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In this paper, the reaction of electron-positron annihilation into Λþ
c Λ̄−

c is investigated. The Λþ
c Λ̄−

c

scattering amplitudes are obtained by solving the Lippmann-Schwinger equation. The contact, annihi-
lation, and two pseudoscalar-exchange potentials are taken into account in the spirit of the chiral effective
field theory. The amplitudes of eþe− → Λþ

c Λ̄−
c are constructed by the distorted wave Born approximation

method, with the final state interactions of the Λþ
c Λ̄−

c rescattering implemented. By fitting to the
experimental data, the unknown couplings are fixed, and high-quality solutions are obtained. With these

amplitudes, the individual electromagnetic form factors in the timelike region, GΛc
E , GΛc

M , and their ratio,

GΛc
E =GΛc

M , are extracted. Both modulus and phases are predicted. These individual electromagnetic form
factors reveal new insights into the properties of the Λc. The separated contributions of the Born term,
contact, annihilation, as well as the two pseudoscalar-exchange potentials to the electromagnetic form
factors are isolated. It is found that the Born term dominates the whole energy region. The contact term
plays a crucial role in the enhancement near the threshold, and the annihilation term is essential in
generating the fluctuation of the electromagnetic form factors.

DOI: 10.1103/PhysRevD.109.114005

I. INTRODUCTION

The electromagnetic form factors (EMFFs) of baryons [1]
play a crucial role in studying the internal structure of
hadrons. The electric and magnetic form factors of the
baryons in the spacelike region indicate the charge density
andmagnetic moment distributions, respectively, by Fourier
transformation from the momentum space into the coor-
dinate space. In contrast, the physicalmeaningof theEMFFs
in the timelike region, where the nucleon-antinucleon
interaction is involved [2], is not so clear. There has been
a long running effort trying to study the timelike EMFFs of
the baryons, e.g., Refs. [3–6] and references therein and
thereafter. Among them, Ref. [7] proposed that the timelike
EMFFs should reflect the distributions of the polarized
charges and/or magnetic moment distributions, which is
interesting but needs further study from both the theory and
experimental sides. In the aspects of the experiment, the
processes of electron-positron annihilation into baryon-
antibaryon pairs are rather powerful for studying the

properties of the EMFFs [8–12]. Over the last decades,
there have been many experimental measurements on
nucleons as well as other baryons following this way.
See, e.g., Refs. [13–18]. These measurements strongly
reduced the uncertainties compared with those of the old
experiments. Especially for almost all the datasets, if they
give measurements around the baryon-antibaryon thresh-
olds, they find that there are strong enhancements very close
to the thresholds. This attracts enthusiastic attention from
the theorists, such as works about eþe− → p̄p [19–23],
eþe− → Λ̄Λ [24–27], eþe− → ΣΣ̄;ΞΞ̄ [28–30], and
eþe− → Λþ

c Λ̄−
c [31–33].

In the present analysis, we focus on the EMFFs of theΛc,
which are somehow similar to that of the nucleons, with a
u=d valence quark replaced by the c quark. The cross section
of the reaction eþe− → Λþ

c Λ̄−
c [34]was firstmeasuredby the

Belle Collaboration in 2008, with large uncertainties. Ten
years later, the BESIII Collaboration performed a measure-
ment on the cross section of this process [13]. Although it
contains only four energy points, they are very close to the
threshold (below 4.60 GeV), showing obvious enhance-
ments around the threshold, too. One of the most likely
mechanisms leading to the enhancement is the final state
interactions (FSIs) [35–37], where the baryon-antibaryon
rescatterings are taken into account. The FSI can be
implemented by a two-step procedure: The Lippmann-
Schwinger (LS) equation is applied to describe the B̄B
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scattering amplitudes [38,39], where B represents baryon.
Then, one can construct the production amplitudes with B̄B
final states based on the distorted wave Born approximation
(DWBA) method [19,28,32]. This two-step procedure has
proven to be a successful tool for predicting the amplitudes
and describing the enhancement well in the energy region
around the B̄B thresholds. Typical works dealing with the
FSI of baryon-antibaryon pairs in such away can be found in
the processes ofeþe−→ηΛΛ̄ [27],eþe−→ΛΛ̄;ΣΣ̄;ΞΞ̄ [28],
J=ψ → p̄pγ; η0ππγ; 3ðπþπ−Þγ; K0

SK
0
Sηγ [40,41]. Indeed,

there are some other ways to deal with the FSI in a similar
two-step procedure, where only the ways to get the kernel of
the B̄B scattering are different and so on for constructing the
production amplitudes. See, e.g., [42,43]. Here, we will
apply the two-step procedure to study the process of
eþe− → Λþ

c Λ̄−
c , including the FSI with the LS equation

and DWBA method. By fitting to the experimental data, the
amplitudes are fixed. Finally, one can discuss the enhance-
ment around the Λþ

c Λ̄−
c threshold and predict the individual

EMFFs of the Λc.
This paper is organized as follows: In Sec. II we

introduce the calculation of the Λþ
c Λ̄−

c → Λþ
c Λ̄−

c scattering
amplitude that is solved by the LS equation, and the
production amplitude of the process of eþe− → Λþ

c Λ̄−
c

that is obtained by the DWBA method. In Sec. III, we fit
our amplitudes to the experimental datasets and extract the
individual EMFFs of the Λc. Both the modulus and the
phases of the EMFFs are predicted, and their properties are
discussed. Finally, a brief summary is given in Sec. IV.

II. FORMALISM

As discussed in the Introduction, we apply the two-step
procedure: first, the hadronic scattering amplitude is solved
by the LS equation, then the production amplitude is
obtained by the DWBA method.

A. Λ +
c Λ̄ −

c scattering amplitude

Following our previous work [32], the Λþ
c Λ̄−

c can be
produced according to eþe− → γ� → Λþ

c Λ̄−
c → Λþ

c Λ̄−
c ,

where one-photon transition dominates, and only the 3S1 −3

D1 coupled partial waves of the Λþ
c Λ̄−

c system need to be
considered. These partial wave amplitudes can be solved by
the LS equation,

TL00L0 ðp00; p0;EÞ ¼ VL00L0 ðp00; p0;EÞ þ
X
L

Z
∞

0

dpp2

ð2πÞ3

× VL00Lðp00; p;EÞ 1

E − 2Ep þ i0þ

× TLL0 ðp; p0;EÞ; ð1Þ

where p0 ¼ jp⃗0j and p00 ¼ jp⃗00j are the initial and final
momenta in the center-of-mass frame (c.m.f.) of the Λþ

c Λ̄−
c

system, respectively. E ¼ ffiffiffi
s

p
is the energy in the c.m.f.,

and energy of the intermediate state is Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

Λc

q
,

with MΛc
the mass of Λc baryon. Since only the 3S1 −3 D1

partial waves are involved, the orbital angular momenta
should be L;L0; L00 ¼ 0, 2.
The potentials for the Λþ

c Λ̄−
c system are constructed in

the spirit of chiral effective field theory (ChEFT). Here, we
apply the SUð3Þ ChEFT. The relevant chiral effective
Lagrangians are given as [44,45],

L¼ 1

2
hB̄3̄ði=D−m3̄ÞB3̄iþg6hB̄3̄u

μγ5γμB3̄i
þ ½g2hB̄3̄u

μγ5γμB6iþg4hB̄3̄uμB
�μ
6 iþH:c:�; ð2Þ

where B3̄, B6, and B
�μ
6 are the antitriplet, sextets of spin-1=2

and of spin-3=2 fields of the charmed baryons, respectively.
They are assembled in 3 × 3 antisymmetric or symmetric
matrices,

B3̄ ¼

0
B@

0 Λc Ξþ
c

−Λc 0 Ξ0
c

−Ξþ
c −Ξ0

c 0

1
CA;

B6 ¼

0
BBB@

Σþþ
c

1ffiffi
2

p Σþ
c

1ffiffi
2

p Ξ0þ
c

1ffiffi
2

p Σþ
c Σ0

c
1ffiffi
2

p Ξ00
c

1ffiffi
2

p Ξ0þ
c

1ffiffi
2

p Ξ00
c Ωc

1
CCCA;

B�
6 ¼

0
BBB@

Σ�þþ
c

1ffiffi
2

p Σ�þ
c

1ffiffi
2

p Ξ0�þ
c

1ffiffi
2

p Σ�þ
c Σ�0

c
1ffiffi
2

p Ξ0�0
c

1ffiffi
2

p Ξ0�þ
c

1ffiffi
2

p Ξ0�0
c Ω�

c

1
CCCA: ð3Þ

The covariant derivative is given as DμB¼ ∂μBþΓμBþ
BΓT

μ , where the chiral operators Γμ and uμ are given as

Γμ ¼
1

2
ðu†∂μuþ u∂μu†Þ;

uμ ¼ iðu†∂μu − u∂μu†Þ;

with u2ðxÞ ¼ UðxÞ. UðxÞ is given as

U ¼ exp

� ffiffiffi
2

p
iΦ

Fπ

�
; with

Φ ¼

0
BBB@

π0ffiffi
2

p þ ηffiffi
6

p πþ Kþ

π− − π0ffiffi
2

p þ ηffiffi
6

p K0

K− K̄0 − 2ηffiffi
6

p

1
CCCA: ð4Þ

Here, one has Fπ ¼ 0.0922 GeV [46].
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The isospin of Λc is I ¼ 0. Thus, there is no contribution
from one pion exchange, which is widely studied in the
nucleon-antinucleon scatterings. For Λþ

c Λ̄−
c scattering,

there is only one kind of diagram from the one pseudoscalar
exchange (OPE), i.e., the η exchange. At next-to-leading
order (NLO), the contributions of two pseudoscalar
exchanges (TPEs), except for the football diagrams, can
be absorbed into the contact term due to the large mass
difference between Λc and the flavor partners such as
Σc and Ξc, e.g., ΔM ¼ MΣc

−MΛc
≃ 167 MeV and

ΔM0 ¼ MΞc
−MΛc

≃ 181 MeV. Also, after expansion,
one would find that there is only ΛcΛ̄cKK̄ vertex. At
the end of the day, one only needs to take into account the
football diagrams of the KK̄ exchanges, the contact and
annihilation terms to get the potential up to NLO. The
corresponding Feynman diagrams are shown in Fig. 1.
After the expansion, the detailed interaction Lagrangians of
the charmed baryons coupling with the pseudoscalar(s) that
are necessary to calculate these diagrams are

LOPE ¼ −
2g6ffiffiffi
3

p
Fπ

Λ̄−
c γ5γμΛþ

c ∂
μη

LTPE ¼ i
4F2

π
Λ̄−
c γμΛþ

c ½K0
∂
μK̄0 − K̄0

∂
μK0

þ Kþ
∂
μK− − K−

∂
μKþ�: ð5Þ

It is worth pointing out that there are no unknown couplings
for the football vertex, which can be used as the calibration
to compare the strength of other diagrams. The potential
with OPE and TPE up to NLO is given as

VOPEþTPE
ΛcΛ̄c→ΛcΛ̄c

¼ Vσqðσ⃗1 · q⃗Þðσ⃗2 · q⃗Þ þ VC; ð6Þ

where q⃗ is the transfer momentum, q⃗ ¼ p⃗0 − p⃗. Vσq is from
OPE,

Vσq ¼ −
4g26
3F2

π

1

q⃗2 þm2
η
; ð7Þ

and VC is from TPE, i.e., the football diagrams,

VC ¼ −w2ðqÞLðqÞ
192π2F4

π
; ð8Þ

where one has

wðqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ 4m2

K

q
;

LðqÞ ¼ wðqÞ
q

ln
wðqÞ þ q
2mK

: ð9Þ

Transforming the potentials into the LSJ representation,
one has

VOPEþTPE
3S1

ðp0;pÞ¼ h0;11jVΛcΛ̄c
j0;11i

¼ 2π

Z
1

−1
dz

�ðp02þp2ÞVσqþ3VC

3
P0ðzÞ

−
2p0pVσq

3
P1ðzÞ

�
;

VOPEþTPE
3D1

ðp0;pÞ¼ h2;11jVΛcΛ̄c
j2;11i

¼ 2π

Z
1

−1
dz

�
−
2p0pVσq

3
P1ðzÞ

þ3VC− ðp02þp2ÞVσq

3
P2ðzÞ

�
;

VOPEþTPE
3D1−3S1

ðp0;pÞ¼ h2;11jVΛcΛ̄c
j0;11i

¼ 2π

ffiffiffi
2

3

r Z
1

−1
dz½−4p0pVσqP1ðzÞ

þ2p02VσqP0ðzÞþ2p2VσqP2ðzÞ�;
VOPEþTPE

3S1−3D1
ðp0;pÞ¼ h0;11jVΛcΛ̄c

j2;11i

¼ 2π

ffiffiffi
2

3

r Z
1

−1
dz½−4p0pVσqP1ðzÞ

þ2p02VσqP2ðzÞþ2p2VσqP0ðzÞ�: ð10Þ

In Ref. [44], they obtained g6 ¼ 0 by comparing with the
one pion emission matrix element. Here, we will follow this
constraint. Indeed, as we have been tested, the g6 will be
very small in the fit, and the results will not be changed
much by adding/removing the η exchange contribution.
Hence, we can safely ignore the contribution of OPE in the
present analysis.

FIG. 1. The Feynman diagram for ΛcΛ̄c scattering. The solid
black line is Λc and the dashed black line is η or K.
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The contact and annihilation potentials for 3S1 −3 D1

coupled partial waves can be written explicitly as [39]

V3S1ðp0; pÞ ¼ C̃3S1 þ C3S1ðp02 þ p2Þ
− iðC̃a

3S1
þ Ca

3S1
p02ÞðC̃a

3S1
þ Ca

3S1
p2Þ;

V3D1−3S1ðp0; pÞ ¼ Cϵ1p
02 − iCa

ϵ1p
02ðC̃a

3S1
þ Ca

3S1
p2Þ;

V3S1−3D1
ðp0; pÞ ¼ Cϵ1p

2 − iCa
ϵ1p

2ðC̃a
3S1

þ Ca
3S1
p02Þ;

V3D1
ðp0; pÞ ¼ 0; ð11Þ

where C̃i, Ci and C̃a
i , C

a
i are low-energy constants (LECs)

of the contact and annihilation potentials, respectively.
They are all real numbers. Notice that at leading order
(LO), only C̃3S1 and C̃a

3S1
need to be included. A regulator

function is necessary to be multiplied on the potentials to
suppress the ultraviolet divergence in the high-energy
region caused by the momenta. Following the previous
work [32], an explicit form for the regulator is given as
follows

fðp0; pÞ ¼ exp

�
−
p02 þ p2

Λ2

�
; ð12Þ

where the cutoff Λ is chosen as 450–650 MeV, with the
interval of 50 MeV.

B. The production amplitude and observables

With the hadronic scattering amplitudes calculated in the
previous section, the γΛþ

c Λ̄−
c form factor can be obtained by

the DWBA method,

fΛ
þ
c Λ̄−

c
L ðpÞ ¼ fΛ

þ
c Λ̄−

c ;0
L ðpÞ þ

X
L0

Z
∞

0

dp0p02

ð2πÞ3 fΛ
þ
c Λ̄−

c ;0
L0 ðp0Þ

×
1

E − 2Ep0 þ i0þ
TL0Lðp; p0;EÞ; ð13Þ

where E ¼ ffiffiffi
s

p ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

Λc
þ p2

q
is the c.m.f. energy. The

relation between fΛ
þ
c Λ̄−

c
L and the EMFFs, GΛc

M and GΛc
E , are

given as follows:

fΛ
þ
c Λ̄−

c
0 ðpÞ ¼ GΛc

M ðpÞ þMΛcffiffiffi
s

p GΛc
E ðpÞ;

fΛ
þ
c Λ̄−

c
2 ðpÞ ¼ 1ffiffiffi

2
p

�
GΛc

M ðpÞ − 2MΛcffiffiffi
s

p GΛc
E ðpÞ

�
: ð14Þ

Once the γΛþ
c Λ̄−

c form factors are fixed, the GΛc
M and GΛc

E
can be extracted from Eq. (14). The Born term, i.e., the bare

γΛþ
c Λ̄−

c vertex without Λþ
c Λ̄−

c rescattering, fΛ
þ
c Λ̄−

c ;0
L , can be

parametrized as

fΛ
þ
c Λ̄−

c ;0
0 ðpÞ ¼ GΛc;0

M þMΛcffiffiffi
s

p GΛc;0
E ;

fΛ
þ
c Λ̄−

c ;0
2 ðpÞ ¼ 1ffiffiffi

2
p

�
GΛc;0

M −
2MΛcffiffiffi

s
p GΛc;0

E

�
: ð15Þ

In general, the bare EMFFs, GΛc;0
E;M , should have momen-

tum dependence and can be complex. However, in
practice, real constants are good enough to fit the
experimental data. See discussions in the next section.
Also, people must obey the condition, GΛc;0

M ¼ GΛc;0
E . It is

because the electric and magnetic form factors should be
the same at the threshold, as required by the definition of
the Sachs form factors [47]. With the form factor of the
γΛþ

c Λ̄−
c vertex, one can build the partial wave amplitude of

the reaction eþe− → Λþ
c Λ̄−

c . It is

FΛþ
c Λ̄−

c ;eþe−
LL0 ¼−

4α

9
fΛ

þ
c Λ̄−

c
L fe

þe−
L0 ; ð16Þ

where fe
þe−
L0 is the γeþe− vertex,

fe
þe−
0 ¼ 1þ meffiffiffi

s
p ;

fe
þe−
2 ¼ 1ffiffiffi

2
p

�
1 −

2meffiffiffi
s

p
�
: ð17Þ

Finally, one can get the cross section of eþe− → Λþ
c Λ̄−

c
based on the partial wave amplitudes obtained above,

σðsÞ ¼ 3πβ

s
CðsÞ�jFΛþ

c Λ̄−
c ;eþe−

00 j2 þ jFΛþ
c Λ̄−

c ;eþe−
02 j2

þ jFΛþ
c Λ̄−

c ;eþe−
20 j2 þ jFΛþ

c Λ̄−
c ;eþe−

22 j2�

¼ 4πα2βCðsÞ
3s

�
jGΛc

M j2 þ 2M2
Λc

s
jGΛc

E j2
�
; ð18Þ

where one has β ¼ kΛc
=ke, with kΛc

ðkeÞ the momenta
in c.m.f. of the Λþ

c Λ̄−
c (eþe−) system. The S-wave

Sommerfeld-Gamow factor is CðyÞ¼ y=ð1−e−yÞ with y¼
παMΛc

=kΛc
. The fine-structure constant is α¼1=137.036.

According to Eq. (18), the effective form factor can also
be extracted, which is defined as

jGeff j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σeþe−→Λþ
c Λ̄−

c

4πα2β
3s CðsÞ

�
1þ 2MΛc

s

�
vuuut : ð19Þ

As will be discussed in the next section, the effective
EMFFs help to study the contributions from different
kinds of potentials.
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III. FIT RESULTS AND DISCUSSION

A. Fit results

With amplitudes discussed above, one can perform LO
and NLO fits on data from the BESIII Collaboration,
including the cross section of eþe− → Λþ

c Λ̄−
c and the

modulus of the individual EMFFs as well as their ratios.
For the LO analysis, only three parameters need to be fixed,
that is, C̃3S1 , C̃

a
3S1
, and the bare EMFFs GΛc;0

M ð¼ GΛc;0
E Þ. In

principle, the bare EMFFs can be complex numbers that are
free to be fixed by the fit. Also, they can have momentum
dependence. However, in practice, one can set them as a
real constant, with little loss of the quality of the solution.
Moreover, it is found that the bare EMFFs will be very
close to one by fitting the data. Hence, we fixed them as
GΛc;0

M ¼ GΛc;0
E ¼ 1. For the NLO fit, there are six param-

eters that need to be determined. Other than the two
parameters used in the LO fit, one should also include
C3S1 , C

a
3S1
, Cϵ1 , and Ca

ϵ1 for the contact and annihilation

potentials. Besides, we consider a series of cutoffs,
Λ ¼ 450, 500, 550, 600, 650 MeV in the regulator to test
the dependence on cutoff. See Eq. (12). High-quality
solutions are obtained, and the fit values of the parameters
are listed in Table I. The fit is performed within
MINUIT [48]. As can be found, the χ2=d:o:f: of NLO,
except for that with Λ ¼ 450 MeV, is even smaller than
0.6, indicating how well the solutions fit the data. Among
them, the one with cutoff Λ ¼ 500 MeV has the smallest
χ2=d:o:f: Also, as will be discussed in the next paragraphs,
it describes the data best, so we choose it as the optimal
solution.
The fit results to the cross sections are shown in Fig. 2. In

the fitting, only the experimental datasets from the BESIII
Collaboration [13,49] are taken into account, while those of
the Belle Collaboration [34] are only plotted for the reader’s
convenience due to their large uncertainties. The top graph
gives results at LO (purple dashed line) and NLO (black
solid line) with cutoff Λ ¼ 500 MeV. Their uncertainties
are shown as sky blue and pink bands for LO and NLO,
respectively. They are estimated from a Bayesian method

following Refs. [39,50]. For example, the uncertainty
ΔXNLOðpÞ of the NLO observable XNLOðpÞ is estimated by

ΔXNLOðpÞ ¼ max ðQ3jXLOðpÞj; QjXLOðpÞ − XNLOðpÞjÞ;
ð20Þ

with the nondimensional parameter Q defined as

Q ¼ max

�
p
Λb

;
Mπ

Λb

�
;

where Λb is the breakdown scale, and we can set
Λb ¼ 900 MeV in the present analysis. The observable
XðpÞ can be either the cross section or the individual
EMFFs. Though this uncertainty estimation does not
provide a statistical interpretation, it gives a more reliable
estimation than relying on cutoff variations and is success-
ful in the phenomenology study within ChEFT [39,41]. As
can be found, both solutions describe the data well below
4.63 GeV (p ¼ 362 MeV). Nevertheless, the NLO one is
still consistent with the data in the higher energy region, but
the LO one is not. This is compatible with the characteristic

TABLE I. The LECs of our solutions. Notice that we fix some
of the parameters, GΛc;0

M;E ¼ 1 and g6 ¼ 0.

LO NLO

Λ 500 450 500 550 600 650
C̃3S1 (GeV−2) 0.006 0.017 −0.013 −0.031 −0.038 −0.027
C3S1 (GeV−4) � � � 0.215 0.177 0.1615 0.143 0.137

Cϵ1 (GeV−4) � � � 0.080 −0.087 0.008 0.045 0.064

C̃a
3S1

(GeV−1) −0.140 −0.012 −0.100 −0.180 −0.200 −0.178
Ca

3S1
(GeV−3) � � � 0.030 0.651 0.879 0.876 0.856

Ca
ϵ1 (GeV−3) � � � −9.999 −1.601 −0.458 −0.170 −0.019

χ2=d:o:f: 2.072 1.108 0.364 0.428 0.493 0.538

FIG. 2. Comparison between our results and the cross sections
from the experiment of the process, eþe− → Λþ

c Λ̄−
c . The datasets

are taken from Belle [34] and BESIII [13,49] Collaborations. The
LO and NLO results with cutoff Λ ¼ 500 MeV are shown at the
top, and that of NLO results with cutoffs Λ ¼ 450, 500, 550, 600,
650 MeV are shown at the bottom.
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of the ChEFT, where the NLO amplitudes work better than
the LO ones and can extend the working energy region.
The bottom graph gives results at NLO with different

cutoffs, Λ ¼ 450, 500, 550, 600, 650 MeV, shown as green
dotted, black solid, brown dashed, purple dash-dotted, and
magenta dash-dot-dotted lines. As can be found, the cross
section has a strong enhancement that is very close to the
threshold and then keeps flat up to 4.65 GeV. Then, it
decreases gradually in the energy region from 4.65–
4.75 GeV. This confirms the threshold enhancement
discovered in the cross sections of many processes of
electron-positron annihilation into baryon-antibaryon pairs,
e.g., eþe−→ N̄N [7,19], eþe− → Λ̄Λ [24,25]. Among the
fits with different cutoffs, the solution with Λ ¼ 500 MeV
describes the data best from an overall point of view. The
one with Λ ¼ 450 MeV is not so consistent with the first
data point, while the other ones with cutoffs Λ ¼ 550, 600,
650 MeVare worse in the high-energy data points shown as
the red circles. Hence, we take Λ ¼ 500 MeV as the
optimal solution. Nevertheless, one can still find that all
curves with different cutoffs almost overlap with each
other, with only slight differences, implying the reliability
of our model.
To study the contributions to the cross sections from each

kind of potential, we list the separated contributions from
the Born term, contact, annihilation, and TPE potentials.
See Fig. 3. As can be seen, the Born term, as shown by the
red dash-dot-dotted line, dominates in the whole energy
region. However, the Born term is far away from the total
contribution. Thus, complicated interferences between it
and all other components, the contact, annihilation, and
TPE potentials are necessary. Besides, the TPE contribution
is larger than the contact and annihilation ones in the

low-energy region, and the contact terms contribute more
in the high-energy region. This is compatible with the
property of ChEFT, where the contact term contributes
significantly in the short-distance region, and the pseudo-
scalar exchanges contribute much in the long-range region.
Also, as will be discussed in the following subsection, the
contact potentials will make significant contributions in the
energy region that is very close to the threshold.
According to Eq. (19), one can calculate the effective

EMFFs of the Λc from the cross section of the reaction
eþe− → Λþ

c Λ̄−
c . The comparison between our results and

the experimental data is shown in Fig. 4. As can be seen in
the left graph, our results fit the data well. This is not a
surprise, as the effective EMFFs are related to the cross
section. See Eq. (19). It is found that the effective EMFF
decreases rapidly with an increase in energy, and then it
decreases slowly. There are even some tiny fluctuations
in the high-energy region that are suppressed by momen-
tum. This kind of behavior is very similar to that of the
nucleon [7]. Moreover, now the contribution of the contact
term is more apparent due to the fact that the effective
EMFFs are obtained by dividing out the momentum factor
kΛc

from the cross section, as shown in Eq. (19). Indeed, the
contact potential leads to an enhancement near the thresh-
old. See the purple dashed line in Fig. 4. As has been tested,
if we remove the contact term, the cross section cannot be
fitted well, especially in the low-energy region.

B. Individual EMFFs

With the amplitudes obtained in the last section, we can
extract the individual EMFFs, GΛc

M and GΛc
E . See Eq. (14).

The results are shown in Fig. 5. In the left column, the
graphs are for results at LO and NLO, with cutoff
Λ ¼ 500 MeV. In the right column, they are results at
NLO with different cutoffs, Λ ¼ 450, 500, 550, 600,
650 MeV. The modulus of the electric and magnetic form
factors, as well as their ratio (GΛc

E , GΛc
M , GΛc

E =GΛc
M ) are

FIG. 3. Separated contributions to the cross section of
eþe− → Λþ

c Λ̄−
c . The black solid, red dash-dot-dotted, purple

dashed, blue dash-dotted, and green dotted lines are for the total,
Born term, contact, annihilation, and TPE contributions, respec-
tively. The data is from Belle [34] and BESIII [13,49] Collab-
orations. The cutoff is chosen as Λ ¼ 500 MeV.

FIG. 4. Comparison of the effective EMFFs of the Λc between
ours and the experimental data. The datasets are taken from the
Belle [34] and BESIII [13,49] Collaborations. The LO and NLO
results are shown in the left column, and the NLO separated
contributions from the total, Born term, contact, annihilation, and
TPE potentials are shown in the right column. The cutoff is fixed
as Λ ¼ 500 MeV.
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shown in the top, middle, and bottom rows of Fig. 5 in order.
The jGΛc

E j and jGΛc
M j at LO are almost the same. See

discussions on the ratio (jGΛc
E =GΛc

M j) below. TheNLO results
are pretty consistent with the BESIII data, while the LO
results are much worse. This is compatible with the
prediction ability of the ChEFT at different orders. For
the LO results, the fit of electric andmagnetic form factors is
better than that of the ratio (jGΛc

E =GΛc
M j), where the solution is

not far away from the first four data points of the electric and
magnetic form factors, but only close to one data point of the
ratio. This indicates that the experimental measurement of
the ratio is quite crucial for refining theoretical analysis.
The individual EMFFs decrease rapidly in the increase of

energy in the region close to the threshold, and then they
decrease much slower in the high-energy region, where
even some fluctuations can be found. Specifically, there is a
difference between the variation of jGΛc

E j and jGΛc
M j at NLO.

Compared with jGΛc
E j, jGΛc

M j decreases more rapidly not far
away from the threshold. This is reflected by the fact that
jGΛc

E =GΛc
M j increases from 1 to 1.3 in the energy region from

threshold to 4.61 GeV. Then both of them decrease slower

in the high-energy region, but jGΛc
E j has more fluctuations

than jGΛc
M j, leading to the fluctuations of jGΛc

E =GΛc
M j, too.

For the results of the ratio jGΛc
E =GΛc

M j, as can be seen in
the bottom two graphs, the NLO result is consistent with
the BESIII data and has oscillation behavior. The LO result
is almost flat. This is because only the 3S1 wave of the
contact and annihilation potentials is left at LO. As a result,
the Born term dominates in the D-wave production

amplitude, fΛ
þ
c Λ̄−

c
2 . See Eq. (13). Correspondingly, fΛ

þ
c Λ̄−

c
2

would be small as GΛc;0
E ¼ GΛc;0

M . Finally, one roughly has
GΛc

E =GΛc
M ≃

ffiffiffi
s

p
=2MΛc

≃ 1 in the assumption of small
momentum.
The NLO results with cutoffs Λ ¼ 450, 500, 550, 600,

650 MeV are shown in the graphs in the right column of
Fig. 5. The curves almost overlap with each other except for
those of the tails in the high-energy region. This is not
strange, as the tails are close to the edge of the working
energy region of our model. From an overall point of view,
our solutions fit the data rather well, indicating again that
our results are not sensitive to the effect of cutoffs,
confirming the stability of our model.

FIG. 5. Our results of the modulus of the individual EMFFs of
the Λc, jGΛc

E j, jGΛc
M j and their ratio, jGΛc

E =GΛc
M j. The data are from

the BESIII Collaboration [13,49]. The LO and NLO results are
shown in the left column, with cutoff Λ ¼ 500 MeV. The NLO
results with different cutoffs are shown in the right column.

FIG. 6. Our predictions of the phases of individual EMFFs of
the Λc, argðGΛc

E Þ, argðGΛc
M Þ, and argðGΛc

E =GΛc
M Þ. The LO and

NLO results are shown in the left column, with cutoff
Λ ¼ 500 MeV. The NLO results with different cutoffs are shown
in the right column.
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Besides, we also predict the phases of the individual
EMFFs, as shown in Fig. 6. As is known, there can be an
overall phase that has no effects on the physical observ-
ables. Also, one has GΛc

E ¼ GΛc
M at threshold. Therefore, we

set all the phases to be zero at the threshold. There are
similarities and differences between the phases of GΛc

E and
GΛc

M . For instance, both of them decrease as energy
increases. Also, both of them fluctuate. However, the
former has more fluctuations than the latter. This is
reflected by the relative phase of GΛc

E =GΛc
M , too. The

NLO results with cutoffs Λ ¼ 450, 500, 550, 600,
650 MeV are shown in the right column. This time, the
difference between different cutoffs looks more apparent
than that of the modulus. This urges more measurements
from the experiment side to determine the individ-
ual EMFFs.
We also give the separated contributions to the modulus

of the individual EMFFs, jGΛc
E j and jGΛc

M j from the Born

term, contact, annihilation, and TPE potentials, as shown in
Fig. 7. The one for the electric form factor is at the top, and
the magnetic one is at the bottom. Both graphs are similar
to that of the effective EMFF. That is, the Born term
dominates the contributions, and the TPE potential has a
significant contribution but cannot supply the enhancement
around the threshold. Instead, the contact potential should
be rather crucial in the enhancement for both GΛc

E and GΛc
M

around the threshold, and the contribution from the
annihilation potential cannot be ignored for GΛc

E around
the threshold either. Moreover, there are more fluctuations
in the GΛc

E than in the GΛc
M , which are mainly caused by the

annihilation part, and the contributions from the contract
potential cannot be ignored. The former affects the whole
energy region, and the latter affects the low-energy region.
The Born term and TPE are smooth and contribute less to
the fluctuation of the individual EMFFs.

IV. SUMMARY

In this paper, we studied the timelike individual EMFFs
of the Λc from the process, eþe− → ΛcΛ̄c. The final state
interactions of Λþ

c Λ̄−
c rescatterings are taken into account.

The hadronic scattering amplitude is solved by the LS
equation with the input potentials derived within SUð3Þ
ChEFT. With it, the electron-positron annihilation ampli-
tude is constructed according to the DWBA method. The
cross section, modulus of the individual EMFFs, and their
ratio up to 4.75 GeV are well described, and high-quality
solutions are obtained. Our amplitudes capture the signifi-
cant enhancement of cross section near the Λþ

c Λ̄−
c thresh-

old. It reveals that the contact potential is crucial in the
enhancement around the threshold. Predictions are made
for the individual EMFFs,GΛc

E andGΛc
M of theΛc, as well as

their ratio GΛc
E =GΛc

M , including both modulus and phases.
Interestingly, we find that the GΛc

E contains more fluctua-
tions thanGΛc

M , which are caused mainly by the annihilation
potential in the whole energy region, and also by contact
potential in the low-energy region. The EMFFs will further
study both experimental and theoretical works in the future.
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