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Nuclear collisions at sufficiently high energies are expected to produce far-from-equilibrium matter with
a high density of gluons at early times. We show gauge condensation, which occurs as a consequence of the
large density of gluons. To identify this condensation phenomenon, we construct two local gauge invariant
observables that carry the macroscopic zero mode of the gauge condensate. The first order parameter for
gauge condensation investigated here is the correlator of the spatial Polyakov loop. We also consider, for
the first time, the correlator of the gauge invariant scalar field, associated with the exponent of the Polyakov
loop. Using real-time lattice simulations of classical-statistical SU(2) gauge theory, we find gauge
condensation on a system-size-dependent timescale tcond ∼ L1=ζ with a universal scaling exponent ζ.
Furthermore, we suggest an effective theory formulation describing the dynamics using one of the order
parameters identified. The formation of a condensate at early times may have intriguing implications for the
early stages in heavy-ion collisions.
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I. INTRODUCTION

Understanding the properties of matter in extreme
conditions is a fundamental pursuit in the field of high-
energy physics. In particular, the study of the quark-gluon
plasma (QGP) formed in high-energy collision experiments
involving heavy nuclei has provided valuable insights into
the fundamental nature of strong interactions governed by
quantum chromodynamics (QCD) [1,2].
In recent years, there has been growing interest in the

possibility of a condensate emerging during the early-time
evolution of the QGP. The matter formed moments after a
heavy-ion collision is far from equilibrium and is charac-
terized by a large initial density of gluons, which could
facilitate the formation of a condensate [3]. However, this
picture has several complications. First, classical-statistical
and kinetic theory simulations have shown that the plasma
evolution does not support the formation of a Bose
condensate of gluon fields [4–7]. Complications also arise
due to the non-Abelian nature of the gauge theory: for the
direct identification of gauge condensation one must
construct a local gauge invariant operator which measures
the macroscopic zero mode that signals gauge condensa-
tion. Previous examples of gauge invariant operators for

nonequilibrium condensation have been studied in the
context of the Abelian Higgs model and its relation to
non-Abelian theories [8–10].
It has been demonstrated in [11] that the initial over-

occupation of gluons does in fact lead to the formation of a
gauge invariant condensate. Condensation is tantamount to
the formation of a macroscopic zero-mode expectation value
that scales proportionally with ð2πÞdδðdÞð0Þ → Ld for a
d-dimensional finite volume with the length scale L [12].
Specifically, we studied the expectation value of the spatial
Wilson loop, which computes the infrared excitations of
non-Abelian gauge theories [13–16]. A volume-independent
condensate fraction was established for increasingly L → ∞.
It was further demonstrated that condensate formation is a far-
from-equilibrium phenomenon, while the zero-mode fraction
does not grow in time or scale with volume in (classical)
thermal equilibrium as expected. However, theWilson loop is
a nonlocal object. Therefore, it cannot be used to formulate a
low-energy effective theorywithwhichwe can further unravel
the dynamics of the infrared condensate.
In this paper, we introduce two local order parameters

that are related to the spatial Wilson loop: The first one is
the two-point connected correlation functions of the traced
spatial Polyakov loop. The second one is based on the
algebra-valued gauge invariant scalar field that can be
constructed from the exponent of the Polyakov loop. These
fields are gauge invariant and live in a 2þ 1-dimensional
space-time. We will demonstrate that their correlators
capture the same condensation phenomena as the Wilson
loop while being sufficiently local objects.
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In particular, by employing classical-statistical lattice
simulations in 3þ 1 dimensions, we investigate the dynam-
ics of the Yang-Mills plasma with large gluon densities and
weak coupling. The simulated system approaches a self-
similar regime with universal scaling properties, which has
been studied in detail [5,16,17] and shows similarities with
scalar systems [18,19]. We extract the condensation observ-
able in the vicinity of this self-similar state and analyze its
evolution over time. Through these investigations, we aim
to shed light on the nature of gauge condensates, their
implications in hydrodynamics and transport phenomena,
and their potential role in the formulation of a low-energy
effective field theory for QCD. By studying local correla-
tion functions of an algebra-valued scalar field, we can
compare our results with far-from-equilibrium Bose con-
densation for a scalar order parameter field [12,20–24].
This paper is organized as follows. In Sec. II we first

discuss the early-time infrared dynamics in the far-from-
equilibrium QGP and then introduce the local order
parameters used to identify condensation. Then, in
Sec. III we discuss our classical-statistical lattice simula-
tions and present results that demonstrate condensate
formation. We finally conclude in Sec. IV.

II. EARLY-TIME INFRARED DYNAMICS FAR
FROM EQUILIBRIUM

In Ref. [11] it has been shown that the early-time
evolution of QCD exhibits a condensate. The respective
signatures have been obtained from the scaling dynamics of
(large) spatial Wilson loops. While this analysis demon-
strates the presence of gauge condensates, their nature and
dynamics remain to be unraveled, which we address in
this paper.
This is of great importance for the formulation of non-

Abelian gauge theories, specifically for describing the
early-time dynamics of QCD in terms of an effective
kinetic theory that stems from an effective Lagrangian.
In the present section we briefly discuss a corresponding
reparametrization of the Yang-Mills action,

SYM½A� ¼ −
1

2

Z
x
trFμνFμν;

Fμν ¼ ∂μAν − ∂νAμ − ig½Aμ; Aν�; ð1Þ

with the trace in the fundamental representation. We
formulate the theory in a manifestly infrared finite setup
with periodic boundary conditions on a torus T3,Z

x
¼

Z
dt
Z
T3

d3x; T3 ¼ R3 mod L: ð2Þ

We have put the Yang-Mills theory in a finite spatial box for
several reasons. To begin with, it reflects the situation in a
heavy-ion collision with a rapidly expanding but finite

fireball. Moreover, it allows for a gauge invariant regulari-
zation and control of infrared divergences. Finally, in the
present work we employ simulations to compute the far-
from-equilibrium dynamics of gauge theories that are
formulated on a finite spatial lattice with periodic boundary
conditions.
Equation (1) is formulated using gauge fields, which are

gauge variant degrees of freedom. However, due to the
presence of gauge condensation, it is more desirable to
rewrite the Yang-Mills action partially in terms of gauge
invariant degrees of freedom that may directly carry the
condensation phenomenon. The expectation value of spa-
tial rectangular Wilson loops,

W½t;Δx; L� ¼ 1

Nc
trPe−ig

R
C
Aiðt;xÞdxi ; ð3Þ

serves as a gauge invariant order parameter for gauge
condensation [11], where P denotes path ordering and C is
the closed rectangular path. In (3), the Wilson loop
stretches over the whole x2 direction of length L and
has an extent Δx ¼ x1 − x01 in x1 direction, as depicted in
Fig. 1(c). Accordingly, it is a nonlocal observable instead of
a correlation function of local dynamical degrees of free-
dom. In Sec. II B we will construct local observables in the
x1 direction that are derived from the Polyakov loop, whose
correlator is depicted in Fig. 1(a).

A. Hierarchy of scales far from equilibrium

In thermal equilibrium at high temperature T, the weakly
coupled QCD plasma exhibits a hierarchy of scales: hard
momenta∼T that dominate the energy density of the system,
a soft electric screening (Debye) scale ∼gT, and an ultrasoft
magnetic screening scale ∼g2T, where g2 ¼ 4παs ≪ 1.
Far from equilibrium, such a separation of scales also

exists in the vicinity of the nonthermal attractor, the self-
similar scaling regime of highly occupied plasmas that is
insensitive to the initial conditions and the exact value of the
coupling [4–6,16,17,25–28]. The hard scale, which domi-
nates the system’s energy density, scales as ΛðtÞ ∼ t1=7, the
soft electric screening (Debye) mass follows mDðtÞ ∼ t−1=7,
and the ultrasoft magnetic screening scale evolves asffiffiffi
σ

p ðtÞ ∼ t−ζ=2, which is associated with the string tension
σ and with the sphaleron transition rate [4,15–17,27,29].
These characteristic momentum scales are initially of the
same order Qs, but the self-similar evolution leads to a
dynamical separation of scales over time, such thatffiffiffi
σ

p ðtÞ ≪ mDðtÞ ≪ ΛðtÞ. The ultrasoft scale approaches
zero faster than the Debye screening scale in time, and its
scaling exponent sets the timescale for the buildup of a
coherent macroscopic state—our condensate.
Below the magnetic scale, at ultrasoft momenta where

the occupation numbers are expected to be f ∼ 1=αs, the
dynamics is nonperturbative. In this regime, the notion of
gauge-fixed particle numbers based on a distribution f of
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gauge modes is ill defined. Therefore, we cannot approach
condensation by counting occupancies of quasiparticle
states. Furthermore, far from equilibrium, a condensate
can emerge without having a well-defined chemical poten-
tial entering its distribution [12,20], in contrast to con-
densation in thermal equilibrium.
We employ a more general approach to condensation, as

this phenomenon can be identified from properties of
correlation functions in strongly correlated systems, both
in and out of equilibrium. The previous study [11] inves-
tigated the dynamics at long distances using gauge invari-
ant but nonlocal spatial Wilson loops. The extension of this
study, in order to eventually formulate a kinetic theory
describing this phenomenon, necessitates the investigation
of more local order parameters.

B. Local order parameters

We seek degrees of freedom that do not hide essential
parts of the dynamics by absorbing them, as the Wilson
loop (3) does, but are as local as possible. The latter is
important for the construction of a (local) kinetic theory for

QCD, specifically to rewrite the action (1) in terms of these
degrees of freedom.
This becomes clear when we view the Wilson loop as a

correlation function instead of a dynamical field. Let us
consider the Wilson loop in (3), shown in Fig. 1(c), that
winds around the full extent of the x2 direction. This
observable gives us access to the infrared dynamics that we
are interested in. From the simulation point of view, it also
smooths out ultraviolet effects and hence lattice artifacts
[30]. Therefore, the Wilson loop can be understood as the
correlation function of an operator at x1 and one at x01.
However, further nonlocalities are introduced by the con-
necting lines [green lines in Fig. 1(b)].
This motivates the construction of a more local version

of the Wilson loop that carries the correlation structure of
the latter. To that end, we introduce the following spatial
Wilson loop,

Piðt; xÞ ¼
1

Nc
trP̃iðt; xÞ ð4Þ

P̃iðt; xÞ ¼ Pe−ig
R

L

0
Aiðt;xÞdxi ; ð5Þ

which corresponds to a closed path over the full xi
direction, as depicted in Fig. 1(a). It can be understood
as the spatial version of the Polyakov loop that usually
corresponds to a temporal Wilson loop and is used in
thermal QCD as an order parameter for the confinement-
deconfinement phase transition. We shall therefore call it
the spatial Polyakov loop, or in short, the Polyakov loop in
a slight abuse of notation. Note that Piðt; xÞ is independent
of the coordinate xi that has been integrated out in (5). The
two-point function of the Polyakov loop with x; x0 differing
by Δx ¼ x1 − x01

hP2ðt; xÞP†
2ðt; x0Þi ð6Þ

is related to the expectation value of the Wilson loop (3) as
suggested by Fig. 1 but lacks the nonlocal connection lines
between x1 and x01. Therefore, in contrast to theWilson loop
in (3), the correlation function (6) is symmetric under
Δx → L − Δx due to spatial periodicity. This can be seen in
Fig. 2 where both quantities are plotted as functions of the
distance Δx. While for small distances the nonlocal
connection lines seem to be important, their impact
decreases at larger distances where both quantities agree.
Still, (4) wraps around the xi direction and one may ask

whether this apparent nonlocality can be removed. To begin
with, while we are interested in the infrared dynamics of
QCD, a local operator inevitably also carries ultraviolet
fluctuations that have to be regularized. Moreover, the
nonlocal gauge symmetry prohibits the construction of
fully local operators that do not carry (part) of the dynamics
as discussed in the beginning. In short, (4) is a gauge

FIG. 1. Visualization of the spatial correlation between the
Polyakov loop correlator hPP†iðt;Δx; LÞ in (a) and the rectan-
gular spatial Wilson loop W½t;Δx; L� in (c). The spatial perio-
dicity of the system results in the identification of coordinates
x02 ≡ x2 mod L on the lattice, causing the Wilson loop to exhibit
a wrapping effect in the x2 direction, as depicted in (b). The
distinguishing feature between the Polyakov loop correlator and
the Wilson loop is revealed to be the presence of connecting
Wilson lines (highlighted in green) in the latter, demonstrating the
connection between the two quantities.
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invariant quantity that is sensitive to the infrared but
sufficiently local in space.
In the remainder of this section, we introduce a scalar field

via the (traced) spatial Polyakov loop (4) and discuss how it
emerges naturally as a variable in the action (1). To that end,
we note that the operator in the trace (5) can be written as

P̃iðxÞ ¼ Pe−ig
R

L

0
AiðxÞdxi ¼ eiϕiðxÞ; ð7Þ

wherewe use the same notation x ¼ ðt; xÞ as before. Herewe
have introduced the algebra-valued field

ϕiðxÞ ¼ ϕa
i ðxÞta; ta ¼ σa=2; ð8Þ

with the Pauli matrices σa, a ¼ 1; 2; 3, for P̃i ∈SUð2Þ. This
invites us to define the gauge invariant scalar field φiðxÞ as

1

Nc
trP̃i ≡ Pi ¼ cosφi: ð9Þ

Just as Pi, the scalar field φiðxÞ lacks any dependence on the
spatial direction xi that has been integrated out. On the other
hand, the spatial Polyakov lines transform covariantly under
gauge transformations U∈SUð2Þ, with P̃i → UP̃iU†. It
follows that the algebra element transforms in the same way,

ϕiðxÞ → UðxÞϕiðxÞU†ðxÞ: ð10Þ

The gauge transformation can be used to diagonalize P̃i
and hence ϕi. This fixes the gauge freedom to a (spatial)
Polyakov or diagonalization gauge, where the (eigenvalue)
field φi becomes proportional to the algebra field

ϕiðxÞ ¼ φiðxÞt3: ð11Þ

Weemphasize that the scalar fieldφi is gauge invariant since it
is defined as an eigenvalue of the operator ϕi. Moreover, φi is
a suitable infrared degree of freedom that we have searched
for and is directly linked to the gauge fieldsAiðxÞ. To see this,
we consistently use the Polyakov gauge for P̃i, ϕi, and for
AiðxÞ at all xi, which corresponds to rotating them into the
Cartan subalgebra. Then the path ordering in (7) can be
dropped and we have the relation

ϕiðxÞ ¼ −g
Z

L

0

dxiAiðxÞ ¼ −gLAiðxÞ; ð12Þ

where the last step can be done if the gauge transformation is
also used to remove the xi dependence in the gauge field
AiðxÞ. In the temporal direction such a gauge transformation
enforces the Polyakov gauge. Note that in the evaluation
above this is not introduced as a gauge but for elucidating the
relation between the phase fields ϕi and the gauge field.
However, this also entails that we can use a respective

Polyakov gauge in (1) to make the dependence of the action
on the gauge covariant phase field ϕi and hence on the
gauge invariant field φi apparent. To illuminate this
connection, we use this gauge in (1) in the following
analytically; the respective gauge fixing has been discussed
in detail in [8] and literature therein. We emphasize that our
numerical simulations in Sec. III are done with the original
Yang-Mills action (1) in 3þ 1 dimensions without fixing
the gauge.
Let us now single out the spatial direction x3, choose the

spatial Polyakov gauge as before, and reformulate the
classical action in (1) in terms of ϕ3ðxÞ. To that end we
invert the relation (12) and substitute in (1)

A3ðxÞ ¼ −
1

gL
ϕ3ðxÞ ¼ −

1

gL
φ3ðxÞt3: ð13Þ

This leads us to the formulation of the classical action

SYM ¼ 1

2

Z
x
trF2

μ̄ ν̄ þ
Z
x
trF2

3μ̄; ð14aÞ

where μ̄ ¼ 0; 1; 2 and x̄ ¼ ðx0; x1; x2Þ, andZ
x
trF2

3μ̄ ¼
1

2

Z
x
trð∂3Aμ̄Þ2 þ

g
L

Z
x̄
trϕ3ðx̄Þ

Z
x3

½Aμ̄; ∂3Aμ̄�

þ 1

g2L2

Z
x
trðDμ̄ϕ3Þ2; ð14bÞ

with the covariant derivative Dμ ¼ ∂μ − igAμ. Here the
gauge invariant degree of freedom φ3 enters directly.
Since we aim to establish a 2þ 1-dimensional kinetic

theory formulation for the scalar field eventually, we make
here an additional simplification: we restrict ourselves to
configurations that do not depend on x3 but only on
x̄ ¼ ðx0; x1; x2Þ. Then the first line of (14b) vanishes,

 0

0.2

0.4

0.6

0.8

 1

 0  10  20  30  40  50  60  70  80  90

Distance: Q �x

Wilson loop
Polyakov loop correlator

FIG. 2. Comparison of the Wilson loop expectation value hWi
and the Polyakov loop correlator hPP†i on a lattice with size
Ns ¼ 96 at timeQt ¼ 1000. The Polyakov loop correlator hPP†i
exhibits consistent dynamics with the Wilson loop at larger
spatial separations, indicating a strong correlation between the
two quantities.
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which effectively amounts to dropping the gauge fixing
terms. The second line, together with the pure gauge field
part (14a), comprises the action of a non-Abelian Higgs
model in 2þ 1 dimensions, with

SYM → L

�
1

2

Z
x̄
trF2

μ̄ ν̄ þ
1

g2L2

Z
x
trðDμ̄ϕ3Þ2

�
: ð15Þ

However, with or without this last step, (14) or (15)
illuminates the dependence of the Yang-Mills action on
the algebra field ϕ3. The latter, in a conveniently chosen
gauge, carries the dynamics of the respective gauge field
component A3. It is also suggestive that this allows for the
construction of effective actions in terms of the algebra
fields, well or naturally suited to describe the low-energy
equilibrium and infrared far-from-equilibrium dynamics of
gauge theories. We emphasize again that the discussion
above served a merely illustrative purpose and the full
construction of such an effective theory is left for the future.
In the present work, we study the dynamics of the gauge

condensate in terms of the two-point correlations of both
the gauge invariant Polyakov loop P and the gauge
invariant field φ defined via (4) and (11) using the full
action (1). Here and in the following we will simplify the
notation by setting P≡ P2 and φ≡ φ2. In a forthcoming
study we also investigate their higher order fluctuation
observables, hφðt1; x1Þ � � �φðtn; xnÞi as a further important
step toward the formulation of an effective theory of QCD
in terms of these algebra fields.

III. GAUGE INVARIANT CONDENSATION

With φ and P given by (4) and (11), we have introduced
two local order parameters that can be employed to study
the dynamics of the gauge condensate as an alternative to
the nonlocal Wilson loop. Next, we turn our attention to
studying the gauge condensate itself.
First, we will discuss the lattice simulations employed to

evaluate the nonperturbative real-time evolution. Then, we
will define our observables and discuss the signals for
condensation. Finally, we will discuss the condensate
fraction and the time evolution of the condensate.

A. Classical-statistical lattice simulations

The initial gluons produced in high-energy heavy-ion
collisions carry momenta on the order of the saturation
scale Q, at time t ∼ 1=Q in natural units [1,2]. The system
is considered strongly correlated despite the small running
gauge coupling αsðQÞ due to the high initial gluon
occupancies f ∼ 1=αsðQÞ. It follows that such a non-
perturbative problem can be studied via classical-statistical
lattice simulations [31,32]. The characteristic initial over-
occupation of gluons is translated into energy density
∼Q4=αs and fluctuations, which initializes the lattice gauge

theory evolution. Throughout this study, quantities are
given in terms of Q.
We discretize the SUðNcÞ gauge theory with Nc ¼ 2

colors on a lattice with three spatial dimensions of size Ns
and spacing as. The lattice gauge theory evolution is
initialized as a superposition of transversely polarized
gluon fields,

Aa
j ðt ¼ 0;pÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fð0; pÞ
2p

s X
λ

capξ
ðλÞ
j ðpÞ þ c:c:; ð16Þ

and their time derivatives,

Ea
j ðt ¼ 0;pÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fð0; pÞp

2

r X
λ

capξ
ðλÞ
j ðpÞ þ c:c: ð17Þ

Here, p denotes spatial momenta with p ¼ jpj, ξðλÞj the
transverse polarization vectors, and cap complex Gaussian
random numbers with vanishing mean and unit variance.
Index a ¼ 1;…; N2

c − 1 is the color index and j ¼ 1; 2; 3 is
the spatial index. The initial gluon overoccupation is
parametrized by (with A ¼ 1.14)

fð0; pÞ ¼ QA
4παsp

θðQ − pÞ: ð18Þ

The real-time evolution is realized by solving the classical
Hamilton equations of motion in the temporal axial gauge
A0 ¼ 0. The equations of motion are formulated in a gauge
covariant way, using Ej

aðt;xÞ and link fields Ujðt;xÞ ¼
expðigαaAjðt;xÞÞ. For a detailed description of this stan-
dard technique we refer, e.g., to [17,33,34].
Our simulations are conducted on cubic lattices with

Ns ¼ 48; 64; 96; 128 lattice sites and the lattice spacing
Qas ¼ 0.5 (with L ¼ Nsas). To obtain sufficient statistics,
we average our observables over 200 configurations.

B. Evolution of one-point functions

Before defining and discussing condensates, let us first
consider the evolution of the one-point functions hPi and
hφi. Often considering the expectation values of order
parameters is sufficient to describe condensation phenom-
ena. However, in our case this would be misleading because
hPi grows while hφi decreases with time.
Their relation is depicted in Fig. 3, where hPi and

cosðhφiÞ are shown as functions of time. One observes an
approximate agreement that is consistent with a mean-field
approximation

hPi≡ hcosðφÞi ≈ cosðhφiÞ: ð19Þ

Since they start close to zero due to the large initial
occupancies, the scalar field is initially hφi ≈ π=2 and then
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decreases with time. This would naively contradict the
emergence of a condensate.
However, one finds volume scaling in the time evolution

of both hPi and hφi. This is shown in Fig. 4 where these
one-point functions are shown for different volumes as
functions of rescaled time in the main plots and original
time Qt in the insets. The rescaling proceeds by dividing
time according to Qt=ðQLÞ1=ζ with the scaling exponents
ζ ¼ 0.24 and ζ ¼ 0.25 for the Polyakov loop and the
algebra field expectation values, respectively [35]. In this
case, curves for different volumes fall on top of each other,
indicating universal dynamics on a size-dependent time-
scale. We will argue in the following section using two-
point correlators that this timescale is associated with a
condensate formation time.

Although the macroscopic field hφi decreases with time,
a condensate can still emerge in the zero mode of the
connected two-point function hφφ†ic that will be intro-
duced shortly. Such a phenomenon is not quite unusual. For
instance, scalar quartic models of inflation [36] can have a
decaying inflaton hφi while the zero mode of the connected
correlator hφφ†icðp ¼ 0Þ grows with time indicating the
onset of condensation [20,37]. This serves as a motivation
for us to define condensate fractions as connected corre-
lators of the order parameters.

C. Condensate fractions

In order to study condensation for the suggested local
order parameters, we first consider a general quantityO, for
which we can define a condensate fraction. We propose to
study the connected two-point correlators,

hOO†icðt;Δx; LÞ ¼ hOO†i − hOihOi�; ð20Þ

where O is either P or φ, in order to explicitly distinguish
their dynamics from the one-point functions hOi discussed
in the previous subsection.
In one dimension, we define the condensate fraction for a

given length L by integrating with respect to the spatial
extent Δx and dividing out the length γL [38],

N0
O;cðt; LÞ ¼

1

γL

Z
γL

0

dΔx
hOO†icðt;Δx; LÞ

hOO†icðt;Δx ¼ 0; LÞ ; ð21Þ

where γ < 1 is a real parameter. The length L in the x2
direction spans the length of the lattice. Since the lattice is
periodic, the correlators are symmetric around Δy ¼ L=2,
which constitutes the longest physical distance. In our
numerics, we, therefore, use γ ¼ 1=4 and show that our
results are consistent with γ ¼ 1=2.

 0
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time: Qt

Cos( )

P

FIG. 3. Comparison of the expectation value of the Polyakov
loop to the Polyakov loop reexpressed in terms of the algebra-
valued holonomous eigenvalue field for Ns ¼ 96 lattice, Qst ¼
1000. This shows the approximate agreement of the one-point
functions hPi≡ hcosðφÞi ≈ cosðhφiÞ.
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FIG. 4. Expectation values of the spatial Polyakov loop and the scalar algebra field as functions of rescaled time for different volumes.
The Polyakov loop is rescaled with ζ ¼ 0.24 and the algebra field is rescaled with ζ ¼ 0.25, both exhibiting scaling behavior in time. We
also observe that hϕi starts from ≈π=2 and decreases with time, which is in line with Fig. 3. In the context of condensation, the
connected correlator becomes increasingly independent of hϕi, indicating Bose-Einstein condensation behavior.
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The possibility of interpreting such quantities in (21) as
condensate fractions stems from several observations.
First, the integral

R
dΔxhOO†icðt;Δx; LÞ resembles a

Fourier transformation, or rather Wigner transform for a
vanishing momentum p ¼ 0. Since hOO†icðt;Δx ¼ 0; LÞ
can be interpreted as an integral over all momentum
modes

R
dphOO†icðt; p; LÞ by Fourier transforming

hOO†icðt;Δx; LÞ, dividing the zero mode by this quantity
corresponds to its fraction. Finally, dividing by a suitable
volume or length element bounds it to unity and allows one
to interpret this zero-mode fraction as a condensate if it
becomes large and independent of the lattice size. However,
such lattice-size independence is difficult to show since
the condensate fraction keeps growing due to the far-from-
equilibrium dynamics. Therefore, we define a volume-
dependent condensate formation time in a similar way as
for Wilson loops in [11] and relativistic and nonrelativistic
scalar field theories in [20], as

tcond ¼ ðQLÞ1=ζ: ð22Þ

Rescaling time by t=tcond gets rid of the remaining volume
dependence in the evolution of the condensate fractions
N0

O;c, as we will demonstrate numerically below, finally
signaling the emergence of a condensate. In contrast, an
interpretation in terms of a condensate is not possible if this
quantity remains volume dependent. This is, for instance,
the case in thermal equilibrium. We note that this particular
form of condensate formation is a genuinely far-from-
equilibrium phenomenon, usually requires large occupation
numbers, and is often associated with an inverse particle
cascade that occupies the zero mode, as observed for scalar
theories [20,39].
In Fig. 5, we demonstrate the emergence of a volume-

independent condensate fraction for both the connected

Polyakov loop (left) and the connected algebra field
correlators (right) computed using (21). In particular, we
show N0

P;c and N
0
φ;c for four different volumes as functions

of time Qt in the insets, which yields a volume-dependent
evolution. In contrast, rescaling time by tcond, leads to
volume-independent curves, as visible in the main panels.
The initial growth of the zero mode necessarily ceases as
the volume becomes correlated; this is demonstrated in the
figure as the zero mode grows with time for each lattice size
and then levels off at the timescale ∼tcond.
The time scaling is characterized by the scaling exponent

ζ entering tcond in (22). We find for the condensate fraction
of the connected Polyakov loop correlator, ζ ¼ 0.31,
and for the connected algebra field correlator, ζ ¼ 0.34.
The collapse of the curves onto one another in Fig. 5
illustrates the volume-independent nature of the condensa-
tion phenomenon.
Although the dynamics is captured mainly by the

connected correlators, we also check the condensate
fraction scaling in terms of the full two-point functions
of the spatial Polyakov loop and the algebra field in Fig. 6.
For a generic order parameterO, this condensate fraction is
given as

N0
Oðt; LÞ ¼

1

γL

Z
γL

0

dΔx
hOO†iðt;Δx; LÞ

hOO†iðt;Δx ¼ 0; LÞ : ð23Þ

The condensate fractions for the full correlators scale with
similar exponents ζ as their connected parts.
In Table I, we summarize the scaling exponents for the

connected correlators and compare them to the scaling
results of N0

Pðt; LÞ and to those found in our previous
publication [11] for the Wilson loop expectation value
using our conventions. We note that the latter two quantities
are intrinsically connected to each other but are not the
same, as shown in Figs. 1 and 2. We observe that all of the
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FIG. 5. Condensate fractions (21) of the connected correlators hPP†ic and hφφ†ic as functions of rescaled time for different lattice
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ORDER PARAMETERS FOR GAUGE INVARIANT CONDENSATION … PHYS. REV. D 109, 114011 (2024)

114011-7



extracted scaling exponents agree within statistical error,
while showing a slight systematic dependence on the
maximal distance Δx in the integrals. For L=4 the
value for ζ tends to be around 10%–15% smaller than
for L=2.
We then check the scaling of the connected correlators

hPP†i and hφφ†i in (20) at a fixed Δx, as shown in Fig. 7.
Interestingly, both the Polyakov loop and the algebra field
correlators show the same scaling as their integrated
counterparts in Fig. 5. We find the values ζ ¼ 0.31 for
the connected Polyakov loop correlator and ζ ¼ 0.34 for
the connected algebra field correlator. This implies that not
only correlations at large distances grow in this self-similar
way, but also at finite distances in a similar fashion.
To further visualize this condensation phenomenon, we

show the time evolution for the connected Polyakov loop
and algebra field correlators for a lattice of size Ns ¼ 96 in

Fig. 8. The connected correlators are plotted as functions of
the distance Δx for six different times. One observes that,
for early times Qt ¼ 100 and 300, both correlations are
zero are large distances, signaling no condensate. However,
at Qt≳ 1000 a plateau has started to form at all distances,
which further grows over time. This demonstrates a phase
transition between a phase without and one with a con-
densate, where the condensate formation time scales with
volume according to tcond in (22).
We note that the connected Polyakov loop correlator

hPP†iðΔxÞ=hPP†iðΔx ¼ 0Þ and the connected algebra
field correlator hφφ†iðΔxÞ=hφφ†iðΔx ¼ 0Þ agree even
quantitatively, as shown in Fig. 9. A similar agreement
is known from (nonrelativistic) scalar models [40]. There
field correlations associated with the particle number can be
dominated by excitations of the fluctuating phase-angle
fields at sufficiently low momenta during Bose-Einstein
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JÜRGEN BERGES et al. PHYS. REV. D 109, 114011 (2024)

114011-8



condensation far from equilibrium. This observation pro-
vides another interesting analogy to scalar systems.

IV. CONCLUSION

In this study we have demonstrated the existence of
gauge condensation in overoccupied QCD plasmas. Two
order parameters related to the Wilson loop demonstrate the
build up of a macroscopic zero-mode characteristic of
condensation phenomena. These order parameters are the
spatial Polyakov loop and algebra-valued scalar holono-
mous eigenvalue field, which form connected two-point
correlation functions of which the condensate is obtained
from their zero modes.
Through classical-statistical lattice simulations of the

Yang-Mills plasma with large gluon densities and weak

coupling, we have observed the emergence of condensate
fractions on timescales tcond ∼ L1=ζ. The extracted values
for the universal scaling exponent ζ are consistent with the
different correlators employed and also agree with previous
studies for the spatial Wilson loop within errors, see Table I.
We have shown that the growth of the corresponding zero
modes can also be seen in the correlations at large distances
and is independent of the dynamics of the one-point
functions of the order parameters.
The algebra-valued local scalar field can be related to

scalar Bose condensation. Interestingly, a similar value
ζ ≈ 0.34 has been observed in cold atom experiments at
low momentum modes [41]. In our case, the use of a local
scalar field allows us to construct effective actions in
terms of the algebra field, which is naturally suited to
describe infrared dynamics far from equilibrium. We have
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a Ns ¼ 96 lattice. Clear growth of condensate is demonstrated for both order parameters.
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izedconnected algebra field correlator hφφ†iðΔxÞ=hφφ†iðΔx ¼ 0Þ
ona latticewith sizeNs ¼ 96 at timeQt ¼ 1000, as inFigs. 2 and 8.
The results provide insights into the relationship between these two
observables and their behavior in the lattice system under study.

TABLE I. Summary of scaling exponents for different con-
densate observables. These values and their uncertainties have
been estimated using a similar χ2 procedure as in [11,17,20],
which we outline in the Appendix. The scaling exponent ζ is
compared for the two sufficiently local observables studied in this
work, the connected Polyakov loop correlator and the algebra
field, to the Polyakov loop correlator in (23), and to the Wilson
loop expectation value studied in [11].

Observable Δx Exponent

hPP†icðt;Δx; LÞ L=2 ζ ¼ 0.36� 0.04
hPP†icðt;Δx; LÞ L=4 ζ ¼ 0.31� 0.09

hφφ†icðt;Δx; LÞ L=2 ζ ¼ 0.37� 0.03
hφφ†icðt;Δx; LÞ L=4 ζ ¼ 0.34� 0.03

hPP†iðt;Δx; LÞ L=2 ζ ¼ 0.31� 0.04
hPP†iðt;Δx; LÞ L=4 ζ ¼ 0.27� 0.06

Wðt;Δx; LÞ L=2 ζ ¼ 0.27� 0.04
Wðt;Δx; LÞ L=4 ζ ¼ 0.24� 0.06
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constructed a suitable effective action and leave the con-
nection to kinetic or other approaches to future studies.
The findings presented in this study contribute to the

ongoing quest for a deeper understanding of the non-
equilibrium dynamics of QCD matter. Moreover, they
provide valuable insights into the challenges associated
with defining gauge condensation and offer new perspec-
tives on the early-time evolution of heavy-ion collisions.
This work further paves the way for investigations into the
rich physics of nonequilibrium QCD and its connections to
other areas of theoretical and experimental physics.
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APPENDIX: MEAN AND ERROR
ESTIMATES FOR ζ

Let us consider a time and lattice-size-dependent quan-
tity Aðt; LÞ like, for instance, hOiðt; LÞ or N0

O;cðt; LÞ. We
assume that its dependence can be reduced to a single
argument that combines t and L using tcond ¼ ðQLÞ1=ζ as
in (22). Our goal is to estimate the most likely value for the

exponent ζ and its uncertainty such that the quantity A
becomes a function of t=tcond only. For this, we use an
adapted version of the χ2 procedure in [11,17,20].
In particular, we choose the lattice lengths

Li ∈ f24; 32; 48; 64g, with L ¼ Nsas. We drop the tran-
sient early-time evolution before scaling sets in considering
only t > f100; 300; 300; 600g, respectively, interpolate our
data, and smoothen it using a Savitzky-Golay filter. Next,
we vary ζ within [0.2, 0.6] with 0.005 steps, rescale time
using tcond, which leads to Aiðt; ζÞ≡ Aðt=tcondðLi; ζÞ; LiÞ,
and define

χ2ðζÞ ¼ 1

5

X
ði;jÞ

R
dtðAiðt; ζÞ − Ajðt; ζÞÞ2R

dtðAiðt; ζÞÞ2
: ðA1Þ

Here, the tuple ði; jÞ runs over five pairs of lattice sizes
which are explicitly chosen as ði; jÞ∈ fð1; 2Þ; ð1; 3Þ;
ð2; 3Þ; ð2; 4Þ; ð3; 4Þg, and

R
dt integrates over a shared

domain of the rescaled times of Ai.
We approximate the likelihood distribution of ζ as

PðζÞ ¼ exp

�
−
χ2ðζÞ
2χ2min

�
; ðA2Þ

with χ2min being the minimum value of χ2 in (A1). Finally,
the optimal value of the exponent ζ̄ and its uncertainty σζ
are estimated by fitting a Gaussian function of the form

fðζ̄; σζ; ζÞ ¼ N exp

�
−
ðζopt − ζÞ2

2σ2ζ

�
ðA3Þ

to the likelihood distribution PðζÞ. Our results in Table I are
given by ζ ¼ ζ̄ � σζ.
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