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Within a 2þ 1 flavor Nambu–Jona-Lasinio model, we calculate the curvature coefficients and check
them against available lattice QCD estimations. With the observation that the flavor mixing due to the
‘t Hooft determinant term significantly affects the κS2 , we explore the effect of μS on the T − μB crossover
lines. With the novel determination of negative κB2 at large μS, we advocate the importance of studying the
same in lattice QCD.
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I. INTRODUCTION

The phase diagram of the strongly interacting matter
necessitates the determination of the chiral transition line in
the high-density and high-temperature regions. The chiral
symmetry is broken in the low-density (-temperature) phase
of quantum chromodynamics (QCD), which gets restored
as the temperature and/or density increases. At vanishing
baryon density, the restoration of the chiral symmetry is
determined to be a crossover with a pseudocritical temper-
ature Tpc ¼ 156.5� 1.5 MeV [1]. On the other hand, the
transition is expected to be a first order at high density,
which is connected to the crossover line through a critical
end point (CEP). Although the determination of the cross-
over line for small values of the baryon chemical potential
(μB) is quite settled with the recent advancements of lattice
QCD (LQCD) [1,2] calculations, the extension of the line
at finite μB suffers from the infamous sign problem, which
leads to the oscillatory behavior of the Monte Carlo
sampling method.
For small chemical potential (μX), the pseudocritical line

can be Taylor expanded at the lowest order in μ2X, where one
defines the line with the following ansatz [1–3]:

TpcðμXÞ
Tpcð0Þ

¼ 1 − κX2

�
μX

Tpcð0Þ
�

2

− κX4

�
μX

Tpcð0Þ
�

4

: ð1Þ

Here, μX corresponds to chemical potential associated with
various charges like baryon charge B, electric charge Q,
and strangeness S. Such a parametrization allows for the
comparison of results from different models and lattice

QCD calculations within the same baseline. The curvature
coefficients κ2 and κ4 have been examined by the Taylor
expansion method on the lattice [1,4,5]. Another standard
approach relies on performing the calculations at imaginary
chemical potential, followed by an analytic continuation to
the real plane [2,6,7]. The abovementioned results are in
good agreement with each other within the respective
variances. Similar studies have been performed within the
perturbative QCD [8] as well as in the ideal and mean-field
hadron resonance gas (HRG) model [9,10] and quark-
meson model [11–16]. Moreover, the Nambu–Jona-Lasinio
(NJL) model has also been employed in this context [17]
considering two flavors of light quarks.
The effective models, considering the symmetries of the

QCD Lagrangian, enable one to probe the matter at extreme
conditions like high temperature and/or density, even in the
presence of a magnetic field, to understand the phases of
the QCD matter and provide a bulk description [18,19].
The NJL model relies on chiral symmetry and provides a
qualitative description of the QCD matter considering the
pseudoscalar mesons [20,21]. Despite the analytical sim-
plicity and the dependence on the parameter sets of such an
effective model, the estimations made with the NJL model
are quite robust [22,23]. It acts as a suitable alternative for
benchmark estimation at high-density and low-temperature
regions [24], as there is no restriction on the applicability of
this model at finite density.
Over the past few decades, LQCD and NJL have

complemented each other while broadening our understand-
ing of strong interaction in various scenarios. For example,
magnetic catalysis (MC) was first shown within an NJL
framework [25,26]. Two decades later, lattice QCD not only
looked at the MC feature [27–31], but also observed inverse
magnetic catalysis around the crossover temperature [31].
This results in better versions of NJL models with nonlocal
interactions [32] and external agent-dependent interaction
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strength [33,34]. Further, in an NJL-like model, the
anomalous breaking of Uð1ÞA symmetry is addressed by
explicitly adding the ’t Hooft determinant interaction
(characterized by coupling Gd), which also represents
the flavor mixing. Recently, Refs. [35,36] explored the
effect ofGd on isospin-sensitive observables in a two-flavor
NJL model and constrained Gd using the same from
LQCD. In the context of the three-flavor NJL model, Gd
is the most ill-constrained parameter with a large allowed
range while reproducing acceptable values of physical
observables [22,23].
In this paper, for the first time in the 2þ 1 flavor case

with isospin symmetry, the effect of the Gd is explored by
incorporating a finite strangeness chemical potential. This
provides an opportunity to study the effect of a large μS
on the pseudocritical line and provide novel estimations.
Although the large variation of μS (0–200) MeV is beyond
the scope of the freeze-out lines in heavy-ion collisions
owing to strangeness neutrality, the present investigation is
of particular interest for extending the NJL model at very
high density. We organized this paper as follows: In Sec. II,
we describe the model formalism for a 2þ 1 flavor NJL
model with the isospin symmetry. We present our results in
Sec. III and summarize our findings in Sec. IV.

II. FORMALISM

The 2þ 1-flavor NJL model Lagrangian is given by

LNJL ¼ ψ̄ðiγμ∂μ − m̂Þψ þ LS þ LD; ð2Þ

where the four- and six-point interaction terms are given by

LS ¼ Gs

X8
a¼0

�ðψ̄λaψÞ2 þ ðψ̄iγ5λaψÞ2
�
;

LD ¼ −Gd

�
det ψ̄ ið1 − γ5Þψ j þ det ψ̄ ið1þ γ5Þψ j

�
: ð3Þ

Here, ψT ¼ ðu; d; sÞ is the quark triplet in flavor space with
an up, down, and strange quark, and m̂ ¼ diagðmu;md;msÞ
is the current quark mass matrix. In the interaction, the λ’s
are the Gell-Mann matrices, and in LD, the determinant is
taken in the flavor space.LS represents the four-quark inter-
action, with the coupling strength Gs, which is symmetric
under Uð3Þ ×Uð3Þ symmetry. On the other hand, LD, with
coupling strength Gd, describes the six-quark interactions
known as the ’t Hooft determinant. LD is included to break
the Uð1ÞA symmetry explicitly as Uð1ÞA is anomalous in
quantum theory.
To obtain the free energy, it is standard to introduce

auxiliary fields using the Hubbard-Stratonovich transfor-
mation [37] to make the Lagrangian quadratic in fermion
fields. Within mean-field approximation, we can have non-
zero vacuum expectation values of these auxiliary fields. In
the absence of any other external agents (like a magnetic
field, isospin chemical potential, etc.), symmetry only

allows the ψ̄ψ channel to acquire nonzero vacuum expect-
ation values, and the mean-field Lagrangian becomes

LMFA ¼ ψ̄ðiγμ∂μ − M̂Þψ − 2Gs

X
i

σ2i þ 4Gd

Y
i

σf; ð4Þ

where M̂ is the constituent mass matrix, and the constituent
masses are given by [22]

Mi ¼ mi − 4Gsσi þ 2Gdϵijkσjσk; ð5Þ

with σi ¼ hψ̄ iψ ii being the condensate that works as the
order parameter of chiral symmetry breaking. As it is evident
from the above equation, Gd mixes different flavors.
It is straightforward to integrate out the fermion degrees

of freedom from Eq. (4) to obtain the free energy. To
introduce temperature (T) and chemical potentials (μf), it is
customary to perform the following transformations [38]:

p0 → ip4 − μf; p4 ¼ ð2nþ 1ÞπT: ð6Þ

With the above transformation, the integration over p0 gets
replaced by the sum over Mastubara frequencies, n.
Moreover, the free energy is given by [39,40]

Ω ¼ ΩMF þΩVac þ ΩTh; ð7Þ

where

ΩMF ¼ 2Gs

X
i

σ2i − 4Gd

Y
i

σi; ð8Þ

ΩVac ¼ −2Nc

X
i

Z
Λ d3p
ð2πÞ3 εiðpÞ; ð9Þ

ΩTh ¼ −2NcT
X
i

Z
d3p
ð2πÞ3

�
ln
�
1þ e−ðεiðpÞ−μiÞ=T

�

þ ln
�
1þ e−ðεiðpÞþμiÞ=T��: ð10Þ

With Nc ¼ 3 the number of colors, εiðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2 þM2

i

p
is

the energy of the ith flavor quark, and Λ is the three-
momentum cutoff.
To obtain the ground state, one can minimize the free

energy defined in Eq. (7) by solving the following gap
equations simultaneously:

∂Ω
∂σu

¼ ∂Ω
∂σd

¼ ∂Ω
∂σs

¼ 0: ð11Þ

In this study, we have considered the isospin symmetric
case; in other words, the electric charge and associated
chemical potential (μQ) are ignored, which implies that
σu ¼ σd ¼ σl. The quark chemical potential can be written
in terms of baryon and strangeness chemical potential
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μu ¼ μd ¼
1

3
μB;

μs ¼
1

3
μB − μS: ð12Þ

Finally, for a fixed μB and μS, we define the pseudocritical
temperature (Tpc) as the inflection temperature where the
curvature of σl changes sign [15]. In the context of LQCD,
Tpc is generally determined from the maximum of the chiral
susceptibility [15].
Let us note that there are five parameters in this three-

flavor NJL model, namely, the current quark mass for the
strange and light quarks (ms and ml), two coupling Gs and
Gd, and the three-momentum cutoff Λ. After choosing
the ml ¼ 5.5 MeV, consistent with chiral perturbation
theory [41], the remaining four parameters are fixed
by fitting the pion decay constant and the masses of the
pion, kaon, and η0 [22,23] to their empirical values. We
have considered two widely used parameter sets from
Refs. [22,23] given in Table I. With the parametrization
of set I, the mass of the η meson is underestimated by 11%,
while for set II, the same is underestimated by 6%. As seen
from Table I, the dimensionless coupling GdΛ5 differs by
30% between the two sets, translating into a 70% variation
in Gd. In this work, we intend to prescribe a way to
constrain it more precisely.

III. RESULTS

We next consider the thermodynamics of this system to
discuss chiral phase transition using Eqs. (7)–(12). For a
given value μB and μS, the pseudocritical temperature (Tpc)
is defined to be the inflection point of light quark
condensate (the order parameter of chiral symmetry break-
ing) as a function of the temperature. Before proceeding to
investigate the effect of finite μS on the T − μB line, it is
essential to check the model estimation against the avail-
able lattice QCD results of the curvature coefficients (κ2;4).
Considering μQ ¼ 0, we have first investigated the T − μB
(μS ¼ 0) and T − μS (μB ¼ 0) plane, and find the κ2;4 by
parametrizing the respective pseudocritical lines with the
ansatz of Eq. (1) for the range μB;S=Tpcð0Þ ≤ 1.0 with
Tpcð0Þ ¼ 171.1 and 173.4 MeV for parameter sets I and II,
respectively.
We have tabulated our estimations for the curvature

coefficients κ2 and κ4 in Tables II and III, respectively.

The lattice results are taken from the HotQCD
Collaboration [1] and WB Collaboration [2]. There is
excellent agreement with LQCD estimations for κ2 in both
the T − μB and T − μS line. We would like to emphasize
that the values of κB2 are similar for both the parameter sets,
which infers that the large difference in Gd between two
parameter sets does not influence the T − μB phase line. On
the contrary, for the μB ¼ 0 plane, κS2 is distinctly different
for the two parameter sets. Although these κS2 values match
the lattice estimations within the variances, the estimation
with parameter set II has a better agreement with the mean
value. The difference in the κS2 is attributed to Gd, which
brings the influence of a strange quark to the light quarks as
pointed out in Eq. (5). This motivates us to examine the
effect of Gd on κB2 by exploring the T − μB line at various
values of μS.
To appreciate the effects arising from the strange sector,

we have restricted this study to smaller values of baryon
chemical potential [up to μB=Tcð0Þ ≤ 1.0] and varied the
μS from 0 to 200 MeV. We have restricted the μS within half
the kaon mass to exclude the possibility of kaon con-
densation [42]. Because of the difference in the magnitude
of the Tpc between the NJL and lattice studies, we have
scaled the results with their respective TpcðμB ¼ 0Þ as
shown in Fig. 1. As may be observed, for finite values of μS,
the Tpc initially increases with μB and then decreases. For
smaller values of μB, a finite μS decreases the thermal
weight in the strange sector [μS comes with a negative sign
in the strange thermal distribution; see Eq. (12)] and
therefore leads to a higher value of Tpc=Tpcð0Þ for the
same μB as shown in Fig. 1. As μB increases further, this
rise in Tpc gets saturated and eventually starts decreasing.
For the first time, such a prominent increase in the

pseudocritical temperature (Tpc) along the T − μB line is

TABLE I. Parameter sets of the NJL model used in the present
work. Set I and II are from Hatsuda and Kunihiro [22] and
Rehberg et al. [23], respectively.

Λ (MeV) GsΛ2 GdΛ5 ml (MeV) ms (MeV)

Set I 631.4 1.835 9.29 5.5 135.7
Set II 602.3 1.835 12.36 5.5 140.7

TABLE II. Estimations of κ2 for the two parameter sets. The
lattice QCD results are taken from Refs. [1,7].

κB2 (μS ¼ 0) κS2 (μB ¼ 0) κB;nS¼0
2

NJL, set I 0.01627 0.01345 0.01478
NJL, set II 0.01619 0.01719 0.01350
Lattice QCD 0.016(6) [1] 0.017(5) [1] 0.012(4) [1]

0.0153(18) [7]

TABLE III. Values of κ4 for the pseudocritical line for different
cases.

κB4 (μS ¼ 0) κS4 (μB ¼ 0) κB;nS¼0
4

NJL, set I 0.00006 0.001477 0.000081
NJL, set II 0.00005 0.001892 0.000742
Lattice QCD 0.001(7) [1] 0.004(6) [1] 0.000(4) [1]

0.00032(67) [7]
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observed, which arises due to a finite strangeness chemical
potential. This trend was not observed in earlier studies
within LQCD [1,43] and HRG [10], as most of them were
performed along the μS ¼ 0 line or along the freeze-out
line, where the strangeness neutrality sets up the limit of
μS ≤ μB=3 [43].
To quantify the increase in the Tpc with μB for a given

value of μS, we have used the ansatz of Eq. (1) to extract
the curvature coefficients. We have presented the variation
of κB2 with μS in Fig. 2 for both the parameter sets. The
curvature coefficient κB2 starts from a positive value for
μS ¼ 0 and decreases as we increase the strangeness
chemical potential. We wish to emphasize that with μS,
κB2 decreases from its positive value at μS ¼ 0 and eventually
becomes negative at some μS ¼ μcS. This negative sign of κ

B
2

is one of the novel results of the present investigation. This
was not observed earlier in the context of the pseudocritical
line [1,7]. One important observation is that the μcS are
distinctively different for the two parameter sets.GsΛ2 being
the same for both the sets, this difference in μcS is essentially
due to the variance in Gd. A large Gd provides a stronger
influence of the strange quark sector on the light quarks,
resulting in a faster decrease in κB2 .
At this juncture, it is instructive to check κB2 along the

strangeness neutrality line (nS ¼ 0). A finite μB requires the
strangeness chemical potential μS ≠ 0 to achieve zero net
strangeness. This corresponds to μS ¼ μB=3 as we are
considering μQ ¼ 0, and there is no vector interaction in the

present model. We have found κB;nS¼0
2 < κB;μS¼0

2 as listed in
Table II. The decrease of κB2 for the strangeness neutral case

is commensurate with the lattice estimations [1,43] and in
accordance with our findings of the reduction of κB2 with μS.
We would like to comment here that the behavior of the κB2
(μS ≠ 0) is similar to the lattice QCD calculations. The
lattice estimations of nS ¼ 0 correspond to values of μS,
which are not large enough to constrain the flavor mixing
determinant coupling. This necessitates LQCD simulations
at a larger value of μS.
It would be interesting to check the robustness of this

negative κB2 on the parametrization of the NJL model itself.
For this purpose, we have varied Gs, Gd by 5% and 10%,
respectively, and examined the effect on the κB2 variation as
shown in Fig. 2. As discussed earlier, a larger value for Gd
increases the coupling between the light and strange sector
resulting in a faster decrease of κB2 . Needless to say, κB2
becomes independent of μS at Gd ¼ 0 as the strange and
light quark sector decouple, which is evident in the
Lagrangian of the NJL model. On the contrary, the variation
of Gs has a weaker effect on the features mentioned above.
Within LQCD, the numerical value of κB4 is consistent

with zero [1,7], as for the small value of μB;S=T, the fourth
order coefficients of the μX=T expansion are prone to
having a weaker effect on the T − μX line. In the present
study, we have found κ4 to have good agreement for the
case (μB ≠ 0; μS ¼ 0) and (μB ¼ 0; μS ≠ 0) as shown in
Table III. It would be essential to investigate the same for
the T − μB line at various μS. For larger values of μS, we
have found the κ4 to be finite (as in Fig. 3), even with the
different parameter sets, as mentioned earlier. These find-
ings suggest that even within the small μB range, a nonzero
κ4 is possible by switching on a finite strangeness chemical

FIG. 1. Phase line in the T − μB plane for different μS,
evaluated with parameter set I. For representative purposes, axes
are scaled with respective TpcðμB ¼ 0Þ. The continuous lines
represent our estimations for various values of μS. The data and
band are from the HotQCD Collaboration [1]. The dashed line
corresponds to the strangeness neutral case.

FIG. 2. κB2 as a function of μS in MeV. The red (dashed) and
green (dashed-dot) lines are the central values for sets I and II,
respectively. The blue and cyan bands are associated with a
�10% change in Gd and a �5% change in Gs, respectively, for
parameter set I.

ALI, BISWAS, JAISWAL, and MISHRA PHYS. REV. D 109, 114017 (2024)

114017-4



potential μS, which is relevant in the context of lattice
simulations.

IV. SUMMARY AND CONCLUSION

In this paper, we have explored the chiral phase
boundary of the QCD matter within a 2þ 1 flavor
Nambu–Jona-Lasinio model with special emphasis on
the effect of strangeness on the curvature coefficients κB2
and κB4 . To our knowledge, this is the first such exploration
within a 2þ 1 NJL model. We have considered the isospin
symmetric case and μQ ¼ 0. To have better control over the
lowest-order coefficients (κX2 ), we have limited the study
within the range μX=T ≤ 1. As a benchmark, we have first
estimated the κX2;4 for three separate cases: (1) the T − μB
plane (μS ¼ 0) i.e., κB2;4, (2) the T − μS plane (μB ¼ 0), i.e.,

κS2;4, and (3) along the strangeness neutrality line κB;nS¼0
2;4 .

We have used two standard sets of parametrizations of the
2þ 1 NJL model that differ significantly regarding the
flavor mixing determinant interaction. Although we have
an excellent agreement of κB2 with the available LQCD
finding for both parameter sets, we have observed that κS2
has a strong dependence on the flavor mixing and Uð1ÞA
breaking ’t Hooft interaction. Between the two parameter

sets used, set II with a higher value of Gd reproduces the
lattice estimation of κS2 better. To explore the effects of
flavor mixing through Gd, it is instructive to study the μS
dependence of the T − μB lines, which have been quantified
by estimating κB2 as a function of μS.
It is interesting to note that, we have observed for the first

time the decreasing behavior of κB2 with μS, which is
interesting, and interpreting it in the framework of the NJL
model is also relevant. More importantly, we have found
that it becomes negative for sufficiently large values of μS.
Further, it is also observed that the value of μS where κB2
vanishes is different for the two parameter sets. This
difference is attributed to the fact that a larger value of
Gd strengthens the strange contribution to the light sector,
resulting in a faster decrease. We expect that the outcomes
from LQCD investigations for κB2 at large enough μS will
assist in better constraining the ’t Hooft coupling Gd,
thereby enhancing our understanding of effective models
like NJL and the underlying QCD. In this article, we have
prescribed a way to quantify the flavor mixing, which is an
important development toward understanding the effective
model and, eventually, QCD.
At this juncture, we note that the physical scenarios

accessible in the present heavy-ion collision experiments are
rather constrained to nS ¼ 0 and nQ ¼ 0.4nB. However,
from a theoretical perspective, it is possible to explore QCD
in all directions as it helps one to calibrate and understand
various aspects of the theory. Lattice QCD has explored
the phase diagram at finite μQ and μS [1], and recently, it has
been extended toward a larger value of strangeness chemical
potential [43]. Our study provides an alternate approach in
this direction.We have investigated here the low μB region of
the phase diagram for the study of curvature coefficients.
The effect of flavor mixing on CEP in the presence of finite
μS will be interesting and deserves a separate investigation
which will be explored in a future work.
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