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The ΞN interaction plays an important role in understanding the long-anticipated H dibaryon. Recent
lattice QCD calculations verified the attractive nature of the ΞN interaction. On the other hand, whether it is
strong enough to generate a bound state remains inconclusive. In this work, assuming it can generate a
weakly bound state, we study the yields of the ΞN dibaryon for different binding energies in pp collisions
at 7 TeV using the coalescence model and the transport model PACIAE. The yields are estimated first
numerically and then analytically, adopting a Yukawa-type wave function. In particular, we find that in the
weak binding limit, there exists a universal relation between the yield and the binding energy, valid for pp
collisions.
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I. INTRODUCTION

In the KEK-E373 experiment, the first clear evidence of
a deeply bound state of Ξ baryon and nitrogen-14 nucleus
was found [1]. However, there is no direct experimental
evidence for the existence of the ΞN dibaryon so far [2–6].
Studying the simplest ΞN dibaryon (often referred to as the
H dibaryon [7]) plays a fundamental role in understanding
the nonperturbative strong force in a more complex system,
such as the bound state of Ξ baryon and nitrogen-14
nucleus. Recent lattice QCD simulations [8] and correlation
function studies [9] indicate an attractive ΞN interaction.
With the ΞN potential from the latest lattice QCD simu-
lation [8], Hiyama et al. found that the ΞN system cannot
bind [10], consistent with the studies performed in chiral
effective field theories [9,11]. On the other hand, with the
ESC08c potential, the ΞN system can develop a shallow
bound state with a binding energy of a fewMeV [10,12,13].
Under such an unsettled situation, in this work, we would

like to propose an alternative way by studying the pro-
duction process of the ΞN dibaryon in pp collisions.
The coalescence model is a well-established method to

describe the production processes of composite particles.
To apply the coalescence model to the ΞN dibaryon, we
need two essential inputs. One is to find a proper process to
produce the constituent particles Ξ and N. Since the yields
of Ξ and N are well studied in LHC experiments, e.g.,
inelastic proton-proton (pp) collisions [14–16], it is rea-
sonable to choose the pp collisions for this purpose. In our
work, this process is simulated by the transport model
PACIAE [17]. The other essential part is correctly setting
conditions to constrain the constituent particles in phase
space. The simplest condition is the cutoff condition
[18,19], where the constituent particles combine when
their relative distance and relative momentum are smaller
than a specified cutoff. Another microscopic approach
is the Wigner density approach [18,20–26], which relies
on the wave function of the composite particle.
If Ξ and N can bind, it will likely be a shallow bound

state. If the ΞN dibaryon is a resonance, it is probably a
Feshbach resonance, whose seed is a ΞN bound state
coupled with the open channel of ΛΛ. We can reasonably
assume that the shape of the wave function of the ΞN
resonance is similar to that of theΞN bound state. Therefore,
our work assumes the ΞN dibaryon as a weakly bound state.
The wave function of the ΞN dibaryon at large distances
should behave as the Yukawa function for a short-range
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potential. The range of thewave function is only related to the
reduced mass and the binding energy EB of the bound state.
This means that the yield of ΞN depends primarily on the
binding energy EB, a universal phenomenon, as we will
demonstrate in this work.
This article is organized as follows. In Sec. II, we briefly

introduce the transport model PACIAE and the coalescence
model adopting the Yukawa-type wave function. The
formalism is presented in both numerical and analytical
ways. In Sec. III, we discuss the numerical and analytical
results then the universal phenomenon. Finally, we present
a summary in Sec. IV.

II. FORMALISM

The production of a composite particle is naturally
divided into two steps: the production of constituent
hadrons and their combination into the composite particle.
We employ the transport model PACIAE [17] for the
former step, and the coalescence model with the Wigner
function approach for the latter step.

A. PACIAE model

The PACIAE model is a transport model based on the
event generator PYTHIA [27]. It describes high-energy
collisions, such as eþe− collisions, hadron-hadron colli-
sions, and nucleus-nucleus collisions. Similar to the PYTHIA

model, the PACIAE model also simulates the collision
process in terms of parton initiation and hadronization, but
with additional transport processes [17]. In parton initia-
tion, hadron-hadron collisions are decomposed into parton-
parton interactions. The hard part is treated by the leading
order perturbative QCD, while the soft part involves some
phenomenological modeling. Hadronization and decay are
then expected after the parton initiation. The most signifi-
cant difference between the transport model PACIAE and
the generator PYTHIA is that the former introduces the
transport processes, considering that the thermodynamical
interactions cannot be neglected in the multiparticle states.
The tunable parameters in the PACIAE model are those

that determine the probabilities of different quark pairs
created from the vacuum or in the hadronization functions.
The PYTHIA Perugia 2011 (P2011) cannot well simulate the
experimental yields of Ξ and Ω, where the yield of Ω is
several times smaller than the experimental measurement
[15]. This shows the insufficiency of this simulation mode
in describing the production of strange quarks. Moreover,
the structure of Nambu-Goldstone bosons is more compli-
cated than the one encoded in the Lund string model. Since

in our simulation we are more interested in the productions
of baryons, especially multistrange baryons, we tuned the
parameters so that the simulation results are in better
agreement with the experimental yields of N, Ξ, and Ω,
and ignore the discrepancy in the yields of mesons.

B. Coalescence model

The basic idea of the coalescence model is that the
constituent particles of a shallow-bound composite particle,
whose binding energy is small compared to the evolution
temperature, are difficult to combine until the whole system
reaches the kinetic freeze-out. This implies the final state
approximation [20], where “final state” indicates that the
constituent particles experience almost no interaction with
other hadrons. The contribution from intermediate inter-
actions before kinetic freeze-out to the yield of the
composite particle can be neglected. In addition, the
coalescence time is short compared to the interaction time
in the final state. Therefore, the coalescence process can be
described in a sudden approximation [18]. As a result, we
can interpret the formation of a composite particle as a trace
over the density of the source ρ̂S in the final state, which is
the phase space distribution of constituent particles, and the
density of the composite particle ρ̂C ¼ jΨCihΨCj, i.e.,
tr½ρ̂Sρ̂C� ¼ tr½ρ̂SjΨCihΨCj� [18].
It is important to note that the density of the source is

described by a semiclassical transport model, while the
wave function of the composite particle is from quantum
theory. Thus, transformation is needed to combine these
two models. For this, the Wigner transform is an effective
method. In this approach, both the density of the source ρ̂S
and the density of the composite particle ρ̂C are transformed
to Wigner densities ρ̂WS and ρ̂WC .
The n-bodyWigner density of the source calculated from

the transport model can be written as [18]

ρ̂WS ðx1; p1;…; xn; pnÞ

¼
�X

ðcÞ

Yn
i¼1

ð2πÞ3δ3ðxi − x̃iÞδ3ðpi − p̃iÞ
�
; ð1Þ

where (c) is the index of combinations in a collision event, i
is the index of hadrons in each combination, x̃i and p̃i are
the phase space coordinates of particle i in the PACIAE
final state, and h…i denotes that the result is averaged over
all the event runs. The Wigner density of the composite
particle can be obtained by the Wigner transform,

ρ̂WC ðr1; q1;…; rn−1; qn−1Þ ¼
Z

Ψ�
C

�
r1 þ

1

2
y1;…; rn−1 þ

1

2
yn−1

�
ΨC

�
r1 −

1

2
y1;…; rn−1 −

1

2
yn−1

�

× e−iq1·y1 � � � e−iqn−1·yn−1dy1 � � � dyn−1; ð2Þ
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where rn−1 and qn−1 are the n − 1 relative coordinates corresponding to the position and momentum coordinates xn and pn.
Then, the differential and total yield Y from an n-body system averaged in each event is [18,28]

dY
dP

¼ g
Z

ρ̂WS ðx1; p1;…; xn; pnÞρ̂WC ðr1; q1;…; rn−1; qn−1Þδ3ðP − ðp1 þ � � � pnÞÞ
dx1dp1
ð2πÞ3 � � � dxndpnð2πÞ3 ;

Y ¼ g

�X
ðcÞ

ρ̂WC ðr̃1; q̃1;…; r̃n−1; q̃n−1Þ
�
; ð3Þ

where P is the total momentum of the composite particle,
r̃n−1 and q̃n−1 are the relative position and momentum
coordinates calculated with the position coordinate x̃n and
the momentum coordinate p̃n of the primary hadrons in
each combination (c) from the transport model. The addi-
tional factor g is the spin statistical factor, which is 1=4 in
our work.

C. Use of the Yukawa function

In Ref. [8], lattice QCD simulations found that the ΞN
interaction is much stronger than the ΛΛ and the ΞN − ΛΛ
interactions. As a result, it is impossible to form a ΛΛ
bound state. On the other hand, the ΞN interaction can
barely form a bound state, though the current lattice QCD
potential extracted from Ref. [8] cannot, as shown in
Ref. [10]. We learned from a private communication from
the HAL QCD collaboration that lattice QCD simulations
are ongoing at the physical point and with higher statistics.
They will tell whether the ΞN interaction is sufficient or not
to support a bound state. We note that the rather weak ΛΛ
and ΛΛ − ΞN interactions compared to the ΞN interaction
means that although coupled-channel dynamics tells that
the ΞN bound state has a ΛΛ component, the contribution
of the ΛΛ component to the formation of the ΞN bound
state can be safely neglected.
The potential takes a general Yukawa form for the ΞN

dibaryon [8], which vanishes sufficiently fast at large
distances. Therefore, the wave function can be approxi-
mated as the Yukawa function at large distances. However,
the Yukawa function has a singular point at the origin. This
can be avoided by introducing a form factor Λ2=ðq2 þ Λ2Þ,
which characterizes the size of hadrons. We set the cutoff Λ
at 0.8 GeV corresponding to a size of hr2i1=2 ∼ 0.6 fm. The
wave function then has the following form:

ΨCðrÞ ¼ A
�
e−βr

r
−
e−Λr

r

�
; ð4Þ

where β ¼ ffiffiffiffiffiffiffiffiffiffiffi
2μEB

p
, μ is the reduced mass, EB is the binding

energy, and A is the normalization constant A ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βΛðβ þ ΛÞ=ð2πðβ − ΛÞ2Þ

p
.

Since the analytical form of the Wigner density corre-
sponding to the wave function in Eq. (4) is hard to obtain,

we numerically expand the wave function in terms of the
Gaussian bases,

ΨCðrÞ ¼
XN
i¼1

ci

�
2ωi

π

�
3=4

e−ωir2 ; ð5Þ

where N ¼ 50 is the number of bases, ωi characterizes the
width of the Gaussian bases, and ci is the corresponding
weighting factor. With this expansion, the Wigner density
has the form

ρ̂WC ðr;qÞ¼8
XN
i¼1

c2i exp

�
−2ωir2−

q2

2ωi

�

þ16
XN
i>j

cicj

�
4ωiωj

ðωiþωjÞ2
�

3=4
exp

�
−

4ωiωj

ωiþωj
r2
�

×exp

�
−

q2

ωiþωj

�
cos

�
2
ωi−ωj

ωiþωj
r ·q

�
: ð6Þ

Then it is convenient to calculate the yield of ΞN
numerically, but it is not transparent to show the connection
between the yield Y and the binding energy EB. To better
understand the relation, we need to make some approx-
imations when we insert Eq. (4) into Eq. (2). According to
the mean value theorem, ρ̂CWðr̃; q̃Þ in Eq. (3) for a binding
energy EB in one combination (c) for Ξ and N is

ρ̂WC ðr̃; q̃Þ∼C1A2ðe−βC2 −e−ΛC2Þ
�

1

βþC3

−
1

ΛþC3

�
; ð7Þ

where C1, C2, and C3 are functions of r̃ and q̃. For the
ΞN dibaryon, the binding energy EB is small, so A ∼

ffiffiffi
β

p
when EB → 0. For the same reason, 1

βþC3
∼ 1

C3
and

e−βC2 − e−ΛC2 ∼ e−βC2 . In this weak binding limit, one has

ρ̂WC ðr̃; q̃Þ ∼ C1βe−βC2

�
1

C3

−
1

Λþ C3

�
≡ C0βe−βC2 : ð8Þ

The total yield is the summation of all the combinations.

For each combination(c) we have C0ðcÞ and CðcÞ
2 , thus the

total yield Y is
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Y ¼ g

�X
ðcÞ

ρ̂WC ðr̃; q̃Þ
�
∼ gβ

�X
ðcÞ

C0ðcÞe−βC
ðcÞ
2

�
: ð9Þ

Inspired by the form of Wigner densities of the Yukawa
function and converting the sum into an integral, we
assume an approximation for Eq. (9) as follows:

Y ∼ gβðξ1e−βξ2 þ PðβÞÞ ∼ g
ffiffiffiffiffiffiffiffiffiffiffi
2μEB

p
ξ1e−

ffiffiffiffiffiffiffiffi
2μEB

p
ξ2 ; ð10Þ

where the parameters ξ1 and ξ2 can be determined by fitting
to the simulation data, and PðβÞ is a polynomial serving as
a correction term. In Sec. III B, the polynomial is taken to
be a constant, PðβÞ ¼ ξ3. In the case of a small binding
energy, the yield then has the following asymptotic form:

Y ∼
ffiffiffiffiffiffi
EB

p
∼
1

R
; ð11Þ

where R ≈ 1=ð2 ffiffiffiffiffiffiffiffiffi
μEB

p Þ [29] is the root-mean-square radius
of the ΞN dibaryon. We will fit this formula to the
simulation data in Sec. III B to verify the approximation.

III. RESULTS AND DISCUSSIONS

A. Productions of normal hadrons

First, let us obtain the yields of ordinary hadrons in the
PACIAE simulation. As mentioned in Sec. II A, we focus on
the productions of baryons, especially strange baryons, sowe
have mainly tuned the parameters related to the s quark. We
kept all the parameters at their default values, except for
PARJð1Þ ¼ 0.06, PARJ ð2Þ ¼ 0.44, and PARJð3Þ ¼ 0.8,
where PARJ(1) (Default ¼ 0.10) is for the suppression of
diquark-antidiquark pair production compared with quark-
antiquark production, PARJ(2) (Default ¼ 0.30) for the
suppression of s quark pair production with u or d pair
production, and PARJ(3) (Default ¼ 0.4) for the extra
suppression of strange diquark production compared with
the normal suppression of strange quarks [27]. The so-
obtained simulation results for the total yields of baryons are
shown in Table I, and the pT distributions of the yields of Ξ
andΩ are shown in Figs. 1 and 2.We find that the simulation
results agree with the experimental data. (The data are

selected in the rapidity region jyj < 0.5, and therefore, they
are missing in the small transverse momentum region.)

B. Yield of ΞN dibaryon

With the Wigner density approach, we numerically
obtain the yields of the ΞN dibaryon for different binding
energies according to Eq. (6), which are shown in Table II
and Fig. 3. The production yields are of the order of 10−4,
somewhat smaller than those of Ω by 1 order of magnitude.
However, we expect that the ΞN dibaryon can be found if it
has a binding energy of a few MeV. Although there is no
direct experimental evidence for the ΞN dibaryon so far, we
can search for its signature using femtoscopic techniques
[2,3], and also K induced reactions [4,30]. To estimate the
impact of parameter tuning, we use the default parameters
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FIG. 1. pT distribution of the yield of Ξ at jyj < 0.5 in bins of
0.4 GeV, where the squares are the experimental data from
ALICE [15] and the triangles are the simulation results.
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FIG. 2. pT distribution of the yield of Ω at jyj < 0.5 in bins of
0.4 GeV, where the squares are the experimental data from
ALICE [15] and the triangles are the simulation results.

TABLE I. Experimental and simulated yields of primary
hadrons at jyj < 0.5 per pp collision event at

ffiffiffi
s

p ¼ 7 TeV.

Particle Data [15,16]
Simulation
(tuned)

Simulation
(default)

Ξ−ð×10−3Þ 8.0� 0.1þ0.7
−0.5 7.93 3.78

Ξþð×10−3Þ 7.8� 0.1þ0.7
−0.5 8.06 3.72

Ω−ð×10−3Þ 0.67� 0.03þ0.08
−0.07 0.684 0.120

Ωþð×10−3Þ 0.68� 0.03þ0.08
−0.06 0.728 0.106

p 0.124� 0.009 0.132 0.210
p 0.123� 0.010 0.131 0.208
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of the PACIAE, and find the yield is about 75% of those
obtained with the tuned parameters; the yield of Ξ with the
default parameters is about 45% and that of N is about
170% of those obtained with the tuned values, as shown in
Table I. The yields tend to approach zero as EB → 0. This is
expected because when the binding energy is small, the
wave function extends far away, which leads to a vanishing
constant A, and therefore, the yield goes to zero.
Now we fit the simulation results with the formula of

Eq. (10). The fitted parameters are listed in Table III. We
have three sets of parameters for the three lines since ξ1, ξ2,
and ξ3 are related to the properties of different sources
depending on the configurations. As shown in Fig. 3, the
fits reproduce the simulation data very well with the

ffiffiffiffiffiffi
EB

p
dependence for small EB. This is a universal phenomenon
when the production region is relatively small as in pp
collisions, which was referred to as short-distance produc-
tion in Refs. [31–33]. We discuss this behavior later using
the Wigner densities as shown in Figs. 5 and 6.
We can also interpret the trend in terms of the root-mean-

square radius of the system. As shown in Fig. 4, the yield of
ΞN is smaller when it has a larger size. This behavior seems
contradictory to the one drawn in Refs. [21,34], which
claimed that the yield would be more significant if the
hadronic molecule was more loosely bound. To understand

this apparent discrepancy, recall that the yield reflects the
overlap of the Wigner density of the source and the
composite particle. The Wigner density of the composite
particle will extend in the position space and shrink in the
momentum space as the size of the composite particle
grows, as shown in Fig. 5. However, we note that the
Wigner density of the source differs significantly between
pp collisions and heavy-ion collisions, as shown in Fig. 6. In
the final state of relativistic heavy-ion collisions, the spatial
part is uniformly distributed in phase space since the volume
ofQGP is very large comparedwith the size of the composite
particle [21,34], as the brightest band in Fig. 6(b) shows. On
the contrary, in the final state ofpp collisions, the hadrons are
produced mainly in the area r < 4 fm, centering around
2 fm, as the brightest part in Fig. 6(a) shows. Intuitively, one
expects that in pp collisions, the overlap will get smaller

TABLE III. Fitted parameters for the yields of the ΞN dibaryon.

Parameter ξ1 ðfm × 10−3Þ ξ2 (fm) ξ3 ðfm × 10−3Þ
Ξ−p 0.7957 2.3072 0.1828
Ξ0n 0.8411 2.3531 0.1997
Total 1.6367 2.3308 0.3826

TABLE II. Averaged yield of ΞN dibaryon in pp collisions at
ffiffiffi
s

p ¼ 7 TeV obtained from theWigner function approach per pp event,
containing charge conjugated states. The binding energy EB ¼ 1.655 MeV is predicted by the ESC08c potential [12].

Binding energy EB (MeV) 0.10 0.50 1.00 1.66 3.50 5.00 7.50 10.00 12.50

Ξp ð×10−4Þ 0.12 0.23 0.30 0.36 0.45 0.49 0.53 0.55 0.57
Ξn ð×10−4Þ 0.13 0.25 0.32 0.38 0.47 0.51 0.56 0.59 0.60
Total ð×10−4Þ 0.24 0.48 0.62 0.74 0.92 1.00 1.08 1.14 1.17

FIG. 3. Yields of the ΞN dibaryon for different binding energies
EB, where the solid diamonds/squares/circles are simulation data,
and the lines are the analytic results fitted to the simulation data.

0 3 6 9 12 15 18 21
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(1
0-
4 )
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FIG. 4. Yields of the ΞN dibaryon for different root-mean-
square radii R, where the solid diamonds/squares/circles are
simulation data, and the lines are analytic results fitted to the
simulation data.
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when the size of the composite particle increases. On the
other hand, in the case of heavy-ion collisions, the overlap
will get larger since the distribution of the Wigner density of
the source is flat. Therefore, the phase space distribution in
the final state of different collisions is quite different and,
therefore, affects the productionyields of composite particles
in a nontrivial way. This feature can be used to test the
molecular picture of the many exotic hadrons discovered in
recent years.

IV. SUMMARY

In this work, adopting the transport model combined
with the coalescence model and using the Yukawa-type
wave function, we calculated the production yields of the

ΞN dibaryon for different binding energies in pp colli-
sions. For a binding energy EB in the range of 0.1 to
12.5 MeV, the yields are about 10−4, 1 order of magnitude
smaller than that of Ω, which indicates that it is possible to
discover the ΞN dibaryon in LHC collisions if it indeed
exists and the experimental setup is well designed.
Furthermore, the yield of ΞN can be well determined by

its binding energy, a universal phenomenon. In the small
EB limit, the yield depends linearly on

ffiffiffiffiffiffi
EB

p
and goes to

zero as EB goes to zero. The parameters in the relation
encode the phase space information of constituent particles
in the kinetic freeze-out stage of pp collisions. We should
stress that this phenomenon is only valid for pp collisions
since the phase space distributions of the final states in

(a) (b) (c)

FIG. 5. The Wigner densities (with the angle between r and q is π=2) of the ΞN dibaryon for different binding energies and sizes,
where parts (a), (b), and (c) correspond to EB ¼ 12.5, 5, and 0.1 MeV, respectively.

(a) (b)

FIG. 6. Parts (a) and (b) are the Wigner densities of the source in the final state phase space of pp collisions and relativistic heavy-ion
collisions, respectively.
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different collision systems play an essential role in deter-
mining the yield.
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