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The baryon mass operator is studied within a combined expansion in 1/N, and perturbative SU(3)
flavor symmetry breaking, where N, denotes the number of color charges. Flavor projection operators are
used to classify the baryon operators involved in the expansion, which fall into the flavor representations 1,

8,10 + 10, 27, 35 + 35, and 64. This approach allows one to incorporate up to third-order flavor symmetry
breaking in the baryon mass operator in a rigorous and systematic way. Previous work on the subject is
considered to validate the approach. A fit to data is performed to evaluate the free parameters in the theory

and to produce some numerical values of baryon masses. Results are consistent and reaffirm the striking

success of the 1/N, expansion.
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I. INTRODUCTION

The SU(3) flavor symmetry of the strong interaction
suggested by Gell-Mann [1] and Ne’eman [2] in the early
1960s has undoubtedly become the most successful organi-
zational scheme for hadrons to the extent that it played a
crucial role in the development of the quark model.
Hadrons were thus organized into SU(3) representation
multiplets—octets and decuplets. SU(3) flavor symmetry
is, of course, an approximate one: It is broken in QCD by
nonequal masses of the up, down, and strange quarks. It is
thus postulated that the SU(3) violating part of the
Hamiltonian transforms like the eighth component of an
adjoint (octet) representation of SU(3) with zero isospin
and hypercharge. Important consequences of SU(3) flavor
symmetry breaking (SB) can be seen in the Gell-Mann—
Okubo mass formula describing the mass splitting inside a
given SU(3) multiplet.

In the early studies of nuclear reactions, it was observed
that, to a good approximation, the strong interaction is
independent of the electric charge carried by nucleons, so it
is invariant under a transformation that interchanges proton
and neutron. In modern terminology, isospin is regarded as
a symmetry of the strong interaction under the action
of the group SU(2), the two states being the up and down
quarks, with m, = m,. Since different members of a given
isospin multiplet have different electric charges, the
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electromagnetic interaction clearly does not respect the
isospin symmetry. Thus, isospin symmetry breaking orig-
inates from two different sources: Electromagnetic self-
energies and the difference of the up and down quark
masses. The latter is referred to as strong isospin breaking
and is regarded as the leading contribution.

Nowadays, when comparing theoretical predictions with
experimental measurements, isospin breaking corrections
cannot be, in general, neglected. In particular, isospin
symmetry breaking in mass splittings of the lowest-lying
(octet and decuplet) baryons is an important issue to be
accounted for. Lots of effort and a considerable number of
methods have been devoted to study it from both the
analytical and numerical bent. A selection of such methods
is constituted by the 1/N,. expansion [3,4], chiral
perturbation theory [5-7], a combined expansion in chiral
symmetry breaking and 1/N, [8,9], QCD sum rules
[10,11], chiral soliton model [12], and the fast-growing
lattice QCD [13-18], to name but a few.

The present work is devoted to evaluate SB effects on the
baryon mass sector of the lowest-lying baryons in the
context of the 1/N,. expansion of QCD. This subject has
already been dealt with in a detail-oriented paper by
Jenkins and Lebed [4]. In that work, special emphasis
on the 7 =0, 1, 2, and 3 mass splitting of the octet and
decuplet baryons was put in a detailed computation in the
1/N. expansion combined with perturbative SB. A great
deal of evidence for the mass hierarchy was found in this
combined expansion. Here, an alternative pragmatic strat-
egy to analyze baryon masses within the 1/N, expansion is
implemented. In this approach, SU(3) flavor projection
operators [19,20] are widely used. In the first stage, the
most general baryon operator basis containing up to three
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flavor adjoint indices is constructed. Successive contrac-
tions of these operators with SU(3) tensors provide the
corresponding bases with lesser flavor indices. In the
second stage, once all participating operators are identified,
projection operators are applied to them in order to get all
possible flavor representations that enter into play in SB.
Although the approach notably complicates because a huge
number of free operator coefficients appear, a thorough
analysis allows one to redefine practically all of them in
terms of only 21 independent effective free parameters, in
total agreement with the analysis of Ref. [4].!

The paper is organized as follows. In Sec. II, some basic
definitions on the large-N, limit of QCD are provided in
order to set notation and conventions. The baryon mass
operator is outlined, first in the SU(3) symmetry limit and
then including SB perturbatively. In Sec. III, the 1/N.,
expansion is constructed starting from the determination of
the operator bases for three, two, one, and zero free flavor
indices, which are necessary to evaluate up to third-order
SB. Flavor projection operators defined in Refs. [19,20] are
widely used to obtain all the flavor representation allowed
in the tensor product of two and three adjoint representa-
tions. The resultant irreducible representations are 1, 8,
10 + 10, 27, 35 + 353, and 64. With the matrix elements of
the participating operators available, operator coefficients
are reorganized to be absorbed into 21 effective operator
coefficients. This yields the final expressions for baryon
masses in the 1/N, expansion combined with perturbative
SB. In Sec. IV, a least-squares fit to data is performed to
explore the 19 relevant free parameters in the analysis,
using experimental [21] and numerical [13] data. In Sec. V,
some interesting mass relations falling in the / =0, 1, 2,
and 3 channels obtained in Ref. [4] are tested. In Sec. VI,
some concluding remarks are given. The paper is com-
plemented by three Appendixes. In Appendixes A and B,
explicit expressions for the flavor projection operators
acting on the product of two and three adjoints are
presented, respectively. In Appendix C, full expressions
for the baryon masses in terms of the operator coefficients
are listed. These expressions are the ones that can be used in
actual least-squares fits to data.

II. BARYON MASS OPERATOR IN LARGE-N, QCD

In this section, a few facts on the large-N,. limit
of QCD are given in order to set notation and conventions.
Further technical aspects can be found in the original
papers [22-27] and references therein.

The 1/N, expansion of any baryon operator transform-
ing according to a given SU(2) x SU(3) representation can
be written as [27]

" fact, two additional parameters are identified here that are
not apparent in Ref. [4]. These new parameters come along with
operators containing three adjoint indices in the 10 + 10 repre-
sentation and only affect the off-diagonal mass ZOA.

TABLE 1. SU(2N;) commutation relations.

', 19 =

0] = le”ka [T, T?] = ifebeTe,

[J G]a] lez]kaa [Ta7 Gib] — l'fachic’

[Gta Gjb] l51/fabcTc 4 ﬁ'[éabeijkjk 4 %eijkdachkc

1
O:ZC"WO’“ (1)

where the O, constitute a complete set of linearly inde-
pendent effective n-body operators which can be written as
polynomials in the SU(6) generators

k c k qc
I'=q"5a. Tc=q"'%q, ch:g"'%%q, (2)
where J¥ are spin generators, T¢ are flavor generators, and
G*¢ are spin-flavor generators that satisfy the commutation
relations listed in Table I [27]. Here ¢ and ¢ are SU(6)
operators that create and annihilate states in the funda-
mental representation of SU(6), and ¢* and A° are the Pauli
spin and Gell-Mann flavor matrices, respectively.

In the large-N . limit of QCD, one of the earliest analyses of
the masses of the J” = I* and J* = 3" physical baryons—
hereafter referred to as octet and decuplet baryons, respec-
tively—proved them to be proportional to J* [3]. Later work,
dealing with the / =0, 1, 2, 3 baryon mass splittings in a
systematic expansion in 1/N . and perturbative SU(3) flavor
SB, found a remarkable evidence for the observed mass
hierarchy [4].

The baryon mass operator, hereafter denoted by M,
transforms as (0,1) under the SU(2) x SU(3) spin-flavor
symmetry. In the flavor symmetry limit, M is given by [27]

M=N P(}{;) (3)

where P stands for a polynomial. For N, = 3, the specific
form of the 1/N, expansion of M reads

1
M = moNcﬂ +N—m2J2, (4)

c

where m( and m, are unknown parameters. Thus, the
baryon mass is of order O(N,.), since it contains N, quarks.

A. Baryon mass operator including perturbative SB

SU(3) flavor symmetry is not an exact symmetry; it is
broken and two sources of SB are identified. The first one is
due to the light quark masses and the perturbation trans-
forms as the adjoint (octet) irreducible representation
of SU(3),
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eH® + €H. (5)

The first summand in Eq. (5) represents the dominant
SU(3) breaking and transforms as the eighth component of
a flavor octet, where € ~ m,/Aqcp is a (dimensionless)
measure of SB; ¢ ~ 0.30, which is comparable to a 1/N.,
effect. The second summand represents the leading QCD
isospin breaking effect, i.e., the one associated with the
difference of the up and down quark masses and transforms
as the third component of a flavor octet, where
€' ~(my—m,)/Aqgcp, so € < e. The effects of SB on
the baryon masses within the 1/N, expansion have been
meticulously discussed in Ref. [4], where it was pointed out
that, while the baryon mass is about 1 GeV, isospin mass
splittings are typically around, several MeV, so ¢’ represents
breaking effects of order 1/N? in QCD.

The second source of SB is induced by electromagnetic
interactions. Electromagnetic mass splittings are second
order in the quark charge matrix so they get a suppression
factor of €” ~ ap, /47 [4]. These splittings are around a few
MeV so to a good approximation

mg—m, ~ Qem

(6)

AQCD A ’

The starting point of the analysis of Ref. [4] was the
construction of the relevant 1/N_. expansions, classified
into isospin channels / = 0, 1, 2, and 3. At first order in
SU(3) breaking, the baryon mass term transforms as an
SU(3) octet. The most general spin-zero SU(3) octet is a
polynomial in J/, T7¢, and G'“, with one free flavor index set
to either 3 or 8. Thus, O3 and O® operators correspond to
I =0 and I = 1, respectively. At second order in SU(3)
breaking, a tensor with two free flavor indices should be
obtained. Relevant operators for baryon mass splittings are
0%, 0%, and 0% with I =0, 1, and 2, respectively.
Similarly, at third order, a tensor with three free flavor
indices should be obtained so the relevant operators are in
this case 08, 0388 0338 and 0333 with I =0, 1,2, and 3,
respectively. Electromagnetic corrections only appear in the
I =0, 1, and 2 channels, so contributions of the form 0%
amount corrections of order € alone.

The construction of the 1/N_. expansions for all isospin
channels are provided in the following section, using
SU(3) flavor projection operators as introduced in
Refs. [19,20] as an alternative approach to the problem.

III. CONSTRUCTION OF THE 1/N, EXPANSION
FOR THE BARYON MASS OPERATOR

From a group theory point of view, symmetry breaking
can be incorporated in the analysis of a baryon operator
(e.g., mass, axial and vector current, magnetic moment,
etc.) by considering multiple tensor products of SU(3)
flavor octets. At first order in SU(3) breaking, the baryon

mass term transforms as an SU(3) octet. At second and
third order SB, it is found that [20]

8R8=1928)®10 10 & 27, (7)

and

8R8®8=2(1) @ 8(8) @ 4(10 ® 10) ® 6(27)
@ 2(350 35) @ 64, (8)

respectively, where the right-hand sides denote the dimen-
sions of the irreducible representations of SU(3).

The analysis of the baryon mass splittings in the
physical baryons of Ref. [4] thus provided the 1/N.,
expansions for the SU(2) x SU(3) representations (0,1),
(0,8), (0,10 + 10), (0,27), and (0,64), since the baryon
1/N. expansion extends only to three-body operators
restricting the analysis to the physical baryons.

In this section, the baryon mass splittings of the physical
baryons are analyzed following a more pragmatic
approach. In the first stage, the most complete operator
basis containing spin-zero objects with up to three-body
operators with three flavor indices is constructed. Proper
contractions of flavor indices are thus performed to obtain
the corresponding bases with two, one, and zero flavor
indices. In the second stage, the use of SU(3) flavor
projection operators introduced in Refs. [19,20] will allow
one to identify unambiguously all flavor representations
relevant in the analysis of baryon mass splittings.

A. Operator bases

In order to obtain the 1/N . expansion of the baryon mass
operator including SB terms, the operator bases containing
spin-zero objects with zero, one, two, and three flavor
indices should be constructed. Let M, M¢, M%%  and
M¢a:1243 denote such operator bases. A previous analysis on
baryon-meson scattering [20] introduced the operator basis
RUN@®a3) “which is constituted by 170 linearly indepen-
dent spin-two objects with three flavor indices, retaining up
to three-body operators. In the present case, the bases are
thus obtained by contracting the spin and flavor indices on
RUD(@a:05) ysing spin and flavor invariant tensors, such as
S, §N@ jfhads or d“%d ag the case may be. Their
explicit forms are given in the following sections.

1. M412293 pqgis

The M basis is obtained from R(/)(#192%3) by simply
contracting the spin indices with &Y. After removing
redundant operators, the resultant basis is

st = ), ©

where
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ayads __ ;rajaa ayaas __ Jjayaa
M, = [fhnn, M, = du®2%,
ayaa a1 a, Ta aya,a aaxTa
M3123——5121 3, M1123——513Z 2,
aaas aras Ta aaas P rajaras 72
MS = %% ', M6 —lf]23.],

M‘71102a3 —_ dala2a3J2’ Mgl‘1203 —_ 5a1a2{Jr’ Gra3}’

Mg @S = gna{Jr G}, MRS = 5% {Jr, G},

MRS = faeafoan{yr, Gy, Mp™® = fama fean{yr, Grg,

M%azas — Jume gazeig {Jr’ G }’ Mﬂazas = jfumer gnes {Jr7 Grg1}7

M‘fgam — ifalageldazelgl{‘]r’ Grgl}’ M’f‘;za} _ idale]glfaza3e1{Jr’ Grgl}’

M‘f;@@ — ifalaze] {Ta3’ Te }’ Mflléazus = Jm@e {Ta3’ Tel}’

M‘ll‘l)azafi — da|a3e|{Taz’ Tel}’ Mg(l)aza_z — d@a;e,{Tal’Te]}’

MG = [T T, T4Y], Myy™® = [T {7, T},

M = §ne{J2 TS}, M™® = sn9a{J? T*},

A0 = 35T} MG = {19 {1, T},

M0 = (T AT T Mg = {7 (T, T},

Mo = (TG, G ) M5 = {1 (G .G},

M — (0 1GRLGR ), M — i 79, (7,6,

M = if T {0 G M = if oo (T {07, G ),

MEE® = if =TI G ) M = if o (T {7, G2,

Mg = ifeme{Te {J7.GM Y, M§™" = dnea{Te ()7, G }),

M;n9“203 — da1a3el{Te1’ {Jr’ Graz}}’ MZ(])“2‘13 _ dazage]{Tel’{Jr’Gml}}’

S = pruom faaln T, (G, G L ™™ = faam feeh {T0, (G, G,
Mzéazas :falelglfazelh]{Th],{Gra3’Grg|}}, Munaztls falel Ifage]g]{Tan {GrgI Grhl}}
MEE™® = faein foao (T {Gr GMYY. My = faeh foan{Th {Gr. G} ).
MZ%azaz = faag paeh fTa {Gra Gr}}, alazas = faag faeh {To {Gra G},
legazas = faag paeih fTh {Grai Grai}}, M;(l)azas = duaniguah {Th {Gra Gra}},
M;tllazas — ida]e]glfaze]hl{Tgl’ {Gr{lg’Gl‘l’Ll}}, M;tlzazas — ida]e]glfaze]hl{Thl’ {Gra3, Grg]}}’
MRS = ifaehdses (T0 (G Gy}, MERS = ifaahdnasn{Th {G, G},
M;_lgazas — idazelglfa3e1h1{Tgl’ {Gra,’ Grhl}}, M;léazas — idazelglf@elhl{Thl’ {Gm, , Grgl}}’
ME® = ifehnanao{(Th G, G Mg = ifeeldsn{Th (G, G},
MG™S = idmes faam {Th {Gre G}y, (10)

2. M“1%2 pqsis

The M#42 basis can now be obtained from M#“2% by contracting two flavor indices with i f*1%23 or d*1%23, In either case,
the procedure yields

M = (M1}, (11)
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where

MO = sna,
Mgla2 — guaeTe
My = {74, T},
M;l]az = duaee {Jr Gre,
My = (T {17, G},
M = a2, 74),

3. M* basis

The M% basis can be obtained simply as §%%M®1%243,
[faa M9 or 19293 M@29, The resultant basis reads

M = {M]"}, (13)

where
M‘f‘ =T%, M;‘ ={J,G"™}, M;" = {]Z,T‘l'}.
(14)

4. M basis

There are several ways to obtain the M basis:
ifalaza3Ma1a2a3, da]azagMa1a2a3, 5a1a2Ma1a2’ or any pI'OdllCt
that saturates the flavor indices, for instance, the tensor
product of 7% with the operators in the M* basis, as long
as up to three-body operators are retained. The resultant
basis, after removing redundant operators and/or irrelevant
constant factors, is

M = (M}, (15)

with

M 2 = J 2, (16)
which of course reduces to the operator basis used to
construct the 1/N . expansion of the baryon mass operator
in the flavor symmetry limit (4).

B. Flavor projection operators

Once the bases M, M, M“92 and M%%% are defined,
the next step is to set a mechanism to manipulate them
according to their transformation properties under decom-
positions (7) and (8). A suitable method is the one based on
the operator projection technique of Refs. [19,20]. This
technique uses the decomposition of the tensor space
formed by the product of the adjoint space with itself n
times, [ [, adj ®, into subspaces labeled by a specific
eigenvalue of the quadratic Casimir operator C of SU(3).

aa .
le 2 lfa‘aze‘TE‘,
aja, 2
M = gma ),
aya,
M6

— {Grm’ sz},
Mglaz — l'fa]azel{‘,r’ Gre,},
Malz(l)az — {Taz’ {Jr’ Gra,}}’

Mll/llz"Z — dalazel{‘lz’ Tel}, (12)

The projection operators P") that can be constructed for
each subspace read

k
C—c,1
P(m) = H |:4:| 3 Cﬂ’l # Cn’., (17)
i—1 LEm — Cn,

where k labels the number of different possible eigenvalues
for C and c,, are its eigenvalues given by

_ 1 n’ 2 2
Cpy —E[HN—N-FZ:F,' _Z:Ci:|,

where 7 is the total number of boxes of the Young tableau
for a given representation, r; is the number of boxes in the
ith row, and c¢; is the number of boxes in the ith
column [28].

Thus, for the product of two SU(3) adjoints, the flavor
projectors [P("’)]“' %439 for the irreducible representation of
dimension m contained in (7) read [19]

(18)

[P(l)]alu2a3u4 — Sha2§43as

L 19)
7 (
Nf—l

Nf
— aae Jazae
———— dN®ei daaser

’P(S) a;axazay
[P N4

(20)

1
[P(8A>]ala2a3a4 = N_ffaluzflfasawl , (2])

- 1
[P(10+10)}a1a2a3a4 — E (5a1a35a2a4 _ 5aza35a1a4)
1
— — faiaze; fazase; 22
e e, 22)
and
1
(27)1ayaza3a4 — — 5103 5204 | 50203 50144 _ 54192 5034
N
f dh®er gasaser (23)

N7
Nf—4

which satisfy the completeness relation
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[’])(1) + ’])(8) + ’P(SA) + ’P(IO‘FE) + 7)(27)]a1a2a3a4 = 5443 §ds (24)

As for the product of three adjoints, following decomposition (8), the projection operators can be constructed as [20]

['ﬁ('")]alaza3b1b2b3 — C - cnlﬂ C - anﬂ
Cm — Cny Cm — Cp,

C_Cﬂ3ﬂ> (C_Cn41]> (C—C,,S]]>:|tllaza3b1b2b37 (25)
Cm — Cp, Cm — Cpy Cip — Cpy

where m labels the flavor representation of each projector and n; labels flavor representations other than m. The Casimir

operator can be expressed as

[C}aluza_;h]hz/g — 65a,b|5a2h25u3h3 _ 25u]hlfa2bze|fa3b3e] _ 26a2b2fa|h]e]fa3h3el _ 25a3h3fu]h|e|fa2bzel , (26)

where

c1 =0, cg =3, Clo416 = 6,

are its corresponding eigenvalues.

As it was discussed in Ref. [20], the explicit analytic
construction of [PM]a@asbibbs js quite involved, so its
matrix version is implemented and used instead. Thus,
[Plm)]aaasbibabs g replaced with a well-defined 512 x 512
matrix P where

pm)pm) — p(m)

PMPM =0, n#m, (28)

along with

P(1) 4 P®) 4 p(10+10) 4 p(27) 4 P(35+35) 4 P(64) — ls1.
(29)

where |5, represents the identity matrix of order 512.
Further details can be found in Ref. [20].

C. 1/N, expansion for the baryon mass operator in the
SU(3) flavor symmetry limit

The 1/N, expansion for the baryon mass operator in the
SU(3) flavor symmetry limit, denoted here by Mgy,
follows Eq. (4) and is given by

1
Mgy ) = m°N 1+ N my°J?, (30)

c
where mkm’l , adopting the notation of Ref. [4], denotes
undetermined coefficients that accompany the baryon
operator M, from operator basis M, (15), which transforms
under the SU(3) flavor representation of dimension m and
with isospin /. Notice that the series has been truncated
at N. = 3.

Cy; = 8,

C35+§ = 12, Ceq = 15 (27)

D. 1/N, expansion for the baryon mass operator
including first-order SB

The 1/N . expansion for the baryon mass operator includ-
ing first-order SB, denoted here by M/, can easily be

constructed using the operator basis M“, Eq. (13). For/ = 0
and 1, the expansions can be written, respectively, as

1 1
M =m0 TS+ om0 G} 2T (1)

c c

and

1 1
M =T GRS 2T, (32
" c

c

The matrix elements of the octet operators involved in
Egs. (31) and (32) are listed in Table II for the sake of
completeness.

E. 1/N, expansion for the baryon mass operator
including second-order SB

The 1/N, expansion for the baryon mass including
second-order SB can directly be obtained from the operator
basis M9, Eq. (11). The most general 1/N_. expansion,
retaining up to three-body operators, reads

3
aydy __ aa, ayay
MGs? = miNMP +Y " M
k=2

R T IR S
TN MY g ) M (33)
C k=4 € k=9

where n; (k =1, ..., 12) are unknown coefficients. Notice
that Mg)* contains components of all allowed flavor
representations according to decomposition (7). A formal
way to disentangle them is by using the projection operators
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TABLE II. Matrix elements of baryon operators contributing to
first-order SB to the baryon mass.

I 1

1
V3 V3 V3
B ) WGR) WRTY) (Y (076" WA

N
S ST S A R B
=t 1 1 % 0 % 0
>0 0 0 0 0 % 0
o -1 -1 —% 0 % 0
= -1 1 _3 1 _3 _3
3 3 3 3 1 1

=0 1 1 3 _1 _3 -3
= 2 3 3 3 i 3
A0 0 o o -l 0
A0 \/7§ 0 0 0 0
av B x oy oy oy
AT 1 5 15 1 5 15
2 3 4 3 i 4

A© 1 _5 _15 1 5 15
2 4 4 2 4 4

A- 3 _15 _45 1 5 15
2 4 4 2 3 i
>t % % 0 0 0
P 0 0 0 0 0 0
= -1 —% —% 0 0 0

R _3 _15 _1 _5 _15
2 3 4 2 3 4

=0 1 5 15 1 _5 _15

_ 2 4 4 2 45‘ 145

Q 0 0 0 -1 -3 -3

(19)~(23). Thus, the I =0, 1, and 2 pieces of Mg)* are
obtained by fixing the two free flavor indices to {a;,a,} =

{8,8}, {a;,ar} = {3,8}, and {a;,a,} = {3,3}, respec-
tively. For example, the I = O piece can be written as

3
M:{,g _ nq"’ONC [P(m)M1]88 + Z nzt.O [p(m)Mk]SS
k=2

1 8 " 1 12 ",
+ N_Z np O [PUm b, ]88 + N2 Z n [P M, ]88,
¢4 ¢ =

(34)

where the dimensions of the allowed SU(3) flavor
representations are m = 1, 8, 10 + 10, and 27. Similar
expressions can be obtained for the /=1 and I =2
pieces.

At this point, the number of free parameters has grown to
the extent that the approach seems to have no predictive
power. However, here it is where the applicability of
projection operators manifests itself to further simplify
the analysis.

Thus, the projection operators [P(")]#®d4 acting on
the operator basis M%“, Eq. (11), yield the nonvanishing
structures listed in Appendix A. A close inspection of
Egs. (A1)-(A22) reveals that all operator coefficients in the

singlet and octet representations2 can be reabsorbed into the
already existing operator coefficients of Eqs. (30)—(32),
respectively. As for the 10 + 10 representation, only the
I =1 piece {T3,{J",G8}} = {T%,{J",G"*}} contributes
with a single coefficient. Finally, for the 27 representation,
only two operators are relevant, namely, the two-
body operator {7%,7%} and the three-body operator
{1, {J",G"}} + {T*,{J",G"}}. The additional two-
body operator {G",G"} can be related to {7, T}
with the help of the identity 4[P7)]@1@:bib2{ G0 Grb2} =
[PET)|@arbiba f b1 Th2} according to the identities listed in
Table VIII of Ref. [27].

The analysis presented so far agrees in full with the one,
at the same order, contained in Ref. [4]. Following the
notation of this reference, the baryon mass operator can be
expressed as

M= M, (35)
m,I

where m denotes the relevant SU(3) dimension and I
denotes the isospin. Thus, the expressions read [4]

1
MY = iy ON T iy (36)

1 1
— iy {J .G +—

MS.O — ﬁ’l&OTS
! +NC N?

w302, T8}, (37)

1 1
M270 :Fﬁ/l%lO{TS’TS} _i_mﬁ,l%lo{TS’ {Jr7Gr8}}’ (38)

c c

1 1
M = T4 (17,67 s (T (39

c c

1 1
M27’1 _ N_ﬁ/l%ll{TS’ TS} + mfhgll({'r:’)’ {Jr’ Grs}}

+A{T%.{J7.G"}}). (40)
_ 1 —
M10+T0.0 ﬁﬁlio+10,l ({13,{J7,G™®}} — {T8,{J",G>}}),
(41)
and
1 ~ 1 ~ r r
2= Laae sy Lavars r.omy. @)

The first term in Eq. (36) is the overall spin-independent
mass and is common to both baryon octet and decuplet. The

2Actually, the antisymmetric octet representation does not
contribute to any baryon masses.
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TABLE III. Naive symmetry-breaking parameters associated with M’Z;" at leading order in SB [4].

M0 MO M0 M40 M8 MI0+10,1 M2 MO M2 MO42 M43
o(1) O(e) O(e?) O(e) O(¢) O(¢’e) O(e'e) O(e'e?) O(e") O(e’¢) O(e"e)
spin-dependent term, truncated at N. =3, defines 5

Mpyperfine> Which describes the spin splittings of the baryon
multiplets [8].

The dependence on N, and the symmetry-breaking
parameters (e, €/, and €”) of the various terms involved
in Egs. (36)—(42) is nontrivial; this dependence is trackable
as follows: On the one hand, each baryon operator occurs at
a definite order in 1/N,., which is given by the explicit
factor of 1/N, in front of the operator times the leading N
dependence of the operator matrix element. On the other
hand, the classification of the mass operators in powers of
the symmetry-breaking parameters is shown in Table I
of Ref. [4], which is adapted here in Table III for
completeness. Notice that, in each [ sector, M™! have
been ordered from the least- to the most-suppressed
operators in SB. This suppression can be better appreciated
in an actual fit to data.

One is thus left with only 15 free effective parameters

g " at this order. Because the effective coefficients are the
ones that can be determined, their explicit forms in terms of
the original ones are unnecessary.

F. 1/N, expansion for the baryon mass operator
including third-order SB

In a complete parallelism to the previous case, the 1/N,
expansion for the baryon mass containing third-order SB,
using the baryon operators of the M“1%24: basis, Eq. (9), can
be expressed as

OkMZIa2a3 + i OkMZla2a3
k=1 k=3
20
4+ Z 0L Mﬂlazaz +
C k=6

N

ayaas __
Msb3 - NC

Z oM (43)

Ck 21

where o; (k = 1, ...,59) are unknown coefficients. M 3>“

contains components of all allowed flavor representations
m according to decomposition (8). The use of the projec-
tion operators [PU")]@@asbibbs il effectively separate
these representations. Now, the 7 =0, 1, 2, and 3 pieces
of M$** are obtained by fixing the three free flavor
indices to {al ,az,a3} = {8,8,8}, {al ,Clz,a:;} = {3,8,8},
{al,az,a3} = {3,3,8}, and {01,02,613} = {3,3,3},
respectively. The expression of the [ =3 sector, for
instance, reads

2
M3 =N:y ol [P
k=1 k=3

1 B m,3175(m
+N—CZOk’ [P< )Mk}333
¥ LS (44)

Ck 21

where m = 1, 8,10 + 10, 27, 35 + ﬁ and 64. The explicit
forms of the operator structures [P") 0, 0, 05]1%2%, where
Q% are flavor adjoints, are listed in Appendix B for

J
I =0,...,3. From these structures, expressions like (44)
can straightforwardly be obtained.

In order to construct the full expressions for the baryon
masses including third-order SB, the matrix elements of
the operators in the basis M“1%2% should be obtained. All
these matrix elements are provided in Supplemental
Material [29] to this paper for I =0,...,3 and all
participating flavor representations. In particular, it can
be confirmed that the 35+ 35 representation does not
contribute neither to octet nor decuplet baryon masses and
that the 64 representation only contributes to decuplet
baryon masses.

From these matrix elements, after a thorough analysis, it
can be shown that the totality of the operator coefficients
that come along the baryon operators in the 1, 8, and 27
flavor representations contained in (43) can be absorbed
into the already effective operator coefficients introduced in
Egs. (36)—(42). The exceptions come from the 10 + 10 and
64 representations.

Operators in the 10 + 10 representation start contributing
to the masses of octet baryons with three-body operators.
The nonzero contributions from M5, to M5)™* with

10+10,1 coef-

a1ax8; o

I =3 and [ =1 can be absorbed into the 7,
ficient introduced in Eq. (41). However, operatorsM
My only contribute to the off-diagonal mass ZOA for
I =3 and [ = 1. These can be cast into

59 _ o
Mig;lm — 011€0+10,3[7;(10+10)Mk]333 (45)
=]
and
Mig;rlm = Z 10+101 10+10)Mk]388' (46)
=
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Because M5, to M ™* constitute a subset of
linearly independent operators, there is no reason to rule
out their contributions a priori. Naively, this contribution
should also be of order O(€’e). After evaluating the corre-
sponding matrix elements involved, two effective coefficients
~ 10410,

i, ,for I =3 and I = 1, can be defined, namely,
104107 10410, _ 10+101 104107 _ 10+101 10+10.7
m, =051 1053 + 055
10+101 10+101 10+101 10+10.1
Os6 Os7 Osg ~0Os9 . (47)

Therefore, the use of flavor projection operators has allowed
one to find an extra contribution from the 10+ 10
representation that is not apparent in the analysis of
Ref. [4]. The construction of the 1/N, expansions presented
in that reference is based on the so-called operator reduction

|

rule introduced in Ref. [27], which sets the criteria to
eliminate operator products when two flavor indices are
contracted using 6%, d“%%, or if“%%, However,
operators M<}“ to M$)** do have components along the
10 + 10 representation that clearly do not respect this rule. At
this point, an extra piece of information can be used: These
operators M5, to Mg)**** are odd under time reversal and
can be ignored if one keeps only T-even operators.”

As for the 64 representation, operators M5, to M)
also constitute a subset of linearly 1ndependent operators
In principle, all these operators contribute to the baryon
masses alike, so they cannot be ruled out. This is not a
drawback; as these operators affect only decuplet baryons,
their effects can be parametrized in terms of a single
coefficient for each /, namely,

1 1 1 1 1 1 1
~ 64,1 64.1 64.1 64.1 64.1 R ool _ L oar _ 1 jear L jear 64.1
M = 055" + 057" + 03 +4029 +Z 30 +4 31T g 04 2 Oy 2 043 _1044'
1 o0 _ 1 o0 _ 1 o4 _ 1 OO _ 1 o041 1 oO4!
4 45 4 46 4 47 4 48 4 49 +12 50 - (48)
|
Thus, one is finally left with 21 unknown effective Cé0+10,1 which come from Mo, and from which there is

parameters: two parameters from SU(3) symmetric expres-
sions, six and seven parameters from first- and second-order
SB, respectively, and six additional ones from third-order
SB. Apart from the coefficients in the 10 + 10 representa-
tion, which only affects off-diagonal mass A, the analysis
is consistent with the one presented in Ref. [4].

The full theoretical expressions for baryon masses are
listed in Appendix C for the sake of completeness.

IV. NUMERICAL RESULTS

At this stage, it is possible to produce some numbers
through a least-squares fit to data. The aim of this exercise
is not to be definite about baryon mass determinations, but
rather to test the working assumptions. The available
experimental data about baryon masses are listed in the
Review of Particle Physics [21]; it comprises the masses of
N, 2, B, A, Z*, E*, and Q, together with several baryon
mass differences. To determine the 19 free parameters,

10+10.3

which result from omitting momentarily c, and

¥ = 363.96 + 0.02,
i = —454.85+0.17,
0 = -234840.14, w50 =

no information whatsoever, data from lattice analyses can
be used. The analysis can be carried out on an equal footing
by using the data about leading isospin breaking effects in
N and A from Ref. [13].

The data selected to be used in the fit are the measured
masses of baryons along with M, — M, reported in
Ref. [21], which makes 15 pieces of data. From lattice
results, the value of M- is used, along with six mass
differences between A baryons from Ref. [13]. The fit can
be performed under different assumptions; neglecting, for
instance, all terms suppressed by 1/N? would be one
choice, neglecting the 64 representation contributions
would be another. However, without further ado, the fit
can be performed straightforwardly with the data men-
tioned above for all 19 parameters. An arbitrary error of
0.50 MeV is added in quadrature to neutron and proton
masses to avoid a bias in favor of these best measured
values.

The best-fit parameters produced, in units of MeV, are

iy® = 23731 +0.20,
3" =247.89 +0.14,
= 31.36 & 0.39,

" = —42.87 +0.74,

This fact is unexpected because all other T-odd operators in the M# 4 basis have zero matrix elements for baryon mass.
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w0 =22.63 4+ 1.95,
~ 8,1

bl = —479+0.10, @' =095+036,  m' =2.53+0.30,
MmO 101 = 0.19 4+ 0.60,
iyt =2727+£228, iy =—-29.99 +£2.94,
! = —0.99 + 1.56,
my? =123+£0.18, iy ? =—023+£0.44,
it = —3.27 +3.99,
M = —0.04 £+ 0.20, (49)

with y? = 0.05 for 2 degrees of freedom. The rather low
value of y? is nothing but a consequence of the working
assumptions. The errors indicated in the best-fit param-
eters come from the fit only and do not include any
theoretical uncertainties. According to expectations, the
best-fit parameters roughly follow the natural suppression
in 1/N, and the symmetry-breaking parameters suggested
in Table III, i.e., the leading-order coefficients rh}’o and
ﬁzé’o coming from the singlet are the most significant ones,
followed by the coefficients from the 8, 10 + 10, 27, and
64 representations, which tend to be less significant.
For the latter, the errors obtained are systematically
comparable to the central value, so they are poorly
determined.

With the best-fit parameters, the predicted baryons
masses My are listed in Table IV, where

My = ZM’,
1

and Mg are the contributions to Mg for I =0, ..., 3, from
the different flavor representations M

ZMg” .

m

(50)

Ml =

(51)

The numerical values of the mass terms M% displayed in
Table IV clearly follow an overall hierarchy indicated by
1/N, and SB effects, namely, the leading term MY is more
significant than M}, M%, and M3, which in turn get

TABLE IV. Mass of baryon B, Mz = >, M, and its contributions M4 = 3", M}"" using the best-fit parameters (49). Mass values
are given in MeV. The entries at the bottom line indicate the naive symmetry-breaking parameters associated with M’ g’l at leading order

in SB [4].
B MB MOB M};O M%O M?'O M%4,0 M}g M%l MIIBO-%—E.I M?‘l M%4.1 M%} M?’Z Mg4,2 Mg4.3
n 939580 938.9141151.207-210.339-1.954 0.000 0.647 1.787 0.011 —1.I51 0.000 0.019 0.019 0.000 0.000
p 938.287 938.9141151.207 —210.339 —1.954 0.000 —0.647 —1.787 —0.011 1.151 0.000 0.019 0.019 0.000 0.000
>t 1189.3841193.1741151.207 41.315 0.651 0.000—-4.039 —4.050 0.011 0.000 0.000 0.249 0.249 0.000 0.000
¥ 1192.6561193.1741151.207  41.315 0.651 0.000 0.000 0.000 0.000  0.000 0.000—-0.518—-0.518 0.000 0.000
X~ 1197.4631193.1741151.207 41.315 0.651 0.000 4.039 4.050 —0.011 0.000 0.000 0.249 0.249 0.000 0.000
2= 1321.7221318.278 1151207 169.024—1.954 0.000 3.425 2263 0011  1.151 0000 0.019 0.019 0.000 0.000
20 1314.8721318.278 1151207 169.024 —1.954 0.000—3.425-2.263 —0.011 —1.151 0.000 0.019 0.019 0.000 0.000
A 1115.6971115.7541151.207 —41.315 5.862 0.000 0.000 0.000 0.000 0.000 0.000—-0.058 —0.058 0.000 0.000
SOA  —1.719 0.000 0.000 0.000 0.000 0.000-1.719 0.275 0.000 -—=1.994 0.000 0.000 0.000 0.000 0.000
ATt 1246.1451247.963 1388.517 —141.997 0.796 0.647 —2.425-2.833  0.000 0.455 —0.047 0.612 0.726 -0.114 —0.006
A" 1246.608 1247.963 1388.517 —141.997 0.796 0.647—0.808-0.944 0.000  0.152 —0.016 —0.564 —0.657 0.093 0.016
A0 1248.192 1247.963 1388.517 —141.997 0.796 0.647 0.808 0.944 0000 —0.152 0.016-0.564—0.657 0.093 —0.016
A~ 1251.006 1247.9631388.517 —141.997 0.796 0.647 2.425 2.833 0.000 -0.455 0.047 0.612 0.726-0.114 0.006
>+ 1382.842 1384.604 1388.517 0.000 —1.327 —=2.586 -2.186 —1.888  0.000 —0.455 0.158 0.422 0.173 0.249 0.001
>*0 1383.7121384.604 1388.517 0.000 —1.327 -2.586 0.000 0.000 0.000 0.000 0.000—-0.893 -0.519-0.374 0.000
T 1387.2111384.6041388.517  0.000—1.327-2.586 2.186 1.888 0.000  0.455 —0.158 0.422 0.173 0.249 —0.001
2 1535.2111533.598 1388.517 141.997-0.796 3.879 1.709 0.944 0.000  0.607 0.158—0.097 —0.035—-0.062 0.001
=0 1531.7901533.598 1388.517 141.997 -0.796 3.879—1.709-0.944 0.000 —-0.607 —0.158 —0.097 —0.035 —0.062 —0.001
Q1672458 1672313 1388.517 283.993 2.388-2.586 0.000 0.000 0.000  0.000 0.000 0.145 0.104 0.042 0.000
01)  O) 0@ O O) O(ce) O(ee) O(e'e?) O(e") O(e"e) O(e"e!)
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suppression factors, the latter being the most suppressed
one. Within each [ sector, contributions from flavor
presentation mi, M?’I , also exhibit a hierarchy, which
roughly follows the expected orders. This confirms the
findings of Ref. [4].

V. BARYON MASS RELATIONS

A number of interesting relations among baryon masses
are obtained by successively neglecting operators in the
mass expansion (50). This was done in detail in Ref. [4],
where the isospin sectors I = 0, 1, 2, 3 were classified. A
complete list of those relations is provided in Table II of
that reference. In this section, some mass relations are
evaluated both analytically and numerically, as an appli-
cation of the best-fit parameters (49).

A. I=0 baryon mass relations

The mass combinations transforming as / = 0 are found
to be [4]

1
N():E(Mn +MP)’ (528.)
1
1
Ay = M, (52d)
1
AOZZ(MA+-+MA+ +MA0 +MA_)7 (526)
1
— 1
Ep = 5 (Mz-- + M) (52g)
Q) = Mq-. (53)

Two well-known mass relations can be tested, namely,
the Gell-Mann—Okubo mass relation and the decuplet equal
spacing rule. The former can be written as

3 1 1 1_ L 290 L 0
ZAO+ZZO_ENO_§:0:_6Nle _6N%m2
3 a0 3 20
TN, Ton2™
= 6.45 MeV, (54)

which is broken by the 27 flavor representation at order
O(€") by the first and second summands and at order O(e?)
by the third and fourth summands on the right-hand side.

The equal spacing rule is usually written as

Dy — S5 =55 -5 = 55— Q. (55)

Two separate relations yield

(g —Z) — (X5 — Ep)
P 5
=3, TNz

15 ~ 27,0 3
AT

2272, 3 70
my " 4 —miy"
2 1
N,

~ 64,2 27 ﬁ164’0 (56)

+ + =0
N2 TNz

and

15 27,0

4 36 _
" i 642 7,640 (57)

+ - m )
N2 N2

thus relations (56) and (57) can be combined to get the most
highly suppressed operators, which come from the 64
representation. This corresponds to the mass relation
[cf. Eq. (4.2) of Ref. [4]]

! . e [ 9
5 (AO - 320 + 3:40 - Qo) = 2N2 m?4’2 + Wﬂl?4’0
— 11.13 MeV, (58)

where the first and second summands on the right-hand side
occur at orders O(e”€) and O(e?*), respectively.

At next subleading order, there is a mass relation given
by [cf. Eq. (4.3) of Ref. [4]]

30 1. 1. 1.7 1 -
2 ZAO+ZZO—§NO—EE‘0 +§(4A0—520—2E‘0+390)
1 ~ 2772 9 ~ 27,0
N2 g™
— 15.67 MeV. (59)

Another interesting relation that originates from the
difference between the average decuplet and octet masses
is [cf. Eq. (4.4) of Ref. [4]]

1 1
7o (480 + 355 + 225 + Qo) — £ (2No + 3¢ + Ao + 28y
3

1’711'0
=237.31 MeV. (60)

Thus, in the large-N,. limit, the baryon decuplet and baryon
octet become degenerate, which is a very well-known
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result [26,27]. At N, = 3 the above expression defines the

average mass difference between decuplet and octet bary-

ons in terms of 7,”.

B. I=1 baryon mass relations

The 7 = 1 mass combinations can be given as

Ny =M, +M,, (61)

) = My — M-, (62)

8, = Mz + M, (63)

Ap =3Mpei + My =My —3My,  (64)
$f = My — My, (65)

8 = Mg + Mz, (66)

along with the off-diagonal mass X°A.
The first test to be performed is —N;, the neutron and
proton mass difference; it yields

g1 O gy 3 gy 1

2 ~ 27,1 2 ~ 27,1
- Wcml - 5—N§mQ
=(4.79-0.79 — 0.42 + 0.02 — 3.64 + 1.33) MeV
= 1.29 MeV. (67)

Notice that the smallness of —/N; does not come from the
sum of small quantities, but rather from partial cancella-
tions of comparable quantities.

In a similar manner, the most highly suppressed I = 1
operators in the mass expansion are the ones from the 64
representation. This leads to the mass relation [cf. Eq. (4.8)
of Ref. [4]]

* =k 12 ~ 64,3 60 ~ 64,1
Al—IOZI—f—lO:.l :mm] ’ +mml ’
c c

= —6.68 MeV, (68)

which gets contributions from orders O(e”¢’) and O(€'€?)
from the first and second summands on the right-hand side,
respectively.

At next order, the Coleman-Glashow relation is obtained,

i ~ 10+10,1
2 My ’
c

= —0.06 MeV, (69)

N1_21+El = =

so violation of this relation comes from the 10+ 10
representation contribution, which is order O(e€’).

Numerically, it is consistent with zero according to its
experimental accuracy.

There are three more [/ =1 mass relations listed in
Ref. [4] [cf. Egs. (4.10), (4.11), and (4.13) of that
reference], namely,

6 2 2
_ 0A _ O ~.381 27,1 ~ 27,1
Nl—_‘1+2\/§2 A—N—sz _SNle —SN%m2
3 ~ 10+10,3 3 ~ 10+10,1
—ngz ’ +2—me s
—11.51 Mev+1m;°+m3 —lﬁz;’ml,
6 6
(70)
* = 14 970 35 49
A]—321—4.:1:N—Cm1 ' +N—%m2
= 10.62 MeV, (71)
and
X —_ 2 o 5 971 120 43 60 g1y
X —25] :N_le +N_% 5 _7N%m1 —7N%m1
=247 MeV. (72)

Equation (70) depends on the coefficients ﬁaé0+m’3 and
iy®™%! which remain unknown unless there is a piece of
information that allows one to constrain them. Notice that
Egs. (71) and (72) can be combined to get Eq. (68), so they

are not really independent.

C. I =2 baryon mass relations

As for I = 2, there are three mass splittings, namely [4],

22 - M2+ - ZMEO +sz, (73)
AZZMA++—MA+—MAO+MA7, (74)
Z; = M2*+ - ZMZ*O +M2*—. (75)

Direct evaluation of the above expressions leads to

4 4
s, 272 | % 2212

B
= 1.53 MeV, (76)
8 272, 20 57 8 612
A, :N_le +N—%m2 ' +7N%m1
=235 MeV, (77)

and
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(1

FIG. 1. Schematic representation of mass splittings in the
different channels / = 0, 1, 2 of baryon octet.

* 4 ~ 272 10 ~ 2772 24 ~ 64,2
22:N—le N—gm2' —7—]\,%7)11
—2.63 MeV. (78)

The most highly suppressed relation that can be obtained
is [cf. Eq. (4.15) of Ref. [4]]

8 ~ 64,2
a2
2

A, —25 =

= —2.91 MeV, (79)

which is order O(€”¢).

D. I=3 baryon mass relations

There is a single mass relation for / = 3, which reads
[cf. Eq. (4.2) of Ref. [4]]

A3 :MA++—3MA+ +3MAO_MA7' (80)

[=2 I=3

=0

3*

A°
A+
At

FIG. 2. Schematic representation of mass splittings in the
different channels 7 = 0, 1, 2, 3 of baryon decuplet.

Straight evaluation of this equation yields

24 ~ 64,3
A3 :N—gml ’

= —0.11 MeV, (81)

which occurs at order O(e”¢’).

The mass relations tested in this section are in good
agreement with the 1/N,. expectations and symmetry-
breaking coefficients and, numerically, are well satisfied.

To close this section, it can be concluded that the
combined expansion in 1/N, and perturbative SB provides
a strong evidence for a mass hierarchy in baryons, as it was
pointed out in Ref. [4]. This can be better appreciated in the
schematic representations of mass splittings displayed in
Figs. 1 and 2 for baryon octet and baryon decuplet,
respectively.

VI. CONCLUDING REMARKS

The lowest-lying baryon masses are studied by consid-
ering a combined expansion in 1/N, and perturbative
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symmetry-breaking corrections. Two main sources account
for the latter, namely, the quark mass differences and
electromagnetic contributions. Thus, from a group theory
point of view, multiple tensor products of SU(3) adjoint
representations are required to incorporate all these effects
in a systematic and organized way. This goal is achieved by
constructing the most general 1/N_ expansions with up to
three free flavor indices. Appropriate setting of these free
indices yields the different / =0, 1, 2, and 3 channels
considered in the analysis. The calculation is facilitated by
the use of flavor projection operators [19,20], which allow
one to separate all irreducible representations involved in
SB, namely, 1, 8, 10+ 10, 27, 35+35, and 64. An
additional simplification is achieved by observing that
practically all operator coefficients that appear in the
analysis can be absorbed in terms of a few effective ones,
19 in total.

The use of experimental [21] and numerical [13] data
allows one to perform a least-squares fit to explore these
effective parameters. The fit yields the values listed in (49).
Although the best-fit values are roughly in accord with
expectations from the 1/N, expansion itself, namely, the 1
representation is the least-suppressed contribution, fol-
lowed by the 8, 10 4 10, 27, and 64, the fit somehow is
not entirely satisfactory so it cannot be regarded as
definitive. The values of A mass differences from
Ref. [13], along with the measured masses recommended
in Ref. [21] are the data used in the fit. Thus, the A masses
listed in Table IV are actual predictions of the approach,
which are in accord with the ones presented in that
reference. Another issue is constituted by the poorly
determined operator coefficients that come from the 64
representation. For the above reasons, although the present
analysis uses more recent data than Ref. [4], particularly the
proton and neutron masses, numerically there are some
consistencies, but not full agreement. A clear example can
be found in the estimated value of the off-diagonal mass
S0A: —1.50 + 0.07 MeV determined in Ref. [30], com-
pared to —1.72 MeV found here. Definitely, additional data
of the masses of spin-3/2 baryons with nonzero strange-
ness will be welcome in the near future to get better
constraints on the free parameters in the approach.

On general grounds, the mass determinations obtained in
the 1/N,. expansion including SB corrections give robust-
ness to the mass hierarchy in the baryon sector pointed out
in Ref. [4]. The schematic representation of mass splitting
of Figs. 1 and 2 allows one to better appreciate this fact.

To close this paper, it should be mentioned that a
common procedure advocated in the literature is to separate
electromagnetic and strong isospin breaking effects to give
two separate values. However, the separation may induce
an ambiguity due to the mechanism by which they are
separated; in a few words, a model dependence may be

induced. In the present analysis, these two effects are
present in the baryon mass expansion and cannot be
untangled a priori. By no means can this be regarded as
a failure of the approach.
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APPENDIX A: NONVANISHING STRUCTURES
[’P(m) ]Wj}alaz

The projection operators [P(")]@1920:% acting on the
operator basis M#%, Eq. (11), yield the nonvanishing
structures listed below,

[P(l)Ml]ﬂlaz = JU®, (Al)
[PUOM, )10 = g0 )2, (A2)
P = e LN =2)
2Nf(Nj = 1)
e EAS (A3)
f
[P(I)Mé]a1a2:3NC(NC+2Nf) aja, _ Nf+2 5a1a2J2’
8 N1 2N, (N2 1)
(A4)
2N, +N,)
PO M e = C—f(SaIaZJZ’ A5
[ 9] Nf<Nf+ 1) ( )
2(N, +N,)
(1) ayay :cif aya, 72
[POM,] NN, e (A6)
AN
[P(S)Mﬂalﬂz = daaeTer, (A7)
N.+N;)(N,—4)
PO M aa :( c f f duae e
[ 5} N? —4
2N
N}% _f4 d41a2€1 {Jr’ Gre }7 (AS)
3(N.+ Ny)N;
[’P(S)Mdalaz — _27&11“2@1]"61
4 N -4
N, +4
—— L gmae g Greal A9
SN (9
[P(8)M7]u]az — du,@e,{]r’ Gre,}’ (AIO)
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[fp( >M9}a'a2 _ %d%azel{_}r Grel} [P(SA)MS]alaz = ifulazel{_]r,Grel}, (A]S)
f
PBIM, |1® = jfaae fJ2 Ter) Al6
+N +2da|aze]{J2,Te]}’ (A]]) [ 11] lf { } ( )
’
’ = 1 1
[73(]0+10)M9]a1a2 :_{Tal ’{JV,GWZ}} ——{TaZ,{Jr,Gml }}’
[P(S)Ml()]alaz _ N +N fda]azel{Jr Grel} 2 2
N;+2 (A17)
+ dvea {2 T}, (A12) _ i
Np+2 [PUOTI0) pp gJarcs = AT 4 G'}}
POMIon = e (AT (AL ey,
[PEIM,|u® = jfameTe (Al14)

Nc(Nc + 2Nf)(Nf — 2) Sa1az _Léal‘hjz
2N(N3-1) Ny -

N.+N/)(N;,—4 2N
_ ( et f)( f )dalazelTe] _—J‘P“-dalaze]{Jr’Grel}’ (A19)

2 2
N% -4 N3 -

[P(27)M5]alaz — {T“l7 Taz} —

3N.(N.+2Ny) 1 Nq+2
PR M (e — G, G —f5 _fi(salaZJz
[PEIMe]% ={ R SN, (V=)

3(N.+ NN, IN;+4
—— - J7 J JumeTe dhraze JV Gre A20
4 N;-4 +2N2 { b (420)
2(N. +Ny)

5a1azj2
NN+ 1)

[’P(27)M9]alaz — _{Tal {Jr Graz}} 4 {Taz {Jr Gml}}

N 4N, 1

dhae J, Gl — dhae J27Te] , A21
N G = s e (T (a21)
2(NC—|-Nf)

5a1a2J2
Ny(N;+1)

1 1
[POIM % = (T, (I, G} + 5 {7 {7, G} -

N N 1
+ fdalaze] {Jr.G™} — 761‘11“261{]2 T}, (A22)
Nf + f

Expressions (A1)-(A22) have been written in terms of the basic operators contained in M4,

APPENDIX B: ANALYTIC EXPRESSIONS FOR PROJECTION OPERATORS
ACTING ON THREE ADJOINTS

The flavor projection operators [75(’”)]“'“2“3”'}’2”3, (25), when acting on the product of three adjoints 1272 -
effectively project out that piece of Qf' 05?05’ transforming in the irreducible representation of dimension m of SU(3),
according to decomposition (8).

The specific structures required by the analysis of baryon mass splittings, /=0, 1, 2, 3, for which
{ai,ar,a5} = {8,8,8}, {a;,a,,a3} = {3,8,8}, {a;,a,,a3} = {3,3,8}, and {a,,a,, a3} = {3,3,3}, respectively, are
listed below.
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It is straightforward to prove that

[ Q1Q2Q3]alazds + [ Q1Q2Q3]alazaz + [ (10+10) Q Q Q3]alazaz + [ Q1Q2Q3]a1a2a;
+ [PP90,0,05) 1 + [PV 0, 0,051 = Qf' 05 05", (B25)

according to the properties obeyed by projection operators.
Structures like [P {Q,,{Q,. 03} }]“®% can easily be obtained from the expressions listed above.

APPENDIX C: FULL EXPRESSIONS FOR BARYON MASSES

The full theoretical expressions for the baryon masses can be expressed in terms of the 21 free operator coefficients
required in the analysis. The expressions read
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