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The dynamics of heavy quarks within the hot QCD medium have been revisited, considering the
influence of anomalous diffusion. This study has been conducted using the framework of the fractional
Langevin equation involving the Caputo fractional derivative. We introduce a numerical scheme for the
fractional Langevin equation and demonstrate that the mean-squared displacement of the particle exhibits
anomalous diffusion, deviating from a linear relationship with time. Our analysis calculates various entities,
such as mean-squared momentum, momentum spread, and the nuclear suppression factor RAA. Notably, our
findings indicate that superdiffusion strongly suppresses the RAA compared to normal diffusion in the hot
QCD medium. The possible impacts on other parameters are also discussed.
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I. INTRODUCTION

The ultrarelativistic heavy-ion collisions (HICs) at the
Relativistic Heavy-Ion Collider (RHIC) and the Large
Hadron Collider (LHC) have predicted the existence of
quark-gluon plasma (QGP): a state of matter where quarks
and gluons are free to move beyond the nucleonic
volume [1–5]. The QGP is short-lived, with an expected
lifespan of a few fm=c (approximately 4–5 fm=c at RHIC
and 10–12 fm=c at LHC [6,7]). Conversely, investigating
the characteristics of the QGP by studying the dynamics of
heavy quarks (charm and beauty) is a subject of significant
interest. In this context, the heavy quarks (HQs) serve as
prominent probes of QGP [8–37]. Due to their large masses
(Mc=Mb ∼ 1.3=4.5 GeV), HQs are generated at the early
stages of HICs. Moreover, the thermalization of the HQs is
delayed compared to the light partons of the bulk medium
by a factor on the order of ∼M=T. This delay renders the
thermalization time of the HQs comparable to the lifetime
of the QGP fireball. Since the HQs are not expected to
achieve complete thermalization, they retain the memory of
their interaction history. Hence, they serve as a novel probe
for observing the complete evolution of the QGP medium
and act as nonequilibrium entities within the equilibrated
QGP. The standard Langevin equation (LE) is used to study
Brownian motion under the assumption of normal diffu-
sion, which means a linear increase in the mean-squared

displacement of the particle with time for a sufficiently
large time [38]. We use the Langevin equation in the
context of the HQ [39–43] in the context of the HQ
momentum and position evolution in the hot QCD
medium and numerous studies available for the experi-
mental observables related to the HQs, such as the nuclear
suppression factor RAA and elliptic flow v2 [26,44–46].
However, the conventional approach faces challenges in
adequately explaining the experimental observations con-
cerning the energy loss experienced by HQswithin the QGP
medium [46]. This prompts the question: Could the anoma-
lous motion of HQs offer a more suitable explanation for the
observed data? Addressing this question necessitates an
investigation intowhether the anomalous behavior observed
in the motion of nonrelativistic Brownian particles can also
occur in the motion of relativistic Brownian particles. By
examining this possibility, we can determine whether
anomalous motion could potentially provide insights into
the discrepancies observed in the energy loss of HQs within
the QGP medium. Several processes exhibit anomalous
diffusion, a phenomenon where the mean-squared displace-
ment of the particle does not vary linearly with time as
predicted by Einstein’s law. Specifically, anomalous diffu-
sion is characterized by a nonstandard time dependence
of the mean-squared displacement (hxðtÞ2i) written as
follows [47–60]:

hxðtÞ2i ∝ tμ; μ ≠ 1; ð1Þ

where t is the evolution time of the particle. The process
describes normal diffusion, corresponding to the case
where μ ¼ 1. Subdiffusion occurs when μ < 1, whereas
superdiffusion occurs when μ > 1 [49]. Despite the crucial
role played by the LE across several fields, it fails to
accurately describe certain behaviors, such as anomalous
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diffusion (i.e., superdiffusion and subdiffusion). Therefore,
fractional Langevin equations (FLE) have been proposed
to study anomalous diffusion [61–64]. Mainardi and co-
workers [65–67] introduced an FLE in their groundbreak-
ing research. The Langevin method has primarily been
applied to study anomalous diffusion using the Caputo
fractional derivative [68–70]. On the other hand, there are
several distinct formulations for fractional derivatives,
such as Riemann-Liouville derivative [71], Riesz deriva-
tive [72], Feller derivative [73], and others. In the
subsequent, we will only use the Caputo fractional
derivative in our analysis to study the anomalous diffusion
of the particle in the medium.
Another valuable approach to studying anomalous dif-

fusion involves the investigation of the fractional diffusion
equation, fractional Fokker-Planck equation [74], and gen-
eralized Chapman-Kolmogorov equation [75]. Anomalous
diffusion has been used in many fields, including molecular
chemistry [76], biology [77], and anomalous diffusion,
polymer transport theory [78]. Also, when accounting for
interactions between the Brownian particle and the constitu-
ent particles of the medium, the fluctuations are influenced
by their prior states, a phenomenon termed as memory. The
current movement is affected by previous movements via a
memory kernel in the generalized Langevin equation. Such
memory effects can result in anomalous diffusion for a
particular memory time [79–85] and also play a role in the
QGP [86–90].
Recently, the transverse momentum broadening of a fast

parton via superdiffusion in the QCD matter has been
studied in Ref. [91].
With this motivation for the applications of superdiffu-

sion on the HQ dynamics in hot QCD matter, we use the
FLE, a generalized form of the LE. Unlike the LE, the
FLE replaces integer-order derivatives with fractional-order
derivatives, specifically of Caputo type [92]. This may be
the first attempt where we present an anomalous diffusion
for the HQ dynamics in the QGPmedium. In this article, we
specifically study the effect of superdiffusion on the HQ
dynamics in the QGP medium. The subdiffusion is not
considered within the scope of the current analysis.
We anticipate a key outcome in our study, specifically

that, in the presence of superdiffusion, there will be an
increase in the energy loss experienced by the HQs within
the QGPmedium. This conclusion is confirmed by studying
various key parameters, including the mean-squared dis-
placement, mean-squared momentum, momentum spread,
dN=dpT , and the RAA of the HQs. Notably, the latter holds
particular significance in the phenomenology of the HQs
within the QGP. The strong suppression observed in RAA is
anticipated to contribute significantly to developing a
substantial elliptic flow (v2) for the HQs.
The article is structured as follows: Section II introduces

the formalism; we analytically solve the FLE of non-
relativistic heavy particles using the Laplace technique,

along with presenting a numerical scheme for solving the
relativistic FLE. Section III is dedicated to the presentation
of our results. Finally, Sec. IV provides a comprehensive
summary of our conclusions.

II. THE FRACTION LANGEVIN EQUATION
FOR BROWNIAN PARTICLES

For illustrative purposes, we discuss the scenario of a
heavy particle with mass M undergoing one-dimensional
(1D) motion within the nonrelativistic limit. We use the
FLE to describe the dynamics of this particle. In this
framework, the evolution of the particle’s position and
momentum is characterized by fractional derivatives of
orders β and α [61,62],

CDβ
0þxðtÞ ¼

pðtÞ
M

; ð2Þ

CDα
0þpðtÞ ¼ −γpðtÞ þ ξðtÞ; ð3Þ

where the momentum of a particle at time t is denoted as
pðtÞ and its position as xðtÞ. CDα

0þ denotes the Caputo
fractional derivative, α and β are the fractional parameters,
with n − 1 < α ≤ n, and CDβ

0þ with n − 1 < β ≤ n, n∈N
(n is a natural number). The Brownian particle encounters
two distinct forces: the dissipative force, characterized by
the drag coefficient, denoted by γ, and the stochastic force,
denoted as ξðtÞ. The latter governs the random noise,
commonly referred to as white Gaussian noise. White noise
gives rise to a fluctuating field without memory, charac-
terized by instantaneous decay in correlations of the white
noise, often referred to as a δ correlation. The random force
satisfies certain properties, such as

hξðtÞξðt0Þi ¼ 2Dδðt − t0Þ; ð4Þ

hξðtÞi ¼ 0; ð5Þ

where D is the diffusion coefficient of the heavy particle in
a medium of temperature T. The drag coefficient (γ) is
related to the diffusion coefficient through the fluctuation-
dissipation theorem (FDT) as follows:

γ ¼ D
MT

: ð6Þ

The Caputo fractional derivative [92] is defined as

CDν
0þuðtÞ ¼

1

Γðn − νÞ
Z

t

0

uðnÞðsÞ
ðt − sÞ1þν−n ds; ð7Þ

where uðnÞ denotes the nth derivative of u. The fractional
derivative which corresponds to the superdiffusion, i.e.,
when 1 < ν ≤ 2, is given by
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CDν
0þuðtÞ ¼

1

Γð2 − νÞ
Z

t

0

uð2ÞðsÞ
ðt − sÞν−1 ds; ð8Þ

where Γð·Þ denotes the γ function. In the following
subsection, we solve analytically the FLE of nonrelativistic
Brownian particles.

A. Analytical solutions

Analytically, we solve the FLE governing the motion of
nonrelativistic Brownian particles. To achieve this, we use
the Laplace technique, providing analytical expressions for
hp2ðtÞi and hx2ðtÞi. Performing the Laplace transformation
of the Caputo derivative for n − 1 < α ≤ n and n − 1 <
β ≤ n [93],

L
�
C
Dα

0þpðtÞ
�
ðzÞ ¼ zαp̂ðzÞ −

Xn−1
k¼0

zα−k−1
�
pkð0Þ�: ð9Þ

In order to calculate the solution of pðtÞ and xðtÞ of the
heavy particle for a superdiffusive process, i.e., when 1 <
α ≤ 2 and 1 < β ≤ 2, one can take the Laplace transform
equations (2) and (3) and, using Eq. (9), it can be obtained
easily as

zβx̂ðzÞ − zβ−1xðt0Þ − zβ−2x0ðt0Þ ¼
p̂ðzÞ
M

; ð10Þ

p̂ðzÞ ¼ zα−1

zα þ γ
pðt0Þ þ

zα−2

zα þ γ
p0ðt0Þ þ

ξ̂ðzÞ
zα þ γ

: ð11Þ

Now, substituting Eq. (11) into Eq. (10), for simplicity,
we take M ¼ 1 [94], and we obtain

x̂ðzÞ ¼ xðt0Þ
z

þ x0ðt0Þ
z2

þ zα−β−1

zα þ γ
pðt0Þ þ

zα−β−2

zα þ γ
p0ðt0Þ

þ z−β

zα þ γ
ξ̂ðzÞ: ð12Þ

Taking the inverse Laplace transform of Eqs. (11) and (12),
we obtain

pðtÞ ¼ Eα;1ð−γtαÞpðt0Þ þ tEα;2ð−γtαÞp0ðt0Þ

þ
Z

t

0

ðt − sÞα−1Eα;αð−γðt − sÞαÞξðsÞds; ð13Þ

and

xðtÞ ¼ x0 þ tx00 þ tβEα;βþ1ð−γtαÞpðt0Þ
þ tβþ1Eα;βþ2ð−γtαÞp0ðt0Þ

þ
Z

t

0

ðt − sÞβþα−1Eα;βþα

�
−γðt − sÞα�ξðsÞds; ð14Þ

where

Eα;βðzÞ ¼
X∞
j¼0

zj

Γðjαþ βÞ

is the two-parameter Mittag-Leffler function for α > 0,
β > 0, and z is a complex number [95], and the Laplace
transform of the two-parameter Mittag-Leffler function
is [96]

L
�
xβ−1Eα;βð−λxαÞ

�ðzÞ ¼ zα−β

zα þ λ
: ð15Þ

Next we calculate hp2ðtÞi and hx2ðtÞi analytically for the
Brownian particle.

1. Purely diffusive motion

We are calculating the hp2ðtÞi and hx2ðtÞi for a purely
diffusive (when γ ¼ 0 in the FLE), 1D motion. Then Eq. (3)
simplified to

CDα
0þpðtÞ ¼ ξðtÞ; ð16Þ

with initial momentum, pðt0Þ ¼ 0. Then to calculate
hp2ðtÞi we follow Eqs. (13), Eq. (16), and we get

hp2ðtÞi ¼ 1

ΓðαÞ2
Z

t

0

Z
t

0

ðt − s1Þα−1ðt − s2Þα−1hξðs1Þξðs2Þi

× ds1ds2: ð17Þ

Solving further Eq. (17), using the correlation properties
defined in Eq. (4), we have

hp2ðtÞi ¼ 2D
ΓðαÞ2

Z
t

0

ðt − sÞ2α−2ds; ð18Þ

hp2ðtÞi ¼ 2D
ΓðαÞ2

t2α−1

2α − 1
: ð19Þ

Similarly, one can calculate analytical solutions of hx2ðtÞi
for γ ¼ 0, and with initial conditions, xðt0Þ ¼ 0, using
Eqs. (14) and (16) as

hx2ðtÞi ≈ 2D
Γðαþ βÞ2

Z
t

0

ðt − sÞ2αþ2β−2ds

¼ 2D
Γðαþ βÞ2

t2αþ2β−1

2αþ 2β − 1
: ð20Þ

We have plotted Fig. 1 for the case of purely diffusive
motion. We depict the variation of hp2ðtÞi over time (left
panel) and hx2ðtÞi (right panel), each for different values of
α and β, while keeping D constant at 0.1 GeV2=fm. For
simplicity, a nonrelativistic case has been considered with
M ¼ 1 GeV. In Fig. 1 (left panel), results obtained from
Eq. (19) show that hp2ðtÞi exhibits nearly linear evolution
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with time when α → 1 (as shown by black solid lines),
which is giving hp2ðtÞi ¼ 2Dt. In this scenario, the Caputo
fractional derivative reduces to an ordinary first-order
derivative; in this limit of α, the FLE is reduced back to
the LE. On the other hand, when the value of α > 1, the
linear increase in hp2ðtÞi with time converts into nonlinear
growth over time. It becomes evident that the diffusion
process evolves more gradually during the initial time,
particularly up to 1.5 fm=c. In contrast, around 2 fm=c, the
pattern is reversed, now a higher value of α, giving a faster
diffusion. Similarly, with the same input parameter, Fig. 1
(right panel), results obtained from Eq. (20) depicts the
mean-squared displacement, hx2ðtÞi varies with time. In the
limit, α, β → 1 (as shown by black solid lines), hx2ðtÞi
varies with t3 (as shown by black solid lines), for the
normal diffusion. In this case, we considered the scenario of
purely diffusive motion (γ ¼ 0 in the FLE), where the
diffusion of the Brownian particle predominates due to this
approximation. Consequently, hxðtÞ2i of the nonrelativistic
Brownian particle varies with t3 for pure normal diffusion.
It is crucial to emphasize that, because of γ ¼ 0, the
variation of hxðtÞ2i with t3 is unrelated to Eq. (1). Given
the limiting nature of this scenario, the calculated results
seem to contradict the expected behavior of normal
diffusion, as expected in Eq. (1). Once our analytical
and numerical calculations align, we will incorporate the
drag term into the relativistic Langevin equation for the
charm quark in the subsequent subsection. The reason for
choosing this limiting case will be discussed in the
following subsection. With the higher values of α and
β, hx2ðtÞi varies with the power of time greater than
cubic power.

B. A numerical scheme for the
fractional Langevin equation

In classical stochastic differential equations driven
by Brownian motion, the Itô or Stratonovich stochastic

calculus is typically employed for solutions. However, these
methods are not applicable to the FLE driven by fractional
Brownianmotion, as it is not a semimartingale (see Ref. [97]
for detailed proof). Although the Monte Carlo method is a
reliable solution for stochastic differential equations, it is
not appropriate in this case because it relies on indepen-
dent sequences. Still, the sequences in fractional noise are
dependent. Therefore, we have employed L2 numerical
schemes, as detailed in [98]. These schemes are among the
most effective for discretizing the Caputo fractional
derivative and provide a key contribution to this article.
We numerically solve the FLE in Eqs. (2) and (3). To
validate our numerical computations, we compared the
numerical results with the analytical ones for the 1D
FLE, considering γ ¼ 0. This step is crucial to ensure
the accuracy of our numerical method, which will be
employed in solving the relativistic Langevin equation
that will be discussed in the following subsection. To
solve the FLE, numerical methods are commonly catego-
rized as indirect or direct. Since time-fractional differential
equations can generally be reformulated into integro-
differential equations, solving such equations corresponds
to indirect methods. On the other hand, direct methods
focus on approximating the time-fractional derivative
itself. This aspect constitutes the core of our work, where
our goal is to discretize the fractional derivative directly
without transforming the associated differential equation
into its integral form. Our numerical algorithm for solving
the FLE is based on the three-step scheme using the
central difference method shown in the Appendix.

1. The fractional Langevin equation
of relativistic Brownian particles: QGP

We extended the solution of the FLE for the non-
relativistic Brownian particle as defined in Eqs. (2) and (3),
to describe the HQs dynamics in the QGP medium in the
relativistic limit as follows:

0 1 2 3 4 5
Time [fm/c]

0

1

2

3

4

<p
 (t

)2 > 
[G

eV
2 ]

 α  = 1.6
 α  = 1.4
 α  = 1.2
 α  = 1.001
 α  = 1.001, Numer.
 α  = 1.2, Numer.
 α  = 1.4, Numer.
 α  = 1.6, Numer.
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 (t
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 β =  α  = 1.6, Numer.

FIG. 1. hp2ðtÞi versus time (left) and hx2ðtÞi versus time (right) for a 1D, purely diffusive motion for different values of α and β.
Analytic solutions are represented by solid lines, and numerical (Numer.) solutions are represented by dashed lines.
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CDβ
0þxðtÞ ¼

pðtÞ
EðtÞ ; ð21Þ

CDα
0þpðtÞ ¼ −γpðtÞ þ ξðtÞ; ð22Þ

where E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

p
represents the energy, and p

denotes the momentum of the HQs. The γ can be related
to the diffusion coefficient through an FDT as [99–101]

γ ¼ D
ET

; ð23Þ

since both Eqs. (21) and (22) are nonlinear differential
integral equations, preventing analytical solutions through
methods such as Laplace transformations, as done for the
nonrelativistic case for Eqs. (2) and (3). The solution of
the relativistic FLE defined in Eqs. (22) and (21) is
possible solely through numerical methods. We utilize
the numerical approach to compute hx2ðtÞi, hp2ðtÞi, the
momentum distribution, and RAA of the HQs. For super-
diffusion, the relativistic FLE can be written in the
discrete form using Eq. (A2) (given in the Appendix)
as follows:

8>>>>>>>><
>>>>>>>>:

xðt1Þ¼ xðt0Þþ
h
pðt0Þ
Eðt0Þ

i
k ∶n¼ 1;

xðt2Þ¼ 2xðt1Þ−xðt0Þþ
h
pðt1Þ
Eðt1Þ

i
k ∶n¼ 2;

xðtnÞ¼ 2xðtn−1Þ−xðtn−2Þþ
h
pðtn−1Þ
Eðtn−1Þ

−
P

n−2
j¼1 bj

�
xðtn−jÞ−2xðtn−j−1Þþxðtn−j−2Þ

�þ n2−α−ðn−1Þ2−α
k

�
xðt1Þ−xðt0Þ

�i
k ∶n≥ 3;

ð24Þ

and

8>>>>>>>><
>>>>>>>>:

pðt1Þ¼pðt0Þþ
h
−γpðt0Þþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D=Δt

p
η
i
k ∶n¼ 1;

pðt2Þ¼ 2pðt1Þ−pðt0Þþ
h
−γpðt1Þþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D=Δt

p
η
i
k ∶n¼ 2;

pðtnÞ¼ 2pðtn−1Þ−pðtn−2Þþ
h
−γpðtn−1Þþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D=Δt

p
η

−
P

n−2
j¼1 bj

�
pðtn−jÞ−2pðtn−j−1Þþpðtn−j−2Þ

�þ n2−α−ðn−1Þ2−α
k

�
pðt1Þ−pðt0Þ

�i
k ∶n≥ 3;

ð25Þ

where k¼ΔtαΓð3−αÞ, with t1 ¼ t0 þ Δt, tn ¼ tn−1 þ Δt.
Here t0 is the initial time, and Δt is the time step.

III. RESULTS

A. A check for nonrelativistic brownian particle

To analyze the numerical scheme of the FLE, we
compute hx2ðtÞi from Eq. (24) and hp2ðtÞi from Eq. (25),
subsequently comparing the results with the analytical
solutions derived from Eqs. (20) and (19), respectively.
The FLE has been solved for the 1D motion of the heavy
particle within the nonrelativistic limit, as explained in
Sec. II. For illustrative purposes, we have considered
constant diffusion coefficient D ¼ 0.1 GeV2=fm and mass
of the heavy particle, M ¼ 1 GeV and γ ¼ 0 (i.e., pure
diffusion case) in the FLE. In the left panel of Fig. 1, the
numerically computed hp2ðtÞi for α ¼ 1.001 (brown
dashed line), α ¼ 1.2 (gray dashed line), α ¼ 1.4 (red
dashed line), and α ¼ 1.6 (orange dashed line) is presented.
Notably, these numerical results align with the analytic
solutions from Eq. (19) and match the other values of the α.

For an additional test of our numerical approach, we have
calculated hx2ðtÞi of the heavy particle as shown in Fig. 1
(right panel). In the same figure, the numerically calculated
hx2ðtÞi for α ¼ β ¼ 1.001 (brown dashed line) and
α ¼ β ¼ 1.2 (gray dashed line), α ¼ β ¼ 1.4 (red dashed
line), and α ¼ β ¼ 1.6 (orange dashed line) is displayed.
Again, the numerical results match the analytic results from
Eq. (20). One can notice that the numerical simulation
agrees with the analytical result, indicating that our
numerical scheme works correctly.

B. The evolution of hp2ðtÞi and hx2ðtÞi of the HQs

For our analysis, the definition we used for hp2ðtÞi is
given by

hp2ðtÞi ¼ hp2
xðtÞ þ p2

yðtÞi: ð26Þ

We have computed hp2ðtÞi over time for four different
values of α, namely α ¼ 1.001 (black line), α ¼ 1.2 (red
line), α ¼ 1.4 (green line), and α ¼ 1.6 (blue line) at
T ¼ 250 MeV, M ¼ 1.3 GeV, and D ¼ 0.1 GeV2=fm
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corresponding to the charm quark. The corresponding
results are shown in Fig. 2. In this scenario, the initial
momentum is set to be pxðt0Þ ¼ pyðt0Þ ¼ 0.
From the left panel of Fig. 2, it is evident that, as the

magnitude of α increases, the behavior of the process
indicates superdiffusion for the charm quark within the
hot QCD medium. The impact of superdiffusion becomes
more noticeable at higher values of α. It is noticeable that, as
α → 1, the superdiffusion process converges back to normal
diffusion. Additionally, in the later stages, themean-squared
momentum hp2ðtÞi tends to approach 3MT [100], and also
the FLE defined in Eq. (25) simplifies to the standard LE
described inRefs. [39,40,43,45,100]. This transition empha-
sizes the connection between superdiffusive behavior gov-
erned by the FLE and the conventional diffusion process
characterized by the standard LE. In the right panel of Fig. 2,
we present a subset of the results depicted in the left panel,
focusing on the early-time evolution of hp2ðtÞi for four
different values of α. It is worth noting that, in the initial
time, the diffusion process gradually evolves for higher
values of α. However, for times beyond 3 fm=c, the trend

reverses, and larger α corresponds to a faster diffusion, as
anticipated in Fig. 2 (left panel).
In Fig. 3, we have calculated the evolution of hx2ðtÞi of

the relativistic charm quark over time for three values of
α ¼ β ¼ 1.001, 1.2, 1.4, maintaining other parameters
consistent with those illustrated in Fig. 2. The initial
conditions are set to be xðt0Þ ¼ yðt0Þ ¼ 0. It can be noticed
that both α ¼ β ¼ 1.2, 1.4, a distinct shift toward super-
diffusion is observed (shown in Fig. 3) as we discussed
initially in Eq. (1). The larger values of α and β contribute
to this notable change in behavior, underlining the complex
dynamics of the system. As α → 1 and β → 1, the behavior
reflects normal diffusion. In this limit, at a later time,
hx2ðtÞi exhibits a proportional relationship with t [same as
in Eq. (1)], as described in [100,102]. This puzzling
behavior of hp2ðtÞi and hx2ðtÞi due to the anomalous
diffusion was not explained before in the context of the HQ
dynamics in a hot QCD medium.
In the following sections, we have calculated RAA and

the charm quark momentum distribution, dN=dpT , to see
the effect of superdiffusion processes. To determine the
interaction of the HQ with the thermalized bath consisting
of massless quarks and gluons, we employ perturbative
quantum chromodynamics transport coefficients for elas-
tic processes with the well-established diffusion coeffi-
cients [102]. Here, the Debye mass mD ¼ gTT screens
the infrared divergence associated with the t-channel
diagrams.

C. Nuclear modification factor

To analyze the impact of the superdiffusion on the
experimental observable, we have calculated the nuclear
suppression factor RAAðpTÞ for the HQs, which is defined
as follows [100]:

RAAðpTÞ ¼
fτfðpTÞ
fτ0ðpTÞ

: ð27Þ
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The momentum spectrum fτfðpÞ of charm quarks is
calculated for the time evolution τf ¼ 6 fm=c in our
computational results and fτiðpÞ is initial momentum
distribution of the charm quark. The initial momentum
spectra fτiðpÞ is taken according to the fixed order þ next-
to-leading log calculations, which has been shown to be
capable of reproducing the spectra of D-mesons produced in
proton-proton collisions through fragmentation [103,104],
the initial momentum spectrum is written as

dN
d2pT

¼ x0
ðx1 þ pTÞx2

; ð28Þ

where the parameters are estimated as follows: x0 ¼
6.365480 × 108, x1¼9.0, and x2¼10.27890. RAAðpTÞ≠1
implies that charm quarks undergo interactions with the
medium. These interactions lead to modifications in the
spectrum of charm quarks.
In Fig. 4, the behavior of RAA is depicted as a function of

pT , which is calculated using the FLE as defined in Eq. (25)
for different values of α. The calculations are performed at
two distinct temperatures, T ¼ 250 MeV (left panel) and
T ¼ 350 MeV (right panel). At T ¼ 250 MeV, the domi-
nating influence is the drag force across the entire range
of pT . As pT increases, the significance of energy loss
becomes more pronounced, which can be noticed in Fig. 4
(left panel). When α > 1, the normal diffusion converts into
superdiffusion, as evident for α ¼ 1.2 (red line), α ¼ 1.4
(blue line), and α ¼ 1.6 (green line). With an increasing
value of α, there is a notable decrease in magnitude RAA
(more suppression) at high pT . For α → 1 (depicted by the
black line), the behavior of the RAA aligns with normal
diffusion, consistent with findings available in the literature
for the same input parameters [40,43,46]. Figure 4 (right
panel) corresponds to T ¼ 350 MeV; the observed behav-
ior is attributed to the diffusion-dominated propagation of
the HQs within the hot QCD medium. This dominance
of diffusion mechanisms effectively leads to the diffusion
of low-momentum charm quarks to higher-momentum

states. The high temperature, T ¼ 350 MeV, enhances
the significance of diffusion processes, resulting in a
distinct pattern in the RAA as compared to RAA at
T ¼ 250 MeV. For α > 1, a significant reduction in the
magnitude of RAA is observed, indicating more suppression
at high pT . Notably, for the highest considered value of
α ¼ 1.6, a larger proportion of particles tends to remain at
low pT, a consequence of the superdiffusion process. This
behavior underscores the complex dynamics associated
with superdiffusion and its impact on the RAA of the HQs in
the QGP medium.

D. Momentum spread of HQs

We show the evolution of charm momentum distribution
dN=dpT at static temperatures, T ¼ 250 MeV (top panel)
and T ¼ 350 MeV (bottom panel), in Fig. 5. The dN=dpT
evolution is performed for various values of α at a final
evolution time of τf ¼ 6 fm=c. To understand the impact of
superdiffusion on charm quarks within the QGP, we take
initial conditions where all charm quarks are concentrated
within an extremely narrow pT bin, creating a δ-like
distribution at pðt0Þ ¼ 10 GeV (magenta line). It is
observed that the interaction of the HQs with the QGP
medium results in the spreading of dN=dpT . Subsequently,
the evolution of this distribution is analyzed using the FLE
as defined in Eq. (25). We have observed the evolution of
dN=dpT at higher values of α for the case of superdiffusion,
where α ¼ 1.2 (red line), α ¼ 1.4 (blue line), and α ¼ 1.6
(green line). As depicted in Fig. 5, when α > 1, the
distribution dN=dpT undergoes a notable spread and
average momentum shifts toward lower values of pT under
the influence of diffusion and drag coefficients, respec-
tively. Specifically, for α ¼ 1.6 (represented by the blue
line), the extent of spreading is more pronounced, and the
average momentum shifts toward the lower pT compared to
other α values such as 1.001, 1.2, and 1.4. The results for
α ¼ 1.001 (black line) correspond to the normal diffusion
coefficient as explained in Refs. [41,43]. At the same time,

0 2 4 6 8 10 12 14
pT [GeV]

0.2

0.4

0.6

0.8

1

1.2

1.4

R
A

A

 α  = 1.001
 α  = 1.2
 α  = 1.4
 α  = 1.6

0 2 4 6 8 10 12 14
pT [GeV]

0.2

0.4

0.6

0.8

1

1.2

1.4

R
A

A

 α  = 1.001
 α  = 1.2
 α  = 1.4
 α  = 1.6

FIG. 4. The RAA as a function of pT , with t ¼ 6 fm=c, and at two different temperatures T ¼ 250 MeV (left) and T ¼ 350 MeV
(right) with four different values of α.
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the total area under the curve remains constant for all values
of α and both temperatures.

IV. CONCLUSION AND OUTLOOKS

In this paper, we have discussed anomalous diffusion
through the FLE with the Caputo fractional derivative,
specifically focusing on superdiffusion in the context of the
HQs in the QGP medium. Notably, the mean-squared
displacement of the particle exhibits a power-law depend-
ence on time (as shown in Fig. 3). Our analysis discussed
the scenarios where the values of α and β were taken as
1.001, 1.2, 1.4, and 1.6, showcasing the effects of super-
diffusion. We have demonstrated that as α approaches 1,
the superdiffusion reverts to normal diffusion, verified
by numerical and analytical calculations for hx2ðtÞi and
hp2ðtÞi in the nonrelativistic 1D case (see Fig. 1). Initially,
in Sec. II A 1, we focused on purely diffusive motion with
γ ¼ 0 in the FLE. Because of the dominance of the
diffusion term, hxðtÞ2i varies with t3, contrary to normal
diffusion expectations. Upon aligning analytical and
numerical results, then we later incorporated γ into rela-
tivistic FLE, confirming normal diffusion for relativistic

charm quarks [as discussed in Eq. (1)]. Several key quan-
tities characterizing the dynamics of the HQs under super-
diffusion have been computed, including the hp2ðtÞi,
hx2ðtÞi. Extending our analysis, we incorporated physical
observables RAA of the HQs in the QGP medium. We then
shifted our focus to the momentum spread dN=dpT , utiliz-
ing an initial momentum distribution at pðt0Þ ¼ 10 GeV.
The FLE, with the HQs moving under dissipative and
random forces, was solved with transport coefficients
serving as input parameters. Our findings indicate that
superdiffusion results in more suppression in RAA. To select
specific values for α and β within the ranges of 1 < α ≤ 2
and 1 < β ≤ 2, it is essential to be able to simultaneously
describe the experimental observables, such as RAA and v2,
for the entire measured range of pT . Initially, the formation
of a small RAA (signifying strong suppression) can occur
rapidly at the beginning of the QGP, while the development
of significant v2 is more sensitive to later stages of evolution.
Consequently, substantial interactions may not coincide
with a significant buildup of v2 since the bulk medium
has yet to establish significant elliptic flow. Exploring
anomalous diffusion may offer the potential to generate
notable v2 magnitude, possibly leading to intensified inter-
actions between the HQs and the evolving bulk at later
stages. However, a thorough analysis of v2 in the presence of
anomalous diffusion requires a refined study incorporating
realistic initial conditions, including the initial geometry and
expansion of the fireball. Subsequent comparison with
experimental data will be crucial for validating and refining
these findings, representing an essential aspect of future
investigations in this study.
In the future, we plan to explore the impact of super-

diffusion on the HQ dynamics in the QGP medium,
especially considering the time correlation of thermal noise.
This study devotes the groundwork for more realistic
conditions, which should incorporate an exact initial
geometry and an expanding medium in the near future.
Superdiffusion might impact various observables, such as
HQ directed flow, particle correlations, etc. Given the
simplifying assumptions made in our current study, it is
challenging to anticipate the specific modifications. A more
comprehensive and quantitative analysis will be performed
in near future investigations to understand these phenom-
ena further.
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APPENDIX: NUMERICAL SCHEME FOR SUPERDIFFUSION PROCESS

Consider a partition ftn ¼ nT
N ; ; 0 ≤ n ≤ Ng of time interval ½0; T�. The three-step numerical scheme called L2

approximation is used for the case of superdiffusion. The second derivative uð2Þ is approximated using a central difference
formula, and the resulting numerical scheme involves the values of u at the previous three time points un−1, un−2, and un−3.
For 1 < ν ≤ 2, superdiffusion

CDν
0þuðtnÞ ¼

1

Γð2 − νÞ
Z

tn

0

uð2ÞðsÞ
ðtn − sÞν−1 ds ¼

1

Γð2 − νÞ
Xn
j¼1

Z
tj

tj−1

uð2ÞðsÞ
ðtn − sÞν−1 ds

≈
1

Γð2 − νÞ
Xn
j¼1

uðtjÞ − 2uðtj−1Þ þ uðtj−2Þ
Δt2

Z
tj

tj−1

1

ðtn − sÞν−1 ds

¼ 1

Γð3 − νÞ
Xn
j¼1

�ðtn − tj−1Þ2−ν − ðtn − tjÞ2−ν
�

Δt2
�
uðtjÞ − 2uðtj−1Þ þ uðtj−2Þ

�

¼
Xn−2
j¼0

bj
�
uðtn−jÞ − 2uðtn−j−1Þ þ uðtn−j−2Þ

�þ n2−ν − ðn − 1Þ2−ν
Γð3 − νÞΔtν

�
uðt1Þ − uðt0Þ

�
: ðA1Þ

CDν
nuðtnÞ¼

8>>><
>>>:

u1−u0
ΔtνΓð3−νÞ ∶n¼ 1

u2−2u1þu0
ΔtνΓð3−νÞ ∶n¼ 2

un−2un−1þun−2
ΔtνΓð3−νÞ þP

n−2
j¼1 bjðun−j−2un−j−1þun−j−2Þþ n2−ν−ðn−1Þ2−ν

Γð3−νÞΔtν ðu1−u0Þ ∶n≥ 3;

ðA2Þ

where the coefficients bj ¼ ðjþ1Þ2−ν−j2−ν
Γð3−νÞΔtν in the scheme is determined by the difference formula for the second derivative and

are used to account for the fractional order.
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