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We present an algorithm for massive parton evolution which is based on the differentially accurate
simulation of soft-gluon radiation by means of a nontrivial azimuthal angle dependence of the splitting
functions. The kinematics mapping is chosen such as to reflect the symmetry of the final state in soft-gluon
radiation and collinear splitting processes. We compute the counterterms needed for a fully differential
next-to-leading order matching and discuss the analytic structure of the parton shower in the next-to-
leading logarithmic limit. We implement the new algorithm in the numerical code Alaric and present a first

comparison to experimental data.
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I. INTRODUCTION

The production and evolution of massive partons are an
important aspect of collider physics, and they play a
particularly prominent role at the Large Hadron Collider
at CERN. Key measurements and searches, such as t7H and
double Higgs boson production, involve final states with
many b jets. The success of the LHC physics program
therefore depends crucially on the modeling of heavy quark
processes in the Monte Carlo event generators used to link
theory and experiment. With the high-luminosity phase of
the LHC approaching fast, it is important to increase the
precision of these tools in simulations involving massive
partons.

Heavy quark and heavy-quark associated processes have
been investigated in great detail, both from the perspective
of fixed-order perturbative QCD and using resummation,
see for example [1-4]. Various proposals were made for the
fully differential simulation in the context of particle-level
Monte Carlo event generators [5—8]. Recently, a new
scheme was devised for including the evolution of massive
quarks in the initial state of hadron-hadron and lepton-
hadron collisions [9]. In this paper, we will introduce an
algorithm for the final-state evolution and matching in
heavy-quark processes, inspired by the recently proposed
parton-shower model Alaric [10]. The soft components of
the splitting functions are derived from the massive eikonal
and are matched to the quasicollinear limit using a partial
fractioning technique. In contrast to the method of [7,11],
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we partial fraction the complete soft eikonal, leading to
strictly positive splitting functions and thus keeping the
numerical efficiency of the Monte Carlo algorithm at a
maximum. We also propose to use a kinematic mapping
for the collinear splitting of gluons into quarks that treats
the outgoing particles democratically. This algorithm can
be extended to any purely collinear splitting (i.e., after
subtracting any soft enhanced part of the splitting func-
tions) while retaining the next-to-leading logarithmic
(NLL) precision of the evolution. Our algorithm does
not account for the effect of spin correlations.

Multijet merging and matching of parton-shower simu-
lations to next-to-leading order (NLO) calculations in the
context of heavy-quark production were discussed, for
example, in [12—-15]. The NLO matching is typically fairly
involved, because of the complex structure and partly
ambiguous definition of the infrared counterterms. In this
publication, we compute the integrated counterterms for our
new parton-shower model, making use of recent results for
angular integrals in dimensional regularization [16]. This
calculation provides the remaining counterterms needed for
the matching of the Alaric parton-shower model at NLO
QCD. We will discuss the extension to initial-state radiation
in a future publication.

This paper is structured as follows: Sec. II briefly reviews
the construction of the Alaric parton-shower model and
generalizes the discussion to massive particles. Section III
introduces the different kinematics mappings. Section IV
discusses the general form of the phase-space factorization
and provides explicit results for processes with soft radiation
and collinear splitting. The computation of integrated infra-
red counterterms is presented in Sec. V. Section VI discusses
the impact of the kinematics mapping on subleading loga-
rithms, and Sec. VII provides first numerical predictions for
e*e” — hadrons. Section VIII contains an outlook.
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https://orcid.org/0000-0003-0924-3335
https://orcid.org/0000-0002-1370-6059
https://ror.org/020hgte69
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.109.114008&domain=pdf&date_stamp=2024-06-07
https://doi.org/10.1103/PhysRevD.109.114008
https://doi.org/10.1103/PhysRevD.109.114008
https://doi.org/10.1103/PhysRevD.109.114008
https://doi.org/10.1103/PhysRevD.109.114008
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

BENOIT ASSI and STEFAN HOCHE

PHYS. REV. D 109, 114008 (2024)

I1. SOFT-COLLINEAR MATCHING

We start the discussion by revisiting the singularity
structure of n-parton QCD amplitudes in the infrared
limits. If two partons, i and j, become quasicollinear,
the squared amplitude factorizes as

n<1’ ,nll, "n>n
8za,P¥. (2)
= Zn_1<1, ..,‘l\(l]),...,},...,lﬂ%
Ad—t PiTDj mij
| BT N T 71 R SR ) S (1)

where the notation % indicates that parton i is removed
from the original amplitude, and where (ij) is the progen-
itor of partons i and j. The functions P* (z) are the spin
dependent, massive Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) splitting functions, which depend on the
momentum fraction z of parton i with respect to the mother
parton, (ij), and on the helicities 4 [11,17-21]. For the
remainder of this work, we will use only the spin-averaged
splitting functions.

In the limit that gluon j becomes soft, the squared
amplitude factorizes as [22]

1 .Lnll . n),
:—SEaSZn_l(l,...,j,...,n

i k#i

T Tpwi

| DS SN /) B

)

where T; and T, are the color insertion operators defined
in [22,23]. In the remainder of this section, we will focus on
the eikonal factor, w; ;, for massive partons and how it can
be rewritten in a suitable form to match the spin-averaged
splitting functions in the soft-collinear limit. The eikonal
factor is given by

/2 pi/2 3
(Pin)z (Pkl’j)z' )

PiPk
pipj) (pjpk)

Wik,j = (

Following Refs. [10,24], we split Eq. (3) into an angular
radiator function, and the gluon energy

W
Wik = E;;] where
j
W 1 — v;v; cos O (1-v%)/2
I (1= v;c080,) (1 — v cos8y) (1 - cos 6;;)?
- "

(1 —wvpcos8y)*"

The parton velocity is defined as v = /1 — m?/E?* and is
frame dependent. When we label velocities by particle
indices in the following, it is implicit that they are computed

in the frame of a timelike momentum »*. In this reference

frame they reduce to the relative velocity v; = v, ,, where
2.2
pq
Vyg =41 — . (5)
i (pg)?

For convenience, we also introduce the velocity four-vector

by =1\/q* p—ﬂ 6

X q g (6)
When this vector is labeled by a single particle index only,
it again refers to the four-velocity of that particle in the frame
of n#, for example % =1y, ,. When partial fractioning
Eq. (4), we aim at a positive definite result in order to
maintain the interpretation of a probability density and, with
it, the high efficiency of the unweighted event generationin a
parton shower. Following the approach of Ref. [10], we
obtain

— Wi 17k
Wik,j = Wik,j + Wki,j’ where

I — v, cosjy

Wi . = W., .. 7
*J 2 —v;cos0;; — vy cos O kj ™

The partial fractioned angular radiator function can be
written in a more convenient form using the velocity four-
vectors. We find an expression that makes the matching to the
i j-collinear sector manifest

Wi = b G & where I/, =1/ +-1¢.  (8)
i 2L\l Ll L) ik

In the quasicollinear limit for partons i and j, we can write the
eikonal factor in Eq. (3) as [11,21]

illi  (coll) 1 2z m?
Wik,jmu—pfpj Wilif)j (z) = 3 \T-2 — P'I;' , Wwhere
1 13 i J i ]

ilj E;
z — .
m;xp;p; E,- + Ej

©)

This can be identified with the leading term (in 1 — z) of the
DGLAP splitting functions P, (z, €), where'

Pulecd) = €=y (1)1 )).
P,(z.€) = CA<12_ZZ +2z(1 - z)),
P (z.e) =Tg <1 —%) (10)

'Note that in contrast to standard DGLAP notation, we
separate the gluon splitting function into two parts, associated
with the soft singularities at z - 0 and z — 1.
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FIG. 1.

Di

Sketch of the radiation kinematics in final-state evolution. See the main text for details. Note that p, is unaltered by the

mapping and only acts as a reference for the azimuthal angle ¢ [cf. Eqs. (21) and (22)].

To match the soft to the collinear splitting functions, we
therefore replace

Piji(z.€)
(pi+p;)* - mzzj

Piji(z. €)
(pi+p;)* - mzzj

Wi (o)
+5(ij)iT12|: 2 Wiy ()]s (1)
J

where the two contributions to the gluon splitting function
are treated as two different radiators [25]. As in the massless
case, this substitution introduces a dependence on a color
spectator, k, whose momentum defines a direction indepen-
dent of the direction of the collinear splitting [ 10]. In general,
this implies that the splitting functions which were formerly
dependent only on a momentum fraction along this direction,
now acquire a dependence on the remaining two phase-space
variables of the new parton. It is convenient to define the
purely collinear remainder functions

Cyq(z.€) = Cr(1 —€)(1 —2),
Cyylz,€) = Cyz(1 = 2),

Cpolene) = TR<1 _M) (12)

1—¢

They can be implemented in the parton shower using collinear
kinematics, while maintaining the overall NLL precision of
the simulation. This will be discussed further in Sec. VI.

III. MOMENTUM MAPPING

Every parton shower algorithm requires a method to map
the momenta of the Born process to a kinematical configu-
ration after additional parton emission. This mapping is
linked to the factorization of the differential phase-space
element for a multiparton configuration. Collinear safety is a
basic requirement for every momentum mapping. In addi-
tion, a mapping is NLL safe if it preserves the topological
features of radiation simulated previously [26,27]. We will
make this statement more precise in Sec. VI.

This section provides a generic momentum mapping for
massive partons that is both collinear and NLL safe. It is
constructed for both initial- and final-state radiation, inspired
by the identified particle dipole subtraction algorithm of [23].
In the massless limit, we reproduce this algorithm and thus
agree with the existing parton-shower model Alaric [10].

A. Radiation kinematics

We will first describe the kinematics mapping needed for
soft evolution. This is sketched in Fig. 1. The momenta K
and p;; are mapped to the momenta K, p;, and p;, while p;
acts as a spectator that defines the azimuthal direction. We
assume that any of the particles i, j, and k can be massive.
The momentum K can be chosen in a suitable way to reflect
the dynamics of the process [10] and absorbs the recoil
in the splitting. We define the variables

oo P M
ij Zﬁ,jk’ ij 1 + Up %
K? 2
K= R=— (13)
2piK 1+ v,

and the analogous final-state variables u;,; = m7,;/(2p; iK)
and i3, = 23,/ (1 + v;, ). The scalar invariants after the
splitting are defined in terms of the energy fraction, z [23]

2pin=22p;K,  n*=(1—z+k+u;—pi)2p;K.  (14)

The momentum of the radiator after the emission is

2 _ 52,2
Hi — Z7Hi;

705

— (K" = &kp)), (15)
pijK

Py =P+
where

7+ 242

I=—
1+vl~7iji<+2'ulzj

7+ 2u? 2 2u3(1 + i
+ < /’tl 2> _ :ut( ) 5 (16)
l+vl~7uk+2'ulj 1+U[~7Ui<+2ﬂlj

We define the variable

e B (| 5
_ ok 5(1 CrK 4)
v = / — ,  where
7 — Hil-zik
¢
2 l—z4k+u —pu?
‘= S (17)
I+v; l-z+k
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FIG. 2. Sketch of the splitting kinematics in final-state evolution. See the main text for details. Note that the unlabeled momentum is
unaltered by the mapping, and only acts as a reference direction to define the azimuthal angle ¢.

and where v = (p;p;)/(p;n) is defined as in the massless
case [10,23]. In terms of these quantities, the gluon
momentum is given by

U=z, — i} + 4

J vi),-jkg ( ij ij )
Itovp k[ 1-z+k _
= i Z = 2
+ UW [(K" —Kkpl;) — — (P —ﬂin”)}
+ K (18)
where

) 5 l—tip. B
K2 = pyR(1 4, £)7 [(1 _”> (1-3) —H”H”’}

—m:.

~.N
—
—_
O
~—

In order to determine a reference direction for the azimuthal
angle ¢ = arctan(k,/k,), we note that the soft radiation
pattern must be correctly generated. To achieve this, we
compose the transverse momentum as

A i}
K =k, COS¢|”—¢+SIH¢W , (20)

where the reference axes n; and [, are given by the
transverse projections2

. (Pk(f{ - kf'ij))(f’@ — i}, K")

2p,»ij1_7ijl~(/(1 +v; &

3 (pk(i’z‘j~_ i5K)) (K — &P 1)
Zﬁin”%,i‘/.i(/(l +vp,8)

’In kinematical configurations where pf is a linear combina-
tion of p% and 7*, n; in the definition of Eq. (20) vanishes. It can
then be computed using n, = &*/,,p*i”, where j € {1, 2,3} may
be any index that yields a nonzero result. Note that in this case,
the matrix element cannot depend on the azimuthal angle.

and
I = elpoPl(K” — RP;)n?. (22)

Since the differential emission phase-space element is a
Lorentz-invariant quantity, the azimuthal angle ¢ is
Lorentz invariant [10]. This allows us to write the emission
phase space in a frame-independent way. Upon construc-
tion of the momenta p;, p;, and K, the momenta {p,}

which are used to define K are subjected to a Lorentz
transformation,

p’f—»A’,f(K,f()p’;, where
K+ K (K + K) K*K
A = D—2( = Y42 v 23
% Xikr tE (23)

B. Splitting kinematics

In this section, we describe the kinematics for the
implementation of the purely collinear components of
the splitting functions in Eq. (12). This is sketched in
Fig. 2. We make use of some of the notation in [11], in
particular

Pilj piK

y= . 1=—, (24)
pipj+ piK+ p;K piK+ p;K
and we define the scaled masses
2
. om M
/’tl - 2,., = ,u] - ~ 750
Pin 217in
K? 2
K= k= (25)
2pUK 1 + vf’ijj{
We also introduce the following variables
2a;;
_ 2 2 = ij
aij =y + (1 =y)(ui +pj), aij—ms
ijs
m 2p3
=z B =TT (26)
Zp”K + Ui’ijqK
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In terms of the additional variables

ST e \ Tk M T+ M) TT3w)

- 2z
T, 4
Dij K
2 2 2 ZijK
(1= oy + pi;) — (i + i — 1j) 1
- J T 1=zije R
= - ) B (27)
1=Zj0;+15; L ZjjogK
Zij I—Zija,-/--&-ﬁ,zj

the momenta after the splitting are given by

~H =2 u
_Pij — K" _
P =2+ (1 = 2)(1 + i — i} — 13)
2ijVpyK

_ K+ —kp;
=20} + )+ 2uf) —— K

vﬁijj(/zij
SH o 22
N L.
pi=1=2)—2——+ (2l +pu; — i = 3)
ZijYp,.k
K* —’_‘IN?/;/' B

= (1=2)(f +u7) +2413) Koo (28)

”;3,,,1?/ Zjj
The transverse momentum squared is given by

ki =2p;K[z(1 = Z)ay; = (1= Df = 23] (29)
The construction of the transverse momentum vector
proceeds as described in Sec. III A. While the choice of
the reference vector defining 7/ is in principle arbitrary, it
can be made conveniently, e.g., to aid the implementation
of spin correlations in collinear gluon splittings.

IV. PHASE SPACE FACTORIZATION

In this section, we discuss the factorization of the
differential n + 1 particle phase-space element into a
differential n particle phase-space element and the radiative
phase space. We start from the generic four-dimensional
expression for the initial-state momenta p} and p/ and
final-state momenta, {pf, ..., p/, p’; ey Dt

d®,(Pus PpiP1s- s Pis---s Pjs--vs Pn)

- [H (2;3 ‘fgj} (27)*s@ (pa +py— Zp,) - (30)

i=1

Replacing particles i and j with a combined “mother”
particle 77, we can write the expression for the underlying
Born phase space as

dq)n—l(i)avi)b;ﬁh"'71~7ij7"'779j7"'71~7n)
L 1 d&p; 1d3~,-~
_ {H : fﬁ;} Py oy
I:;:‘l‘ (2”) zpi (27[) Zpij
x (pa + Py — Zm—pi,). (31)

=y

The ratio of differential phase-space elements after and
before the mapping is defined as the differential phase-
space element for the one-particle emission process

dq)-ﬁ-l(i?a?ﬁb;i)l’ "'vf)ij’ vi’n?pt’pj)
— d(bn(pa’ PbsP1s -+ Pis "'vpj’ 7pn)
dq)n—l(ﬁa?ﬁh;ﬁl’ ""ﬁij’ ,TQ], ""ﬁn)

(32)

This expression naturally generalizes to D dimensions. It
can be computed using the lowest final-state multiplicity,
i.e., n = 3. In order to do so, we first derive a suitable
expression for the D-dimensional two-particle phase space
in the frame of an arbitrary, timelike momentum 7. It reads

1 dD—lpdD—lq

d®,(P;p.q)= 27)PsP(P—p—
2( pQ) (2”)21)_2 2]70 2q0 (”) ( p ‘I>
1 | D-2
a0 (3
P |p|_p |P|C056pn
where dQ, , is the integral over the D — 1 dimensional

solid angle of p* in the frame of »n*. All energies and
momenta are computed in this frame, and we have defined
P=p+q. We can rewrite the momentum-dependent
denominator factor on the right-hand side of Eq. (33) as

p_O oo_—»"COS _ p0|3 (pO)Z_

(P = pIPlcosy) ~ P ""(w 1)

_ (pn)(Pp) — p*(Pn) (34)
(pn)* — p*n?

Inserting this into Eq. (33), and using D = 4 — 2¢, we obtain
a manifestly covariant form of the phase-space element,

(pn = P2,
((pn)(Pp) = p*(Pn))n* 7"~
(35)

(4ﬂ2n2)6
1622

dd,(P;p.q) =

A. Radiation Kinematics

To derive the emission phase space for final-state
splittings in the radiation kinematics of Sec. Il A, we
make use of the standard factorization formula

dn?
d®;(-K;p;.p;.q) :d%(—K;pj,—n)gdd’z(—n;pi,q),

(36)
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where g = > k#i,j Pk 18 the sum of all final-state momenta except p; and p;. We can use Eq. (35) to relate the phase-space
factor d®,(—n; p;, q) to the underlying Born phase space as follows

3/2-¢ (ﬁijn)(f?ijk) - ﬁ%j(k”)

dd,(—n; p;, q) _ < (Pi”)2 - P?”z
d®,(-K; p;;. q) (

pin)? — 1312]'”2
(1 =2p3,(2(k = u7) = 24 01,55 (1 + 2u3))) [z, 0] 7

El

(Pi”)2 - piznz

= — (37)
(14 2p3(1 = 04))* = 43, (1 = 2 + &+ iy — i )JP/2
where we have defined
27,2 _ 52 =2
i/ui— 70 1 =2k
Gi,ij:Z‘i‘ﬂ{ﬂj Iu]. (38)
Vs Kk 2
The differential two-body phase-space element for the production of n* and p’; is given by
‘ (472 ((pjn)* = pin®) >~ o,
dq)z(—K,l’l, p]) = 16772 (n2)1—£ dgl” ’
2pyK) = [(1 =2+ — i +u3)vp 0l ™
= 2\1- 2 2\1- dQy ™. (39)
(167)1=¢  2(1—z+&+u3 — ?) g
Finally, we combine Eqgs. (37) and (39) to obtain the single-emission phase space element in Eq. (32)
0Py (B By oo i - <2p,, )1 e (1=2u3,(2(k = p7) = 2+ 0,,55(1 4 265) ) [0p,n0p, ) =
PPt Pt PPD 6 ) (0 20 (1= 00)) = 4 (1= 2 x4 4 — )PP
(1 —z+pd —p? +p3))' 7% dQE
x( ( all //; P;’)l)_ dz —1"—. (40)
(L—z+x+p;—p) ™ 4n

In the massless limit, this simplifies to

dq’ﬂ(f)aa?b; -oes Dijs ~~§Pi,Pj)

2p i I-e - 1=2e dQans
p! (Z( Z)) — dZ Js . (41)
167° (1=z+xk)' Ar

We demonstrate in Appendix A 1 that this expression
agrees with the result derived in Ref. [23].

B. Splitting kinematics

To derive the emission phase space for final-state radi-
ation in the splitting kinematics of Sec. III B, the recoiler is
chosen to be the sum of the remaining final-state partons. We
make use of the standard factorization formula

p..
—Ud‘bz(Pij;Pi,Pj)’

d 2
d(I)B(‘];Pi,Pj,K) = d®,(q; K, pij) o
(42)

where g =) ;. ; py is the sum of final-state momenta
except p; and p;. Working in the frame of ¢ = K+ Dijs
we can use Eq. (35) to relate the phase-space factor

d®,(q; K, p;;) to the underlying Born differential phase
space element d®,(q; K, p;;) as follows

d®,(g: K. pij) _ ((Kp,,) -K’p 2)]/2—e
d(I)2<q;i(, ﬁij) (f(ﬁ,]) szlj
=(1-y)(1 +/"ij — i _qu)l—zs
v, 1-2¢
x <—p'f'K> : (43)
Upijk

The decay of the intermediate off-shell parton is associated
with the differential phase-space element

chz(Pij;Pth)
4z ((pipj)* = pi p,)'/z'g

— dQ2- 25’
167[2 (pl]> i

(167[ )1 € 2( (l—l—/,tij—/,{l. P‘j)"‘/h +ﬂj)1_8 iij
(44)

)1/2 £
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Finally, we combine Egs. (43) and (44) to obtain
s Dij» --anZPi’Pj)

Zi)K 1= —2¢ —2¢
- ( 16171;2) (1= (””?f‘”?—ﬂ?)z ’

A, (Pg. Ppi D1

Up’ K (1 +'“ij_:“i ﬂj)-i-,u%-l—,ujz)"
dQ?72

Nl ;
4 (45)

In the massless limit, this simplifies to

d@ 1 (Pas Pys Prs-oos Pijs s P Pis )

szk 1-e dQ?zze
- () e S )

In Appendix A 2, we will show the equivalence of Eq. (45) to
the single-emission differential phase-space element of [11].

V. INFRARED SUBTRACTION TERMS
AT NEXT-TO-LEADING ORDER

The matching of parton showers to fixed-order NLO
calculations in dimensional regularization based on the
MC@NLO algorithm [28] requires the knowledge of
integrated splitting functions in D = 4 — 2¢ dimensions.
Since our technique for massive parton evolution is
modeled on the Catani-Seymour identified particle sub-
traction and the Alaric parton shower, we can use the
methods developed in [29,30]. We will limit the discussion
to the main changes needed to implement the algorithm for
massive partons. The results of this section provide an
extension of the subtraction method for identified hadrons
first introduced in [23].

A. Soft angular integrals

In this section, we compute the angular integrals of the
partial fractioned soft eikonal. While we focus on pure final-
state radiation, the results of this integration are generic and
apply to the case of final-state and initial-state emission of
massless vector bosons. The integrand is given by Eq. (8),

2 2 2
Wl:k o ik _ i S - k )
T2 (Ldy)  2(0;)7 2(4i) (L)

We can write the angular phase space for the emission of the
massless particle j as

(47)

/dQ?‘ZE:Q(l—28)/dcos9(sm 0)” /d¢(3m $)~,

(48)
where Q(n) = 22"/?/T(n/2) is the d-dimensional line
element, in particular Q(1—2¢) =2(4x)I'(1 —¢)/

I'(1 —2¢). We finally find the following expression for
the cases with massive emitter

dQ,z 2e _ . l 2 lilik 12 12 1
/9(1—2.9)Wlk1 4k151)< > lfé’"‘) _51(2)(112)

12
— IRl B 1), (49)

For massless emitter, we obtain (see also [10,23])

Qi _ . 2 Lix B\ B .
/Q(lj_Qg)Wék,jZkI(H)( 2 ’jk> _Ek (1;(”1(’12)

(50)

The angular integrals 7/, ; and I, have been computed in
[16,31-34]. They read [16]

) U2

log vy + /i 1111”22
2
VU2 — U102

. V13
+2Lih (1 ——————
) 2< 1+\/1—U11>

(2) _ n
11,1(0127 U115 Z)22) = >
VU1 — U1l Vip —

+2Li2<1 - SE

—\/1—7]11

1
2 ll _10 v22
<2 o8 13 2 s ”%3

_~) —2Li2<1 —Hﬁi__@)) + 0(€2)}1

. V12
2L | 1 = ———
" 2( l—vI—-vy

)oms(errst)) o)

1) _2_7'[ € I1+V1-v 5
I (v) = . {1 1—v10g1—\/1—:71+0(8) , (51)
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where the velocities are defined in the notation of Ref. [16],
and where

v13 = (1 = A)vy + Avya, U3 = (1 = A)v1p + Avpy,

2
L e v R VA PR N p)

A
vy + v =20

(52)

Note that spurious collinear poles appear on the right-hand
side of Eq. (50), which cancel between 1511) (Ll /2, 12/4) /2
and I(,fl)(ll-lk, [2). In addition, in the fully massless case I(l]])
is related to the massless two-denominator integral and
gives the simple result [10]

T (1 .
1211)(1)127 Up) = e {;+8L12(1 —vp)+ 0(82)}. (53)
12

B. Soft energy integrals

In this section, we introduce the basic techniques to solve
the energy integrals in Eq. (40). After performing the
angular integrals, we are left with the additional z
|

dependence induced by the energy denominator in
Eq. (4). We focus on the cases relevant for QCD and
QED soft radiation, where u;; =u; and u; =0. The
differential emission probability per dipole is then given by

n2

d® i (Pas Pos - Dijs -3 Pis ) (p:n)? Wfk.j
J

Ar) T(1—¢) .. - _
— ~ V"% 2%, k)¢

1622 T(1 = 2¢) 2Pk

% (1 - 2/’[12(2(’(_”,2) —-Z+ Gi.ij(l —+ 2#%)))’[]})7’215
[(1 + 2/112(1 - Gi,ij))z - 4/,{[2(1 —z+ K)]3/2—8

Z1—2£ dz 2 dQ?;Zs
1—z+6)7(1-2)"2 7 Q(1 - 2e)

i
Wi

(54)

1

In order to carry out the integration over the energy
fraction, z, we expand the integrand into a Laurent series.
The differential soft subtraction counterterm, summed over
all dipoles, is given by

2

. ~ ~ ~ n =
dos = —87ras,uZéZdCI)+1(pa, Pbiees Dijs -3 Pis pj)T;Tkiwik’j,

.k

x| ZTZTk dmp’ (pen) \¢f 8(1-2) L&
2zT(1 —¢) = T2 \2 € -z,
1, )

X jik(Z’ﬂ?v")(l%k - 112 - li)

where the mass correction factor reads

(Pj”)z
_ 4, |l =2)
(pipi)(pin) ter [ L}dz
LOT(1—e)? [ do7>
7 T(1-2¢) [Q(1 - 2¢) ”w}’ (55)
(1= 202(2(k — p?) — 2+ 0755 (1 +2u3))) v} 2 6

jik(Z,M%’K) =

and where the massless limit is given by J(z,0,x) = 1.
All 1/e poles have been extracted, and we can (after
expanding the e-dependent prefactors) compute the final
result as an integral over the delta functions and plus
distributions in z. In general, some of the terms must be
computed numerically, as n implicitly depends on z, see
Eq. (14). In order to apply Eq. (56) to processes with
resolved hadrons, we can make use of the formalism
derived in [23,29,30]. The 1/& pole proportional to
2z/[1 — 2], can then be combined with the soft enhanced
part of the collinear mass factorization counterterms. The
extension to initial-state radiation requires a repetition of
the derivation in Sec. IV A for initial-state kinematics. We
will discuss this in a future publication.

(1 2021 = 01))" = 4F (1 = 2+ [P

|
C. Collinear integrals

To compute the purely collinear counterterms, we use the
splitting kinematics and make use of the results in
Appendix A 2. Note that we also use the corresponding
definitions of the scaled masses. We define the purely
collinear anomalous dimension in terms of the collinear
remainders in Eq. (12)

Q2 -2¢) [z, —z_\ 1+
QB-2¢)\ 2

X /Z+ dz((z = z-)(z4 — 2))*Cup(z. ), (57)

7ab (8) =
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where z. are given by Eq. (A9). This leads to

74q(e) = Cr(1—¢) (1 z4 ;z_>’

Vgq(€) =Cy (Z+ = (1=¢/2)(z; +2.)° _Z+Z—> ,

2 3-2¢

2 2 _ —7 )2
Fule) =145t )), (58)

The complete counterterm can now be obtained by Laurent series expansion, using Eq. (A14)
5 8rau®C,, a2 \¢Q(3—2e)
do (‘1§l~7i',K;Pi,P')#:—s — —_(] ﬁ2 ,U )2 28/1( ’K)—1/2+e
/ +1 J J (pi+pj)2_mlgj 27\Q?) (4rx)1-2¢ i~ Hij

(1 =7 =5 —=R) +fi; +p3] ¢
x [ dy(1—y)'=2 - L (2 =22) "2 (e). (59)
/ y(1-p? - /Aj—K)+Mi+ - ’

There are three variants of Eq. (59) relevant for QCD. The first describes the collinear splitting of a massive quark into a
quark and a gluon, and is characterized by fi; = fi;; > 0 and fi; = 0. We obtain

- 8rau*C
d®,(g; i, K pis pj) — 5
/ ! / / (Pi+Pj)2—m12j
a, (1—p7 —&) dy o - A_
i 1= y)(1 = g2 — &) + 28]? — 4k, (0), 60
=5 i) s e V=9 = =)+ 2P =47, 0) (60)

Note that the result is infrared finite. This is expected because the only poles that occur in the radiation off massive quarks
have their origin in soft gluon emission, which is fully accounted for by the eikonal integral in Eq. (54). This also shows that
in our subtraction scheme, there is a hierarchy between the soft and the collinear enhancements, as required for a proper
classification of leading and subleading logarithms.

The second case is the splitting of a gluon into two massive quarks, which is characterized by j1; = ji; > 0 and fi;; = 0
The result is finite and reads

- 8rau*C
d®. (q; p;j. K; piopj) ———2
/ - g 7 (pi+pj)?

a N2 _ A_z_,Acz A
:ﬁ< 12—K‘> \/y112;42 —K)—)|—2 4) \/Kl_y)<1_2/212_k)+2ﬂ2_4’%779(1(0)- (61)

The final case describes the collinear decay of a massless parton into two massless partons, and is characterized by
fi = ftj = ji;; = 0. This term is collinearly divergent, and we obtain

- 8w u*Cy,
do 1(61;13"7[{;1"»17')#
/ " Y B (Pi+Pj)2

‘&(”—2)8 <4n>6/ { 5(») 1}<[<1—y><1—k>+2f<12—4:%>'/2—8r<1—e)z_

22\0?) T(1—¢) dy _T+E (1-k)%* [(2—2¢)7

(€). (62)

|

The treatment of initial-state singularities will be discussed the discussion of the massless case in [10]. We refer the
in a future publication. reader to [10] for more details on the general method of the
proof. The analysis is based on the technique for general
final-state resummation introduced in [35]. Following the
notation of Sec. 2 of [35], the observable to be resummed is
We now demonstrate that our kinematics mapping satisfies ~ denoted by », while the hard partons and soft emission have
the criteria for NLL accuracy laid out in [26,27], extending ~ momenta py, ..., p, and k, respectively. The observable is a

VI. KINEMATICAL EFFECTS ON SUBLEADING
LOGARITHMIC CORRECTIONS
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Differential 2-jet rate with Durham algorithm (91.2 GeV)
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FIG. 3.

function of these momenta, » = V({p}, {k}), and for any
radiating color dipole formed by the hard momenta, p;
and p;, the momentum of a single emission can be para-
metrized as

k= Zl"]‘pl‘ + ijpj + kT,ij’ where k%lj = 2pipjzi,jzj,i’ (63)

with rapidity #;; = 1/21n(z; ;/z;;). An observable can be
expressed as

v = ai(“) e ma) (64)

with kz; = kg ;; and n; = n;; for j { [ in the collinear limit.
A natural extension of Eq. (63) to the case of massive emitters
would be

Differential 3-jet rate with Durham algorithm (91.2 GeV)

Alaric and Dire predictions in comparison to LEP data from [48].
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_ 72 =2
k= (zij—#izji)pi + (z;; — Bizij)p;j + krij,  where
2v
2 PisPj
kT.ij =2pip; T+to ZijZji- (65)

Upi~Pj

In the quasicollinear limit, this Sudakov decomposition
agrees with the one given in [21,36] if the auxiliary (lightlike)
vector defining the anticollinear direction is chosen as the
direction of the color partner of the QCD dipole. In particular,
for constant z; ;, z;; and small k7, the gluon momentum
behaves as

k2<<p1p/-
k=
m2

, ZijPi T Zipjt+ kr.i; + O(k7) (66)
i/ <k

in complete agreement with Eq. (63). In the quasicollinear
limit, the value of the observable V(k) will therefore be
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Thrust (Ecpms = 91.2 GeV)
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FIG. 4. Alaric and Dire predictions in comparison to LEP data from [49].

unchanged from the case of massless evolution. However,
both the Sudakov radiator and the F function will change,
due to the modified splitting functions, Eq. (10), and the
effects of masses on the integration boundaries.

The Lund plane for gluon emission off a dipole containing
a massive quark with mass m and energy E will have a
smooth upper rapidity bound at # = In(E/m), consistent
with the well known dead-cone effect [37-39]. When the
similarity transformation introduced in Sec. 2.2.3 of [35] is
generalized to the quasicollinear limit, and applied to a
process with massive quarks, the location of this boundary
in relative rapidity is unchanged, because the quasicollinear
limit requires m o k. The subleading logarithmic terms
in the resummed cross section can then be extracted
similarly to the massless case, but a change to the Catani-
Marchesini-Webber (CMW) scheme is required. We will not
discuss the complete structure of the result, but address only

the effects related to momentum mapping, which have been
found to spoil NLL precision [26,27].

In order to prove that the momentum mapping of
Sec. III A satisfies the criteria laid out in [26,27], we need
to show that it has the same topological features as in the
massless case [10]. This amounts to showing that hard,
(quasi)collinear emissions, i.e. highly energetic emissions
in the direction of the hard partons, do not generate Lorentz
transformations that change existing momenta by more
than O((k%/K?)?), where  is a positive exponent. To show
this, we analyze the behavior of Eq. (23) in the (quasi)
collinear region. We can split K* into its components along
the original recoil momentum, K*, the emitter, 137 , and the
emission, p/;.

K+ = K* — X*, where Xt = p’; —(pij—pi)-  (67)
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b quark fragmentation function f(x}%)
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For the effect of the Lorentz transformation that determines
the event topology after radiation, only the parametric form
of X* is of interest. Using Egs. (15) and (18), the small
momentum X* for gluon radiation can be written as

Upyk Upyk
I+vs g [ 1 -Z2+k =
_ piiK . Z K _
+ 2, K [(K" —&p;) - : (P} —ﬂ?,K")}
ij
+ K. (68)

b quark fragmentation function f(x§°%)

;} :T TTT { TTTT { TTTT { TTTT { TTTT { TTTT { TTTT TTTT TTT T: (@]
3 C 1=
0 if
z g
3 1= — 9
- = =
; —4— DELPHI Data —+5
Eur.Phys.J. C71 (2011) 1557
10" £ —+— Alaric E
F —+— Dire_.Had _Massive_Sum e
k\ L1l ‘ L1l ‘ L1l ‘ L1l ‘ L1l ‘ - ‘ - ‘ - ‘ L1l \A
EL T ‘ LI ‘ LI ‘ LI ‘ LI ‘ L ‘ L ‘ L ‘ T T 7\5
1.4
1.3 E- _
8 12 E
<
a ™I i : . " —— I:
g o9E | T T ot t
= 08  —
07 E- _
8:2 T 111 l I l I l I l I l I l I l I l 111 T
01 02 03 04 05 o6 07 o8 09 1
xp
b quark fragmentation function f(x§°)
~Q ErTT ‘ TTTT ‘ TTTT ‘ TTTT ‘ TTTT ‘ TTTT ‘ TTTT TTTT TTT1TT1] U
5 f 1=
Z g
5 r &
z i
= 1=
i —4— SLD Data
Phys.Rev. D65 (2002) 092006
1071 E —t+— Alaric -
= —+— Dire m
el ‘ 1111 ‘ 1111 ‘ 1111 ‘ 1111 ‘ 1111 ‘ 1111 ‘ 1111 ‘ I s |
14 L ‘ LI ‘ LI ‘ LI ‘ LI ‘ LI ‘ LI ‘ LI ‘ LI
1.3 E-
£ i FITU_:—A—\L |
<] l'i | U U W W W S U I P e | i ]
U o9 El | T T L T | ]
S o8 i
07 E-
88 T 11 l 1111 l 1111 l 1111 l 1111 l 1111 l 1111 l 1111 l 111 ]
02 03 04 05 96 07 08 09 1

XB

Alaric and Dire predictions in comparison to LEP data from [50-53].

In the quasicollinear limit, this scales as O(k ), which is
sufficient to make the effect of the Lorentz transformation
vanish even for hard quasicollinear splittings.

Finally, we note that the precise treatment of transverse
recoil in the kinematics mapping of Sec. III B does not
affect the resummed result at NLL precision, because the
mapping is applied solely to the purely collinear parts of the
splitting functions, Eq. (12). This can be understood with
the help of Eq. (2.46) in Ref. [35], which will be
structurally similar in the case of massive partons. The
subleading logarithmic terms, which lead to a violation of
NLL accuracy in many dipole showers, arise from acci-
dental correlations between multiple soft-enhanced emis-
sions. This means in particular, that the parton-shower
equivalent of the integrals in Eq. (2.46) does not factorize in
the strongly ordered limit. The differential probability for
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the emissions is given by the derivative of the radiator
function in Eq. (2.21) of Ref. [35] and does not receive a
contribution from the purely collinear remainders in
Eq. (12), such that a change in the kinematics mapping
cannot generate this particular type of NLL violation.

VII. COMPARISON TO EXPERIMENTAL DATA

In this section we present first numerical results obtained
with the extension of the Alaric final-state parton shower to
massive parton evolution. The implementation is part of the
event generation framework Sherpa [40-42]. We do not
perform NLO matching or multijet merging, and we set
Cr=(N2-1)/(2N,)=4/3 and C, = 3. The quark masses
are set to m, = 1.42 GeV and m;, = 4.75 GeV and the
same flavor thresholds are used for the evaluation of the
strong coupling. The running coupling is evaluated at two
loop accuracy, and we set ay(m,) = 0.118. Following
standard practice to improve the logarithmic accuracy of
the parton shower, we employ the CMW scheme [43]. In this
scheme, the soft eikonal contribution to the flavor conserving
splitting functions is rescaled by 1 + a,(z)/(27)K, where
K = (67/18 = n*/6)C, — 10/9T gn s, and where n is scale
dependent with the same flavor thresholds as listed above.
Velocity dependent corrections to K should be included in
principle, but the massless result provides an acceptable
approximation at very large velocities [44,45], and can
therefore be used for b-quark production at LEP, where
v & 0.99. Ourresults include the simulation of hadronization
using the Lund string fragmentation implemented in
PYTHIA 6.4 [46]. We use the default hadronization parameters,
apart from the following: PARJ (21)=0.3, PARJ (41)
=0.4,PARJ (42)=0.45, PARJ (46) =0.5 and compare
our predictions with those from the Dire parton shower [25].
All analyses are performed with Rivet [47].

Figure 3 displays predictions from the Alaric parton
shower for differential jet rates in the Durham scheme
compared to experimental results from the JADE and
OPAL collaborations [48]. The b-quark mass corresponds
to y ~ 2.8 x 1073, and hadronization effects dominate the
predictions below ~107*. We observe good agreement with
the experimental data. Overall, the quality of the results is
similar to Ref. [10], where heavy quark effects were
modeled by thresholds. Figure 4 shows a comparison for
event shapes measured by the ALEPH collaboration [49]. It
can be expected that the numerical predictions will improve
upon including matrix-element corrections, or when merg-
ing the parton shower with higher-multiplicity calculations.
Again, the overall quality of the prediction is similar
to Ref. [10].

Finally, we show predictions for the b-quark fragmenta-
tion function as measured by the ALEPH [50], DELPHI
[51], OPAL [52], and SLD [53] collaborations. Figure 5
shows a fair agreement of both the Alaric and Dire

predictions with experimental data. We note that both
parton shower implementations use the same hadronization
tune.

VIII. CONCLUSIONS

We have introduced an extension of the recently pro-
posed Alaric parton-shower model to the case of massive
QCD evolution. An essential aspect of the new algorithm is
the form of the collinearly matched massive eikonal, which
is obtained by partial fractioning the angular component of
the eikonal of a complete dipole. This technique preserves
the positivity of the splitting function, thus leading to an
excellent efficiency of the Monte Carlo simulation. Inspired
by the symmetry of the partonic final state in purely
collinear splittings, we also introduced a dedicated kin-
ematics mapping for this scenario and showed that it
preserves the NLL precision of the overall simulation.
We computed the infrared counterterms needed for the
matching to fixed-order calculations at NLO accuracy, and
discussed the logarithmic structure of the resummation in
the case of heavy-quark evolution.

Several improvements of this algorithm are needed
before it can be considered on par with the parton shower
simulations used by past and current experiments. Clearly,
spin correlations and dominant subleading color effects
should be included. This can be achieved with the help of
the techniques from [54—60]. An extension to initial-state
evolution is needed for LHC phenomenology. It will need
to account for the noncancellation of certain types of
singularities in processes with two massive initial states
[61]. Finally, the algorithm should be extended to higher
orders based on the techniques developed in [59,62,63].

In this context, we note that the all-orders (in &)
expressions from Sec. V, in conjunction with higher-order
expressions for the angular integrals in Sec. V A that can be
obtained from [16], can be used to compute the factorizable
integrals at NNLO, thus providing a significant part of the
components needed for an MC@NNLO matching [64].
The computation of the remaining nonfactorizable integrals
is a further development needed in order to reach the
precision targets of the high-luminosity LHC.
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APPENDIX: PHASE-SPACE FACTORIZATION
IN COMPARISON TO OTHER INFRARED
SUBTRACTION SCHEMES

In this appendix, we compare the phase-space factori-
zation in our method to the existing dipole subtraction
schemes of Refs. [11,23]. We will show that our generic
form of the factorized phase space, derived from Eq. (35)
can be used to obtain the relevant formulae, for pure final-
state evolution.

1. Massless radiation kinematics

First, we show that Eq. (5.189) of Ref. [23] can be
derived from our generic expression, Eq. (35), using
radiation kinematics. We start with the massless limit of
Eq. (40)

dq)-‘rl(f)avi’b; -+es Dijs ~~§Pi7l’j)

_ (2R (a1 = 2)) AR
167* )

(1—z+xK)'¢ “an
Expressing the polar angle in the frame of » in terms of v
and z [see also Eq. (32) of [10]]

(A1)

n?vz

l—z+k
(1 =2)pan

1-¢

cos®;, =1-2v (A2)

We can perform a change of integration variables
dcos®;, — dv, leading to Eq. (5.189) of Ref. [23].

d®+1(1~’a’l~7b§---’l~7ij,---§Piij)
2~i‘[~( 1-¢ 1= 1-2¢ (i 26‘;1 —¢ dQ l 26
_ (2py 2> (21 =) (Sin°03) ™ 4, .
16z (1-z+x)™° 1-z (4 ) ¢
— (2pin)1_€ (1 _ Z)—Ze vz 1— n’ vz -
167° -z (1=2)2p;n
dQl —2e
x dzdw (2”)] - (A3)

2. Massive splitting kinematics

In this appendix, we derive the phase-space factorization
formula, Eq. (5.11) in [11] from our generic expression,
Eq. (35). We use the definitions of Eq. (24) [11], and we

set Q* = (p,;; + K)?. In addition, we define the scaled
masses
2 2 2 2
. ms . m= . m;; . K
pi==3 i=_3. hh=_3. k=—5. (Ad)
Q 0 Q 0

3Note that these definitions differ from the ones in Sec. III B.

The single-emission phase space element is given by
dq)+1<q;l~’ijv f(;Pi’pj)

_ dq)Z(q;pij’ K) dlej

dd,(q; pij. K) 27

The decay of p;; is simplest to compute in its rest frame. In
this frame, we can write

®2<Pij§Pi,Pj)- (AS)

(i) (i)
E:VE
< :lpilg(l = ViV l]kcosellj)
ij
= lzlj(l_vl]t ljkcosell]) (A6)
Dij
where the velocities are given by
\/y (1= p7 — 5 —R)* —4p3i3
(l_l’tz _/’l]_K)+2/’tl ’
VI =)0 =7 = 2 = &) + 202 — 4&
Vijk = (A7)

(1 =y)(1 =i — 7 = &)

The decay phase space, written in the frame of p;;, then reads

£ (if) —2¢
(4”2) (Ei Vij, 1)1 dgg 2
67 ()7 %

_ (@) ()
167> Vijk

dq)z(PijZPnPj) =

dzdQ}7%.

i,ij (Ag)

We can use the factorization ansatz pgli)z =X(z—z_)x

(z,. — z), where the physical boundary condition gives the

roots of the quadratic | cos 6, ;| = 1, leading to

plplj

it = (lj:vl]l lj.k)

lj
(=@ —R) 20
2[y(1 =2 = i3 —R) +ji? + ]

(1:l:vljl tj,k)' (A9)

The factor X is determined by equating the transverse
momentum at the extremal point z; y. = p;pij/ plzj to the
total three-momentum of p; in the frame of p;;. This leads to

2
iz Pij
PP =5 (2 -2z - 2), (A10)
Vijk
and finally
471'2/Q2 € R R . . v
dcbz(pij;pi,pj)=( ) (1 =pF =3 —R) +p7 +p3] 7

2,1-2¢
1677w, ¢

X ((z=2-)(z4 —2))°dzd Q77

(A11)
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We also have
dp}; = Q*(1 = i — jr; — k)dy.

The last missing component of the emission phase space is the
ratio of the production to the underlying Born phase-space
element. It is most easily computed in the frame of
q="Dpij+ K and results in

d®,(q; pij K) _ ((Zpin)zv%j’k> 1/2-¢
d®,(q; pij. K) B Q4/1(1,;}l.2j,f<)
_/a = )2 (1 = 7 = i = R)*0f; ,\ 1/2-¢
a < AL 2 %) ) -

(A12)

(A13)

where the Killen function is given by A(a,b,c) =
(a—b - c)* —4bc. Combining Egs. (A11)—(A13) gives
the final result

d(I)H(q;i?,-j,f(;Pi,Pj)

_ (Q2>1_£ 1=02=p2— A)Z—z‘%(l ~2 )—]/2+6‘
=gz (I —H—ij =k Bk

x dy(1=y)!2y(1 = = 3 = &) + o} + ]
dQl ;%

B Al4
(27[)1—25 ( )

xdz((z —z-)(zy —2))~
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