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We present the first theoretical calculation of nonfactorizable charm-quark loop contributions to the
Bs → γlþl− amplitude. We calculate the relevant form factors, HNF

A;Vðk02; k2Þ, and provide convenient

parametrizations of our results in the form of fit functions of two variables, k02 and k2, applicable in the
region below hadron resonances, k02 < M2

J=ψ and k2 < M2
ϕ. We report that factorizable and nonfactorizable

charm contributions to the Bs → γlþl− amplitude have opposite signs. To compare the charm and the
top contributions, it is convenient to express nonfactorizable charming loop contribution as a nonuniversal
(i.e., dependent on the reaction) q2-dependent correction ΔNFC7ðq2Þ to the Wilson coefficient C7. For the
Bs → γlþl− amplitude, the correction is found to be positive, ΔNFC7ðq2Þ=C7 > 0.
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I. INTRODUCTION

This paper reports the first theoretical analysis of non-
factorizable (NF) charming loops in rare flavor-changing
neutral currents (FCNC) Bs → γlþl− decays making use of
theoretical approach formulated in [1].
Charming loops in rare FCNC decays of the B-meson

have visible impact on the B-decay observables [2] and
their reliable theoretical description is necessary for studies
of possible new physics effects (see, e.g., [3–12]).
A number of theoretical analyses of NF charming loops in

FCNC B-decays has been published in the recent years:
In [13], an effective gluon-photon local operator describing
the charm-quark loop has been calculated as an expansion in
inverse charm-quark mass mc and applied to inclusive
B → Xsγ decays (see also [14,15]); in [16], NF corrections
in B → K�γ using local operator product expansion (OPE)
have been studied; NF corrections induced by a local
photon-gluon operator have been calculated in [17,18]
in terms of the light cone (LC) 3-particle antiquark-
quark-gluon Bethe-Salpeter amplitude (3BS) of K�-meson
[19–21] with two field operators having equal coordinates,
h0js̄ð0ÞGμνð0ÞuðxÞjK�ðpÞi, x2 ¼ 0. As noticed already long
ago, local OPE for the charm-quark loop in FCNCB-decays

leads to a power series in ΛQCDmb=m2
c ≃ 1. To sum up

numerically large OðΛQCDmb=m2
cÞn corrections, Ref. [22]

obtained a nonlocal photon-gluon operator describing
the charm-quark loop and evaluated its effect making use
of 3BS of the B-meson in a collinear LC configuration
h0js̄ðxÞGμνðuxÞbð0ÞjB̄sðpÞi, x2 ¼ 0 [23,24]. The same
collinear approximation (known to provide the dominant
3BS contribution to meson tree-level form factors [25,26])
was applied also to the analysis of other FCNCB-decays [27].
In later publications [28–31], it was proven that the

dominant contribution to FCNC B-decay amplitudes is
actually given by the convolution of a hard kernel with
the 3BS in a different configuration; a double-collinear
light cone configuration h0js̄ðyÞGμνðxÞbð0ÞjB̄sðpÞi, where
y2 ¼ 0, x2 ¼ 0, but xy ≠ 0. The corresponding factoriza-
tion formula was derived in [31]. The first application
of a double-collinear 3BS to FCNC Bs → γγ decays was
presented in [32,33].
As a further step, [1] developed a theoretical approach toNF

charming loops in FCNCB-decays based on a generic 3BS of
the B-meson. This approach makes use of rigorous properties
of the generic 3BS: Namely, the generic 3BS of the B-meson
contains new Lorentz structures (compared to the collinear
and the double-collinear configurations) and new three-
particle distribution amplitudes (3DAs) that appear as the
coefficients multiplying these Lorentz structures; analyticity
and continuity of the 3BS as the function of its arguments at
the point xp ¼ yp ¼ x2 ¼ y2 ¼ 0 leads to certain constraints
on the 3DAs [31] which were implemented in the 3BSmodel
of [1].Moreover, [1] applied this approach toBs → γγ decays.
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Here we extend the analysis of [1] to the case of
Bs → γlþl− decays. The paper is organized as follows.
Section II recalls general formulas for the top contribution
to the Bs → γlþl− amplitude and describes the connection
between the charm contribution to the amplitudes of Bs →
γlþl− and Bs → γ�γ� containing two virtual photons in the
final state, including constraints on the latter imposed by
electromagnetic gauge invariance. Section III outlines the
calculation of the factorizable and nonfactorizable charm-
ing-loop contributions to the Bs → γ�γ� amplitude.
Section IV gives numerical predictions for the form factors
HNF

A;Vðk02; k2Þ describing NF charm in Bs → γ�γ� decays
and compares charm contributions with those of the top
quark. Section V presents our concluding remarks.
Appendixes A and B summarize some necessary details
of our theoretical analysis. Appendixes C and D contain
convenient and simple fit formulas for the form factors
HNF

A;Vðk02; k2Þ and FTV;TAðk02; k2Þ in a broad range of their
arguments k02 and k2.

II. TOP AND CHARM CONTRIBUTIONS
TO Bs → γl + l − AMPLITUDE

A standard theoretical framework for the description of
the FCNC b → s transitions is provided by the Wilson
OPE; the b → s effective Hamiltonian describing dynamics
at the scale μ, appropriate for B-decays, reads [34–36] (we
use the sign convention for the effective Hamiltonian and
the Wilson coefficients adopted in [37,38]),

Hb→s
eff ¼ GFffiffiffi

2
p VtbV�

ts

X
i

CiðμÞOb→q
i ðμÞ; ð2:1Þ

GF is the Fermi constant. The basis operators Ob→q
i ðμÞ

contain only light degrees of freedom (u, d, s, c, and
b-quarks, leptons, photons, and gluons); the heavy degrees
of freedom of the SM (W, Z, and t-quark) are integrated
out and their contributions are encoded in the Wilson
coefficients CiðμÞ. The light degrees of freedom remain
dynamical and the corresponding diagrams containing
these particles in the loops—in our case virtual c and u
quarks—should be calculated and added to the diagrams
generated by the effective Hamiltonian. For the SMWilson
coefficients at the scale μ0 ¼ 5 GeV (the corresponding
operators are listed below) we use the recent determination
[corresponding to C2ðMWÞ ¼ −1] from [39]: C1ðμ0Þ ¼
0.147,C2ðμ0Þ¼−1.053,C7ðμ0Þ¼0.330,C9ðμ0Þ ¼ −4.327,
C10ðμ0Þ ¼ 4.262.

A. Top-quark contribution

Top-quark contribution to the B̄s → γlþl− amplitude is
defined as follows [40]:

AðB̄s→γllÞ
top ¼ hγðq0Þlþðp1Þl−ðp2ÞjHb→s

eff jB̄sðpÞi;
q ¼ p1 þ p2: ð2:2Þ

Necessary for the B̄s → γlþl− decays of interest are the
following terms in (2.1),1

Hb→slþl−
eff ¼ GFffiffiffi

2
p αem

2π
VtbV�

ts

×

�
−2imb

C7ðμÞ
q2

· s̄σμνqνð1þ γ5Þb · l̄γμl

þ C9ðμÞ · s̄γμð1 − γ5Þb · l̄γμl

þ C10ðμÞ · s̄γμð1 − γ5Þb · l̄γμγ5l

�
: ð2:3Þ

The C7 part of Hb→slþl−
eff is obtained from

Hb→sγ
eff ¼−

GFffiffiffi
2

p VtbV�
tsC7ðμÞ

e
8π2

mb · s̄σμνð1þγ5Þb ·Fμν

¼GFffiffiffi
2

p VtbV�
tsC7ðμÞ

e
8π2

2mbi · s̄σμνqνð1þγ5Þb ·ϵμðqÞ;

ð2:4Þ

by the replacement ϵμðqÞ → 1
q2 l̄γ

μleQl, Ql ¼ −1, and

corresponds to the diagram Fig. 1(a) with the virtual
photon emitted from the penguin. Notice that the sign of
the b → sγ effective Hamiltonian (2.4) correlates with the
sign of the electromagnetic vertex. For a fermion with
the electric charge Qqe, we use in the Feynman diagrams
the vertex

iQqeq̄γμqϵμ: ð2:5Þ

The B̄s → γ� transition form factors of the basis operators
in (2.3) are defined as [41]

hγðkÞjs̄γμγ5bjB̄sðpÞi¼ ieεαðkÞðgμαk0k−k0αkμÞ

×
FAðk02;k2Þ

MBs

;

hγðkÞjs̄γμbjB̄sðpÞi¼eεαðkÞϵμαk0k
FVðk02;k2Þ

MBs

;

hγðkÞjs̄σμνγ5bjB̄sðpÞik0ν¼eεαðkÞðgμαk0k−k0αkμÞ
×FTAðk02;k2Þ;

hγðkÞjs̄σμνbjB̄sðpÞik0ν¼ ieεαðkÞϵμαk0kFTVðk02;k2Þ: ð2:6Þ

1Our notations and conventions are γ5 ¼ iγ0γ1γ2γ3, σμν ¼
i
2
½γμ; γν�, ϵ0123 ¼ −1, ϵabcd ≡ ϵαβμνaαbβcμdν, e ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

4παem
p

.
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We treat the form factors as functions of two variables,
Fiðk02; k2Þ; here k0 is the momentum emitted from the
FCNC b → s vertex, and k is the momentum of the (virtual)
photon emitted from the valence quark of the B-meson,
p ¼ kþ k0. The constraints on the form factors imposed by
gauge invariance are discussed in Appendix A. Notice that
the amplitude of the operator s̄σμνbk0ν is reduced to a single
Lorentz structure and one form factor FTAðk02; k2Þ if k2 ¼ 0

or k02 ¼ 0.

1. Direct emission of the real photon from valence
quarks of the B-meson

We denote as Að1Þ
top the contribution to the B̄s → γlþl−

amplitude, induced by Hb→slþl−
eff ; the real photon is directly

emitted from the valence s or b quark, and the lþl− pair
is coupled to the FCNC vertex, Figs. 1(a) and 1(b). It
corresponds to the momenta k0 ¼ q, k ¼ p − q, k02 ¼ q2,
and k2 ¼ 0, and thus involves the form factorsFiðq2; 0Þ [42],

Að1Þ
top ¼ hγðkÞ; lþðp1Þ; l−ðp2ÞjHb→slþl−

eff jB̄sðpÞi

¼ GFffiffiffi
2

p VtbV�
ts
αem
2π

eεαðkÞ½ϵμαk0kAð1Þ
V ðq2Þl̄ðp2Þγμlð−p1Þ − iðgμαk0k − k0αkμÞAð1Þ

A ðq2Þl̄ðp2Þγμlð−p1Þ

þ ϵμαk0kA
ð1Þ
5V ðq2Þl̄ðp2Þγμγ5lð−p1Þ − iðgμαk0k − k0αkμÞAð1Þ

5A ðq2Þl̄ðp2Þγμγ5lð−p1Þ�; k0 ¼ q; k ¼ p − q; ð2:7Þ

with

Að1Þ
VðAÞðq2Þ ¼

2C7ðμÞ
q2

mbFTVðTAÞðq2; 0Þ

þ C9ðμÞ
FVðAÞðq2; 0Þ

MB
;

Að1Þ
5Vð5AÞðq2Þ ¼ C10ðμÞ

FVðAÞðq2; 0Þ
MB

: ð2:8Þ

2. Direct emission of the virtual photon from valence
quarks of the B-meson

Another contribution to the amplitude, Að2Þ
top, describes

the process when the real photon is emitted from the
penguin FCNC vertex, whereas the virtual photon is
emitted from the valence quarks of the B-meson, see
Fig. 1(c).
The amplitude Að2Þ

top has the same Lorentz structure as the
C7 part of Að1Þ where now k ¼ q, k0 ¼ p − q, k02 ¼ 0, and
k2 ¼ q2. The amplitude thus involves the form factors

FTA;TVð0; q2Þ, with FTAð0; q2Þ ¼ FTVð0; q2Þ (see details in
Appendix A),

Að2Þ
top ¼ hγðk0Þ; lþðp1Þ; l−ðp2ÞjHb→sγ

eff jB̄sðpÞi

¼ GFffiffiffi
2

p VtbV�
ts
αem
2π

eεμðk0Þl̄ðp2Þγαlð−p1Þ

× ½ϵμαk0kAð2Þ
V ðq2Þ − iðgμαk0k − k0αkμÞAð2Þ

A ðq2Þ�;
k ¼ q; k0 ¼ p − q; ð2:9Þ

with

Að2Þ
VðAÞðq2Þ ¼

2mbC7ðμÞ
q2

FTVðTAÞð0; q2Þ: ð2:10Þ

Obviously,

AðB̄s→γllÞ
top ¼ Að1Þ

top þ Að2Þ
top: ð2:11Þ

(a) (b) (c)

FIG. 1. Diagrams describing top-quark contributions to B̄s → γlþl− amplitude. Dashed circle denotes the O7 operator, solid circle
denotes the O9 operator. Diagrams (a) and (b) describe the contribution Að1Þ where the real photon is emitted by spectator s-quark.
Diagram (c) describes Að2Þ where the real photon is emitted from the penguin. We do not show 1=mb-suppressed diagrams where real or
virtual photon is emitted by spectator b-quark, see [42] for details.
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B. Charm-quark contribution

The charm-loop contribution to the Bs → γlþl−
amplitude,

AðB̄s→γllÞ
charm ¼ hγðq0Þlþðp1Þl−ðp2ÞjHb→sc̄c

eff jB̄sðpÞi;
q ¼ p1 þ p2; ð2:12Þ

is described by the diagrams of Fig. 2. Hb→sc̄c
eff includes

four-quark operators and may be written in the form

Hb→sc̄c
eff ¼ Hb→sc̄c½1×1�

eff þHb→sc̄c½8×8�
eff ; ð2:13Þ

Hb→sc̄c;½1×1�
eff ¼ −

GFffiffiffi
2

p VcbV�
cs

�
C1 þ

C2

3

�
s̄γμð1 − γ5Þ

× b · c̄γμð1 − γ5Þc; ð2:14Þ

Hb→sc̄c½8×8�
eff ¼ −

GFffiffiffi
2

p VcbV�
csð2C2Þs̄γμð1 − γ5Þ

× tab · c̄γμð1 − γ5Þtac: ð2:15Þ

Let us introduce the amplitude of the transition into two
virtual photons γ0 and γ,

AðB̄s→γ0γÞ
charm ¼ hγ0ðk0ÞγðkÞjHb→sc̄c

eff jB̄sðpÞi;
p ¼ k0 þ k; ð2:16Þ

where the photon γ0ðk0Þ is emitted by the c-quark, the
photon γðkÞ is emitted from the s-quark and no symmet-
rization over photons is performed at this point (but is done
later). The amplitude (2.16) may be written as [42]

hγ0ðk0ÞγðkÞjHb→sc̄c
eff jB̄sðpÞi ¼ −εμðk0ÞεαðkÞHμαðk0; kÞ;

ð2:17Þ

with

Hμαðk0; kÞ ¼ i
Z

dxeik
0xh0jTfeQcc̄ðxÞγμcðxÞ;

eQss̄ð0Þγαsð0ÞgjB̄sðpÞi; p¼ kþ k0: ð2:18Þ

Here quark fields are understood as Heisenberg field
operators with respect to all SM interactions. The matrix
element (2.18) has the Lorentz structure dictated by
conservation of charm-quark and strange-quark vector
currents that requires kαHμαðk0;kÞ¼0 and k0μHμαðk0;kÞ¼0

(notice the absence of any contact terms),

Hμαðk0;kÞ¼−
GFffiffiffi
2

p VcbV�
cse2

�
ϵμαk0kHV − iðgαμkk0−k0αkμÞHA

− i

�
k0α−

kk0

k2
kα

��
kμ−

kk0

k02
k0μ

�
H3

�
; ð2:19Þ

with the invariant form factors Hi depending on two
variables, Hiðk02; k2Þ (Hi include electric charges Qs and
Qc). The singularities in the projectors at k2 ¼ 0 and
k02 ¼ 0 should not be the singularities of the amplitude
Hμαðk0; kÞ, leading to the constraints,

H3ðk02 ¼ 0; k2Þ ¼ H3ðk02; k2 ¼ 0Þ ¼ 0: ð2:20Þ

As the result, H3 does not contribute to the Bs → γlþl−
amplitude: to obtain the latter, Hμα should be multiplied by
either ϵαðkÞl̄γμl or ϵμðk0Þl̄γαl. In each case, those terms
in the H3-part of Hμα containing k0μ or k0α vanish in the
Bs → γlþl− amplitude; the contribution of the ‘regular’
structure kαkμ also vanishes because the form factor
H3 ¼ 0 if k2 ¼ 0 or k02 ¼ 0.
For the amplitude AðB̄s→γllÞ

charm we obtain,

AðB̄s→γllÞ
charm ¼ −

eQl

q2
fHμαðq;q0Þl̄γμlεαðq0Þ

þHμαðq0; qÞεμðq0Þl̄γαlg; Ql ¼ −1: ð2:21Þ

(a) (b) (c)

FIG. 2. The charm-loop contribution to the Bs → γlþl− amplitude. (a) and (b) are nonfactorizable (NF) contributions induced by

Hb→sc̄c½8×8�
eff (solid squares), (c) factorizable (F) contribution induced by Hb→sc̄c½1×1�

eff (empty squares); a similar factorizable contribution
with the real photon emitted from the charm-quark loop vanishes and is not shown.
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C. Summing top and charm contributions

Adding charm contributions to the top contributions and
taking into account that VtbV�

ts ≃ −VcbV�
cs leads to the

following simple modifications [42]:

Að1Þ
i ðq2Þ → 2C7

q2
mbFTiðq2; 0Þ þ C9

Fiðq2; 0Þ
MB

þ 8π2
Hiðq2; 0Þ

q2
;

Að2Þ
i ðq2Þ → 2C7

q2
mbFTið0; q2Þ þ 8π2

Hið0; q2Þ
q2

;

i ¼ V; A: ð2:22Þ

The full amplitude is the sum of Að1Þ and Að2Þ,

Aiðq2Þ¼
2C7

q2
mbðFTiðq2;0ÞþFTið0;q2ÞÞþC9

Fiðq2;0Þ
MB

þ8π2
Hiðq2;0ÞþHið0;q2Þ

q2
; i¼V;A: ð2:23Þ

The functions Hiðk02; k2Þ which contain factorizable and
nonfactorizable charming loop contributions will be dis-
cussed in the next section.

III. CHARMING LOOP CONTRIBUTIONS
TO Bs → γ�γ�

In Eq. (2.18), quark fields are the Heisenberg operators
in the SM, i.e., the corresponding S-matrix includes weak
interactions of quarks. So we need to expand the S-matrix
to the first order in weak interaction.

A. Factorizable contribution of the charming loop

Factorizable contributions of the charming loop emerge in

AðB̄s→γ0γÞ
charm;F ¼ hγ0ðk0Þ; γðkÞjHb→sc̄c½1×1�

eff jB̄sðpÞi; ð3:1Þ

when no gluons are exchanges between the charm-quark
loop and the B-meson loop (whereas all gluon exchanges
inside the loops are allowed). The corresponding HF

μαðk0; kÞ
reads

HF
μαðk0; kÞ ¼

GFffiffiffi
2

p VcbV�
cs
3C1 þ C2

3
eQcΠcc

μνðk0Þ
�
i
Z

dyeik
0yh0jTfs̄γνð1 − γ5ÞbðyÞ; eQss̄γαsð0ÞgjB̄sðpÞi

�
; ð3:2Þ

where the expression in brackets is just the amplitude
of (A2) and

Πcc
μνðk0Þ ¼ i

Z
dxeik

0xh0jTfc̄γμcðxÞ; c̄γνcð0Þgj0i

¼ ð−gμνk02 þ k0μk0νÞΠccðk02Þ: ð3:3Þ

For the invariant function ΠccðsÞ we may write the spectral
representation with one subtraction,

Πccðk02Þ ¼ Πccð0Þ þ
k02

π

Z
ImΠccðsÞ
sðs − k02Þ ds. ð3:4Þ

At k02 ≪ 4m2
c, Πccðk02Þ can be calculated in perturbative

QCD. At leading order in αs, one finds

ImΠccðsÞ ¼
Nc

12π

2m2
c þ s
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
c

s

r
;

Πccð0Þ ¼
9

16π2

�
−
8

9
ln

�
mc

mb

�
−
4

9

�
: ð3:5Þ

The factorizable contributions to the form factors
Hiðk02; k2Þ are related to f; a1; a2 (see Appendix A) as
follows

HF
Vðk02; k2Þ ¼

3C1 þ C2

3
Qck02Πc̄cðk02Þ2gðk02; k2Þ; ð3:6Þ

HF
Aðk02; k2Þ ¼

3C1 þ C2

3
Qck02Πc̄cðk02Þ

fðk02; k2Þ
kk0

; ð3:7Þ

HF
3ðk02; k2Þ ¼

3C1 þ C2

3
Qck02Πc̄cðk02Þ

�
f
kk0

þ a1 þ a2

�
:

ð3:8Þ

Obviously, HF
V;A;3ðk02 ¼ 0; k2Þ ¼ 0. Therefore, the factor-

izable c̄c contribution to the amplitude Að2Þ vanish; the c̄c
contributions to Að2Þ comes exclusively from NF gluon
exchanges. The factorizable contribution to Að1Þ takes the
form [HF

3ðk02; k2 ¼ 0Þ ¼ 0 because of the constraint (A4)]

HF
i ðq2;0Þ ¼

3C1þC2

3
Qcq2Πc̄cðq2Þ

Fiðq2;0Þ
MB

; i¼ A;V:

ð3:9Þ

Since 3C1 þ C2 < 0 and for the Bs → γ transition
FV;Aðq2; 0Þ > 0 [42], we find that HF

V;Aðq2; 0Þ < 0 at
q2 > 0.
Clearly, the factorizable c̄c contributions to Að1Þ can be

described as a universal q2-addition to the coefficient C9,
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C9 → Ceff
9 ðq2Þ ¼ C9 þ ΔFC9ðq2Þ;

ΔFC9ðq2Þ ¼ 8π2Qc
3C1 þ C2

3
Πc̄cðq2Þ: ð3:10Þ

Taking into account that C9, C2, and 3C1 þ C2 have the
same sign, and Πc̄cðq2Þ ≥ 0, we find that

δFC9ðq2Þ≡ ΔFC9ðq2Þ=C9 > 0: ð3:11Þ

B. Nonfactorizable contribution of the charming loop

Nonfactorizable (NF) contributions of the charming loop
emerge in

AðB̄s→γ0γÞ
charm;NF ¼ hγ0ðk0Þ; γðkÞjHb→sc̄c½8×8�

eff jB̄sðpÞi: ð3:12Þ

The corresponding HNF
μα has the form

HNF
μα ðk0; kÞ ¼ i3

GFffiffiffi
2

p VcbV�
cse2ð2C2ÞQcQs

Z
dzdxdyeik

0zeiky

× h0jTfc̄γμcðzÞ; c̄ð0Þtaγβð1 − γ5Þcð0Þ; c̄ðxÞtbγνcðxÞgj0i
× h0jTfs̄ðyÞγαsðyÞ; s̄ð0Þtaγβð1 − γ5Þbð0ÞgsBb

νðxÞgjB̄sðpÞi: ð3:13Þ

This expression takes into account photon emission by the B-meson valence s-quark; a 1=mb-suppressed contribution
related to photon emission by the valence b-quark will be omitted. We now outline the procedure of calculatingHNF

μα and for
all details refer to our recent paper [1]:
(1) The amplitude Eq. (3.13) includes the charm-quark loop contribution described by the hVVAi three-point function,

ΓβνμðabÞ
cc ðκ; k0Þ ¼

Z
dx0dzeik0zþiκx0 h0jTfc̄ðzÞγμcðzÞ; c̄ð0Þγβð1 − γ5Þtacð0Þ; c̄ðx0Þγνtbcðx0Þgj0i

¼ 1

2
δabΓβνμ

cc ðκ; k0Þ; ð3:14Þ

where k0 is the momentum of the external virtual photon (vertex containing index μ) and κ is the gluon momentum
(vertex containing index ν). Here tc, c ¼ 1;…; 8 are SUcð3Þ generators normalized as TrðtatbÞ ¼ 1

2
δab.

The octet current c̄ð0Þγβð1 − γ5Þtacð0Þ is a charm-quark part of the octet-octet weak Hamiltonian. Taking into
account vector-current conservation, it is convenient to parametrize Γβνμ

cc ðκ; k0Þ as follows [43]:

Γβνμ
cc ðκ; k0Þ ¼ −iðκβ þ k0βÞϵνμκk0F0 − iðk02ϵβνμκ − k0μϵβνk0κÞF1 − iðκ2ϵβμνk0 − κνϵβμκk

0 ÞF2: ð3:15Þ

The form factors F0;1;2 are functions of three independent invariant variables k02, κ2, and κk0. We use a convenient
representation of the one-loop form factors in the form [1],

Fiðκ2; κk0; k02Þ ¼
1

π2

Z1
0

dξ
Z1−ξ
0

dη
Δiðξ; ηÞ

m2
c − 2ξηκk0 − ξð1 − ξÞk02 − ηð1 − ηÞκ2 ; i ¼ 0; 1; 2;

Δ0 ¼ −ξη; Δ1 ¼ ξð1 − η − ξÞ; Δ2 ¼ ηð1 − η − ξÞ: ð3:16Þ

As shown in Sec. III of [1], the operator describing the contribution of the charm-quark loop may be written in the
form containing only Ga

να,

Z
dκe−iκxΓβνμðabÞ

cc ðκ; k0ÞBb
νðxÞdx ¼ 1

4

Z
dκe−iκxΓ̄βνμξ

cc ðκ; k0ÞGa
νξðxÞdx; ð3:17Þ

with

Γ̄βνμξ
cc ðκ; k0Þ ¼ ðκβ þ k0βÞϵνμξk0F0 þ ðk0μϵβνξk0 þ k02ϵβνμξÞF1 þ ðκβϵξνμk0 þ κμϵξβνk

0 − κk0ϵξβνμÞF2: ð3:18Þ
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(2) Making use of this result for the charm-quark hVVAi triangle, we have

HNF
μα ¼ −

GFffiffiffi
2

p VcbV�
cse2ð2C2ÞQsQcH̃NF

μα ðk0; kÞ; ð3:19Þ

H̃NF
μα ðk0;kÞ¼

1

4ð2πÞ8
Z

dk̃dye−iðk̃−kÞydxdκe−iκxΓ̄βνμξ
cc ðκ;k0Þh0js̄ðyÞγη k̃þms

m2
s − k̃2

γμð1− γ5ÞtbGb
νξðxÞbð0ÞjB̄sðpÞi: ð3:20Þ

For k02 ¼ 0 or k2 ¼ 0, H̃NF
μα contains two form factors,

H̃NF
μα ðk0; kÞ ¼ H̃NF

V ϵμαk0k − iH̃NF
A ðgρηk0k − kμk0αÞ; ð3:21Þ

such that

HNF
i ðk02; k2Þ ¼ 2C2QsQcH̃NF

i ðk02; k2Þ: ð3:22Þ

(3) The B-meson structure contributes to HNF
μα via the full set of 3BS,

h0js̄ðyÞΓitabð0ÞGa
ναðxÞjB̄sðpÞi; ð3:23Þ

with Γi the appropriate combinations of γ-matrices. This quantity is not gauge invariant, since it contains field
operators at different locations. To make it gauge-invariant, one needs to insert Wilson lines between the field
operators. To simplify the full consideration, it is convenient to work in a fixed-point gauge, where the Wilson lines
reduce to unity factors.
When the coordinates x and y are independent variables, the 3BS has the following decomposition [1]:

h0js̄ðyÞGνξðxÞΓbð0ÞjB̄sðpÞi ¼
fBM3

B

4

Z
Dðω;λÞe−iλyp−iωxpTr

�
γ5Γð1þ=vÞ

×
�
ðpνγξ −pξγνÞ

1

MB
½ΨA −ΨV �− iσνξΨV −

ðxνpξ − xξpνÞ
xp

�
XðxÞ
A þ =x

xp
MBWðxÞ

�

þðxνγξ − xξγνÞ
xp

MB

�
YðxÞ
A þWðxÞ þ =x

xp
MBZðxÞ

�
−
ðyνpξ− yξpνÞ

yp

�
XðyÞ
A þ y

yp
MBWðyÞ

�

þðyνγξ − yξγνÞ
yp

MB

�
YðyÞ
A þWðyÞ þ y

yp
MBZðyÞ

�
− iϵνξμβ

xμpβ

xp
γ5X̃ðxÞ

A

þ iϵνξμβ
xμγβ

xp
γ5MBỸ

ðxÞ
A − iϵνξμβ

xμpβ

xp
γ5X̃ðyÞ

A þ iϵνξμβ
xμγβ

xp
γ5MBỸ

ðyÞ
A

��
; ð3:24Þ

where

Dðω; λÞ ¼ dωdλθðωÞθðλÞθð1 − ω − λÞ ð3:25Þ

takes into account rigorous constraints on the
variables ω and λ. All invariant amplitudes
Φ ¼ ΨA;ΨV;… are functions of five variables,
Φðω; λ; x2; y2; xyÞ, for which we may write Taylor
expansion in x2; y2; xy. Here we limit our analysis to
zero-order terms in this expansion. The correspond-
ing zero-order terms in Φ’s are functions of dimen-
sionless arguments λ and ω and are referred to as the
Lorentz 3DAs.
The normalization conditions for ΨA and ΨV have

the form [24],

Z
Dðω; λÞΨAðω; λÞ ¼

λ2E
3M2

B
;

Z
Dðω; λÞΨVðω; λÞ ¼

λ2H
3M2

B
: ð3:26Þ

A number of Lorentz structures in (3.24) contain
singularities at xp ¼ 0 and yp ¼ 0. Since 3BS
(3.24) is a continuous regular function at the point
x2 ¼ 0, y2 ¼ 0, xp ¼ 0, yp ¼ 0, the absence of
singularities at xp → 0 and yp → 0 leads to a
number of constraints on the corresponding 3DAs
[31]; namely, the primitives of these 3DAs should
vanish at the boundaries of the 3DA support regions.
The appropriate modifications of 3DAs at the upper
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endpoint region of ω and λ have been developed
in [1]. Here we follow the approach of [1] and refer
to that publication for details.

(4) Making use of Eq. (3.24) (i) reduces the matrix
element in Eq. (3.20) to trace calculation and
(ii) reduces the integrations over x and y to δðκ þ
ωpÞδðk̃ − kþ λpÞ (see details in [1]). Using these
δ-functions to integrate over κ and k, the form factors
Hi, i ¼ A; V are obtained as integrals of the form

H̃NF
i ðk02;k2Þ¼

Z2ω0

0

dω
Z2ω0−ω

0

dλ
Z1
0

dξ

×
Z1−ξ
0

dηh̃NFi ðω;λ;ξ;ηjk02;k2Þ: ð3:27Þ

Here h̃i are linear combinations of the 3DAs entering
Eq. (3.24) and their primitives, and include the form
factors F0;1;2 describing the charming hVVAi tri-
angle and the s-quark propagator. As an illustration,
we present the leading part of the ψA and ψV

contribution to h̃NFV ðk02; k2Þ [neglecting in the nu-
merator all powers of λ ¼ OðΛQCD=mbÞ and
ω ¼ OðΛQCD=mbÞ]

h̃Vðω; λ; ξ; ηjk02; k2Þ

¼ −
1
2
fBM4

B

m2
s þ λð1 − λÞM2

B − ð1 − λÞk2 − λk02

× fðΨA þ ΨVÞ½ðM2
B þ k02 − k2ÞF0 − 2k02F1�

− 2ΨAk02½F0 − 3F1�g: ð3:28Þ

The form factors F0;1;2 given by Eq. (3.16) depend
on ξ and η and should be evaluated for κ ¼ −ωp.
Notice that F0 < 0 and thus H̃Vðk02; k2Þ > 0; the
form factor H̃Aðk02; k2Þ turns out numerically close
to H̃Vðk02; k2Þ.2

IV. RESULTS FOR THE Bs → γl + l − NF
CHARMING-LOOP FORM FACTOR

Our further calculation directly follows the approach
of [1] with the difference that now both photons are virtual.

A. Model for 3DAs

Following [1], we make use of the set of 3DAs of local-
duality (LD) model of [24,44] and perform the appropriate

modifications of the 3DAs XðxÞ
A ; XðyÞ

A ;…. All necessary
details including the explicit expressions of the 3DAs are

given in Sec. IV of [1] and will not be repeated here. As a
reference, we present just the Lorentz 3DAs ΨA and ΨV of
the LD model [24],

ΨAðω; λÞ ¼ ðϕ3 þ ϕ4Þ=2;
ΨVðω; λÞ ¼ ð−ϕ3 þ ϕ4Þ=2 ð4:1Þ

with

ϕ3 ¼
105ðλ2E − λ2HÞ
32ω7

0M
2
B

λω2ð2ω0 − ω − λÞ2θð2ω0 − ω − λÞ;

ð4:2Þ

ϕ4 ¼
35ðλ2Eþλ2HÞ
32ω7

0M
2
B

ω2ð2ω0−ω−λÞ3θð2ω0−ω−λÞ: ð4:3Þ

Dimensionless parameter ω0 is related to λB, the inverse
moment of the B-meson LC distribution amplitude, as

ω0 ¼
5

2

λB
MB

: ð4:4Þ

For this model, the integration limits take the following
form (2ω0 < 1):

Z
Dðω;λÞθð2ω0−ω−λÞð…Þ¼

Z2ω0

0

dω
Z2ω0−ω

0

dλð…Þ: ð4:5Þ

The form factors HA;Vðk02; k2Þ have explicit linear depend-
ence on λ2E;H, so we write

HNF
i ðk02; k2Þ ¼ 2C2QsQc½RiEðk02; k2Þλ2E þ RiHðk02; k2Þλ2H�;

i ¼ A; V: ð4:6Þ

QCD sum rules suggest an approximate relation [24],

λ2H ≃ 2λ2E: ð4:7Þ

Then, the appropriate combinations of the form factors
which describe NF charm contributions have the form

Riðk02; k2Þ ¼ RiEðk02; k2Þ þ 2RiHðk2; k2Þ;
Hiðk02; k2Þ ¼ 2C2QsQcλ

2
ERiðk02; k2Þ; i¼ A;V: ð4:8Þ

Combining (4.7) with QCD equations of motion, 3BS
model used in our analysis leads to approximate relations

λ2H ≃ 1.2λ2Bs
; λ2E ≃ 0.6λ2Bs

: ð4:9Þ
2Analytic expressions for h̃i, i ¼ A; V; 3 as a Mathematica file

may be obtained from the authors upon request.
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This leads to an explicit linear dependence of Hi on λ2Bs
.

It should be noticed however that the form factors have
also a complicated implicit dependence on λBs

through a
λBs

-dependent shape of the three-particle distribution
amplitudes of Bs. We present below our results for the
benchmark point [1],

λBs
ð1 GeVÞ ¼ 0.45 GeV: ð4:10Þ

For a discussion of the existing estimates of λBs
and λ2E;H

including their dependence on the scale, we refer to
[45–54]. A remark may be useful before we go to the
results for the form factors; the parameters λ2E;H as well as
the parameter λBs

depend on the scale. We do not discuss
this dependence and perform numerical calculations just
assuming that the form factors are represented in terms of
these parameters at a fixed scale 1 GeV as given in (4.9)
and (4.10). The parameter λBs

is presently not known with
good accuracy (see [53]) and at the same time one observes
a sizeable sensitivity of the form factors HNF

i to its value
[see Fig. 7 in [1] for the form factor HNF

i ð0; 0Þ]. In this
situation, studying the scale dependence of the form factors
HNF

i ðk02; k2Þ induced by the scale dependence of λBs
would

not be useful.

B. Results for the form factors HNF
i ðk02;k2Þ

The analytic expressions (3.27) are based on finite-order
QCD diagrams and thus cannot be trusted near quark
thresholds. For instance, the calculated form factors exhibit
steep rise at negative k2 → 0 which is unphysical, as the
nearest hadron pole lies at k2 ¼ M2

ϕ and the two-meson
threshold lies at k2 ¼ 4M2

K .
We therefore pursue the strategy previously applied in

[1,55] to the form factors of one variable, and extend it to
the case of Riðk02; k2Þ depending on two variables: We first
calculate the form factors Riðk02; k2Þ using the analytic
expressions (3.27) in the rectangular region relatively far
from quark thresholds in QCD diagrams,

0 < k02ðGeV2Þ < 4; −5 < k2ðGeV2Þ < −0.6: ð4:11Þ

We then interpolate the results obtained in this region as
function of two variables k02 and k2 by a formula (C1)
which takes into account the correct location of the hadron
poles at k02 ¼ M2

J=ψ and k2 ¼ M2
ϕ and contains a number of

fit parameters allowing us to fit Riðk02; k2Þ in the rectan-
gular region (4.11) with an accuracy of not worse than 2%.
The fit formula and its parameters obtained by this
procedure are given in Appendix C. Finally, since our
interpolating formula takes into account correct location of
the lowest meson poles in the k02 and k2 channels, we find it

FIG. 3. Solid lines are the fits. For Rð0; q2Þ, dashed lines present the results of direct calculations.
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eligible to use this formula to extrapolate the form factors to
the region of timelike momenta k02 ≤ M2

J=ψ and k2 ≤ 4M2
K .

Figure 3 shows our numerical predictions for the NF
form factors corresponding to the central values of all
parameters, for the discussion we refer to [1]. As reported
in [1], the accuracy of the predictions for the form factors
depend sizebly on λBs

. However, for a given value of λBs
,

the form factors Hiðk02; k2Þ may be calculated with an
accuracy around 10%.

C. NF charm vs top

The effect of factorizable charming loops may be
conveniently described as a process-independent but
q2-dependent correction to the Wilson coefficient C9,
Eq. (3.10), with δFC9ðq2Þ > 0.
One may in principle describe also NF charming-loop

contribution as a correction to C9; in this case, however, the
correction explodes at small q2. So it is more natural to
describe the effect of NF charm in Bs → γll as additions to
the Wilson coefficient C7 related to different Aiðq2Þ (i ¼ A,
V) in Eq. (2.23),

AVðq2Þ∶ C7 → C7 þ ΔNF
V C7ðq2Þ;

AAðq2Þ∶ C7 → C7 þ ΔNF
A C7ðq2Þ; ð4:12Þ

with the relative correction

δNFi C7ðq2Þ ¼
ΔNF

i C7ðq2Þ
C7

¼ 8π2QsQc
C2

C7

1

mb

H̃NF
i ðq2; 0Þ þ H̃NF

i ð0; q2Þ
FTiðq2; 0Þ þ FTið0; q2Þ

;

i ¼ A; V: ð4:13Þ

The form factors FTiðk02; k2Þ have been evaluated using the
2DAs ϕ� belonging to the same set of the distribution
amplitudes as the 3DAs (4.2) and (4.3), see details in [1].
Convenient parametrizations for the form factors

FTiðk02; k2Þ in a broad range of their momenta are given
in Appendix D.
The Wilson coefficients C2 and C7 have opposite signs,

H̃NF
i ðq2; 0Þ and H̃NF

i ð0; q2Þ as well as FTiðq2; 0Þ and
FTið0; q2Þ are positive [42]. So, the relative correction
δNFi C7 is found to be positive

δNFi C7ðq2Þ > 0: ð4:14Þ

Numerically, δNFA C7ðq2Þ ≃ δNFV C7ðq2Þ. The form factors
Hiðq2; 0Þ are predicted in the region q2 < M2

J=ψ , whereas

Hið0; q2Þ is predicted in the region q2 < 4M2
K [recall that at

q2 > 4M2
K , Hið0; q2Þ have imaginary part]. In principle,

one can model Hið0; q2Þ for q2 > 4M2
K, but this interesting

problem is beyond the scope of this paper. So, Fig. 4(a)
presents δNFi C7ðq2Þ in the range 0 < q2 < 4M2

K , where our
predictions are less model dependent. On the other hand, as
the analysis of [42] has shown, for q2 ≥ 3 GeV2 (i.e., far
above M2

ϕ), the contribution of the amplitude HNF
i ð0; q2Þ

turns out to be much suppressed compared to HNF
i ðq2; 0Þ.

The same occurs for the form factor FTi; in this range of q2,
FTiðq2; 0Þ ≫ FTið0; q2Þ. Therefore the contribution of
HNF

i ð0; q2Þ in the numerator and the contribution of
FTið0; q2Þ in the denominator of (4.13) may be neglected
[one however might need to be careful as both HNF

i ð0; q2Þ
and HNF

i ð0; q2Þ have imaginary parts at q2 > 4M2
K]. Then

the main contribution to δNFC7ðq2Þ=C7 in this range of q2 is

expected to come from the ratio HNF
i ðq2;0Þ

FTiðq2;0Þ . This contribution
is denoted as

δNFi C7ðq2; 0Þ ¼ ΔNF
i C7ðq2; 0Þ=C7; ð4:15Þ

and is shown in Fig. 4(b) for i ¼ V. Closing this section, we
would like to emphasize that factorizable and nonfactor-
izable contributions of the charming loops, HF

i and HNF
i ,

have opposite signs.

(a) (b)

FIG. 4. (a) The relative NF correction δNFV C7ðq2Þ given by Eq. (4.13). (b) δNFC7ðq2; 0Þ given by Eq. (4.13) which dominates in
δNFV C7ðq2Þ for q2 > 3 GeV2.
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V. DISCUSSION AND CONCLUSIONS

This paper extended the theoretical approach to NF
charming loops in FCNC Bs decays recently formulated
in [1] and for the first time reports the results for NF charm
in Bs → γll decays:

(i) We derived analytical expressions for the form
factors HNF

i ðk02; k2Þ, i ¼ A, V, describing NF con-
tribution of charming loops to the amplitude of the
Bs meson transition into two virtual photons (the
first argument, k02 corresponds to the momentum
emitted from the charming loop, whereas the second
argument, k2, corresponds to the momentum emitted
by the valence s-quark of the Bs-meson). These
expressions may be written in the form

HNF
i ðk02; k2Þ
¼ 2C2QsQc½λ2ERiEðk02; k2Þ þ λ2HRiHðk02; k2Þ�

i ¼ A; V; 3: ð5:1Þ
Since an approximate relation λ2H ≃ 2λ2E is expected,
the linear combination

Riðk02; k2Þ ¼ 2RiHðk02; k2Þ þ RiEðk02; k2Þ ð5:2Þ
is appropriate for the description of NF charming
loops in Bs decays such that

HNF
i ðk02; k2Þ ¼ 2C2QsQcλ

2
ERiðk02; k2Þ: ð5:3Þ

We emphasize that according to our analysis,
Riðk02; k2Þ > 0 in the region k02 < M2

J=ψ and k2 <

M2
ϕ and thus HNF

i ðk02; k2Þ is positive in this region.
Recall that the factorizable contribution HF

i ðk02; k2Þ
is negative.

(ii) The analytic expressions allow one to calculate the
form factors Riðk02; k2Þ in a broad range k02 < 4m2

c

and k2 < 0. However, calculations based on finite-
order QCD diagrams are not expected to provide
good description of the physical hadron amplitudes
near quark thresholds (for instance, the calculated
form factors exhibit steep rise at k2 → 0 which is
unphysical, as the nearest meson pole lies at k2¼M2

ϕ

and the two-meson threshold lies at k2 ¼ 4M2
K). So

we pursue the following strategy. We make use of
the results of our calculation in the rectangular
region 0 < k02ðGeV2Þ < 4 and −5 < k2ðGeV2Þ <
−0.6 (i.e., sufficiently far from quark thresholds) and
interpolate them by a simple analytic formula
depending on k02 and k2, which takes into account
the presence of the poles at k02 ¼ M2

J=ψ and k2¼M2
ϕ.

Numerical parameters in this formula are obtained
by the fit to the results of our calculations and
interpolate them with a 2% accuracy in the rectan-
gular region mentioned above. The corresponding

easy-to-use fit formulas for Riðk02; k2Þ are presented
in Appendix C.

(iii) Since the interpolating formulas exhibit the correct
location of the lowest hadron singularities, i.e.,
poles at k02 ¼ M2

J=ψ and at k2 ¼ M2
ϕ, our fit formulas

are expected to provide reliable theoretical predic-
tions for the form factors in a broader range
0 < k02 < M2

J=ψ and−5 GeV2 < k02 < M2
ϕ. Figure 3

shows Rið0; q2Þ and Riðq2; 0Þ related to Bs → γll
decays.

(iv) The contribution of factorizable charm in Bs → γll
decay may be treated as the q2-dependent correc-
tion to the Wilson coefficient C9, such that
ΔFC9ðq2Þ=C9>0 at q2 < M2

J=ψ . At the same time,
the contribution of nonfactorizable charm in
Bs → γll decay may be conveniently treated as the
q2-correction to the Wilson coefficient C7, such that
ΔNFC7ðq2Þ=C7 > 0 at q2 < 4M2

K (at higher values
of q2 the physical NF charming loop has imaginary
part). Figure 4 presents our prediction for these
quantities3;

(v) Our numerical results for the form factors
HNF

i ðk02; k2Þ depend sizeably on the precise value
of the parameter λBs

. In this respect we see the same
picture as for the Bs → γγ decay, see Fig. 7 in [1].
And, similar to the form factors for Bs → γγ decay,
for a fixed value of λBs

, HNF
i ðk02; k2Þ may be

calculated with about 10% accuracy.
It might be useful to recall that the Bs → γll decay ampli-

tude receives contributions from the weak-annihilation
type diagrams [56–59]. The weak-annihilation mechanism
differs very much from the mechanism discussed in
this paper and is therefore beyond the scope of our
interest here. However, weak-annihilation diagrams should
be taken into account in a complete analysis of Bs → γll
decays.
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APPENDIX A: CONSTRAINTS ON THE
TRANSITION FORM FACTORS

We present here a discussion of the constraints
imposed by the electromagnetic gauge invariance on the
hγ�jq̄OibjB̄qðpÞi transition amplitudes induced by the
vector, axial-vector, tensor, and pseudotensor weak cur-
rents. This discussion extends the discussion of [41] and
includes also the case when the real photon is emitted from
the FCNC b → q vertex. The corresponding form factors
are functions of two variables, k02 and k2, where k0 is the
momentum of the weak b → q current, and k is the
momentum of the electromagnetic current, p ¼ kþ k0.
Gauge invariance provides constraints on some of the form
factors describing the transition of Bq to the real photon
emitted directly from the quark line, i.e., for the form
factors at k2 ¼ 0.
These form factors fully determine the amplitudes of the

FCNC B-decays into leptons in the final state. For instance,
the four-lepton decay of the B meson requires the form
factors fiðk02; k02Þ for 0 < k2; k02 < M2

B. For the case of
the B → γlþl− transition one needs the form factors
fiðk02 ¼ q2; k02 ¼ 0Þ and fiðk02 ¼ 0; k02 ¼ q2Þ, where q
is the momentum of the lþl− pair.

1. Form factors of the vector weak current

In case of the vector FCNC current, the gauge-invariant
amplitude contains one form factor gðk02; k2Þ,

Tα;μ ¼ i
Z

dxeikxh0jTfjemα ðxÞ; q̄γμbð0ÞgjB̄qðpÞi

¼ eϵμαk0k2gðk02; k2Þ: ðA1Þ

The amplitude is automatically transverse and is free of
the kinematic singularities so no constraints on gðk02; k2Þ
emerge.

2. Form factors of the axial-vector weak current

For the axial-vector current, the corresponding amplitude
has three independent gauge-invariant structures and three
form factors, and in addition has the contact term which is
fully determined by the conservation of the electromagnetic
current, ∂μjemμ ¼ 0,

T5
α;μ ¼ i

Z
dxeikxh0jTfjemα ðxÞ; q̄γμγ5bð0ÞgjB̄qðpÞi

¼ ie

�
gμα −

kαkμ
k2

�
fðk02; k2Þ

þ ie

�
k0α −

kk0

k2
kα

�
½pμa1ðk02; k2Þ þ kμa2ðk02; k2Þ�

þ iQBq
efBq

kαpμ

k2
: ðA2Þ

HereQB̄q
¼ Qb −Qq is the electric charge of the B̄q meson

and fB̄q
> 0 is defined according to

h0jq̄γμγ5bjB̄qðpÞi ¼ ifB̄q
pμ: ðA3Þ

The kinematical singularity in the projectors at k2 ¼ 0
should not be the singularity of the amplitude, and therefore
gauge invariance yields the following relation between the
form factors at k2 ¼ 0:

½fþðk0kÞa2�k2¼0¼ 0; a1ðk02;k2 ¼ 0Þ¼QB̄q
fB̄q

: ðA4Þ

For the neutral B̄d;s mesons, the contact term is absent
and therefore the form factor a1 should vanish at k2 ¼ 0,
a1ðk02; k2 ¼ 0Þ ¼ 0. This relation is fulfilled automatically,
as the two contributions, corresponding to the photon
emission from the valence b-quark and from the valence
s, d-quark cancel each other at k2 ¼ 0.
The amplitude of the transition to the real photon is

described by a single form factor,

hγðkÞjq̄γμγ5bjB̄qðpÞi
¼ −ieεαðkÞðgμαk0k − k0αkμÞa2ðk02; k2 ¼ 0Þ: ðA5Þ

3. Form factors of the tensor weak current

The transition amplitudes induced by the tensor weak
current can be decomposed in the Lorentz structures
transverse with respect to kα,

Tα;μν ¼ i
Z

dxeikxh0jfTjemα ðxÞ; q̄σμνbð0ÞgjB̄qðpÞi

¼ ie

�
ϵμναp −

kα
k2

ϵμνkp

�
g1ðk02; k2Þ þ ieϵμναkg2ðk02; k2Þ

þ ie

�
pα −

pk
k2

kα

�
ϵμνk0kg0ðk02; k2Þ. ðA6Þ

The contact terms are absent in this amplitude as well as in
the amplitude of the pseudotensor current. The kinematic
singularity of the projectors at k2 ¼ 0 should not be the
singularity of the amplitude, therefore

½g1 − ðkpÞg0�k2¼0 ¼ 0: ðA7Þ

Multiplying (A6) by k0ν, we obtain the penguin transition
amplitude,

i
Z

dxeikxh0jfTjemα ðxÞ; q̄σμνk0νbð0ÞgjB̄qðpÞi

¼ ieϵμαkpðg1 þ g2Þ: ðA8Þ

Notice that the penguin amplitude contains only one
combination of the form factors. Nevertheless, the
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requirement of the regularity of the amplitude (A6) yields
the constraint (A7).

4. Form factors of the pseudotensor weak current

The transition amplitude of the pseudotensor weak
current is given in terms of the same form factors as the
amplitude (A6), and, similar to (A6), contains no contact
terms,

T5
α;μν ¼ i

Z
dxeikxh0jfTjemα ðxÞ; q̄σμνγ5bð0ÞgjB̄qðpÞi

¼
��

gαν −
kαkν
k2

�
pμ −

�
gαμ −

kαkμ
k2

�
pν

�
eg1

þ ðgανkμ − gαμkνÞeg2
þ
�
pα −

k · p
k2

kα

�
ðkμpν − pνkμÞeg0: ðA9Þ

The kinematical singularity in the projectors at k2 ¼ 0
should cancel in the amplitude, again leading to the
constraint in Eq. (A7).
For the penguin pseudotensor amplitude we then obtain,

i
Z

dxeikxh0jfTjemα ðxÞ;q̄σμνγ5k0νbð0ÞgjB̄qðpÞi

¼eðk0αkμ−gαμkk0Þ
�
g1þg2þ

k02

kk0
g1

�

þe

�
k0α−

kk0

k2
kα

��
kμ−

kk0

k02
k0μ

�
k02

kk0
fkk0g0−g1g: ðA10Þ

Notice that the contribution of the second Lorentz structure
in (A10) vanishes both for k2 ¼ 0 [because of the constraint
of Eq. (A7) at k02 ¼ 0, kp ¼ kk0] and for k02 ¼ 0. However,
it does not vanish for both k2; k02 ≠ 0; therefore, the
second Lorentz structure contributes to the amplitude of
the four-lepton decays.
We can now build the bridge to the form factors which

describe the real photon emission by the valence quarks
defined in Eq. (2.6); denoting the momentum of the lþl−

pair as q, i.e., setting k2 ¼ 0 and replacing k02 → q2, we
obtain the form factors in Eq. (2.6) through the form factors
g; a2; g2; g1ðk02 ¼ q2; k2 ¼ 0Þ,

FVðq2; 0Þ ¼ 2MBgðq2; 0Þ;
FAðq2; 0Þ ¼ −MBa2ðq2; 0Þ; ðA11Þ

FTVðq2; 0Þ ¼ −½g2ðq2; 0Þ þ g1ðq2; 0Þ�;

FTAðq2; 0Þ ¼ −
�
g2ðq2; 0Þ þ

M2
B þ q2

M2
B − q2

g1ðq2; 0Þ
�
: ðA12Þ

The form factors describing the real photon emission from
the penguin, are obtained by setting k02 ¼ 0 and replacing
k2 → q2 in the form factors g1;2ðk02; k2Þ,

FTVð0;q2Þ¼FTAð0;q2Þ¼−½g2ð0;q2Þþg1ð0;q2Þ�: ðA13Þ

APPENDIX B: DERIVATION OF HNF
μα

Here we provide the derivation of Eq. (3.13). Our starting
point is the matrix element,

Hμαðk0; kÞ ¼ i
Z

dzeik
0zh0jTfeQcc̄γμcðzÞ; eQss̄γαsð0ÞgjBsðpÞi; p ¼ k0 þ k; ðB1Þ

where the quark operators are Heisenberg operators in the SM, i.e., the corresponding S-matrix includes weak and strong
interactions. The nonfactorizable contribution is related to the octet-octet part of the weak Hamiltonian and requires the
emission of at least one soft gluon from the charm-quark loop,

HNF
μα ðk0; kÞ ¼ i

Z
dz eik

0zh0jT
�
ēQccðzÞγμcðzÞ; i

Z
dy Lb→sc̄c½8×8�

weak ðyÞ; i
Z

dx LGccðxÞ; eQss̄ð0Þγαsð0Þ
�
jB̄sðpÞi: ðB2Þ

We place Lweak at y ¼ 0 by shifting coordinates of all operators through the translation OðxÞ ¼ eiP̂yOðx − yÞe−iyP̂. Using
the relations h0jeiðP̂yÞ ¼ h0j and e−iðyP̂ÞjBsðpÞi ¼ e−iðpyÞjB̄sðpÞi, and changing the variables x − y → x, z − y → z,
y → −y, we find

HNF
μα ðk0; kÞ ¼ i3e2QcQs

Z
dxdydzeik

0zþikyh0jTfc̄ðzÞγμcðzÞ; Lb→sc̄c½8×8�
weak ð0Þ; LGccðxÞ; s̄ðyÞγηsðyÞgjB̄sðpÞi: ðB3Þ

Taking into account that Lb→sc̄c½8×8�
weak ¼ −Hb→sc̄c½8×8�

weak [the latter given by Eq. (2.13)], we obtain

HNF
μα ðk0; kÞ ¼ −2C2

GFffiffiffi
2

p VcbV�
cse2QcQsi

Z
dxdydzeik

0zþikyh0jTfc̄ðzÞγμcðzÞ; c̄ð0Þγβð1 − γ5Þtacð0Þ; c̄ðxÞγνtbcðxÞj0i

× h0jTfs̄ðyÞγαsðyÞ; s̄ð0Þγβð1 − γ5Þtabð0Þ; Bb
νðxÞgjB̄sðpÞi: ðB4Þ
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It is convenient to insert, under the integral (B4), the identity

Bb
νðxÞ ¼

1

ð2πÞ4
Z

dκdx0Bb
νðx0Þeiκðx−x0Þ: ðB5Þ

This allows us to isolate the contribution of the charm-quark loop ΓβνμðabÞ
cc ðκ; qÞ,

HNF
μα ðk0; kÞ ¼ −2C2

GFffiffiffi
2

p VcbV�
cse2QcQs

i
ð2πÞ4

Z
dyeikydκe−iκx

0 h0jTfs̄ð0Þγβð1 − γ5Þbð0Þ; Bb
νðx0Þ; s̄ðyÞγαsðyÞgjBsðpÞi

×
Z

dxdzeiqzþiκxh0jTfc̄ðzÞγμcðzÞ; c̄ð0Þγβð1 − γ5Þtacð0Þ; c̄ðxÞγνtbcðxÞgj0i|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ΓβνμðabÞ
cc ðκ;qÞ

: ðB6Þ

Using momentum representation for the s-quark propagator

h0jTfsðyÞs̄ð0Þgj0i ¼ 1

ð2πÞ4i
Z

dk̃e−iky
k̃þms

m2
s − k̃2 − i0

; ðB7Þ

we obtain

HNF
μα ðk0; kÞ ¼ −2C2

GFffiffiffi
2

p VcbV�
cse2QcQs

×
1

ð2πÞ8
Z

dk̃dye−iðk−q0Þydxdκe−iκxΓβνμðabÞ
cc ðκ; qÞh0js̄ðyÞγα k̃þms

m2
s − k̃2

γβð1 − γ5ÞtaBb
νðxÞbð0ÞjB̄sðpÞi|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

H̄NF
μα

: ðB8Þ

APPENDIX C: NUMERICAL RESULTS FOR THE
FORM FACTORS RA;Vðk02; k2Þ

Wehave calculated the form factorsRiðk02; k2Þ in the region
−5 < k2ðGeV2Þ < 0 and 0 < k02ðGeV2Þ < 4m2

c. However,
calculations based on finite-order QCD diagrams cannot be
trusted near quark thresholds (for instance, the calculated form
factors exhibit steep rise at k2 → 0which is unphysical, as the
nearest meson pole lies at k2 ¼ M2

ϕ and the two-meson
threshold lies at k2 ¼ 4M2

K). So we pursue the following

strategy. We make use of the results of our calculation in the
restricted rectangular region −5 < k2ðGeV2Þ < −0.6 and
0 < k02ðGeV2Þ < 4 (i.e., relatively far from quark thresholds)
and interpolate them by a simple analytic formulawhich takes
into account the presence of the poles at k02 ¼ M2

J=ψ and

k2 ¼ M2
ϕ. Numerical parameters in this formula are obtained

by the fit in the mentioned restricted area.
For the form factors HV and HA we use the following

fitting function:

RA;Vðy1; y2Þ ¼
R00

ð1 − y1Þð1 − y2Þð1 − g11y1 − g12y21Þð1 − ða20 þ a21y1 þ a22y21Þy2 þ ðb20 þ b21y1 þ b22y21Þy22Þ
;

y1 ≡ k02=M2
J=ψ ; y2 ≡ k2=M2

ϕ: ðC1Þ

This formula takes into account the correct location of meson poles at k02 ¼ M2
J=ψ and k2 ¼ M2

ϕ. The coefficients in this
formula are obtained by interpolation in the region where our results may be trusted. The outcome of the fitting procedure is
given in Table I.

TABLE I. Parameters in (C1) obtained by the interpolation of our numerical results for RV;A.

R00½GeV−1� g11 g12 a20 a21 a22 b20 b21 b22

RV 400.4 −0.204 0.421 0.141 −0.041 −0.044 −0.026 0.006 0.005
RA 398.0 −0.154 0.426 0.141 −0.063 −0.016 −0.026 0.010 0.001
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APPENDIX D: NUMERICAL RESULTS FOR THE
FORM FACTOR FTVðk02; k2Þ

The fit formula for the form factorFTVðk02; k2Þ is obtained
by a similar procedure as described in Appendix C:

(i) The numerical results for FTVðk02; k2Þ are obtained
by evaluating the formulas from Sec. 5B of [1]

and the 2DAs ϕ� given in Eqs. (5.11) and (5.12)
of [1].

(ii) We use the numerical results in the range 0 <
k02ðGeV2Þ < 15 and −5 < k2ðGeV2Þ < −0.6 [i.e.,
far below the quark thresholds located at k02 ¼
ðmb þmsÞ2 and k2 ¼ 4m2

s] and interpolate these
numerical results using the analytic fit formula,

FTVðy1; y2Þ ¼
g00

ð1 − y1Þð1 − y2Þð1 − g11y1 − g12y21Þð1 − ða20 þ a21y1 þ a22y21Þy2 þ ðb20 þ b21y1 þ b22y21Þy22Þ
;

y1 ≡ k02=M2
B�
s
; y2 ≡ k2=M2

ϕ: ðD1Þ

The analytic formula (D1) reflects the correct location of the physical poles at k02 ¼ M2
B�
s
and k2 ¼ M2

ϕ. The fit parameters
obtained by the interpolation procedure are summarized in Table II. The deviation between the fit formula and the results of
the direct calculation are below 2% in the full range where the interpolation is made.

[1] I. Belov, A. Berezhnoy, and D. Melikhov, Charming-loop
contributions in Bs → γγ decay, Phys. Rev. D 108, 094022
(2023).

[2] M. Beneke, G. Buchalla, M. Neubert, and C. T. Sachrajda,
Penguins with charm and quark-hadron duality, Eur. Phys.
J. C 61, 439 (2009).

[3] M. Ciuchini, M. Fedele, E. Franco, A. Paul, and L.
Silvestrini, Lessons from the B0;þ → K�0;þμþμ− angular
analyses, Phys. Rev. D 103, 015030 (2021).

[4] M. Ciuchini, M. Fedele, E. Franco, A. Paul, and L.
Silvestrini, New physics without bias: Charming penguins
and lepton universality violation in b → slþl− decays, Eur.
Phys. J. C 83, 64 (2023).

[5] D. Guadagnoli, B discrepancies hold their ground, Sym-
metry 13, 1999 (2021).

[6] M. Algueró, B. Capdevila, A. Crivellin, and J. Matias,
Disentangling lepton flavour universal and lepton flavour
universality violating effects in b → slþl− transitions,
Phys. Rev. D 105, 113007 (2022).

[7] N.Gubernari,M.Reboud,D. vanDyk, and J.Virto, Improved
theory predictions and global analysis of exclusive b →
sμþμ− processes, J. High Energy Phys. 09 (2022) 133.

[8] T. Hurth, F. Mahmoudi, D. Martinez Santos, and S.
Neshatpour, Neutral current B-decay anomalies, Springer
Proc. Phys. 292, 11 (2023).

[9] A. Greljo, J. Salko, A. Smolkovic, and P. Stangl, Rare b
decays meet high-mass Drell-Yan, J. High Energy Phys. 05
(2023) 087.

[10] M. Ciuchini, M. Fedele, E. Franco, A. Paul, and
L. Silvestrini, Constraints on lepton universality viola-
tion from rare B decays, Phys. Rev. D 107, 055036
(2023).

[11] D. Guadagnoli, C. Normand, S. Simula, and L. Vittorio,
From Ds → γ in lattice QCD to Bs → μμγ at high q2,
J. High Energy Phys. 07 (2023) 112.

[12] D. Guadagnoli, C. Normand, S. Simula, and L. Vittorio,
Insights on the current semi-leptonicB-decay discrepancies—
and how Bs → μþμ−γ can help, J. High Energy Phys. 10
(2023) 102.

[13] M. B. Voloshin, Large Oðm−2
c Þ nonperturbative correction

to the inclusive rate of the decay B → Xsγ, Phys. Lett. B
397, 275 (1997).

[14] Z. Ligeti, L. Randall, and M. B. Wise, Comment on non-
perturbative effects in B̄ → Xsγ, Phys. Lett. B 402, 178
(1997).

[15] G. Buchalla, G. Isidori, and S. J. Rey, Corrections of order
Λ2
QCD=m

2
c to inclusive rare B decays, Nucl. Phys. B511, 594

(1998).
[16] A. Khodjamirian, R. Ruckl, G. Stoll, and D. Wyler, QCD

estimate of the long distance effect in B → K�γ, Phys.
Lett. B 402, 167 (1997).

[17] P. Ball and R. Zwicky, Time-dependent CP asymmetry in
B → K�γ as a (quasi) null test of the Standard Model, Phys.
Lett. B 642, 478 (2006).

[18] P. Ball, G. W. Jones, and R. Zwicky, B → Vγ beyond QCD
factorisation, Phys. Rev. D 75, 054004 (2007).

TABLE II. Parameters in (D1) obtained by the interpolation of our numerical results for FTV.

g00 g11 g12 a20 a21 a22 b20 b21 b22

FTV 0.152 −0.038 −0.129 −0.197 0.144 0.360 0.026 −0.021 −0.058

NONFACTORIZABLE CHARMING-LOOP CONTRIBUTION TO … PHYS. REV. D 109, 114012 (2024)

114012-15

https://doi.org/10.1103/PhysRevD.108.094022
https://doi.org/10.1103/PhysRevD.108.094022
https://doi.org/10.1140/epjc/s10052-009-1028-9
https://doi.org/10.1140/epjc/s10052-009-1028-9
https://doi.org/10.1103/PhysRevD.103.015030
https://doi.org/10.1140/epjc/s10052-023-11191-w
https://doi.org/10.1140/epjc/s10052-023-11191-w
https://doi.org/10.3390/sym13111999
https://doi.org/10.3390/sym13111999
https://doi.org/10.1103/PhysRevD.105.113007
https://doi.org/10.1007/JHEP09(2022)133
https://doi.org/10.1007/978-3-031-30459-0
https://doi.org/10.1007/978-3-031-30459-0
https://doi.org/10.1007/JHEP05(2023)087
https://doi.org/10.1007/JHEP05(2023)087
https://doi.org/10.1103/PhysRevD.107.055036
https://doi.org/10.1103/PhysRevD.107.055036
https://doi.org/10.1007/JHEP07(2023)112
https://doi.org/10.1007/JHEP10(2023)102
https://doi.org/10.1007/JHEP10(2023)102
https://doi.org/10.1016/S0370-2693(97)00173-1
https://doi.org/10.1016/S0370-2693(97)00173-1
https://doi.org/10.1016/S0370-2693(97)00304-3
https://doi.org/10.1016/S0370-2693(97)00304-3
https://doi.org/10.1016/S0550-3213(97)00674-3
https://doi.org/10.1016/S0550-3213(97)00674-3
https://doi.org/10.1016/S0370-2693(97)00431-0
https://doi.org/10.1016/S0370-2693(97)00431-0
https://doi.org/10.1016/j.physletb.2006.10.013
https://doi.org/10.1016/j.physletb.2006.10.013
https://doi.org/10.1103/PhysRevD.75.054004


[19] I. I. Balitsky, V. M. Braun, and A. V. Kolesnichenko, Radi-
ative decay Σþ → pγ in quantum chromodynamics, Nucl.
Phys. B312, 509 (1989).

[20] P. Ball and V. Braun, Higher twist distribution amplitudes of
vector mesons in QCD: Twist—4 distributions and meson
mass corrections, Nucl. Phys. B543, 201 (1999).

[21] P. Ball, Theoretical update of pseudoscalar meson distribu-
tion amplitudes of higher twist: The nonsinglet case, J. High
Energy Phys. 01 (1999) 010.

[22] A. Khodjamirian, T. Mannel, A. Pivovarov, and Y.-M.
Wang, Charm-loop effect in B → Kð�Þlþl− and B → K�γ,
J. High Energy Phys. 09 (2010) 089.

[23] H. Kawamura, J. Kodaira, C.-F. Qiao, and K. Tanaka,
B-meson light cone distribution amplitudes in the heavy
quark limit, Phys. Lett. B 523, 111 (2001); 536, 344(E)
(2002).

[24] V. Braun, Y. Ji, and A. Manashov, Higher-twist B-meson
distribution amplitudes in HQET, J. High Energy Phys. 05
(2017) 022.

[25] V. M. Braun and I. Halperin, Soft contribution to the pion
form-factor from light cone QCD sum rules, Phys. Lett. B
328, 457 (1994).

[26] A. Khodjamirian, T. Mannel, and N. Offen, Form-factors
from light-cone sum rules with B-meson distribution am-
plitudes, Phys. Rev. D 75, 054013 (2007).

[27] N. Gubernari, D. van Dyk, and J. Virto, Non-local matrix
elements in BðsÞ → fKð�Þ;ϕglþl−, J. High Energy Phys. 02
(2021) 088.

[28] A. Kozachuk and D. Melikhov, Revisiting nonfactorizable
charm-loop effects in exclusive FCNC B decays, Phys. Lett.
B 786, 378 (2018).

[29] D. Melikhov, Charming loops in exclusive rare FCNC
B-decays, EPJ Web Conf. 222, 01007 (2019).

[30] D. Melikhov, Nonfactorizable charming loops in FCNC B
decay versus B-decay semileptonic form factors, Phys. Rev.
D 106, 054022 (2022).

[31] D. Melikhov, Three-particle distribution in the B meson and
charm-quark loops in FCNC B decays, Phys. Rev. D 108,
034007 (2023).

[32] Q. Qin, Yue-Long Shen, Chao Wang, and Yu-Ming Wang,
Deciphering the long-distance penguin contribution to
B̄d;s → γγ decays, Phys. Rev. Lett. 131, 091902 (2023).

[33] Y.-K. Huang, Y. Ji, Y.-L. Shen, C. Wang, Y.-M. Wang,
and X.-C. Zhao, Renormalization-group evolution for the
bottom-meson soft function, arXiv:2312.15439.

[34] B. Grinstein, M. J. Savage, and M. B. Wise, B → XðsÞeþe−
in the six quark model, Nucl. Phys. B319, 271 (1989).

[35] A. J. Buras and M. Munz, Effective Hamiltonian for
B → XðsÞeþe− beyond leading logarithms in the NDR
and HV schemes, Phys. Rev. D 52, 186 (1995).

[36] G. Buchalla, A. J. Buras, and M. E. Lautenbacher, Weak
decays beyond leading logarithms, Rev. Mod. Phys. 68,
1125 (1996).

[37] D. Melikhov, N. Nikitin, and S. Simula, Lepton asymme-
tries in exclusive b → slþl− decays as a test of the Standard
Model, Phys. Lett. B 430, 332 (1998).

[38] D. Melikhov, N. Nikitin, and S. Simula, Rare exclusive
semileptonic b → s transitions in the Standard Model, Phys.
Rev. D 57, 6814 (1998).

[39] M. Beneke, C. Bobeth, and Y.-M. Wang, Bd;s → γlþl−
decay with an energetic photon, J. High Energy Phys. 12
(2020) 148.

[40] D. Melikhov and N. Nikitin, Rare radiative leptonic decays
Bd;s → γlþl−, Phys. Rev. D 70, 114028 (2004).

[41] F. Kruger and D. Melikhov, Gauge invariance and form-
factors for the decay B → γlþl−, Phys. Rev. D 67, 034002
(2003).

[42] A. Kozachuk, D. Melikhov, and N. Nikitin, Rare FCNC
radiative leptonic Bs;d → γlþl− decays in the Standard
Model, Phys. Rev. D 97, 053007 (2018).

[43] W. Lucha and D. Melikhov, The puzzle of the π → γγ�
transition form factor, J. Phys. G 39, 045003 (2012).

[44] C.-D. Lü, Y.-L. Shen, Y.-M. Wang, and Y.-B. Wei, QCD
calculations of B → π; K form factors with higher-twist
corrections, J. High Energy Phys. 01 (2019) 024.

[45] A. Khodjamirian, R. Mandal, and T. Mannel, Inverse
moment of the Bs-meson distribution amplitude from
QCD sum rule, J. High Energy Phys. 10 (2020) 043.

[46] P. Ball and E. Kou, B → γeν transitions from QCD sum
rules on the light cone, J. High Energy Phys. 04 (2003) 029.

[47] V. M. Braun, D. Yu. Ivanov, and G. P. Korchemsky, The B
meson distribution amplitude in QCD, Phys. Rev. D 69,
034014 (2004).

[48] M. Beneke and J. Rohrwild, Bmeson distribution amplitude
from B → γlν, Eur. Phys. J. C 71, 1818 (2011).

[49] Y. M. Wang, Factorization and dispersion relations for radi-
ative leptonic B decay, J. High Energy Phys. 09 (2016) 159.

[50] Y. M. Wang and Y. L. Shen, Subleading-power corrections
to the radiative leptonic B → γlν decay in QCD, J. High
Energy Phys. 05 (2018) 184.

[51] C. Wang, Y. M. Wang, and Y. B. Wei, QCD factorization for
the four-body leptonic B-meson decays, J. High Energy
Phys. 02 (2022) 141.

[52] T. Janowski, B. Pullin, and R. Zwicky, Charged and neutral
B̄u;d;s → γ form factors from light cone sum rules at NLO,
J. High Energy Phys. 12 (2021) 008.

[53] M. A. Ivanov and D. Melikhov, Theoretical analysis of the
leptonic decay B → lll0ν0, Phys. Rev. D 105, 014028 (2022);
106, 119901(E) (2022).

[54] B. Y. Cui, Y. K. Huang, Y. L. Shen, C. Wang, and Y. M.
Wang, Precision calculations of Bd;s → ðπ; KÞ decay form
factors in soft-collinear effective theory, J. High Energy
Phys. 03 (2023) 140.

[55] D. Melikhov and B. Stech, Weak form-factors for heavy
meson decays: An update, Phys. Rev. D 62, 014006 (2000).

[56] M. Beyer, D. Melikhov, N. Nikitin, and B. Stech, Weak
annihilation in the rare radiativeB → ργ decay, Phys. Rev. D
64, 094006 (2001).

[57] A. Kozachuk, D. Melikhov, and N. Nikitin, Annihilation
type rare radiative BðsÞ → Vγ decays, Phys. Rev. D 93,
014015 (2016).

[58] C.-D. Lü, Yue-Long Shen, ChaoWang, and Yu-Ming Wang,
Shedding new light on weak annihilation B-meson decays,
Nucl. Phys. B990, 116175 (2023).

[59] Y.-K. Huang, Y.-L. Shen, C. Wang, and Y.-M. Wang,
Next-to-leading-order weak annihilation correction to rare
B → fK; πglþl− decays, arXiv:2403.11258.

[60] Max Ferre (private communication).

BELOV, BEREZHNOY, and MELIKHOV PHYS. REV. D 109, 114012 (2024)

114012-16

https://doi.org/10.1016/0550-3213(89)90570-1
https://doi.org/10.1016/0550-3213(89)90570-1
https://doi.org/10.1016/S0550-3213(99)00014-0
https://doi.org/10.1088/1126-6708/1999/01/010
https://doi.org/10.1088/1126-6708/1999/01/010
https://doi.org/10.1007/JHEP09(2010)089
https://doi.org/10.1016/S0370-2693(01)01299-0
https://doi.org/10.1016/S0370-2693(02)01866-X
https://doi.org/10.1016/S0370-2693(02)01866-X
https://doi.org/10.1007/JHEP05(2017)022
https://doi.org/10.1007/JHEP05(2017)022
https://doi.org/10.1016/0370-2693(94)91505-9
https://doi.org/10.1016/0370-2693(94)91505-9
https://doi.org/10.1103/PhysRevD.75.054013
https://doi.org/10.1007/JHEP02(2021)088
https://doi.org/10.1007/JHEP02(2021)088
https://doi.org/10.1016/j.physletb.2018.10.026
https://doi.org/10.1016/j.physletb.2018.10.026
https://doi.org/10.1051/epjconf/201922201007
https://doi.org/10.1103/PhysRevD.106.054022
https://doi.org/10.1103/PhysRevD.106.054022
https://doi.org/10.1103/PhysRevD.108.034007
https://doi.org/10.1103/PhysRevD.108.034007
https://doi.org/10.1103/PhysRevLett.131.091902
https://arXiv.org/abs/2312.15439
https://doi.org/10.1016/0550-3213(89)90078-3
https://doi.org/10.1103/PhysRevD.52.186
https://doi.org/10.1103/RevModPhys.68.1125
https://doi.org/10.1103/RevModPhys.68.1125
https://doi.org/10.1016/S0370-2693(98)00524-3
https://doi.org/10.1103/PhysRevD.57.6814
https://doi.org/10.1103/PhysRevD.57.6814
https://doi.org/10.1007/JHEP12(2020)148
https://doi.org/10.1007/JHEP12(2020)148
https://doi.org/10.1103/PhysRevD.70.114028
https://doi.org/10.1103/PhysRevD.67.034002
https://doi.org/10.1103/PhysRevD.67.034002
https://doi.org/10.1103/PhysRevD.97.053007
https://doi.org/10.1088/0954-3899/39/4/045003
https://doi.org/10.1007/JHEP01(2019)024
https://doi.org/10.1007/JHEP10(2020)043
https://doi.org/10.1088/1126-6708/2003/04/029
https://doi.org/10.1103/PhysRevD.69.034014
https://doi.org/10.1103/PhysRevD.69.034014
https://doi.org/10.1140/epjc/s10052-011-1818-8
https://doi.org/10.1007/JHEP09(2016)159
https://doi.org/10.1007/JHEP05(2018)184
https://doi.org/10.1007/JHEP05(2018)184
https://doi.org/10.1007/JHEP02(2022)141
https://doi.org/10.1007/JHEP02(2022)141
https://doi.org/10.1007/JHEP12(2021)008
https://doi.org/10.1103/PhysRevD.105.014028
https://doi.org/10.1103/PhysRevD.106.119901
https://doi.org/10.1007/JHEP03(2023)140
https://doi.org/10.1007/JHEP03(2023)140
https://doi.org/10.1103/PhysRevD.62.014006
https://doi.org/10.1103/PhysRevD.64.094006
https://doi.org/10.1103/PhysRevD.64.094006
https://doi.org/10.1103/PhysRevD.93.014015
https://doi.org/10.1103/PhysRevD.93.014015
https://doi.org/10.1016/j.nuclphysb.2023.116175
https://arXiv.org/abs/2403.11258

