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We present computation of the next-to-leading power corrections for Higgs plus one jet production in a
hadron collider via gluon fusion channel. Shifting of spinors in the helicity amplitudes without additional
radiation captures the leading next-to-soft radiative behavior and makes the calculation tractable. We
establish the connection between the shifted dipole spinors and the color ordered radiative amplitudes. We
find that next-to-maximal helicity violating amplitudes do not play a role in this correction. Compact
analytic expressions of next-to-leading power leading logarithms coming from different helicity
configurations are shown.
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I. INTRODUCTION

Precise experimental data from the Large Hadron
Collider (LHC) and the lack of any persuasive new physics
signature demand improvement in the understanding of the
Standard Model. Typically in collider environments, the
strong force dominates over other interactions, and that
makes the study of theory of quantum chromodynamics
(QCD) most important. Fixed order corrections by taking
into account higher order perturbative terms in the strong
coupling constant and resummation including certain
enhanced logarithms to all orders in the perturbation series
are the two ways to ameliorate the theoretical accuracy. For
all collider processes, one can define a threshold variable
that vanishes in the threshold limit. In terms of a generic
threshold variable (ξ), the differential cross section takes
the following form:

dσ
dξ

≈
X∞
n¼0

αns

(X2n−1
m¼0

Cnm

�
logmξ
ξ

�
þ

þ dnδðξÞ þ
X2n−1
m¼0

Dnmlogmξ

)
: ð1Þ

The first set of logarithms and the delta function are
associated with the leading power (LP) approximations,
whereas the second set of logarithms appear due to the

next-to-leading power (NLP) approximation. The LP terms
are well known to originate from the emission of soft and
collinear radiation. The seminal works of Refs. [1–8] based
on diagrammatics helped in devising methods of LP
resummation. Later, several alternative methods of LP
resummation based on Wilson lines [9,10], renormalization
group [11], and soft collinear effective theory [12–15] were
developed. A comparative study of different approaches
can be found in Refs. [16–18].
Despite substantial progress made toward understanding

the infrared behavior of the NLP logarithms during the past
decade, the universality of such terms is yet to be estab-
lished. The numerical impacts of NLP logarithms are shown
in Refs. [19–26]. Realizing the importance of these numeri-
cal impacts, several methods to resum NLP logarithms have
been formulated over the years [26–79]. It is essential to
investigate NLP logarithms of several processes to better
understand the universal nature of the next-to-soft radiation
and to come up with a global resummation formula. The
universality of NLP logarithms is already established in case
of color singlet production [42]; however, for colored
particles in the final state, there exists no unique resumma-
tion formula.
A prescription has been developed in [42] for colorless

particles and then further extended to final state colored
particles in [43], in which appropriate shifting of pairs of
momenta in the squared nonradiative (i.e., without addi-
tional radiation) amplitude captures the next-to-soft radi-
ation effects. The expression of the squared nonradiative
amplitude does not always have a compact analytical form,
and therefore, shifting the momenta may not always give a
simple result. For example, the calculation of NLP terms
using the squared amplitudes appears to be very intricate
for colored particles in the final state, and due to this reason,
only two processes with a single colored particle in the
final state are studied so far at NLP accuracy—(i) prompt
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photon plus jet production [43] and (ii) W plus jet
production [48,80,81]. The scarcity of results for colored
final state particles due to the complexity in such calcu-
lations clearly demands an improvement on the existing
technique.
In this endeavor, we study the effect of next-to-soft gluon

radiation on Higgs production via gluon fusion in associ-
ation with a final state hard jet by crafting spinor helicity
amplitudes. We consider the heavy top mass limit through-
out. Instead of shifting momenta in the squared amplitude,
we shift the spinors of the nonradiative helicity amplitudes
to capture next-to-soft radiation effects, and that essentially
makes the calculation lucid and tractable. We start with the
soft and next-to-soft theorems developed in [82,83] and
show that pairwise shifting of spinors at the nonradiative
amplitudes can be realized as next-to-soft emissions from
those amplitudes. We find that color dipoles with shifted
spinors directly correspond to the color ordered radiative
amplitudes in the next-to-soft limit. The next-to-soft
amplitudes thus obtained are compact in nature. In addi-
tion, it reveals that the next-to-maximal helicity violating
(NMHV) amplitudes never contribute at NLP accuracy for
the case at hand. In order to obtain NLP logarithms, we
integrate squared helicity amplitudes over the unresolved
parton phase space and present the analytic results for
different helicity configurations. Singularities that arise at
the LP and NLP stages get exactly canceled, while
contributions from the virtual emission and mass factori-
zation are included.
The structure of our paper is as follows. In Sec. II, we

review the soft and next-to-soft theorems in terms of spinor
shifts. After detailing the shifts, in Sec. III, we apply them
to calculate different color ordered helicity amplitudes.
Squaring these amplitudes, we perform the phase space
integration over the unresolved phase space in Sec. IV to
obtain the NLP logarithms. Finally, we summarize our
findings with an outlook in Sec. V. Throughout this study,
we have used a combination of in-house routines based on
QGRAF [84], FORM [85], andMathematica [86] to calculate
all helicity amplitudes and to perform the phase space
integration.

II. SOFT AND NEXT-TO-SOFT
CORRECTIONS

In this section, we briefly review the soft and next-to-soft
theorems in terms of color ordered scattering amplitudes.
Any color ordered scattering amplitude involving n par-
ticles (quarks and gluons) with specific helicities can be
represented as

A ¼ Anðfj1i; j1�g;…; fjni; jn�gÞ; ð2Þ

where jii and ji� denote the holomorphic and antiholomor-
phic spinors associated with the particle i carrying momen-
tum pi. Let us now consider that a gluon swith momenta ps

and helicity “þ” is being emitted from this scattering
process. Scaling the momentum of the radiated gluon
ps → λps, the scattering amplitude for nþ 1 particle can
be expressed in powers of λ as written here under [82,83],

Anþ1ðfλjsi; js�g; fj1i; j1�g;…; fjni; jn�gÞ
¼ ðSð0Þ þ Sð1ÞÞAnðfj1i; j1�g;…; fjni; jn�gÞ: ð3Þ

Here, Sð0Þ and Sð1Þ denote LP and NLP terms that are of
Oð1=λ2Þ and Oð1=λÞ, respectively, and are given by

Sð0Þ ¼ hn1i
hs1ihnsi ;

Sð1Þ ¼ 1

hs1i js�
∂

∂j1� −
1

hsni js�
∂

∂jn� : ð4Þ

In order to obtain the above formulas, a holomorphic soft
limit [82,83] is being used, i.e.,

jsi→ λjsi; js�→ js�; ð5Þ

under the BCFW [87,88] deformation of the s and n pair,
while particles 1 and s always form a three particle
amplitude involving the on-shell cut propagator that carries
complex momentum. With the help of Eq. (4), the color
ordered amplitude of Eq. (3) can be rewritten as

ALPþNLP
nþ1 ðfλjsi; js�g; fj1i; j1�g;…; fjni; jn�gÞ

¼ 1

λ2
h1ni

h1sihnsiAnðfj1i; j10�g;…; fjni; jn0�gÞ; ð6Þ

where

j10� ¼ j1� þ Δð1;nÞ
s js�;

jn0� ¼ jn� þ Δðn;1Þ
s js�; ð7Þ

and

Δði;jÞ
s ¼ λ

hjsi
hjii : ð8Þ

This form of Eq. (6) signifies that the leading and
subleading behavior of the amplitude can be obtained
in terms of simple shifts in the spinors of tree amplitudes.
Note that the emitted soft gluon is placed in between the 1
and n particles in the color ordered amplitudes and forms
a color dipole D1n. Such color dipole structures play an
important role in understanding the IR singularities of
scattering amplitudes [89–91].
Emission of soft gluon with “−” helicity can be treated

analogously by taking antiholomorphic soft gluon limit and
interchanging angle and square spinors. Equipped with
these formulas, we now move on to calculate the LP and
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NLP amplitudes for Higgs plus one jet production in the
gluon fusion channel.

III. LP AND NLP AMPLITUDES
FOR gg → Hg

The most dominant mechanism for Higgs boson pro-
duction at the LHC is via the gluon fusion channel. In this
section, we first reproduce all independent helicity ampli-
tudes for Higgs plus one jet production via gluon fusion
with(out) one extra gluon emission. Then, we obtain NLP
amplitudes by (i) taking a soft gluon limit on gg → Hgg
amplitudes and (ii) shifting spinors in gg → Hg amplitudes.
Both ways lead to the exactly same results. Finally, we
discuss that for Higgs plus one jet production NMHV
amplitudes do not contribute to the NLP threshold
corrections.

A. Higgs-gluon amplitudes

The Standard Model of particle physics forbids gluons to
interact with Higgs at the tree level; however, they can
interact via a massive quark loop. As the top quark is the
heaviest among massive quarks, the coupling of Higgs with
gluons is dominated via a top quark loop. In the large top
mass limitmt → ∞, we can integrate out the heavy top quark
effect to obtain an effective Lagrangian as follows [92,93]:

Leff ¼ −
1

4
GHTrðFa

μνFμν;aÞ; ð9Þ

where Fa
μν is the QCD field strength tensor. The effective

coupling is given at lowest order byG ¼ αs=3πv, where v is
thevacuumexpectationvalue of theHiggs field, andαs is the
strong coupling constant. The general form of an amplitude
consisting of one Higgs boson and n gluons can be
represented as

Anðpi; hi; ciÞ ¼ i

�
αs
6πv

�
gn−2s

X
σ ∈Sn0

TrðTc1Tc2…TcnÞ

×Afcig
n ðh1h2h3…hn;HÞ: ð10Þ

Here, Sn0 represents the set of all ðn − 1Þ! noncycling
permutations of 1; 2;…; n. Tci denote the SU(3) color
matrix in the fundamental representation, and they are
normalized as TrðTc1 ;Tc2Þ ¼ δc1c2 . For brevity, we avoid

writing H explicitly in Afcig
n in the rest of this paper.

The leading order process for Higgs plus one gluon
production can be written as

gðp1Þ þ gðp2Þ → Hð−p3Þ þ gð−p4Þ: ð11Þ

There are two independent color ordered helicity ampli-
tudes for this process as given below,

A124þþþ ¼ m4
H

h12ih24ih41i ; A124
−þþ ¼ ½24�3

½12�½14� ; ð12Þ

and amplitudes for all other helicity configurations can be
constructed using these two.
Now, we consider that a gluon with momenta p5 is being

emitted from the leading order process, i.e.,

gðp1Þþgðp2Þ→Hð−p3Þþgð−p4Þþgð−p5Þ: ð13Þ

For this process, there are only three independent helicity
amplitudes, and remaining helicity configurations can be
obtained by switching external momenta and spinors.
These three independent helicity amplitudes containing
Higgs plus four gluons are given by

A1245þþþþ ¼ m4
H

h12ih24ih45ih51i ;

A1245
−þþþ ¼ h1j4þ 5j2�3

h4j1j2�h15ih45is145
þ ½25�½45�h1j4þ 5j2�2

h4j1j2�s15s145
þ ½24�h1j2þ 4j5�2

h24is12s124
þ ½25�h1j2þ 4j5�2

h14ih24i½15�s12
−
½25�2h1j2þ 5j4�2

s12s15s125
;

A1245
−−þþ ¼ −

h12i4
h12ih24ih45ih51i −

½45�4
½12�½24�½45�½51� : ð14Þ

Here, sij ¼ ðpi þ pjÞ2 and sijk ¼ ðpi þ pj þ pkÞ2. These
amplitudes were calculated for the first time in [94].
Following Eq. (10), we can write the full amplitude for
a given helicity configuration as

Aðfpi; hi; cigÞ

¼ i
�

αs
6πv

�
g2s
h
fTrðTc1Tc2Tc4Tc5Þ

þ TrðTc1Tc5Tc4Tc2ÞgA1245
h1h2h4h5

þ fTrðTc1Tc4Tc5Tc2Þ þ TrðTc1Tc2Tc5Tc4ÞgA1452
h1h2h4h5

þ fTrðTc1Tc5Tc2Tc4Þ þ TrðTc1Tc4Tc2Tc5ÞgA1524
h1h2h4h5

i
:

ð15Þ

Squaring the above equation and summing over colors, we
obtain the expression of squared amplitude as

X
colors

jAðfpi;hi;cigÞj2

¼
��

αs
6πv

�
g2s

�
2

ðN2−1Þ
�
2N2ðjA1245j2þjA1452j2

þjA1524j2Þ−4
ðN2−3Þ

N2
jA1245þA1452þA1524j2

�
: ð16Þ
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Here, for simplicity, we have suppressed the labels that
represent helicity configurations. Due to the dual Ward
identity [94,95], the term in the second line of the above
equation vanishes, and we are left with only the first term.

B. Spinor shifts and color dipoles

In order to obtain NLP amplitudes for the Higgs plus
two gluon production process, one needs to expand the
gg → Hgg helicity amplitudes in the powers of the soft
momentum keeping the subleading contributions. In paral-
lel, following the arguments presented in Sec. II, we can get
NLP amplitudes using the shifts in the spinors of gg → Hg
amplitudes. We start our calculation by noting the fact that
the gluon with momentum p5 is emitted from any of the
three gluons present at the leading order, and as discussed
in the previous section, the emission of a soft gluon always
engenders shifts in two adjacent spinors present in the color
ordered nonradiative Born amplitudes.
In case of emission of a next-to-soft gluon from Higgs

plus n gluon amplitudes, a total nC2 ¼ nðn − 1Þ=2 number
of color dipoles can be formed. Therefore, for amplitudes
consisting of Higgs plus three gluons, three dipoles are
generated due to the emission of a next-to-soft gluon, and
NLP amplitudes can be realized by shifting appropriate
spinors depending on the helicity of the emitted gluon.
For a “þ” gluon emisison from the dipole D14 made up of

momenta p1 and p4, the LPþ NLP amplitude can be
expressed as

A1245
h1h2h4þ ¼ h14i

h15ih45iA
10240
h1h2h4

; ð17Þ

whereA10240
h1h2h4

denotes that the |1] and |4] spinors are shifted
in the color ordered leading amplitude obeying Eq. (7).
Similar contributions coming from the dipolesD24 andD12

can be written as

A1452
h1h2h4þ ¼ h24i

h25ih54iA
12040
h1h2h4

; ð18Þ

and

A1524
h1h2h4þ ¼ h12i

h15ih52iA
10204
h1h2h4

: ð19Þ

So the full amplitude of Eq. (15) can now be rewritten using
Eqs. (17)–(19) as

Ah1h2h4þjLPþNLP ¼ i

�
αs
6πv

�
g2
�
fTrðTC1TC2TC4TC5Þ þ TrðTC1TC5TC4TC2Þg h14i

h15ih45iA
10240
h1h2h4

− fTrðTC1TC4TC5TC2Þ þ TrðTC1TC2TC5TC4Þg h24i
h25ih45iA

12040
h1h2h4

− fTrðTC1TC5TC2TC4Þ þ TrðTC1TC4TC2TC5Þg h12i
h15ih25iA

10204
h1h2h4

�
: ð20Þ

To derive the above equation, we have used the reflection
identity [95] that applies for Higgs plus n gluon amplitudes.
This equation is one of the central results of this paper which
identifies the direct correspondence of color ordered ampli-
tudes in the next-to-soft limit to the nonradiative color ordered
Born amplitudes with shifted spinors. Shift in each non-
radiative spinor pair represents one color ordered radiative
amplitude. Thevalidity of this formula relies only on the cyclic
and antisymmetric properties of Higgs plus gluon amplitudes.
Thus, this formula is applicable to any process that satisfies
such properties, namely, pure gluon amplitudes in Yang-Mills
theories or gluons with a quark-antiquark pair in QCD.

C. NLP amplitudes: Absence of NMHV contribution

As evident from the discussion in the previous section,
color ordered LP amplitudes always appear as a product of
Born amplitudes and the corresponding Eikonal factors
such as

A1245
h1h2h4þ

��
LP

¼ h14i
h15ih45iA

124
h1h2h4

;

A1245
h1h2h4−

��
LP

¼ ½14�
½15�½45�A

124
h1h2h4

: ð21Þ

In this section, we provide the details of NLP amplitudes for
different helicity configurations. For Higgs plus four gluon
amplitudes, there are altogether 24 ¼ 16 helicity configura-
tions possible. Out of these 16 helicity amplitudes, one needs
to calculate only eight, as the remaining conjugate configu-
rations can easily be obtained by flipping the helicity of all
the external gluons. As discussed earlier, NLP amplitudes
can be calculated considering emission of both “þ” and “−”
helicity gluons from all possible Born amplitudes. In doing
so, we find that theNMHVamplitudes do not add to theNLP
contribution. We illustrate this by a simple example. Let us
consider emission of a “þ” helicity gluon out of the A124þ−−
amplitude, which following Eq. (12) can be presented as
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A124þ−− ¼ −
h24i3

h12ih14i : ð22Þ

We have already seen in the previous subsection that
emission of a “þ” helicity gluon always demands antiho-
lomorphic spinors to be shifted.However, there are no square
spinors present in the above equation, and therefore,
A1245þ−−þjNLP vanishes. It is also straight forward to check
that applying Sð1Þ of Eq. (4) onA124þ−− gives zero. The reason
behind this vanishing of NLP amplitude for NHMVampli-
tudes can furthermore be argued by invoking the soft Higgs
limit. Due to the momentum conservation, one can choose
not to bringHiggsmomentum explicitly in the expressions of
NLPamplitudes, and in the softHiggs limit, these amplitudes
essentially behave as pure gluon NMHV amplitudes which
were shown to be noncontributing toNLP in [83]. Among 16
Higgs plus four gluon helicity amplitudes, six NMHV
amplitudes vanish, and we are left with ten nonzero helicity
amplitudes atNLP.Out of these ten,weneed to calculate only
five, as the remaining five helicity configurations can readily
be obtained by flipping helicities of all external gluons.
Table I shows emissions from the Born amplitudes and lists
down those five different nonzero amplitudes. Their expres-
sions including three different color orderings for each of
them are given below:
(1) þþþþ

A1245þþþþjNLP¼
h14i

h15ih45i
2ðs15þ s25þ s45Þ
ðs12þ s14þ s24Þ

A124þþþ;

A1524þþþþjNLP¼−
h12i

h15ih25i
2ðs15þ s25þ s45Þ
ðs12þ s14þ s24Þ

A124þþþ;

A1452þþþþjNLP¼−
h24i

h45ih25i
2ðs15þ s25þ s45Þ
ðs12þ s14þ s24Þ

A124þþþ:

ð23Þ

(2) −þþþ

A1245
−þþþjNLP ¼

h14i
h15ih45i

�
3h15i½25�
h14i½24� −

h45i½25�
h14i½12�

−
s15
s14

−
s45
s14

�
A124

−þþ;

A1524
−þþþjNLP ¼ −

h12i
h15ih25i

�
−
h25i½45�
h12i½14� −

3h15i½45�
h12i½24�

−
s15
s12

−
s25
s12

�
A124

−þþ;

A1452
−þþþjNLP ¼ −

h24i
h45ih25i

�h45i½15�
h24i½12� −

h25i½15�
h24i½14�

þ 3s25
s24

þ 3s45
s24

�
A124

−þþ: ð24Þ

(3) þþ −þ

A1245þþ−þjNLP ¼ A1245
−þþþjNLPf1 ↔ 4g;

A1524þþ−þjNLP ¼ A1452
−þþþjNLPf1 ↔ 4g;

A1452þþ−þjNLP ¼ A1524
−þþþjNLPf1 ↔ 4g: ð25Þ

(4) þ −þþ

A1245þ−þþjNLP ¼ A1452
−þþþjNLPf1 ↔ 2g;

A1524þ−þþjNLP ¼ A1524
−þþþjNLPf1 ↔ 2g;

A1452þ−þþjNLP ¼ A1245
−þþþjNLPf1 ↔ 2g: ð26Þ

(5) þþþ−

A1245þþþ−jNLP¼
½14�

½15�½45�
�
−
h25i½45�
h12i½14�−

h25i½15�
h24i½14�−

s15
s14

−
s45
s14

þ2ðs15þs25þs45Þ
ðs12þs14þs24Þ

�
A124þþþ;

A1524þþþ−jNLP¼−
½12�

½15�½25�
�h45i½15�
h24i½12�−

h45i½25�
h14i½12�−

s15
s12

−
s25
s12

þ2ðs15þs25þs45Þ
ðs12þs14þs24Þ

�
A124þþþ;

A1452þþþ−jNLP¼−
½24�

½25�½45�
�h15i½45�
h12i½24�−

h15i½25�
h14i½24�−

s25
s24

−
s45
s24

þ2ðs15þs25þs45Þ
ðs12þs14þs24Þ

�
A124þþþ: ð27Þ

IV. NLP LOGARITHMS

The obvious next step to obtain the NLP threshold
logarithms is to perform phase-space integrations over the
squared amplitudes at NLP, and we discuss that in the
following two subsections.

TABLE I. A set of eight NLP amplitudes constructed from the
Born amplitudes is given. Flipping helicities of all the particles
provide the remaining eight amplitudes among which three
NMHV configurations become zero again. We do not mention
any explicit color ordering here as this feature stands true
irrespective of that choice.

Born Helicity of extra emission NLP

Aþþþ þ AþþþþjNLP
– Aþþþ−jNLP

A−þþ þ A−þþþjNLP
– 0

Aþ−þ þ Aþ−þþjNLP
– 0

Aþþ− þ Aþþ−þjNLP
– 0
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A. Squared amplitudes at NLP

The amplitude for a process carrying a soft gluon
radiation can be written as a sum of LP and NLP amplitudes
such as

A ¼ ALP þANLP: ð28Þ

Squaring the amplitude gives

A2 ¼ A2
LP þ 2ReðANLPA

†
LPÞ; ð29Þ

where the term A2
NLP is being neglected as it starts

contributing at the next-to-next-to leading power. The first
and the second terms represent LP and NLP contributions,
respectively, and we denote the NLP contribution as
½A2�jNLP hereafter. Using Eq. (16), we obtain the squared
NLP amplitude for a fixed helicity as

X
colors

½A2�jNLP ¼
��

αs
6πv

�
g2
�
2

2N2ðN2 − 1Þ

× f½A2�1245jNLP þ ½A2�1452jNLP
þ ½A2�1524jNLPg; ð30Þ

where N is the dimensionality of the SUðNÞ color, and it
takes the value N ¼ 3 for QCD.
Using Eqs. (23)–(27), we get the squared NLP ampli-

tudes of the following five helicity configurations:
(1) þþþþ

½A2�1245þþþþjNLP ¼ 4

�
s14s25
s15s45

þ s14
s15

þ s14
s45

�

×
1

ðs12 þ s14 þ s24Þ
A2þþþ;

½A2�1524þþþþjNLP ¼ ½A2�1245þþþþjNLPf2 ↔ 4g;
½A2�1452þþþþjNLP ¼ ½A2�1245þþþþjNLPf1 ↔ 2g: ð31Þ

(2) −þþþ

½A2�1245−þþþjNLP ¼
�
−

3s12
s15s24

−
3

s15
þ 1

s45
þ s24
s12s45

−
s14s25

s12s15s45
þ 3s14s25
s15s24s45

�
A2

−þþ;

½A2�1524−þþþjNLP ¼ ½A2�1245−þþþjNLPf2 ↔ 4g;

½A2�1452−þþþjNLP ¼
�

s12
s14s25

þ 5

s25
þ 5

s45
þ s14
s12s45

−
s15s24

s12s25s45
−

s15s24
s14s25s45

�
A2

−þþ:

ð32Þ

(3) þþ −þ

½A2�1245þþ−þjNLP ¼ ½A2�1245−þþþjNLPf1 ↔ 4g;
½A2�1524þþ−þjNLP ¼ ½A2�1452−þþþjNLPf1 ↔ 4g;
½A2�1452þþ−þjNLP ¼ ½A2�1524−þþþjNLPf1 ↔ 4g: ð33Þ

(4) þ −þþ

½A2�1245þ−þþjNLP ¼ ½A2�1452−þþþjNLPf1 ↔ 2g;
½A2�1524þ−þþjNLP ¼ ½A2�1524−þþþjNLPf1 ↔ 2g;
½A2�1452þ−þþjNLP ¼ ½A2�1245−þþþjNLPf1 ↔ 2g: ð34Þ

(5) þþþ−

½A2�1245þþþ−jNLP ¼
�

s12
s15s24

−
3

s15
−

3

s45
þ s24
s12s45

−
s14s25

s12s15s45
−

s14s25
s15s24s45

�
A2þþþ

þ ½A2�1245þþþþjNLP;
½A2�1524þþþ−jNLP ¼ ½A2�1245þþþ−jNLPf2 ↔ 4g;
½A2�1452þþþ−jNLP ¼ ½A2�1245þþþ−jNLPf1 ↔ 2g: ð35Þ

Note that, the color ordering of the nonradiative squared
amplitude, suppressed here and in the rest of the paper, is to
be considered as f124g, i.e., A2

h1h2h4
¼ ½A2�124h1h2h4

. Each of
the remaining five non-NMHV squared amplitudes resem-
ble one of the above results as their helicity amplitudes are
obtained by flipping helicities of all the external particles.

B. Phase space integration

Weare now ready to integrate the squared amplitudes over
the unobserved parton phase space in the rest frame of p4

and p5 momenta to obtain the differential cross section.
Following the usual method, we factorize the three-body
phase space into two two-body phase spaces: (i) one
containing two gluons with momenta p4 and p5 and (ii) the
other one containing the Higgs and the collective contribu-
tion of the two gluonsmentioned in (i).We choose the phase
space parametrization in d ¼ ð4 − 2ϵÞ dimension [96,97] as

p1 ¼ ðE1; 0;…; 0; E1Þ;
p2 ¼ ðE2; 0;…; 0; p3 sinψ ; p3 cosψ − E1Þ;
p3 ¼ −ðE3; 0;…; 0; p3 sinψ ; p3 cosψÞ;

p4 ¼ −
ffiffiffiffiffiffi
s45

p
2

ð1; 0;…; 0; sin θ1 sin θ2; sin θ1 cos θ2; cos θ1Þ;

p5 ¼ −
ffiffiffiffiffiffi
s45

p
2

ð1; 0;…; 0;− sin θ1 sin θ2;

− sin θ1 cos θ2;− cos θ1Þ: ð36Þ
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The differential cross section at NLP is then given by

s212
d2σ

ds13ds23

����
NLP

¼ F
�
s45
μ̄2

�
−ϵ
A2

NLP; ð37Þ

where

F ¼ 1

2
KggG2

�
αsðμ̄2Þ
4π

�
2
�
s13s23 −m2

Hs45
μ̄2s12

�−ϵ
;

Kgg ¼
N2

2ðN2 − 1Þ ; μ̄2 ¼ 4πe−γEϵμ2r ; ð38Þ

and

A2
NLP ¼

Z
π

0

dθ1ðsin θ1Þ1−2ϵ
Z

π

0

dθ2ðsin θ2Þ−2ϵ½A2�jNLP:

ð39Þ
Wecan now use Eqs. (31)–(35) and formulas given in [98] to
perform the angular integrations which give us the NLP
threshold logarithms. We have checked that the singular
terms produced after these integrations due to the hard
collinear emissions get canceled, once the effects of mass
factorization using helicity dependent Altareli-Parisi split-
ting functions [99,100] are taken into account. The helicity
driven NLP leading logarithms that contribute to the differ-
ential cross sections are given by
(1) þþþþ

s212
d2σþþþþ
ds13ds23

����
NLP−LL

¼F
�
16π

�
s12

�
1

s13
þ 1

s23

�
þ2

�
log

�
s45
μ̄2

�

þ16π log

�
s12s45
s13s23

��
×

1

m2
H
A2þþþ: ð40Þ

(2) −þþþ

s212
d2σ−þþþ
ds13ds23

����
NLP−LL

¼ F
�
16π

�
1

s13
−

1

s23

�
log

�
s45
μ̄2

�

þ 4π

�
3

s13
−

1

s23

�
log

�
s12s45
s13s23

��
A2

−þþ: ð41Þ

(3) þþ −þ

s212
d2σþþ−þ
ds13ds23

����
NLP−LL

¼ F
�
16π

�
1

s13
þ 1

s23

�
log

�
s45
μ̄2

�

− 4π

�
1

s13
þ 1

s23

�
log

�
s12s45
s13s23

��
A2þþ−: ð42Þ

(4) þ −þþ

s212s
2
12

d2σþ−þþ
ds13ds23

����
NLP−LL

¼ F
�
16π

�
1

s23
−

1

s13

�
log

�
s45
μ̄2

�

þ 4π

�
3

s23
−

1

s13

�
log

�
s12s45
s13s23

��
A2þ−þ: ð43Þ

(5) þþþ−

s212
d2σþþþ−

ds13ds23

����
NLP−LL

¼ F
�
−16π

�
1

s13
þ 1

s23

�
log

�
s45
μ̄2

�

− 4π

�
1

s13
þ 1

s23

�
log

�
s12s45
s13s23

��
A2þþþ

þ s212
d2σþþþþ
ds13ds23

����
NLP−LL

: ð44Þ

From the above equations, it is evident that the threshold
variable is ξ ¼ ðs45

μ̄2
Þ. Flipping of all helicities together in each

one of the above equations does not alter the result.
Therefore, the complete result can be achieved by adding
Eqs. (40)–(44) and then by multiplying by a factor of 2.

V. SUMMARY AND OUTLOOK

The avalanche of high accuracy data in the LHC
demands perturbative QCD predictions to be extremely
precise. From a theoretical point of view, all order resum-
mation and fixed order calculations both are important to
reach the desired precision. NLP corrections can leave
numerically sizeable impacts on the differential distribution
of cross sections in the threshold limit. Although there
exists a method to calculate NLP corrections using
momentum shifts at the squared amplitude level, the rarity
of results clearly demands improvement on the method of
such calculations.
We have considered the effect of next-to-soft radiation

on the Higgs plus one jet production through gluon fusion.
We have shifted the spinors in the nonradiative helicity
amplitudes which essentially generate the helicity ampli-
tudes in the case of an extra gluon emission in the next-to-
soft limit. The squared amplitudes thus obtained are
compact in nature, and it comes out that the NMHV
amplitudes do not play a role in the calculation of threshold
logarithms. We have performed the phase space integration
over the unobserved parton phase space to obtain the NLP
threshold logarithms and listed the results for each helicity
configurations. A systematic method to calculate NLP
leading logarithms is presented in this paper exploiting
the connection between the shifted dipole spinors and color
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ordered radiative amplitudes, for the first time, at the
helicity amplitude level. We believe that the simplicity
and easy applicability of the approach presented here would
facilitate bringing out more such results for several other
processes.
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