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First radial excitations of mesons and diquarks in a contact interaction
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We present a calculation for the masses of the first radially excited states of 40 mesons and diquarks made up
of u, d, s, ¢, and b quarks, including states that contain one or both heavy quarks. To this end, we employ a
combined analysis of the Bethe-Salpeter and Schwinger-Dyson equations within a self-consistent and
symmetry-preserving vector-vector contact interaction. The same set of parameters describes ground and
excited states of mesons and their diquark partners. The wave function of the first radial excitation contains a
zero whose location is correlated with an additional parameter d which is a function of dressed quark masses.
Our results satisfy the equal spacing rules given by the Gell-Mann Okubo mass relations. Wherever possible,
we make comparisons of our findings with known experimental observations as well as theoretical predictions
of several other models and approaches including lattice quantum chromodynamics, finding a very good
agreement. We report predictions for a multitude of radial excitations not yet observed in experiments.
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I. INTRODUCTION

A detailed exploration of the ground and excited states of
two-body bound systems unravels the dynamics of the
underlying quantum field theory. As a standout example,
precise measurements of the energy spectrum of the
hydrogen atom, carried out by Lamb in 1947, led to the
birth of renormalized quantum electrodynamics. In a
similar manner, we expect meson spectroscopy to be
essential to our understanding of dynamical chiral sym-
metry breaking (DCSB) and confinement, the emergent
infrared phenomena which characterize quantum chromo-
dynamics (QCD). However, a comprehensive insight is
achieved not merely by reproducing the ground states
satisfactorily. It also requires accurately describing their
excitations. Radially excited states, while retaining the
same spin and parity as the ground states, naturally have
higher masses. For example, first and second radial
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excitations of a pion, discovered experimentally almost
40 years ago [1], have masses of 1300 and 1800 MeV,
respectively. Since then, many theoretical efforts have been
made to study these excitations of mesons which include
approaches like the Bethe-Salpeter equation (BSE) [2-9],
lattice QCD [10-13], QCD sum rules [14—16], linear sigma
model [17], holographic QCD [18-21], and nonrelativistic
potential models [22-24].

On the experimental front, several radial excitations of
mesons have been reported over the years. Initial obser-
vations include the ones of the pion [1], as mentioned
before, the p meson [25] via pion-nucleus collisions at
the Serpukhov accelerator and CERN, identification and
study of the radial excitation of the K mesons by LHCb,
ACCMOR Collaboration, and SLAC [26-28], and the
confirmation of the radial excitations of D°, D*0, and
D** mesons by the BABAR experiment [29]. This experi-
ment also studied whether the controversial D}(2710) was
the first radial excitation of D}(2112) [30]. The BESIII
detector at the BEPCII eTe™ collider provided precise
mass determination of the :16(18)1 meson [31]. The LHCb
Collaboration [32] observed a state consistent with B(1S)
with a mass of 6841.2 MeV. The two excited B, mesons,
B} (18) and B:(1S), were observed for the first time by

'We employ the convention where n = 0 corresponds to the
ground state. We refer to the text for the detailed notation.

Published by the American Physical Society


https://orcid.org/0000-0002-9093-3685
https://orcid.org/0000-0002-7223-1401
https://orcid.org/0000-0003-3183-7316
https://orcid.org/0000-0003-0034-4439
https://ror.org/00z0kq074
https://ror.org/059ex5q34
https://ror.org/03a1kt624
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.109.114006&domain=pdf&date_stamp=2024-06-06
https://doi.org/10.1103/PhysRevD.109.114006
https://doi.org/10.1103/PhysRevD.109.114006
https://doi.org/10.1103/PhysRevD.109.114006
https://doi.org/10.1103/PhysRevD.109.114006
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

G. PAREDES-TORRES et al.

PHYS. REV. D 109, 114006 (2024)

TABLE I. The list of mesons that have been studied through a symmetry-preserving SDE or BSE treatment of a
vector-vector CIL.

Pseudoscalar mesons Ref. Scalar mesons Ref.
7(ud) [5,44,56], K(u3), hy(s5) [57-60] o(ud) [5], Kj(u3), fo(ss) [57.58]
D(cit), D (c5), B*(ub), BY(sb) [59,60] Dj(cit), D%y(c5), By(ub), Byy(sb) [46,47]
Bf(ch)m.(ct) [61,62], n,(bb) [62] [59,60] Bo(ch)yeo(ct) 161,621, yp0(bb) [62] [46,47]
Vector mesons Ref. Axial-vector mesons Ref.
p(ud) [5.44], K (u5), ¢ (s5) [57-60] ay(ud) (5], K, (u3), f1(s5) ) [57,58]
D*(cit), Di(c5), BT (ub), BY(s ) [59.60] D (cit), Dy (c5), By (ub), By (sb) [46,47]
Bi(cb), J/¥ (cc) [61,62], Y(bb) [6 [59,60] B, (ch), ;(Cl(cc) [61,62], yp1 (bb) [62] [46,47]

the CMS experiment at /s = 13 TeV [33]. CLEO III
reported the observation of 7, (1S) [34] and carried out the
first determination of the hyperfine mass splitting in the
bottomonium sector: Y (15)-1,(15). Precise mass measure-
ments for J/¥ and Y radial excitations have been per-
formed at the VEPP-4 Collider [35,36]. In the realm of
scalar and axial-vector mesons, we have limited exper-
imental results to date, with observations of D}, [30],
xp0 1371, a; [38], and y;,; [39] meson radial excitations.
Note that a critical component of the ongoing scientific
program of the 12 GeV upgrade at the Thomas Jefferson
National Accelerator Facility is the study of the spectrum
and structure of excited hadrons [40]. This rather brief and
incomplete survey of the experimental efforts should be
enough to convey how active this field of study has been in
the past and continues to be.

The study of mesons through BSEs also serves as a portal
to the exploration of baryons, especially while employing a
quark-diquark picture to explore their properties. Diquarks
are color-nonsinglet quark-quark correlations. These diquark
correlations are studied through the BSEs, which are
identical in form to the corresponding mesons with different
charge and color factors. Owing to their color charge, like
individual quarks and gluons, diquarks cannot propagate to
the detectors. We assume this to be the case, although the
colored diquarks have an associated mass scale. Interest in
diquarks has grown in recent years, thanks to their role and
importance in calculating the properties of baryons; see, for
example, [41]. In the quark-diquark picture, two quarks in an
attractive color-antitriplet configuration can couple with a
third quark to form a color-singlet baryon. Naturally, this
approach alleviates the computational strenuousness, since it
invokes only a two-body interaction instead of three [42].
Modern related studies reaffirm that a full three-body equa-
tion yields nucleon masses which do not differ from the
quark-diquark picture by more than 5% [43]. This quark-
diquark picture has been very successful in describing masses
[5,44—47] and form factors [41,48-51] of baryons. Scalar and
vector-axial diquarks dominate in the nucleon with positive
parity, while for baryons with negative parity the contribu-
tions of diquarks with both parities are indispensable [46,47].

In addition, diquarks are important in the study of tetraquarks
and pentaquarks, since these particles can be described as
bound states containing diquarks and an additional quark in
the latter case [52—55]. The diquarks corresponding to their
ground-state mesons play a role for the relevant ground-state
baryons. However, it is conceivable that, if we consider
excited baryons, we would be required to invoke excitations
of diquarks. It establishes the relevance of considering the first
radial excitation of the diquarks in this article.

We investigate first radial excitations of mesons and
diquarks through a coupled analysis of the BSEs for the
two-body bound states and the Schwinger-Dyson equation
(SDE) which triggers DCSB for a single quark in strongly
coupled QCD. We employ a simple, efficient, symmetry-
preserving, and self-consistent vector-vector contact inter-
action model (CI). It mimics infrared QCD to produce the
mass spectrum of all ground-state mesons and baryons by
implementing essential features of infrared QCD such as
confinement, DCSB, and the low-energy implications of
axial-vector Ward-Takahashi identity. Several works use CI
to study mesons; see Table I.

This manuscript is organized as follows: In Sec. II, we
recall general features of the CI, the underlying assump-
tions, and a detailed discussion on how the parameters of
the model are fitted. After providing a self-contained
discussion on the BSE in Sec. III, our detailed analysis
of the masses of the first radial excitation of mesons and
diquarks can be found in Secs. IIl A and III B. In Sec. 1V,
we present our conclusions.

II. CONTACT INTERACTION: FEATURES

For practical description of hadrons, the gap equation for
the quarks requires modeling the gluon propagator and the
quark-gluon vertex. In this section, we shall recall the main
truncation and characteristics which define the CI [5,44,56,63].

(i) The gluon propagator is defined to be independent

of any running momentum scale:

gzD/w(k) = 4”&IR W — =4dn alg 5}41/’ (1)
my
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where m, = 500 MeV is a gluon mass scale gen-
erated dynamically within infrared QCD [64-67]
and apg can be interpreted as the interaction strength
in the infrared [68-70].

(ii) We take the leading-order quark-gluon vertex:

FL/(p’ q) =Y (2)

(iii) With this kernel, the dressed-quark propagator for a
quark of flavor f becomes”

) , 167 . [ d*q
Sfl(l?):lY'P‘f'mf +TalR/W7ySf(q)yw
3)

where my is the current-quark mass. The integral
possesses quadratic and logarithmic divergences.
We choose to regularize them in a Poincaré covariant
manner. The solution of this equation is

S\ (p) =iy-p+ My, (4)
where M, in general, is the mass function running
with a momentum scale. However, within the CI, it

is a constant dressed mass.
(iv) M; is determined by

4a
My =m;+ Mfﬁcmwf) (5)

where

CY(6)/c =Cl(6) =T (=1,013,) —T(=1,0672), (6)
I'(a, y) is the incomplete gamma function, and 7;;
are, respectively, infrared and ultraviolet regulators.
A nonzero value for 7;g = 1/ARr implements con-
finement [71]. Since the CI is a nonrenormalizable
theory, 7yy = 1/Ayy becomes part of the definition
of the model and, therefore, sets the scale for all
dimensioned quantities.

In this work, we report results using the parameter values

detailed in Tables II and III, which correspond to what were

dubbed as heavy parameters in [59]. In this choice, the effective

coupling constant and the ultraviolet regulator vary as a

function of the quark mass. In the context of the CI,* this

behavior was first suggested in [61] and later adopted in several
subsequent works [47,59,60,62,76-78]. The heavier quarks
tend to make more compact mesons, and the closer proximity

*We employ a Euclidean metric with v} =26, yh = Vs
Ys =vay17273; and a - b = Z ", a;b;. A timelike four vector Q
has 0? < 0. Furthermore, we cons1der isospin-symmetric limit.

3For other models and the external conditions of finite density,
temperature, and/or magnetic field, similar ideas were earlier
implemented in [72-75].

TABLEII. Ultraviolet regulator (in GeV) as well as dimension-
less coupling constant for different combinations of quarks in a
hadron. o = ary/Zy With ag;, = 1.14, extracted from the best
fit to data, as explained in [62]. Fixed parameters are the gluon
mass m, = 500 MeV reported in [67] and A = 0.24 GeV.

Quarks Zy Ayvy [GeV] R
u, d, s 1 0.905 1.14
¢, d, s 3.034 1.322 0.376
¢ 13.122 2.305 0.087
b, u, s 16.473 2.522 0.069
b, ¢ 59.056 4.131 0.019
b 165.848 6.559 0.007
TABLE III. Current (m, ) and dressed masses (M, ) for
quarks (GeV), required as input for the BSE and the FE.

m, = 0.007 my = 0.17 m. = 1.08 my, =3.92
M, =0.367 M, =053 M.=152 M, =4.68

of these quarks leads to lower values of the effective strong
interaction coupling. This behavior is incorporated through the
parameters choice in the third column in Table II.

Table III presents current quark masses in GeV used
herein and the dressed masses of u, s, ¢, and b quarks,
computed from the gap equation, Eq. (5). The simplicity of
the CI enables straightforward calculation of hadronic
observables, including their masses, decay constants,
charge radii, and form factors. The study of heavy,
heavy-light, and light meson masses also leads to the
evaluation of the mass scale associated with diquark
correlations through using the same set of parameters.
With this in mind, in the next section, we describe and solve
the BSE for mesons and diquarks.

III. BETHE-SALPETER EQUATION

The bound-state problem for hadrons characterized by
two valence fermions is studied using the homogeneous
BSE in Fig. 1. We explore how this equation describes
mesons and diquarks in both their ground and excited
states. The homogeneous BSE reads [79]

4
P = [ Gl PL K@k ). ()

where I' is the bound state’s Bethe-Salpeter amplitude
(BSA), y(q; P) = S(q + P)I'S(g) is the BS wave function;
r, s, t, and u represent color, flavor, and spinor indices, and
K is the relevant fermion-fermion scattering kernel. This
equation possesses physical solutions at P> values for
which bound states exist. We employ the notation intro-
duced in [4]: [f}, f>] for scalar and pseudoscalar diquarks
and ({f,f1}), {f1,f>}) for axial-vector and vector
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A
@ = K
A\ A\ ‘

iS
FIG. 1. This diagram represents the BSE. Blue (solid) circles
represent dressed propagators S, the red (solid) circle is the meson

BSA T, and the blue (solid) rectangle is the dressed-quark-
antiquark scattering kernel K.

diquarks. We describe the details of the radially excited
meson mass calculation in the following subsection.

A. Radial excitations of mesons

To obtain the mass and amplitude associated with the
first radial excitation of a meson comprised of a quark with
flavor f, and an antiquark with flavor f,, we employ the
same methods as detailed in Refs. [46,59]. However, we
naturally include an extra term associated with the fact that
the first radial excitation possesses a single zero just like the
radial wave function for bound states in quantum mechan-
ics. Within any sophisticated QCD-based treatment of
mesons, all Chebyshev moments of BSA in the first radial
state possess a single zero, whereas those of ground BSA
exhibit none [2]. In the phenomenological application of
CI, we follow the works [5,44] and insert a zero by hand
into the kernels in the BSE, multiplying it by (1 — ¢*dp),
which forces a zero into the kernel at g> = 1/d, where d
is an additional parameter. The presence of this zero
reduces the coupling in the BSE and, hence, increases
the bound state’s mass. The presence of this term modifies
the functions C" in [46]. It must now be replaced by

i — Clu — D", where

iu — ® S Tiz“ 2
DY (w) —A dsss+a)—> 5 dTT—36Xp [—7],

Fi(z) = —z(d/dz)F*(z), and Fy(z) = Fi(z)/z. The
general decomposition of the bound state’s BSA for radial
excitations is the same as the ground state. In CI,

FH :AHEH+BHFH’ (8)

where H = PS, S, V, AV denotes pseudoscalar (PS), scalar
(S), vector (V), and axial-vector (AV) mesons, respectively.
The explicit form of the BSA for different types of mesons
is displayed in Table I'V. For the first radial excitation of the
PS mesons, the matrix form of the BSE (with C" — F! in
the kernel) (see [46]) is

TABLE IV. We list BSAs for mesons. The total momentum of
the bound state is P, and My = M; M /[M;, + M7].

BSA Ay By
Lps iys i Vst P
I Ip .
Ly, 7;74- ZMR ouwby
Cavy 75}’,{ 7550, 2MR Py

e e |

| o
with

1 .
Kby = / da{F* (o)
0
a(1 - )P — V] Fi (o)},

P2 1 _
KE = WA do[(1 = )Mz, + aM ;| Fi(oV),

2My,

2
P2 ICEF’

ICFE -
1 1
K5 = A da{M My, + (1 - a)M2 + aM}
x Fit(w)),

where « is a Feynman parameter and we define the function
ol = w(M%, MJ%] ,a, P?) as

o) — M%(l —-a) +on}l +a(l —a)P>.

In analogy, we straightforwardly obtain the eigenvalue
equations for S, V, and AV excited states:

1 = Ks(=m3) =0,
1= Ky(=my) =0,

1= Kay(= mAV) 0, (10)
where
Ks(P?) —4&% A ' dof~LoF (o)
+ (Fu(0W) = Fir(0M))],
20!1R/ P2 ]—"1“( )’

24 _.
an(P) =52 [CdalF o) + Lo(P)FY ),

(11)
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and we have defined

Ly(P?) =MpMy; — (1 —a)M; —aM3 —2a(l —a)P?,
Ls(P?) =My M; +a(l —a)P?.

Equations (9) and (10) have a physical solution when
P? = —m2,. Then the eigenvector corresponds to the BSA
of the meson excitation. It was observed in [80—84] that the
DCSB generates a large dressed-quark anomalous chro-
momagnetic moment and consequently the spin-orbit
splitting between ground-state mesons and their parity
partners is enhanced in accordance with observation. In
our study, we assume and implement this effect also in the
parity partners between radial excitations of the mesons
[5,44]. This is the mechanism responsible for a magnified
splitting between parity partners; namely, there are essen-
tially nonperturbative DCSB corrections to the rainbow-
ladder kernels, which largely cancel in the pseudoscalar
and vector channels but add constructively in the scalar and
axial-vector channels. Following [5], we introduce a spin-
orbit repulsion into the scalar- and axial-vector radial
excitations through the artifice of a phenomenological
coupling gso <1, inserted as a single, common factor
multiplying the kernels defined in Egs. (9) and (10). ggo
mimics the dressed-quark chromomagnetic moment in
full QCD. The first numerical value of ggp = 0.24 was
used in [5] and later slightly modified in Refs. [47,58,59].
For mesons with J* =07, 11 we use

B0 =032, gy, =025 (12)
The value g, = 0.25 in the axial-vector channel guaran-
tees the effect of spin-orbit repulsion and reproduces the
desirable experimental value for the a; — p mass splitting
[47,58,59]. On the other hand, ggz = 0.32 is chosen to
produce a mass difference of approximately 0.3 GeV
between the quark core of the 0% (ud) [which we call
o(ud)] and that of the p meson (as obtained with beyond-
rainbow-ladder kernels). The choice of g5, = 1 indicates
no repulsion and no additional interaction beyond that
generated by the rainbow-ladder kernel.

Now we need only to discuss how to choose the location
of the zero in the excitation. For this purpose, it is necessary
to fix the parameter dy; this value was set to 1/dp = 2M?>
in [5,44] for the calculation of radial excitations of light
mesons in PS and V channels. However, for heavy and
heavy-light mesons, this value requires to be modified. Our
analysis for radial excitations of different types of mesons
(PS, S, V, and AV) composed for heavy or light quarks
shows that the best choice of d can be adjusted fairly well
with just one functional form:

dF = dl - d2€_d3MR. (13)

TABLE V. Selected parameters d;, d,, and d; in Eq. (13) for
the first radial excitations of mesons.

Meson d; d, ds

PS 8.32 41.67 11.08
S 8.52 109.47 15.82
14 8.35 10.37 7.50
AV 8.44 10.00 8.00

The constants d;, d,, and d5 for the different channels are
displayed in Table V, and My, is the reduced mass of the two
quarks. In Fig. 2, we have plotted the curves that corre-
spond to each of the fits for dy. To obtain the parameters
shown in Table V, we use existing experimental values for
the masses of the excited states. Given the limited avail-
ability of experimental results, we supplement this infor-
mation with the one obtained through using sophisticated
theoretical models (see references in Tables VI and VII)
whenever possible. Guided by these experimental and
theoretical results, we determined the best fit function
dr(Mpg) (13), such that it minimizes the associated average
error for the predicted meson masses. We readily observe
that the four curves lie in close proximity to each other,
which suggests that it is possible to obtain a unified
treatment of the first radial excitations of all PS, S, V,
and AV mesons.

Table VI details the results obtained with the parameters
of Tables II, III, and V. It also shows a comparison with the
ground states, the experimental results, and predictions
obtained using other approaches. We adopt the spectro-
scopic notation n*$*!'L, with n the principal quantum
number, S the spin, L the orbital angular momentum, and J
the total angular momentum. In this notation, n =0
corresponds to the ground state and n =1 to the first
radial excitation. We, thus, have

105— ————— ——
8:—.
ﬁ‘“éii:'
I
r — PS
: -— v
4: S
H - AV
AR RS SRR
2 3

M (GeV)

FIG. 2. Plotted dj obtained with Eq. (13) and constants in
Table V for first radial excitation of PS, S, V, and AV mesons.
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TABLE VI.

Pseudoscalar and scalar meson masses calculated from the BSE defined by Eqgs. (9) and (11), using the parameter values
in Tables. II, III, and V. The experimental values are taken from Ref [85]. Columns 6 and 12 show the percentage difference between the
values predicted by our model and the experimental results. 7 is the principal quantum number. n = 0 corresponds to the ground state
and n = 1 to the first radial excitation.

Pseudoscalar Scalar
n Exp. Others CI Diff. % n Exp. Others CI Diff. %
m(ud) 0 0.139 0.14 072 o(ud) 0 1.2 e 1.22 1.66
1 1.3 1.27 23 1 e 1.358 [86] 1.34 e
K(st) 0 0.493 0.49 0.61 K§(us) 0 1.430 e 1.33 6.99
1 1.46 1.51 3.43 1 1.53 [4] 1.57
hy(s5) 0 0.69 So(ss) 0 1.34
1 1.72 1 1.82
D(cit) 0 1.86 1.88 [87] 1.87 0.54 Dj(ct) 0 2.30 2.45 [87] 2.32 0.87
1 254 [29] 258 [87]  2.53 0.39 1 2.924 [87] 2.63
D7 (c5) 0 1.97 1.98 [87] 1.96 0.51 D (c5) 0 2317 2.55 [87] 243 4.88
1 2.67 [87] 278 1 3.044 [30] 3.18 [87] 3.27 7.42
B*(ub) 0 5.28 5.28 [45]  5.28 0 B (ub) 0 5.72 [45] 5.50
1 5.86 [32] 591 [45] 5.68 3.07 1 6.185 [45] 5.82
BY(sh) 0 5.37 5.36 [45] 5.37 0 B,y (sh) 0 5.80 [45] 5.59
1 598 [45] 594 1 6.241 [45] 6.57
n.(ce) 0 2.98 293 [88] 298 0 Xeo(c?) 0 3.414 3.32 [88] 3.35 1.87
1 3.64 3.68 [88]  3.66 0.55 1 - 3.83 [88] 4.7 .-
Bt (cb) 0 6.27 6.27 [89]  6.28 0.16 Bo(ch) 0 6.76 [89] 6.45
1 6.87 6.87 [89]  6.80 1.02 1 7.134 [89] 6.88
1, (bb) 0 9.40 9.41 [88]  9.40 0 Zb0(bb) 0 9.859 9.815 [88] 9.50 3.64
1 9.99 9.99 [88]  9.68 3.10 1 10.232 10.254 [88] 10.234 0.02
TABLE VII. Vector and axial-vector meson masses calculated from the BSE defined by Eq. (11), using the parameter values in

Tables II, III, and V. The experimental values are taken from Ref. [85]. Columns 6 and 12 show the percentage difference between the
values predicted by our model and the experimental results. 7 is the principal quantum number, and n = O corresponds to the ground

state and n = 1 is the first radial excitation.

Vector Axial vector

n Exp. Others CI Diff.% n Exp. Others CI Diff. %
p(uc_i) 0 0.78 0.93 19.23 al(uc_i) 0 1.260 1.37 8.73

1 1.47 1.47 0 1 1.65 1.58 4.01
K (us) 0 0.89 1.03 15.73 K, (us) 0 1.34 e 1.48 10.44

1 1.68 1.63 2.98 1 1.57 [4] 1.72
@(s53) 0 1.02 1.12 9.80 f1(s5) 0 1.43 e 1.58 10.49

1 1.68 1.79 6.55 1 1.67 [4] 1.88
D*(cii) 0 2.01 2.04 [87] 2.06 2.49 D (cit) 0 2.420 2.5 [87] 2.41 0.41

1 2.61 [29] 2.64 [87] 2.57 1.53 1 2.931 [87] 2.63
Di(cs) 0 2.11 2.12 [87] 2.14 1.42 Dy (c5) 0 2.460 2.6 [87] 2.51 2.03

1 2.70 2.73 [87] 2.78 2.96 1 3.005 [87] 2.90

114006-6
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TABLE VII. (Continued)

Vector Axial vector
n Exp. Others CI Diff. % n Exp. Others CI Diff. %
BT (ub) 0 5.33 5.33 [45] 5.33 0 B, (ub) 0 5.721 5.77 [45] 5.55 2.99
1 5.97 [32] 5.94 [45] 5.68 4.86 1 6.145 [45] 5.74
BY*(sb) 0 5.42 5.41 [45] 5.41 0.18 B, (sh) 0 5.830 5.85 [45] 5.64 3.26
1 6.0 [45] 591 1 6.2013 [45] 6.05
J/¥(cc) 0 3.10 3.11 [88] 3.15 1.61 Ye1(c?) 0 3.510 3.49 [88] 3.40 3.13
1 3.686 3.7 [88] 3.92 6.35 1 3.67 [88] 4.19
B:(cb) 0 6.27 [90] 6.33 [89] 6.32 0.80 B.,(ch) 0 6.71 [89] 6.48
1 6.84 [90] 6.89 [89] 6.85 0.15 1 7.107 [89] 7.05
Y (bb) 0 9.46 9.49 [88] 9.42 0.42 b1 (bb) 0 9.892 9.842 [88] 9.52 3.76
1 10.023 10.9 [88] 9.71 3.12 1 10.255 10.120 [88] 9.53 7.07
PS — nlSO, MB:(ls) — Mrz?:.c(ls) =29 MeV, (14)
S — n'Py,
where
V- n3Sl,

AV — (n*Py, n’P,, n’P,).

For pseudoscalar radial excitation (1'S), the largest differ-
ence between the results obtained with our model and the
experimental data is 3.43% which corresponds to the
meson K(si), and the smallest difference is 0.39% for
the D°(cit) meson, while for vector mesons, the minimum
and maximum differences are found in D*°(cit) and ¢(s5)
mesons: 1.53% and 6.55%, respectively. We now check the
experimental relation obtained in the CMS experiment at
Vs =13 TeV [33]:

MEE5) = Mp:1s) = (M (05) = M (0s))-  (15)
In our CI model, this mass splitting is 20 MeV, which,
being a difference of similar masses, is fairly consistent
with the measurement CMS measurement.

The masses of the scalar and axial-vector mesons can be
found in Table VII. Although there are few experimental
results in these two channels, it is immediate to see that the
maximum difference between our prediction and the
observed result is 7.42%, which corresponds to the scalar
meson D;(c5). The low percentage differences lead us to
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FIG. 4. Comparison between the masses of the ground-state scalar mesons and their first radial excitations.

conclude that our predictions are in fairly good agreement
with the experimental measurements.

Figures 3—6 provide a visual display of the difference in
mass between the states n = 0 and n = 1 for PS, S, V, and
AV mesons. Notably, the largest differences in mass is
observed for light mesons. For states composed of one or
two heavy quarks, this effect is less pronounced. In the case
of the lightest meson, i.e., the pion, the difference is
approximately 89%, and the heaviest meson y,,(bb) has
a difference of merely 0.11% between the mass of its
ground state and its first radial excitation. Equal spacing
rules for mesons [91,92] are obtained independently of the
value of the quantum number 7. Thus, we expect them to be
also valid for the radial excitations that we treat in our

analysis. In that case, pseudoscalar and scalar mesons must
satisfy the following mass relation for the radial excitations:
1 1SO:

mD:r(Cs) - mDO(cﬁ) + mB+(u5) - mB?(sl_)) 0’
My ey F My, (o) = 2t () = 03 (16)
1P

Mp;(es) = Mpy(ea) T Mpsub) — Mpy(sp) = 0. (17)

In our model, PS mesons deviate 1% including the heaviest
mesons [1.(c¢), n,(bb), and B} (ch)] and S mesons 11% of
Egs. (16) and (17).
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FIG. 6. Comparison between the masses of the ground-state axial-vector mesons and their first radial excitations.

Similarly, we can verify the equal spacing rules for the
radial excitations of the ground-state vector and axial-
vector mesons. For different combinations of light and
heavy quarks, these relations read as follows:

1 3S 1-

Mp(cs) = Mpos(cq) T Mpte(up) — Mpo-(sp) = 0,
My pp(cz) + My pp) — 2mp: 5 = 0;

]3P0:

(18)

We can check these relations by using the results presented
in Table VII. The deviation for vector heavy-light mesons is
merely 2%, while for the heavy mesons comprised only
with combinations of composing quarks b and ¢ [J/¥(c¢),
Y (bb), and B:"(cb)], this difference still stays at a
satisfactory 7%. Axial-vector meson mass splitting differ-
ence in Eq. (18) is only at 3%. With these results, we can
verify that the meson masses with mixed spin and parity
and n = 1 obey the following relations:

Mp,(c5) ~ M, (ca) T Mp, (ub) — M, (s5) = O-

Mps(ch) = Mpt(ch) + MpBo(sh) X Mpos(sh)» (19)

My (s5) = M+ (up) + Mp+(up) = Mpo(p)>  (20)

Mgo-(sp) = Mpte(up) + Mpo(ea) = Mpr(ez)»  (21)

TABLE VIIIL

My () = 2Mgo-(spy + 2Mpy(e5) X My 2y, (22)

(23)

My, (b) = 2Mp0(sh) T 2Mp (c5) = My (c2)»

Mg 5y = Mp:(c5) T Mp(cs) = Mpo(sh)» (24)

My(phy = 2Mpo(p) + 2Mps (5 = Mypwiee),  (25)

My (pp) = My, (55) + My (ce) X My pw(ce) (26)

My (pp) = 2Mpo- () + 2Mpy(cs) X Mypwiee)- (27)

The deviation from these mass relations is listed in
Table VIII, where we compare the result of each equation
on the left-hand side with the result of the model on the right-
hand side of the corresponding equation. We can readily
conclude that our calculations agree very well with the mass
relationships dictated by the Gell-Mann Okubo mass for-
mulas [91,92] in all channels for the first radial excitations.

This brings us to the conclusion of the detailed compu-
tation and presentation of our results for the first radial
excitations of PS, S, V, and AV mesons. We now take up
diquarks in the next subsection.

B. Radial excitations of diquarks

The idea of diquarks was introduced in [93]. Our current
understanding of diquarks is no-point-like quark-quark

The percentage difference (%) of the equal spacing rules for the masses of mesons, Egs. (19)-(27) for CI.

Eq. (19) Eq. (20) Eq. (21) Eq. (22)

Eq. (23) Eq. (24) Eq. (25) Eq. (26) Eq. (27)

CI 1.35 0.5 0.72 6.56

8.20 0.5 13.5 5.87 11.99
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TABLE IX. Here we list the BSA for diquarks.

BSA Ay By
I'ps iys i rsr P
Cpps Ip o

Cpavy Yy 2;&, o Py
1—‘DV,M YSy; 2}\1/] G;wa

correlations with finite spatial extent. Lately, diquarks have
been the focus of immense interest, since they provide a
means for understanding baryonic properties. Diquarks can
exist in a color-sextet or a color-antitriplet combination.
The interaction is attractive for diquarks in a color anti-
triplet while it is repulsive in the color-sextet channel [7].
Furthermore, it is the diquark in a color antitriplet that
can couple with a quark to form a color-singlet baryon.
We will consider only the diquark correlations in a
color-antitriplet configuration [94]. We use the notations
H = DS,DPS,DAV,DV, which correspond to scalar,
pseudoscalar, axial-vector, and vector diquarks, respec-
tively. The BSA for diquarks has the same form as Eq. (8),
but the coefficients change according to Table IX. The color
factor for mesons and diquarks is different owing to the fact
that diquarks are color antitriplets, not singlets. It ensures
quarks have attractive correlation within a diquark in the 3
representation just as in mesons though the strength of this
attraction is less. The eigenvalue equation in the case of the
first radial excitation of scalar diquarks is

PS PS
]CEE }CEF

|:EDS(P):| _ 4ar
Key  Krr

|:EDS(P)
Fps(P) 6r

Fps(P)

} . (28)

The equations that will give us the masses of the pseudo-
scalar, axial-vector, and vector diquarks excitations are

1
0= 1+ Ks(—mpps).

2
1
0=1 _EICV( Mpay)s
1
0=1+ ZICAV( mpy)- (29)

From Egs. (28) and (29), it follows that one may obtain the
mass and BSA for a diquark with spin parity J” from the
equation for a J=¥ meson in which the only change is
halving the interaction strength. The flipping of the sign in
parity occurs because fermions and antifermions have
opposite parity. In Table X, we present our results for
the masses of radially excited (n = 1) diquark correlations
with JP = 0%,1%,07, 17, compared to their ground-state
(n = 0) masses. In computing our results, we have made
use of the function dr given by the expression (13). In
Table XI, we show the percentage difference between the

TABLE X. Diquark masses obtained using the parameters
described in Tables II and III and the value of dy given by the
fit in the expression (13) in the isospin symmetry limit. For
pseudoscalar and vector diquarks, we show two results: one with
d% and gk, and the other with g3, and g}, multiplied by 1.8
labeled with *.

n DS DPS DAV DV
ud 0 077 130 (1.15) 106  1.44 (1.33)
1128  139(131%) 148  1.62 (1.56%)
us 0 092 141 (127°) 116  1.54 (1.43%)
1 152 159(1.56") 163 174 (1.70%)
ss 0 106 151 (140%) 125  1.64 (1.54%)
1 172 1.82(1.81") 180  1.89 (1.87%)
cu 0 208  237(228) 216 245 (238
1 253 264 (2.63) 257 265 (2.63%)
es 0 217 247 (2407) 225 254 (2.48%)
1 278  327(327) 278 290 (2.90%)
ub 0 537  553(547°) 539 559 (553
1 568 582(582") 568  5.75(5.74%)
sb 0 546 562 (557°) 547 567 (5.62°)
1 594  650(650°) 591  6.05 (6.05)
cc 0 317 338(333) 322 342 (338
1 390 430 (430°) 392  4.19 (4.19%)
b 0 635 647 (644") 635 650 (6.47%)
1 680 707 (7.07) 685  7.05(7.05%)
bb 0 943 951 (9.50) 944 953 (9.51%)
1 968 984 (9.84") 971 954 (9.52%)

states with n = 0 and n = 1. As in the case of mesons, the
mass of the first radial excitation is always greater than that
of its ground state, and, as we expected, the percentage
difference between these states is more noticeable in
diquarks made up of light quarks. In fact, the difference
in the vector diquark with two b quarks is practically zero.

Following Ref. [58], we have multiplied gg, by a factor
of 1.8 for pseudoscalar and vector diquarks. This modifi-
cation generates less repulsion. Physically, this might be
understood by acknowledging that valence quarks within a
diquark are more loosely correlated than the valence-quark
and -antiquark pair in a bound-state meson. Consequently,

TABLE XI. Percentage difference between the ground states of
the diquarks and their first radial excitations. The masses are
taken from Table X.

cb bb

ud us ss cu cs ub sb cc

DS 39.84 39.47 38.37 17.78 21.94 5.45 8.08 18.71 6.61 2.58
DPS 6.47 11.32 17.03 10.22 24.46 4.98 13.53 21.39 8.48 3.35
DAV 28.37 28.83 30.55 15.95 19.06 5.10 7.44 17.85 7.29 2.78
DV 11.11 11.49 13.22 7.54 12.41 2.78 6.28 18.37 7.80 0.01
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spin-orbit repulsion in diquarks should be less pronounced
than it is in the corresponding mesons.

IV. CONCLUSIONS

Using a symmetry-preserving regularization of a vector
x vector CI, we compute masses of the first radially excited
state of 40 mesons in Tables VI and VII and of 40 diquarks
in Table X, including states that contain one or two heavy
quarks. Our predictions for the masses of the mesons are in
good agreement with the values obtained experimentally
whenever available. The maximum difference between our
results and the experimental observation is 7.42%. In
Figs. 3-6, we show a comparison between the masses of
the ground states and their corresponding excited states.
Notice that, with the diquark masses and amplitudes
described herein, one can construct all Faddeev kernels
associated with radial excitations of octet and decouplet
baryons as well as their chiral partners. All this is for future.

Finally, we wish to clarify that many of the results
reported here for the mesons and diquarks in the ground

state have been previously obtained by us in [46]. We report
these results here along with their radial excitations for the
sake of direct and ready comparison. Together with the
results obtained in the present work, we have calculated
around 218 states using the formalism described here. As
indicated before, our future work is intended to be focused
on computing masses of the first radial excitations of
baryons.
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