we schematically represent all the terms for a
generic helicity amplitude in Figs. 4–6, and we list below

FIG. 4. Structure of the helicity amplitude T↑;λ
ABC with γ → dd̄.
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the steps to reconstruct the photon-to-proton TDAs of
backward TCS.
(1) A term of an helicity amplitude is given by a path in

Figs. 4–6 by multiplying the nodes in the first and
third columns with the complex conjugate of the
fourth-column one. The triplet of arrows in a fourth-
column node represents the LC helicities of the three
quarks in the final proton, in the order of the
corresponding second-column node. We add a third
component of orbital angular momentum to the LC
helicities of the quarks, so that the total is the þ1=2
LC helicity of the proton. The third-column nodes
with flavor order duu and udu have been obtained

from Eqs. (56) and (57) by the appropriate exchange
of indices. Note that we are only considering the
Dirac adjoint of the good components of the LC
spinors (A8).

(2) Fix the Dirac indices A, B, C. In the chiral
representation (A1), the Dirac adjoints of the good
components of the LC spinors (A8) are nonzero only
for Dirac indices equal to 2,3, corresponding to LC
helicity −1=2;þ1=2 for particles, respectively, and
helicity þ1=2;−1=2 for antiparticles, respectively.

(3) We multiply by a factor of
Q

3
j¼1 exp ½�iððλj=2ÞxÞ�,

with λ1, λ2, λ3 associated with a spinor in the third-
column node, in the order of the node, and with the

FIG. 5. Structure of the helicity amplitude T↑;λ
ABC with γ → uū, part I.
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plus sign for particles and the minus sign for
antiparticles. We also multiply by a factor of the
form

ð2πÞ32kþ7 δsls7δðkþl − kþ7 Þδð2Þðk⃗l⊥ − k⃗7⊥Þ; ð62Þ

with l equal to the value between 4,5,6 that does
not appear in the third-column node that we are
considering.

(4) We introduce a sum over the LC helicities of the
quark-antiquark pair in the initial photon, and
integrate over the three quark momenta in the proton
and the quark and antiquark momenta in the photon

with the measures (36)–(37). We then Fourier trans-
form with the transformation (18), which results in
three Dirac delta distributions for the x variables (see
the following item).

(5) We use all theDirac delta distributions and Kronecker
deltas to fix all but two longitudinal momenta, that we
always choose to be index 4 and 5. For every term of
an helicity amplitude, we have

k⃗6⊥¼−k⃗4⊥− k⃗5⊥; x7¼1−x8; k⃗8⊥¼−k⃗7⊥: ð63Þ

The other variables for every surviving path of the
helicity amplitudes that we are interested in are given

FIG. 6. Structure of the helicity amplitude T↑;λ
ABC with γ → uū, part II.

BARBARA PASQUINI and ANDREA SCHIAVI PHYS. REV. D 109, 114021 (2024)

114021-10



by the rows of Tables I–V. Note that, by Eq. (40), the
photon cannot split into two partons whose helicities
are both of the opposite sign of the original helicity,
which would correspond to theLz ¼ �2 components
for the photon state. Therefore, the configurations
with s7 ¼ s8 ¼ −1=2 do not appear in Tables I–III,
and the entries with s7 ¼ s8 ¼ þ1=2 do not appear in

Tables IVand V. Also note that the Lz ¼ þ1 compo-
nent only contributes to T↑;þ1

322 ; T↑;þ1
232 ; T↑;þ1

223 , while the

Lz ¼ −1 component only contributes to T↑;−1
333 .

(6) For every term, we have a factor of

δðx1 þ x2 þ x3 − 2ξÞ; ð64Þ

TABLE I. Constrained variables for the nonzero terms of T↑;þ1
322 . Contributions from the initial photon splitting into

dd̄ and into uū are given in rows 3 and 4 and 5–8, respectively.

T↑;þ1
322

x4 x5 x6 s7 k⃗7⊥ s8 x8

− x1
1−ξ − x2

1−ξ
1þξ
1−ξ −

x3
1−ξ þ 1

2 k⃗6⊥ þ 1
2

x3
1þξ

− x1
1−ξ − x2

1−ξ
1þξ
1−ξ −

x3
1−ξ − 1

2 k⃗6⊥ þ 1
2

x3
1þξ

1þξ
1−ξ −

x1
1−ξ

− x2
1−ξ − x3

1−ξ þ 1
2 k⃗4⊥ − 1

2

x1
1þξ

− x1
1−ξ

1þξ
1−ξ −

x2
1−ξ

− x3
1−ξ − 1

2 k⃗5⊥ þ 1
2

x2
1þξ

1þξ
1−ξ −

x2
1−ξ

− x3
1−ξ − x1

1−ξ þ 1
2 k⃗4⊥ þ 1

2

x2
1þξ

− x1
1−ξ − x3

1−ξ
1þξ
1−ξ −

x2
1−ξ þ 1

2 k⃗6⊥ þ 1
2

x2
1þξ

TABLE II. Constrained variables for the nonzero terms of T↑;þ1
232 . Contributions from the initial photon splitting

into dd̄ and into uū are given in rows 3 and 4 and 5–8, respectively.

T↑;þ1
232

x4 x5 x6 s7 k⃗7⊥ s8 x8

− x2
1−ξ − x1

1−ξ
1þξ
1−ξ −

x3
1−ξ þ 1

2 k⃗6⊥ þ 1
2

x3
1þξ

− x2
1−ξ − x1

1−ξ
1þξ
1−ξ −

x3
1−ξ − 1

2 k⃗6⊥ þ 1
2

x3
1þξ

1þξ
1−ξ −

x2
1−ξ

− x1
1−ξ − x3

1−ξ þ 1
2 k⃗4⊥ − 1

2

x2
1þξ

− x2
1−ξ

1þξ
1−ξ −

x1
1−ξ

− x3
1−ξ − 1

2 k⃗5⊥ þ 1
2

x1
1þξ

1þξ
1−ξ −

x1
1−ξ

− x3
1−ξ − x2

1−ξ þ 1
2 k⃗4⊥ þ 1

2

x1
1þξ

− x2
1−ξ − x3

1−ξ
1þξ
1−ξ −

x1
1−ξ þ 1

2 k⃗6⊥ þ 1
2

x1
1þξ

TABLE III. Constrained variables for the nonzero terms of T↑;þ1
223 . Contributions from the initial photon splitting

into dd̄ and into uū are given in rows 3 and 4 and 5–10, respectively.

T↑;þ1
223

x4 x5 x6 s7 k⃗7⊥ s8 x8
1þξ
1−ξ −

x3
1−ξ

− x1
1−ξ − x2

1−ξ þ 1
2 k⃗4⊥ − 1

2

x3
1þξ

1þξ
1−ξ −

x3
1−ξ

− x2
1−ξ − x1

1−ξ þ 1
2 k⃗4⊥ − 1

2

x3
1þξ

1þξ
1−ξ −

x1
1−ξ

− x2
1−ξ − x3

1−ξ þ 1
2 k⃗4⊥ þ 1

2

x1
1þξ

1þξ
1−ξ −

x2
1−ξ

− x1
1−ξ − x3

1−ξ þ 1
2 k⃗4⊥ þ 1

2

x2
1þξ

− x3
1−ξ

1þξ
1−ξ −

x1
1−ξ

− x2
1−ξ − 1

2 k⃗5⊥ þ 1
2

x1
1þξ

− x3
1−ξ

1þξ
1−ξ −

x2
1−ξ

− x1
1−ξ − 1

2 k⃗5⊥ þ 1
2

x2
1þξ

− x3
1−ξ − x2

1−ξ
1þξ
1−ξ −

x1
1−ξ − 1

2 k⃗6⊥ þ 1
2

x1
1þξ

− x3
1−ξ − x1

1−ξ
1þξ
1−ξ −

x2
1−ξ − 1

2 k⃗6⊥ þ 1
2

x2
1þξ
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which is consistent with the fact that we have to
extract a total of 2ξ in going from the initial photon
with momentum (7) to the final proton with mo-
mentum (9). This Dirac delta distribution is not
included in the definition of the helicity amplitudes.

(7) We add all the terms for an helicity amplitude, we
add or subtract the helicity amplitudes according
to Eqs. (31)–(34), and multiply by the remaining
factor of

−
ffiffiffi
6

p ffiffiffi
2

p

mNð1 − ξÞðPþÞ32 ; ð65Þ

with Pþ as in Eq. (12) (note that the factors of Pþ
cancel overall).

C. Numerical results

In this section, we present numerical predictions for the
photon-to-proton TDAs within the light-front model pre-
sented in Sec. III A. We work in the backward kinematical

region, corresponding to transverse momentum ΔT of
the proton with respect to the photon equal to zero, and to
values of the skewness variable ξ close to zero. As an
example, we chose ξ ¼ 0.1, which, by Eq. (15), corresponds
to juj ¼ 0.196 GeV2. The results are shown in Figs. 7–10.
Making use of the constraint (64), we present 3Dplots for the
TDAs as functions of x1 and x2 in Figs. 7(a)–10(a), while
Figs. 7(b)–10(b) are the corresponding density plots. The
density plots have been divided in various regions according
to the value of x3. On the (white) diagonal, we have x3 ¼ 0,
and the momentum fraction is positive below the line and
negative above the line. It decreases moving towards the
upper slanted (blue) line, where it reaches its minimal value
of ξ − 1, while it increases towards the lower slanted (red)
line, where we have the maximum value of ξþ 1. Since we
are truncating the Fock expansion of the initial photon to the
leading light-quark-antiquark-pair component, the soft tran-
sition into the final nucleon is schematically represented in
Fig. 2(a). The extracted antiquark corresponds to positive
values of one of the variables x1, x2, x3, while the absorbed
quarks to negative values of the remaining two.We can check

TABLE IV. Constrained variables for the nonzero terms of T↑;−1
333 from the initial photon splitting into dd̄.

T↑;−1
333 ðγ → dd̄Þ

x4 x5 x6 s7 k⃗7⊥ s8 x8

− x1
1−ξ − x2

1−ξ
1þξ
1−ξ −

x3
1−ξ þ 1

2 k⃗6⊥ − 1
2

x3
1þξ

− x2
1−ξ − x1

1−ξ
1þξ
1−ξ −

x3
1−ξ þ 1

2 k⃗6⊥ − 1
2

x3
1þξ

− x1
1−ξ

1þξ
1−ξ −

x3
1−ξ

− x2
1−ξ − 1

2 k⃗5⊥ − 1
2

x3
1þξ

− x2
1−ξ

1þξ
1−ξ −

x3
1−ξ

− x1
1−ξ − 1

2 k⃗5⊥ − 1
2

x3
1þξ

− x1
1−ξ

1þξ
1−ξ −

x3
1−ξ

− x2
1−ξ þ 1

2 k⃗5⊥ − 1
2

x3
1þξ

− x2
1−ξ

1þξ
1−ξ −

x3
1−ξ

− x1
1−ξ þ 1

2 k⃗5⊥ − 1
2

x3
1þξ

TABLE V. Constrained variables for the nonzero terms of T↑;−1
333 from the initial photon splitting into uū.

T↑;−1
333 ðγ → uūÞ

x4 x5 x6 s7 k⃗7⊥ s8 x8
1þξ
1−ξ −

x1
1−ξ

− x2
1−ξ − x3

1−ξ þ 1
2 k⃗4⊥ − 1

2

x1
1þξ

1þξ
1−ξ −

x2
1−ξ

− x1
1−ξ − x3

1−ξ þ 1
2 k⃗4⊥ − 1

2

x2
1þξ

− x2
1−ξ

1þξ
1−ξ −

x1
1−ξ

− x3
1−ξ − 1

2 k⃗5⊥ − 1
2

x1
1þξ

− x1
1−ξ

1þξ
1−ξ −

x2
1−ξ

− x3
1−ξ − 1

2 k⃗5⊥ − 1
2

x2
1þξ

− x2
1−ξ

1þξ
1−ξ −

x1
1−ξ

− x3
1−ξ þ 1

2 k⃗5⊥ − 1
2

x1
1þξ

− x1
1−ξ

1þξ
1−ξ −

x2
1−ξ

− x3
1−ξ þ 1

2 k⃗5⊥ − 1
2

x2
1þξ

1þξ
1−ξ −

x1
1−ξ

− x3
1−ξ − x2

1−ξ þ 1
2 k⃗4⊥ − 1

2

x1
1þξ

1þξ
1−ξ −

x2
1−ξ

− x3
1−ξ − x1

1−ξ þ 1
2 k⃗4⊥ − 1

2

x2
1þξ

− x2
1−ξ − x3

1−ξ
1þξ
1−ξ −

x1
1−ξ þ 1

2 k⃗6⊥ − 1
2

x1
1þξ

− x1
1−ξ − x3

1−ξ
1þξ
1−ξ −

x2
1−ξ þ 1

2 k⃗6⊥ − 1
2

x2
1þξ
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from the figures that the model has the correct support.
Furthermore, V1E ; T1E ; T2E are symmetric under the
exchange of x1 and x2, while A1E is antisymmetric, as
expected from Eqs. (31)–(34). In the case of V1E ; A1E , this
is true even in the support region where both variables are
negative, where an antiquark down is extracted from the
photon, even though it is difficult to see, since the contri-
bution is highly suppressed.

To compare our results with existing model calculations,
we collect the values for the Mellin moments (0, 0, 0) of
the TDAs in Table VI. The Mellin moments are defined as

Sða;b;cÞ ¼
Z

dx1dx2dx3δðx1 þ x2 þ x3 − 2ξÞ

× xa1x
b
2x

c
3Sðx1; x2; x3Þ; ð66Þ

FIG. 8. The same as in Fig. 7 for the photon-to-proton A1E TDA for ξ ¼ 0.1.

FIG. 7. Results for the photon-to-proton V1E TDA for ξ ¼ 0.1. (a) 3D plot as a function of x1, x2. (b) Density plot as a function of x1,
x2. On the (white) diagonal, x3 ¼ 0. Inside the upper trapezoid, ξ − 1 < x3 < 0, with x3 ¼ ξ − 1 on the upper slanted (blue) line. Inside
the lower trapezoid, 0 < x3 < ξþ 1, with x3 ¼ ξþ 1 on the lower slanted (red) line.
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where S is one of the TDAs. The Sð0;0;0Þ give the overall
normalization of the TDAs. Our predictions are larger by a
factor of 4 to 10 with respect to the calculation in the
vector-meson dominance (VMD) model of Ref. [16].1

This suppression within the VMD model is not unex-
pected. In this model, the photon transition to the proton
occurs by the exchange of a vector meson, resulting in a
damping effect when compared to the direct photon-proton

transition in our model. However, our results are consistent
with the normalization factor introduced in Ref. [17] to
reproduce the backward charmonium photoproduction
cross section analyzed within the TDA framework.
In Table VI we also show the separate contributions
from every possible orbital-angular-momentum compo-
nent of the three-quark system in the proton. The non-
admissible terms are denoted with a slash. We already
know that the integral of the antisymmetric A1E should
be exactly zero, while it turns out to be negligible for
Lz ¼ þ1 in T1E; T2E , which contributes only to the helicity
amplitude T↑;þ1

223 .

FIG. 10. The same as in Fig. 7 for the photon-to-proton T2E TDA for ξ ¼ 0.1.

FIG. 9. The same as in Fig. 7 for the photon-to-proton T1E TDA for ξ ¼ 0.1.

1The results for the moments in the VMDmodel are not shown
in Ref. [16], and we are grateful to the authors for providing us
with their results.
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IV. CONCLUSIONS

A factorization of the scattering amplitude of TCS in the
backward kinematical region has been proposed in
Ref. [16]. Analogously to other backward exclusive reac-
tions, the low-energy subprocess that splits the initial
nucleon into its parton content is represented by nucleon
DAs, while the soft transition from the initial real photon to
the final nucleon is encoded in photon-to-nucleon TDAs.
A natural framework to study these nonperturbative objects
is LFD, where the interacting states can be expanded in the
Fock space, and a clear partonic interpretation emerges.
Nucleon distribution amplitudes have already been inves-
tigated taking advantage of these techniques in Ref. [22].
This work follows in those steps, aiming for a phenom-
enologically solid model of the photon-to-nucleon TDAs.
The study of backward exclusive reactions is a promising

subject, hence the request for effective models, also for the
planning of experiments at the, currently under construction,
Electron-IonCollider [48].Thisworkbegins the endeavour for
modeling the photon-to-nucleon TDAs, focusing on the
leading contribution where two light quarks take the place
of a light antiquark in the parton configuration of the initial
photon, in order to make up the final nucleon. The results
exhibit the basic features that are to be expected, and the first
Mellin moments have been numerically evaluated, separating
the individual contribution from the possible orbital-angular-
momentum components of the proton LFWFs. In the future,
the same techniques could be used to investigate the other
fundamental ways in which the transition can happen, involv-
ing higher-order Fock states of the photon and the proton. The
scale of the model, about 0.5 GeV, is dictated by the effective
description of the nucleon as three constituent valence quarks.
The numerical implementation of the scale evolution at twist
three of the TDAs will be key to compare our model
predictions at low scale against the experimental data expected
for the near future, and work in this direction is in progress.
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APPENDIX: CONVENTIONS
FOR LIGHT-FRONT DYNAMICS

The Dirac gamma matrices in the chiral representa-
tion are

γ0 ¼
�
02×2 I2×2
I2×2 02×2

�
; γj ¼

�
02×2 −σj

σj 02×2

�
;

γ5 ¼
�
I2×2 02×2

02×2 −I2×2

�
; ðA1Þ

where j ¼ 1, 2, 3, I2×2 is the 2 × 2 identity matrix, 02×2 is
the 2 × 2 matrix of all zeros, and σj are the usual Pauli
matrices. The charge conjugation matrix is

C ¼ iγ2γ0 ¼
�
−iσ2 0

0 iσ2

�
; ðA2Þ

and the change of basis matrix to the usual Dirac repre-
sentation is

U ¼ 1ffiffiffi
2

p
�
I2×2 I2×2
I2×2 −I2×2

�
: ðA3Þ

We define the following operators on Dirac-spinor space:

Λ� ¼ 1

2
γ0γ�; ðA4Þ

which have all the properties of a complete set of
orthogonal projectors. The projections with Λþ are called
good or large components, and the projections with Λ− are
called bad or small components. In the chiral representation
(A1), they are already in diagonal form:

Λþ ¼

0
BBB@

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

1
CCCA; Λ− ¼

0
BBB@

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

1
CCCA: ðA5Þ

The LC helicity spinors are

uLC↑ ðpÞ ¼ 1ffiffiffiffiffiffi
pþp

0
BBB@

pþ

p1 þ ip2

m

0

1
CCCA;

uLC↓ ðpÞ ¼ 1ffiffiffiffiffiffi
pþp

0
BBB@

0

m

−p1 þ ip2

pþ

1
CCCA; ðA6Þ

TABLE VI. Mellin moments (0, 0, 0) of photon-to-proton
TDAs for ξ ¼ 0.1, expressed in units of 10−3. The total results are
shown in the second column, while columns 3–6 show the results
from the individual partial waves of the proton LFWF. The entries
with a slash are forbidden by angular momentum conservation.

Total Lz ¼ 0 Lz ¼ þ1 Lz ¼ −1 Lz ¼ þ2

Vð0;0;0Þ
1E

−2.3 −1.0 −1.3 / /

Að0;0;0Þ
1E

0 0 0 / /

Tð0;0;0Þ
1E

−0.4 −0.2 ∼0 −0.2 /

Tð0;0;0Þ
2E

−0.8 −1.0 ∼0 þ0.2 /
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vLC↑ ðpÞ ¼ 1ffiffiffiffiffiffi
pþp

0
BBB@

0

−m
−p1 þ ip2

pþ

1
CCCA;

vLC↓ ðpÞ ¼ 1ffiffiffiffiffiffi
pþp

0
BBB@

pþ

p1 þ ip2

−m
0

1
CCCA: ðA7Þ

Therefore, the Dirac adjoints of the good components of the
LC helicity spinors are

ū↑ðpÞ ¼
1ffiffiffiffiffiffi
pþp �

0 0 pþ 0
�
¼ v̄↓ðpÞ;

ū↓ðpÞ ¼
1ffiffiffiffiffiffi
pþp �

0 pþ 0 0
�
¼ v̄↑ðpÞ: ðA8Þ
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