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We compute the suppression of bottomonium in the quark-gluon plasma using the three-loop QCD static
potential. The potential describes the spin-averaged bottomonium spectrum below threshold with a less
than 1% error. Within potential nonrelativistic quantum chromodynamics and an open quantum systems
framework, we compute the evolution of the bottomonium density matrix. The values of the quarkonium
transport coefficients are obtained from lattice QCD measurements of the bottomonium in-medium width
and thermal mass shift; we additionally include for the first time a vacuum contribution to the dispersive
coefficient γ. Using the three-loop potential and the values of the heavy quarkonium transport coefficients,
we find that the resulting bottomonium nuclear modification factor is consistent with experimental
observations, while at the same time reproducing the lattice measurements of the in-medium width.
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I. INTRODUCTION

The study of the deconfined quark-gluon plasma (QGP) is
themain goal of heavy-ion collision experiments. It provides
unique insight into some sectors of the phase diagram of
quantum chromodynamics (QCD) and a window to con-
ditions that existed in the earlyUniverse. Heavy quarkonium
suppression in the QGP is one of the core processes to probe
the properties of the QGP, as heavy quarkonium is amenable
to a clean experimental reconstruction and a robust theo-
retical description. The idea of heavy quarkonium suppres-
sion traces its origin toMatsui and Satz, who proposed that a
screening of the quark-antiquark potential for J=ψ mesons
traveling through the QGP produced in heavy-ion collisions
should lead to a lower number of particles measured
compared to proton-proton collisions [1]. In the past, this

effect has been studied extensively for bottomonium [2],
where due to the heavy bottom quark mass, various calcula-
tional simplifications are possible, including the use of
effective field theories (EFTs) [3] and open quantum
systems [4–11]. Ever more precise measurements of the
heavy quarkonium nuclear suppression factor, the observ-
able of interest in quantifying heavy quarkonium suppres-
sion, by the ALICE [12], ATLAS [13], and CMS [14,15]
collaborations necessitate matchingly precise theoretical
calculations.
To describe the evolution of heavy quarkonium in

medium, it is advantageous to use EFTs that exploit the
hierarchy of energy scales exhibited by nonrelativistic
bound states. Integrating out modes associated with the
heavy quark mass M from QCD leads to nonrelativistic
QCD (NRQCD) [16,17]. Further, integrating out soft
modes associated with the momentum transfer scale given
byM times the relative velocity v, which is also the scale of
the inverse of the heavy quark-antiquark distance in the
bound state, leads to potential NRQCD (pNRQCD) [18,19]
and, at the Lagrangian level, to the emergence of quarko-
nium potentials. For weakly coupled quarkonia, the poten-
tials may be computed in perturbation theory; at leading
order in the nonrelativistic and coupling expansion, these
are an attractive color-singlet and repulsive color-octet
static potential. Combining nonrelativistic EFTs with the
open quantum system framework, it is possible to derive a
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master equation for the evolution of the quarkonium
density matrix [4,5,10].
A weak coupling treatment of the quarkonium soft

modes is justified for quarkonia, whose typical radius is
much smaller than the inverse of the hadronic scale ΛQCD.
This is certainly the case for the lowest-lying bottomonium
states and may be extended, although more marginally, to
all bottomonium states below the open flavor threshold. At
leading order, the weak-coupling static potential coincides
with the Coulomb potential. It is well known that the
Coulomb potential describes poorly the quarkonium spec-
trum [20]. However, it has been shown that including
higher-order corrections to the static potential, which is
known up to three loops [21–23], and subtracting from the
perturbative series the leading renormalon contribution by
reabsorbing it into a renormalon subtracted mass [24] leads
to a well-behaved perturbative series and a fair reproduc-
tion of the bottomonium spectrum below threshold (see, for
instance, Refs. [25–27]). In this work, we use the three-loop
renormalon subtracted version of the QCD static potential
put forward in Refs. [27–30].We treat this potential, together
with the kinetic energy, as the leading order contribution to
the pNRQCDHamiltonian and, therefore, to the Schrödinger
equation describing the bound state. For an early application
based on the same idea, see Ref. [31].We further supplement
the perturbative static potential with its leading nonpertur-
bative correction.This correctionhas beenderived rigorously
in pNRQCDand has the formof a harmonic potential, whose
strength is given by the time integral of a suitable nonlocal
chromoelectric correlator [19,32].
The Lindblad equation describing the time evolution of

the bottomonium density matrix in the QGP formed in
heavy-ion collisions has been derived in pNRQCD in
Refs. [4,5]. The Lindblad equation depends on the static
potential defined above and on heavy quarkonium transport
coefficients. The transport coefficients may be extracted
from fitting available lattice data of the bottomonium
thermal mass shifts and decay widths [33] with the
corresponding quantities computed in pNRQCD. Finally,
we solve the Lindblad equation in the computational setup
of Ref. [34]. We work in the strict quantum Brownian limit,
i.e., we assume the system correlation time to be much
larger than the environment correlation time, which is
proportional to the inverse of the temperature, and we
neglect higher-order corrections. We find an accurate
description of the LHC data on bottomonium suppression.
The remainder of the paper is structured as follows:

Sec. II A briefly presents the theoretical background for
describing heavy quarkonium suppression using EFTs and
open quantum systems. In Sec. II B, we introduce the three-
loop renormalon subtracted static potential and its leading
nonperturbative correction, and in Sec. II C, we discuss the
quarkonium transport coefficients used in the simulation.
We present our results for the nuclear modification factor in
Sec. III and conclude in Sec. IV.

II. THEORY

A. Open quantum system formulation
of quarkonium suppression

Heavyquarkoniumexhibits distinct hierarchically ordered
energy scales, making it amenable to an EFT description.
Using pNRQCD, in Refs. [4,5], a master equation was
derived for the densitymatrix of a quarkonium state traveling
through a strongly coupled, thermal QGP and satisfying the
conditions

M≫ 1=a0 ≫ πT∼gT; ΛQCD ≫E; ð1Þ

where a0 is the quarkonium Bohr radius, T the QGP
temperature, and E the typical quarkonium energy.
Because 1=E is the system correlation time, the strict
Brownian limit corresponds to expanding in E=ðπTÞ and
keeping only the leading term; beyond the strict Brownian
limit, the Lindblad equation has been studied in Ref. [10] at
order E=ðπTÞ. In the strict Brownian limit, the master
equation can be cast into a Lindblad form [35,36]

dρðtÞ
dt

¼−i½H;ρðtÞ�þ
X
n

�
Cn
i ρðtÞCn†

i −
1

2

�
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;

ð2Þ

with Hamiltonian

H ¼
 
hs þ r2
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0 0
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The operators hs and ho encode the contributions from the
energy modes that have been integrated out in constructing
pNRQCD. These are, according to the hierarchy of Eq. (1),
all the modes associated with energy scales larger than the
thermal scales and ΛQCD. By construction, therefore, hs and
ho are the in-vacuum, perturbative Hamiltonians of a heavy
quark-antiquark pair in a color singlet and octet configura-
tion, respectively,

hs¼
p2

M
þVpert

s ðrÞ; ho ¼
p2

M
þVpert

o ðrÞ; ð6Þ

where r is the heavy quark-antiquark distance, p ¼ −i∇r the
relative momentum, Vpert

s the color singlet andVpert
o the color
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octet static potential computed in perturbative QCD. The
number of colors isNc ¼ 3, and, for further use, the Casimir
of the adjoint representation is CA ¼ 3, the Casimir of the
fundamental representation isCF ¼ 4=3 and the colormatrix
normalization is TF ¼ 1=2.
The low-energy and thermal dynamics in the evolution

equation are encoded in transport coefficients. In deriving
Eqs. (3)–(5), we have considered only the heavy quarko-
nium momentum diffusion coefficient κ and its dispersive
counterpart, γ. The transport coefficients κ and γ are defined
in terms of chromoelectric correlators as

κ ¼ g2

3Nc
Re
Z

∞

0

dthEaiðtÞΩðt; 0ÞabEbið0Þi; ð7Þ

γ ¼ g2

3Nc
Im
Z

∞

0

dthEaiðtÞΩðt; 0ÞabEbið0Þi; ð8Þ

where Ωðt2; t1Þab ¼ P exp ð−ig R t2t1 dtAc
0ðtÞð−ifabcÞÞ is an

adjoint Wilson line.
The Lindblad equation provides the full three-

dimensional evolution of the quarkonium density matrix.
Utilizing the spherical symmetry of the system, we follow
the procedure given in detail in Appendix C of Ref. [10] to
bring the evolution equation into the form of a one-
dimensional Lindblad equation describing the evolution
of the radial wave function; this greatly reduces the
computational cost of solving the Lindblad equation.
The solution of the resulting equation is found by using
the open-source code QTraj [34], which employs the
Monte Carlo wave function method [37] to solve the
Lindblad equation in a computationally efficient and
embarrassingly parallel manner.

B. Heavy quarkonium potential

In previous works [6,10,11], the perturbative color-
singlet and color-octet potentials were taken at leading
order in αs, i.e., Vpert

s ðrÞ ≈ Vc
sðrÞ≡ −4αs=ð3rÞ and

Vpert
o ðrÞ ≈ Vc

oðrÞ≡ αs=ð6rÞ, with αs, the strong coupling,
evaluated at the inverse of the Bohr radius a0 determined
from the solution of the self-consistency equation

a0 ¼
3

2Mbαsð1=a0Þ
: ð9Þ

Taking Mb ¼ 4.850 GeV in order to reproduce the ϒð1SÞ
mass from the solution of the Schrödinger equation with
Vpert
s ≈ Vc

s and solving Eq. (9) by running αs at one-loop
accuracy using RunDec [38] from αsðMZ¼ð91.1876�
0.0021ÞGeVÞ¼0.1181�0.0011, we find 1=a0¼1.11GeV.
To improve on this description, we consider here the

case where Vpert
s and Vpert

o incorporate the three-loop
expression. The three-loop color singlet potential has been
computed in Refs. [22,23] and the three-loop color octet

potential in Ref. [39]. At three loops (3L), both the singlet
and octet potential are infrared divergent with the
divergence reabsorbed into nonperturbative corrections
to the energy [19,21]; we call νus the corresponding
renormalization scale. Higher-loop corrections to the
static potential are poorly convergent, a behavior that
may be traced back to the order ΛQCD renormalon
affecting the potential. The renormalon may be sub-
tracted and reabsorbed into a redefinition of the heavy
quark mass [40,41]. We adopt the renormalon subtraction
scheme RS0 introduced in Ref. [24]; we call νf the
renormalon factorization scale. At very short distances,
potentially large logarithms of the form logðνrÞ, where ν
is the renormalization scale of the strong coupling, are
resummed in the running of αs by setting ν ¼ 1=r. At
larger distances, keeping the renormalization scale con-
stant ensures the convergence of the perturbative expan-
sion. We call νr the scale separating the two regions,
while still keeping both in the perturbative regime. The
resulting potential has then the form [27–30]

Vpert
s ðν; νf; νr; νus; rÞ
≈ V3L

s ðν; νf; νr; νus; rÞ

¼
8<
:
P

3
k¼0 V

ðkÞ
s;RS0α

kþ1
s ð1=rÞ if r < ν−1rP

3
k¼0 V

ðkÞ
s;RS0α

kþ1
s ðνÞ if r > ν−1r

: ð10Þ

The explicit expression of the coefficients VðkÞ
s;RS0 can be

found in the Appendix. The potential depends on the four
scales ν, νf, νr, and νus. We set νf ¼ νus ¼ 1 GeV and
νr ¼ ν ¼ 1=a0 ¼ 1.12 GeV, where 1=a0 is calculated
using Eq. (9) for Mb ¼ 4.921 GeV (for the choice of
Mb, see the discussion at the end of this subsection). We
evaluate αs using RunDec [38] from αsðMZÞ and evaluate
αkþ1
s to (4 − k)-loop accuracy in Eq. (10).
In the scale setting of Eq. (1), the quarkonium potential

also gets nonperturbative and thermal corrections. The
leading one is encoded in the term proportional to γr2=2
in the Hamiltonian H given in Eq. (3).1 The in-vacuum,
nonperturbative (np) correction to the color singlet static
potential, reads [19,32]

Vnp
s ðrÞ ¼ r2

2
γðT ¼ 0Þ: ð11Þ

The quantity γðT ¼ 0Þ stands for the in-vacuum, zero-
temperature part of the chromoelectric correlator defined
in Eq. (8). The fact that γðT ¼ 0Þ is different from zero
should be contrasted with the fact that the quarkonium
momentum diffusion coefficient κ vanishes in vacuum as a

1Higher order terms not considered here ensure the cancella-
tion of the νus dependence of the perturbative potential [19].
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consequence of quarkonium decay into an unbound
heavy quark-antiquark pair being kinematically forbidden
in vacuum. An estimate of γðT ¼ 0Þ is provided in Eq. (18)
of Sec. II C. The full in vacuum color-singlet potential that
we consider here is then

V3Lþnp
s ðrÞ ¼ V3L

s ðν; νf; νr; νus; rÞ þ Vnp
s ðrÞ: ð12Þ

Its perturbative part is the three-loop, renormalon sub-
tracted, renormalization group improved color-singlet
potential defined in Eq. (10). Its nonperturbative part is
given in Eq. (11).
Similarly we define a three-loop, renormalon subtracted,

renormalization group improved color-octet potential [39,42]

Vpert
o ðν; νf; νr; νus; rÞ
≈ V3L

o ðν; νf; νr; νus; rÞ

¼
(P

3
k¼0 V

ðkÞ
o;RS0α

kþ1
s ð1=rÞ if r < ν−1rP

3
k¼0 V

ðkÞ
o;RS0α

kþ1
s ðνÞ if r > ν−1r

: ð13Þ

The coefficients VðkÞ
o;RS0 are listed in the Appendix.

A comparison between the potentials V3Lþnp
s , V3L

o and
the Coulomb potentials Vc

s , Vc
o is shown in Fig. 1. Since the

expressions of the potentials in Eqs. (12) and (13) rely on
assuming the soft modes to be perturbative, the curves are
theoretically justified only at distances shorter than
1=ΛQCD, which we may indicatively take to be about
0.3 fm. The curves for V3L

o and Vc
o exhibit no qualitative

difference, while V3Lþnp
s shows a much steeper slope

than Vc
s at distances between 0.15 and 0.3 fm (and larger).

The large, positive slope of the potential V3Lþnp
s at those

distances is suggestive of an onset of confinement.
The bottomonium spectrum follows from solving the

radial Schrödinger equation

−
1

Mb

d2unlðrÞ
dr2

þ
�
VsðrÞþ

lðlþ1Þ
Mbr2

�
unlðrÞ¼EnlunlðrÞ;

ð14Þ

where unlðrÞ is the reduced radial wave function of the
state, Enl the corresponding binding energy (hence
the mass of the state is 2Mb þ Enl), and Vs the color
singlet static potential. The b mass Mb is fixed by fitting
the 1S mass to the PDG value Mð1SÞ ¼ 9.445 GeV. The
bottomonium masses are understood as spin averaged.
The b mass that follows from solving the Schrödinger
equation for Vs ¼ Vc

s is Mb ¼ 4.850 GeV, whereas the
one that follows from solving the Schrödinger equation
for Vs ¼ V3Lþnp

s , with γðT ¼ 0Þ given in Eq. (18), is
Mb ¼ 4.921 GeV. The results for the spectrum are shown
in Table I. Since we neglect relativistic corrections to the
potential, which are 1=Mb suppressed, we do not expect
to reproduce the spectrum exactly; nevertheless, we note
that in contrast to the Coulomb potential, the potential
V3Lþnp
s yields a spectrum accurate to within 1%.2 The

potential V3L
s has been instrumental in reproducing the

fine structure of the bottomonium spectrum [27], electro-
magnetic decays [28] and electromagnetic transition
widths [29,30].

FIG. 1. The singlet and octet Coulomb potentials Vc
s and Vc

o

(dashed lines) compared to the improved potentials V3Lþnp
s and

V3L
o (solid lines). For the improved potentials, there is a

discontinuity in the first derivative at 1=νr ¼ 0.197 fm. This
can be seen by the kink in the solid blue curve, while it is barely
noticeable in the solid orange curve that describes the octet
potential.

TABLE I. The spin-averaged bottomonium spectrum from
PDG data [43], from solving the Schrödinger equation with
the Coulomb potential Vc

s, and from solving the Schrödinger
equation with the potential V3Lþnp

s and γðT ¼ 0Þ as in Eq. (18).
The b mass is fixed by fitting the 1S prediction to the PDG value
yielding Mb ¼ 4.850 GeV for Vc

s and Mb ¼ 4.921 GeV for
V3Lþnp
s .

PDG Vc
s V3Lþnp

s

Mð1SÞ=GeV 9.445 9.445 9.445
Mð2SÞ=GeV 10.017 9.635 10.042
Mð3SÞ=GeV 10.355 9.670 10.395
Mð1PÞ=GeV 9.888 9.635 9.887
Mð2PÞ=GeV 10.251 9.670 10.279

2A way to estimate higher-order corrections is by considering
variations in the renormalization scale ν. By varying the scale ν
from 1 GeV, which is the ultrasoft scale νus, to 1.5 GeV, the 1S
mass changes by −8 and þ28 MeV, the 2S mass by þ19 and
−28 MeV, and the 3S mass by þ42 and −69 MeV, respectively.
For all excited states, and significantly for the 3S state, the effect
of γðT ¼ 0Þ exceeds the uncertainty due to the variation of the
renormalization scale: setting γðT ¼ 0Þ ¼ 0 decreases the 1S
mass by 11 MeV, the 2S mass by 58 MeV, and the 3S mass by
138 MeV.
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C. Transport coefficients

According to Eqs. (2)–(5), the interaction between heavy
quark-antiquark pairs and the QGP is encoded in the
transport coefficients κ and γ, defined in Eq. (7) and (8),
respectively [4,5,44,45]. In contrast to κ, γ contains vacuum
contributions. To isolate the vacuum part, we write

κ ¼ κ̂T3; ð15Þ

γ ¼ γðT ¼ 0Þ þ γ̂T3; ð16Þ

where γðT ¼ 0Þ denotes the vacuum contribution to γ while
κ̂ and γ̂ are dimensionless coefficients of the thermal
contributions. Up to now, there are no direct lattice
QCD determinations of the quantities κ and γ. We note
that lattice measurements of a related quantity, the heavy
quark momentum diffusion coefficient, have existed for a
number of years (for a recent determination see Ref. [46])
and anticipate lattice measurements of κ and γ in the near
future.
To obtain an estimate for γðT ¼ 0Þ, we parametrize the

nonperturbative part of the chromoelectric correlator as

h0jEaiðtÞΩðt; 0ÞabEbið0Þj0i ¼ h0jE2ð0Þj0ie−iΛEt; ð17Þ

where j0i is the vacuum state, h0jE2ð0Þj0i the chromo-
electric condensate, and ΛE the gluelump mass [19,32,47].
This parametrization interpolates in the simplest possible
way between the condensate at t ¼ 0 and a large time
behavior where the spectral decomposition of the correlator
is dominated by the lowest-lying gluelump with the
quantum numbers of the chromoelectric field. The pertur-
bative part of the correlator is scaleless and proportional to
1=t4 and, therefore, vanishes in γðT ¼ 0Þ when regularized
in dimensional regularization. We take the gluon conden-
sate to be h0jαsG2j0i ¼ ð6.4� 0.3Þ × 10−2 GeV4 [48],
which leads to h0jg2E2ð0Þj0i ¼ −0.2 GeV4, and the chro-
moelectric gluelump mass ΛE ¼ 1.25 GeV [42,49].
Inserting Eq. (17) into Eq. (8), performing the integral,
and regularizing at infinity, we obtain

γðT ¼ 0Þ ¼ −
h0jg2E2ð0Þj0i

3NcΛE
¼ 0.017 GeV3: ð18Þ

The thermal part γ̂ can be extracted from lattice measure-
ments of the in-medium heavy quarkonium mass shift [33].
In our setting, the thermal mass shift is given by [44]

δM ¼ γ̂T3

2

Z
∞

0

dr u�nlr
2unl; ð19Þ

where unl is the solution of the Schrödinger equation (14).
Since the results reported in Ref. [33] suggest a vanishing
thermal mass shift, we set γ̂ ¼ 0. Note that the vacuum part
γðT ¼ 0Þ is not accessible through the thermal mass shift.

Likewise, we extract values for κ̂ by calculating the width
Γ and fitting it to the lattice measurements of the in-medium
width reported in Ref. [33]. In our setting, the quarkonium
width, which is entirely thermal, is given by [44]

Γ ¼ κ̂T3

Z
∞

0

dr u�nlr
2unl: ð20Þ

Since different b masses were used in the lattice calcu-
lation [33], we rescale the reported lattice widths by a
factor ðMlattice

b =MbÞ2, where Mlattice
b denotes the b mass

used in the lattice computation (see Table II of Ref. [33]),
and Mb is the b mass used in our computation. In practice,
we rescale using Mb ¼ 4.921 GeV, since rescaling with
the b mass determined for the Coulomb potential,
Mb ¼ 4.850 GeV, leads to compatible widths within the
error bars. Due to the Brownian limit, the width in
Eq. (20) may not be accurate for the lowest temperatures;
we have checked, however, that excluding the lattice data
for T < 200 MeV in the fit does not change qualitatively
our results. In the case of the potential V3Lþnp

s , a weighted
least squares fit of κ̂ from the ϒ data gives κ̂ϒ ¼
2.08� 0.20, and, from the χb1 data, κ̂χ ¼ 1.52� 0.26.
The weighted average of these two determinations is
κ̂ ¼ 1.88� 0.16. Applying the same procedure for the
Coulomb potential, we find κ̂ϒ ¼ 1.16� 0.11 and κ̂χ ¼
0.23� 0.04 leading to the average κ̂ ¼ 0.33� 0.04. We
plot the temperature dependence of the width for the
lowest-lying states with l ¼ 0 and l ¼ 1 in the left
and right panels of Fig. 2, respectively. The plots show
with an orange line the width for the final average
κ̂ ¼ 0.33� 0.04, obtained from the Coulomb potential,
and with a blue line the width for the final average
κ̂ ¼ 1.88� 0.16, obtained from the improved potential
V3Lþnp
s . We see that the Coulomb fit is unable to describe

both the ϒ and χb data at the same time, while the fit
based on the improved potential V3Lþnp

s provides a more
reasonable description of the lattice data in both cases.

III. RESULTS

We solve Eq. (2) using the open-source code QTraj [34]
choosing for Vpert

s and Vpert
o the three-loop potentials V3L

s

and V3L
o . For the medium evolution, we include input from

3þ 1D quasiparticle anisotropic hydrodynamics simula-
tions [50]. We initiate the coupling to the hydrodynamic
evolution at τmed ¼ 0.6 fm and calculate the evolution until
a final temperature of Tf ¼ 250 MeV is reached, which we
take as the lowest temperature for which the strict
Brownian limit is valid [6]. For more details on the
numerical setup, we refer the reader to Refs. [10,11].
Using QTraj, we sample approximately 140 000 physical
trajectories from the hydrodynamics simulation and
30 quantum trajectories per physical trajectory. At the
end of the evolution, we project the wave function of the
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final state onto the bottomonium eigenstates for ϒð1SÞ,
ϒð2SÞ, ϒð3SÞ and χbð1PÞ, χbð2PÞ, which are relevant
through feed down, obtained from solving the Schrödinger
equation for the improved potential V3Lþnp

s . By taking the
ratio of the final state overlap to the initial state overlap, we
obtain the survival probability of the corresponding state.
Including the effect of feed down as described in
Refs. [6,10], we finally obtain predictions for the botto-
monium nuclear modification factor RAA, which is the
bottomonium yield in heavy-ion collisions normalized by
the bottomonium yield in proton-proton collisions. The

results for RAA in terms of the number of participating
nucleons, Npart, obtained from using the three-loop poten-
tials V3L

s and V3L
o in the Lindblad equation, are shown

in Fig. 3.
For the numerical computation, we use the transport

coefficient values obtained in Sec. II C, i.e., γ̂ ¼ 0,
γðT ¼ 0Þ ¼ 0.017 GeV3, and κ̂ ¼ 1.88� 0.16. The bands
indicate the uncertainty in κ̂ and the statistical uncertainty
from the quantum trajectory algorithm. The dash-dotted
and dashed lines are the curves for κ̂ ¼ 1.72 and κ̂ ¼ 2.04,
respectively. To assess the compatibility with the data, we
calculate the weighted relative mean square error

Δ2 ¼ 1

Ndata

X
i

�
Rexp
AA;i−R

QTRAJ
AA;i

Rexp
AA;i

�
2

ðσexpi =Rexp
AA;iÞ2 þ ðσQTRAJi =RQTRAJ

AA;i Þ2 ; ð21Þ

where the sum runs over the discrete values of Npart

corresponding to the different measurements by the experi-
ments, Rexp

AA;i denotes the ith measurement, RQTRAJ
AA;i the

corresponding prediction from QTraj, and σexpi and σQTRAJi
the relative uncertainties. The data are measurements by the
ALICE [12], ATLAS [13], and CMS [14,15] collabora-
tions. The QTraj predictions and corresponding uncertainties
at Npart given by the experiments are obtained by linear
extrapolation between QTraj prediction points. Theweighted
relative mean square error for the three-loop potentials with
the above parameters is Δ2 ¼ 2.1 × 10−3. In contrast,
results obtained by solving the Lindblad equation with
Vpert
s and Vpert

o set to the Coulomb potentials Vc
s and Vc

o with
γ̂ ¼ 0, γðT ¼ 0Þ ¼ 0 and κ̂ ¼ 0.33 and projecting onto
bottomonium eigenstates obtained by solving the
Schrödinger equation for the Coulomb potential Vc

s give
Δ2 ¼ 0.22, showing that the three-loop potential is better
suited to describe the data than the simple Coulomb
potential. We note that the wave functions calculated with

FIG. 2. The calculated widths Γ for the Coulomb potential Vc
s and the improved potential V3Lþnp

s compared to the lattice data from
Ref. [33]. The left panel shows calculations for l ¼ 0 states compared to ϒ data, and the right panel shows calculations for l ¼ 1 states
compared to χb lattice data. In both cases, we use the extracted and averaged values κ̂ ¼ 0.33� 0.04 for the Coulomb potential and
κ̂ ¼ 1.88� 0.16 for the potential V3Lþnp

s . The lattice widths displayed are rescaled by ðMlattice
b =MbÞ2 with Mb ¼ 4.921 GeV.

FIG. 3. The nuclear modification factor RAA for the 1S, 2S, and
3S bottomonium states as a function of the number of partici-
pating nucleons Npart. The colored solid lines show results
obtained with κ̂ ¼ 1.88, γðT ¼ 0Þ ¼ 0.017 GeV3, and γ̂ ¼ 0

using the three-loop potentials V3L
s and V3L

o in the evolution
equation. The colored bands correspond to the statistical un-
certainties and the uncertainties from κ̂. The dash-dotted and
dashed lines indicate the curves of κ̂ ¼ 1.72 and κ̂ ¼ 2.04,
respectively. The data are taken from the ALICE [12], ATLAS
[13], and CMS [14,15] experiments.
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Vc
s and V

3Lþnp
s , especially the wave functions of the 2S and

3S states, differ considerably due to the steeper slope of the
V3Lþnp
s potential at large distances.3

Finally, we remark that the results with the Coulomb
potential of Refs. [6,51] were obtained using different
parameters for the b mass and αs than here and, impor-
tantly, different values for the transport coefficients. In this
work, however, we constrain the transport coefficients to
reproduce the thermal widths of the S- and P-wave states
recently computed in lattice QCD. Under this constraint,
the three-loop potential provides a better description of the
bottomonium nuclear modification factor data from the
LHC experiments.

IV. CONCLUSIONS

In the paper, we compute bottomonium suppression in
heavy-ion collisions from an evolution equation that
encompasses the three-loop quarkonium potential and
the vacuum part of the dispersive transport coefficient
γðT ¼ 0Þ. There are a number of advantages to this
approach. First, the three-loop potential plus the addition
of a small nonperturbative correction derived from the
operator product expansion (with the bottom mass fixed on
the 1S state) provides a realistic description of the spin-
averaged bottomonium spectrum, see Table I. Second, the
thermal decay width that follows from the bottomonium
wave functions is consistent with that computed in lattice
QCD; this allows us to fit reasonably well the quarkonium
momentum diffusion coefficient on the lattice data; see
Fig. 2. Finally, the obtained bottomonium nuclear modi-
fication factor shown in Fig. 3 provides a more accurate
description of the LHC data in the strict Brownian limit
than previous analyses with the Coulomb potential. In the
future, this study could be extended beyond the Brownian
limit by including E=ðπTÞ corrections, as done for the
Coulomb potential in Ref. [10].
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APPENDIX: POTENTIALS

For convenience, we provide the explicit expressions of

the coefficients VðkÞ
s;RS0 and V

ðkÞ
o;RS0 used in the potentials (10)

and (13). In the singlet case, we have

Vð0Þ
s;RS0 ¼ −

CF

r
; ðA1Þ

Vð1Þ
s;RS0 ¼ −

CF

4πr
½a1 þ 2 logðrνeγEÞβ0� þ 2δmð1Þ

RS0 ; ðA2Þ

Vð2Þ
s;RS0 ¼ −

CF

ð4πÞ2r
�	
a2 þ logðrνeγEÞð4a1β0 þ 2β1Þ




þ
�
π2

3
þ 4log2ðrνeγEÞ

�
β20

�
þ 2δmð2Þ

RS0 ; ðA3Þ

Vð3Þ
s;RS0 ¼ −

CF

ð4πÞ3r
��

a3 þ a1β20π
2 þ 5π2

6
β0β1 þ 16ζ3ð3Þβ30

þ 2π2β30 þ 6a2β0 þ 4a1β1 þ 2β2 þ 144π2
�

× logðrνeγEÞ þ ð12a1β20 þ 10β0β1Þlog2ðrνeγEÞ

þ 8β30log
3ðrνeγEÞ þ 144π2 log

νus
ν

�
þ 2δmð3Þ

RS0 ;

ðA4Þ

where βi are the coefficients of the β function. We work in
the convention where β0 ¼ 11CA=3 − 4TFnf=3, with nf
the number of massless flavors, which we set to nf ¼ 3 in
our bottomonium calculations [52]. The scale ν is the
renormalization scale and νus the factorization scale sepa-
rating the soft from the ultrasoft region (see Sec. II B for
discussion of the scales). The SUðNÞ Casimirs are
CF ¼ TFðN2

c − 1Þ=Nc, CA ¼ 2TFNc with Nc the number
of colors and TF ¼ 1=2. The expressions for a1, a2, and a3
were computed in Refs. [53,54], Refs. [55,56], and
Refs. [22,23,57], respectively. The ultrasoft correction in

Vð3Þ
s;RS0 was computed in Ref. [21]. The renormalon con-

tributions δmRS0 are given by [24]

δmRS0 ¼ νf
X3
k¼0

δmðkÞ
RS0

�
νf
ν

�
αkþ1
s ðνÞ; ðA5Þ

with

3In contrast to the spectrum, cf. footnote 2, the inclusion of a
nonvanishing γðT ¼ 0Þ has a modest impact on the nuclear
modification factor of the order of the uncertainty induced by κ̂
shown in Fig. 3.
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δmð0Þ
RS0 ¼ 0; δmð1Þ

RS0

�
νf
ν

�
¼Nm

β0
2π

Sð1;bÞ; ðA6Þ

δmð2Þ
RS0

�
νf
ν

�
¼Nm

�
β0
2π

��
Sð1;bÞ2d0ðν;νfÞ

π
þ
�
β0
2π

�
Sð2;bÞ

�
;

ðA7Þ

δmð3Þ
RS0

�
νf
ν

�
¼Nm

�
β0
2π

��
Sð1;bÞ3d

2
0ðν;νfÞþ2d1ðν;νfÞ

π2

þ
�
β0
2π

�
Sð2;bÞ3d0ðν;νfÞ

π
þ
�
β0
2π

�
2

Sð3;bÞ
�
;

ðA8Þ

where

Sðn; bÞ ¼
X2
k¼0

ck
Γðnþ 1þ b − kÞ
Γð1þ b − kÞ ;

dkðν; νfÞ ¼
βk

21þ2k ln

�
ν

νf

�
; ðA9Þ

and

c0 ¼ 1; c1 ¼
β21 − β0β2
4β40b

;

c2 ¼
β41 þ 4β30β1β2 − 2β0β

2
1β2 þ β20ð−2β31 þ β22Þ − 2β40β3

32β80bðb − 1Þ :

ðA10Þ

The scale νf is the renormalon factorization scale and
b ¼ β1=ð2β20Þ. For Nm we use Nm ¼ 0.563126 from
Ref. [58]. There are also other determinations, e.g., Nm ¼
0.574974 from Ref. [24], and Nm ¼ 0.535 from Ref. [59],
which only slightly alter the spectrum and the bottom mass.
For the octet potential, we use the three-loop one from

Ref. [39]. The coefficients VðkÞ
o;RS read

Vð0Þ
o;RS0 ¼ −

C½8�

r
; ðA11Þ

Vð1Þ
o;RS0 ¼ −

C½8�

4πr
½a½8�1 þ 2β0 logðrνeγEÞ� − δVð1Þ

o;RS0 ; ðA12Þ

Vð2Þ
o;RS0 ¼ −

C½8�

16π2r

�
a½8�2 þ β20

�
π2

3
þ 4log2ðrνeγEÞ

�

þ logðrνeγEÞð4a½8�1 β0 þ 2β1Þ
�
− δVð2Þ

o;RS0 ; ðA13Þ

Vð3Þ
o;RS0 ¼−

C½8�

64π2r

�
a½8�3 þ8β30

�
log3ðrνeγEÞþπ2

4
logðrνeγEÞ

þ2ζð3Þ
�
þ
�
10β0β1þ12β20a

½8�
1

��
log2ðrνeγEÞþπ2

12

�

þ
�
2β2þ4β1a

½8�
1 þ6β0a

½8�
2

�
logðrνeγEÞ

þ64π2

3
N3

c logðrνÞ
�
−δVð3Þ

o;RS0 ; ðA14Þ

with C½8� ¼ CF − CA=2. The renormalon contributions

δVðiÞ
o;RS0 have the same form as δmðiÞ

RS0 but with normalization
NVo

instead of Nm, which is set to NVo
¼ 0.114 [42]. The

coefficients a½8�1 and a½8�2 are defined as

a½8�1 ¼ a1; ðA15Þ

a½8�2 ¼ a2 þ N2
cπ

2ðπ2 − 12Þ; ðA16Þ

where a1 and a2 are from the singlet potential. The

coefficient a½8�3 has the form

a½8�3 ¼ a½8�;ð3Þ3 n3f þ a½8�;ð2Þ3 n2f þ a½8�;ð1Þ3 nf þ a½8�;ð0Þ3 ; ðA17Þ

with

a½8�;ð3Þ3 ¼ −
�
20

9

�
3

T3
F; ðA18Þ

a½8�;ð2Þ3 ¼
�
12541

243
þ 368ζð3Þ

3
þ 64π4

135

�
CAT2

F

þ
�
14002

81
−
416ζð3Þ

3

�
CFT2

F; ðA19Þ

a½8�;ð1Þ3 ¼ −327.2N2
c þ

66133

648
−
112π2

9
−
272ζð3Þ

3

þ 8π4

3
−
32π2ζð3Þ

3
þ 20ζð5Þ − 12.6

1

N2
c
; ðA20Þ

a½8�;ð0Þ3 ¼ −17.0Nc þ 499.4N3
c − 97.6N3

c: ðA21Þ

Analytical expressions for a½8�;ð1Þ3 and a½8�;ð0Þ3 can be found
in Ref. [57].
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