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Global quark spin correlations in relativistic heavy ion collisions
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The observation of the vector meson’s global spin alignment by the STAR Collaboration reveals that
strong spin correlations may exist for quarks and antiquarks in relativistic heavy-ion collisions in the
normal direction of the reaction plane. We propose a systematic method to describe such correlations in the
quark matter. We classify them as local and long range quark spin correlations in the system. We show in
particular that the effective quark spin correlations contain the genuine spin correlations originated directly
from the dynamical process as well as those induced by averaging over other degrees of freedom. We also
show that such correlations can be studied by measuring the vector meson’s spin density matrix and
hyperon-hyperon and hyperon-anti-hyperon spin correlations. We present the relationships between these
measurable quantities and spin correlations of quarks and antiquarks.
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I. INTRODUCTION

The global hyperon polarization has been observed first
by the STAR Collaboration at the Relativistic Heavy Ion
Collider (RHIC) [1] and later in a series of subsequent
experiments [2—6]. This confirms the theoretical predic-
tions made almost two decades ago [7-9]. The experi-
mental results can be described quantitatively using
phenomenological transport or hydrodynamical models
[10-26], that are now reviewed, e.g., in [27-40]. Such
studies open a new avenue in studying properties of the
quark gluon plasma (QGP) produced in heavy ion colli-
sions and have attracted much attention in the field.

Recently, the STAR Collaboration has published their
measurements on vector mesons’ global spin alignment
[41]. Their results, together with other measurements
[42-45] bring the field of spin physics in heavy-ion
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collisions to a new climax [46—64]. The STAR results
[41], on the one hand, show that the global polarization
effects also exist for vector mesons, on the other hand, seem
to be inconsistent with the magnitude of hyperon polari-
zation if quark spin correlations due to strong fields are
neglected. As was shown in the original papers on the
global polarization effect [7-9], if we take quark polari-
zation as a constant and neglect fluctuations and correla-
tions etc., the hyperon polarization should be equal to that
of the quark but the vector meson’s spin alignment should
be proportional to the quark polarization squared. In this
case, since the observed hyperon polarization is only a few
percent [1-6], the vector meson’s spin alignment should
be much smaller than those observed in the STAR experi-
ment [41]. Hence, the data clearly reveal that there is strong
spin correlation between the quark and antiquark that
combine into the vector meson [46—64]. In this sense, this
provides the first opportunity to study the spin correlations
at the quark level in high energy heavy-ion collisions.

It is clear that the spin correlation of quarks and
antiquarks is an important property of QGP. It may contain
important information on strong interaction and provide
new clue to color confinement in quantum chromodynam-
ics (QCD). So it is crucial to present a unified and
systematic description of spin correlations in quark matter
and make connection with experimental observables.

The definition of spin correlations in a system of
spin-1/2 particles can be found in text books. However,
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to study spin properties of QGP, it is convenient to define the
correlations in a way so that one can study them in a given
sequence such as number of particles. More precisely, one
can start with two particle spin correlations, then continue
with two and three particle spin correlations and so on. Such a
definition will facilitate the study and reveal the underlying
dynamics. The connections between quark spin correlations
and experimental observables depend on hadronization
mechanism and thus may be model dependent.

The purpose of this paper is to propose a systematic
description of spin correlation of quarks and antiquarks in
heavy-ion collisions. We show that the spin correlation can
be decomposed into the genuine and induced one and also
into the local and long range one. We propose that the spin
correlation at the quark level can be extracted from the
vector meson’s diagonal and off diagonal elements of its
spin density matrix together with the hyperon-anti-hyperon
spin correlation. We present the relationships between the
spin correlation at the quark level and measurable quantities
in a simple quark recombination model.

The rest of the paper is organized as follows. In Sec. II,
we propose the systematic way to describe quark spin
correlation in the quark matter system and discuss its
properties. In Sec. III A, we present the results of the vector
meson’s spin alignment and off diagonal elements of the
spin density matrix as functions of the quark spin polari-
zation and correlation. In Sec. IV, we present the results for
the hyperon polarization and hyperon-hyperon or hyperon-
anti-hyperon spin correlation. We also present numerical
estimates of spin correlation parameters by fitting the
existing data in Sec. VI. Finally, a short summary and
an outlook are given in Sec. VIIL.

II. QUARK SPIN CORRELATIONS
IN QUARK MATTER SYSTEM

We consider a quark matter system such as QGP
consisting of quarks and antiquarks. The spin properties
of the system are described by the spin density matrix. For a
single particle, we study the spin polarization while for two
or more particles we can study not only the spin polari-
zation but also the spin correlation.

A. The spin density matrix

In a spin-1/2 particle system, the spin state of a particle
is described by the spin density matrix that can be expanded
in terms of the complete set of the 2 x 2 Hermitian matrices
{L,5,}, i.e.,

I+ Py6;), (1)

l\)l'—‘

@()

where P, = (6;) = Tr[p\?5;] with i=x, y, z is the
ith component of the quark polarization vector P, =

(qu, P,.P, .), 6; denotes Pauli matrices, and Trpl@) = 1
is normalized to one. The symbol I denotes the unit 2 x 2
matrix, and in the following of this paper, we simply write it
as 1. Also, we use the convention that a sum over repeated
indices is implicit through out the paper.

For two particle state in the system, we denote the spin
density matrix by p(!?). Conventionally, one expands p('2)
in terms of the complete set of Hermitian matrices

{1 ® 1,6’1i ® 1,1 (024 82]',6'11' ® 6'2j}, i.e.,

12) _

. . . 12) o .
P! (14 Py;61; + Pyj6y; + f,(-j >0]i ® 6,5], (2)

A=

(12)

where 7;;" is called the spin correlation of particles 1 and 2.

Here, as well as in the following of this paper, we take the
following scheme of notations: the superscript of the spin
density matrix p or the spin correlation ¢ denotes the type of
particle where for hadrons we simply use the symbol while
for quarks or antiquarks we put it in a bracket; the subscript
denotes the indices of matrix elements or spatial compo-
nents such as mm’ or ij. For polarization vectors, we simply
use double subscripts to specify particle type and spatial
component, respectively.

There is however a shortcommg in the definition of the
spin correlation through t( % in Eq. (2). In case of no spin
correlatlon between partlcles 1 and 2, we should have
P12 = p() @ p@ and then t,(-}z)
vamshlng. The situation is the same for spin correlations
of three or more particles if they are defined in a similar
way. This is in particular inconvenient if we study the spin
correlations order by order.

To overcome such a shortcoming, we propose to expand

»(12) in the following way:

= P,;P,; that is non-

1
212 = p) @ p 1+ — Vs

22 l] 611®62/’ (3)

(12)

where the spin correlation is described by ¢;;™. It is clear

that 61(112) =0 if there is no spin correlatlon between
particles 1 and 2. In the same way, we expand the spin
density matrix for a system of three or four particles as

123) 5

P12 = H) @ H @ p13) + G1i ® 62 ® 3

F ijk
1
+?[<' 611®62/®p +C(k P ®62/®52k
+ C:('k 61, ® PP @ 63, (4)
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(1234) 5

~(1234) @8 @pH + 214 Cijki

piBY =pl @ pl

1
+?[ v
+c(
1 e (123)

23

234) o
+ cﬁkl PV ®6 62 @ 63 @ 64y

+

The polarizations and spin correlations can be extracted
by taking expectation values of a direct product of Pauli
matrices on spin density matrices. The results are

P = (61:) (6)
12 A A
Cz<‘j ) = (61i62j) — P1;P2;» (7)
123 13
Cl(]k )= = (61i62;63) — C( Py — Cﬁk 'py; - ,(k )sz
— PyiPyjP3, (8)
1234 123 124 13
ngkz = = (61i62j631641) — z(jk Py - ngl )Py - Cgk; >P2,
234 13
- C;kl Py - ('j 'PyPy — cf-k )szP41

23 24
- Cz('z )P2jP3k - Cﬁk )PliP4I - C;; )PliP3k

34
- Cl(cl )Pusz — P1;PyjP3 Py 9)
For a four-particle system, according to Eq. (5), if the
system does not have any spin correlations, i.e., the spin
density matrix of the system is the direct product of spin
density matrices of single particles, we have

12 23 13 34 24 14
Cz(j):C;k)—Cz(k)—Cl(d):CEJ)—651 '=0,
123 234 124 134
Cf‘jk )= C§k1 )= Cz('jl )= Cgkl )= 0.
1234
Cz(‘jkl '=o. (10)

If there are only two-particle spin correlations, we have

123 234 124 134 1234
ngk )= C;kl )= ngz )= Cz(kl )= Cz(jkl '=o0. (11)

If there are only two-particle and three-particle spin

(1234)

correlations, we have c¢;;; " = 0. In this way, we can

include spin correlations order by order.
We note that if we define the spin correlation for two
spin-1/2 particles hyh, in the conventional way, i.e.,

c B e e
M o e oy

(12)

011 ® 67 ® 63 ® 64

)6, ® 6, ® H(4) 5y @ 6 Bz @92 ® 6y @ p¥

i ®6@PY ®)p +Ck1 P @ p ® 03 @ 64+ ¢y 61 P Q63 @ P
. 14) . .

il p ®62]®p ®U41+Cl(-l )01i®,0(2)®ﬂ ®U4l+ckp ®02]®03k®p ]

Cijk 011®02,®03k®/? +C,(,1 61i @ 65 ® pt ®541+C,(-k1 61, ® P ® 63 ® 6y

(5)

where n stands for the spin quantization direction 7,
Fom, = (mymy|p|mym,) (with my, m, = + denoting
spin states) is the fraction of the particle pair in the spin
state |m;m,). We then obtain the relationship between c,,,
(12)

and ¢;;” defined above as

Con = ci(’IIVIZ) + PlnPZn' (13)

B. With other degrees of freedom

We suppose particles in the system have other degrees
of freedom that are denoted in general by a. We consider
here a very simple case that the polarization and spin
correlation have a dependence so that spin density matrices
are given by

(14 P,(a)s], (14)

NI'—‘

P9(a) =

PV (ay) ® p(ay)

I 12
26

ﬁ(lz)(ahaz) =

+ >(0‘170!2)31:' ® 6,5 (15)
Now suppose we have a system (12) composed of 1 and 2.
We assume that the system is at the state |a,) so the
probability to find particle 1 and 2 at a; and a,, respectively,
is determined by the amplitude (@, a,|a;,). We obtain the
effective spin density matrix for the system (12) at a;, as

/—3(12)(0{12) = <0512|f’(12)|0512>

:Z|<017052|a12>|2ﬁ(12)(0‘1’0!2>- (16)

a

We decompose this effective spin density matrix p('?) (a;,)

in the same way as that in Eq. (3) or (15), i.e.,

= pW(a) ® pP(ay,)
I 12 . .

+?Cl('j >(0‘12)011' ® 6, (17)

where p(!)(a;,) is the average of p(!)(a;) weighted by the

wave function (a;, a,|a;,) squared and is decomposed as
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P (i) = (P () = Y I, aalen) P2 ()

aa
1

:E[l + Pii(a2)6,], (18)

and similar for p(®) (ay5). Here, as well as in the following of
this paper, we use (- --) to denote such an average on the
state of the system. In this way, by reversing Eq. (18), we
obtain that

Pii(ap) = (Py(a)) = Z|<(11,az|a12>|2p1i(al)- (19)

ajon

However, the situation for 65}2) (ayp) is different. By
reversing Eq. (17) and using Eq. (15), we obtain that

U ay) = <C§,1'2)(05170!2) + Priar)Paj(az))
- 131;(0512)pzj(0!12)- (20)

We see that Z‘Ejl.z)(au) is not simply the average of
(12)

¢;;” (a1, ay) weighted by the wave function (a;, as|as)

A A . . 1
P13 (), ap,05) = pV(a)) @ pP () @ PP (a3) + =5

+c<

I (123
+?cijk

squared. In particular, in the case of cgjl-z)(al, a) =0, we
have

e (@) = (P ) Paj(an)) — (Pyi(a)) (Poj (). (21)

We see clearly that Efjl 20 (a12) is in general nonzero if P ;
5}2>(“1, @) =0 so
that pU%) (ay, ay) = pV(a)) ® p¥(a,). To distinguish

(12)

them from each other, we propose to call ci}z

(g = 1,2) have a dependences even if ¢

(a;,a), the

genuine spin correlation, but the corresponding Z’(!z)(alz),

ij
the effective spin correlation, and 55}2;@((112), the induced

spin correlation. To be consistent, we will also call P ;(a;),
the effective, and P;(a,), the genuine polarization.

Also, we suggest to distinguish the induced spin corre-
lations into local and long range correlations depending on
whether they are short or long ranged in the a space. An
example that leads to such induced spin correlations was
given in Refs. [S1-55]. The spin correlation between s and
5 was shown to be strong and local in phase space due to
strong interaction with the ¢-meson field.

Similarly, for a three-particle system (123), the a-
dependent spin density matrix reads

» [05}2) (a1, 22)61; ® 62; @ PV (a3)

j?) (a2, a3)pV () ® 62 ® 631 + 05113) (a1, 03)61; ® PP () @ 63

(a1, a2, 03)61; ® 63 @ 63y (22)

If the system (123) is in the state |a,3), the effective spin density matrix is given by

2 2 N a 1 _ N A 2 —~(23 2 A A
P13 (a123) = p (a123) @ P (a123)p') (a3) + 32 [05}2)(‘1123)011- ® 62 ® pV (a103) + Cﬁ )(0123)/)(1)(0123) ® 62 ® 03¢
_ . A . I R . .
+ 01(113)(0123)611' ® PP (a123) ® b3] + §C§}1<23)(a123)01i ® 62 ® O3 (23)

where the effective polarizations such as P|;(a},3) and effective two-particle correlations such as ¢

(12

i )(am) have similar

expressions as those in the two-particle system given by Eqgs. (19) and (20), and the effective three-particle correlation

2129

ik (ai23) is given by

(123)

_ 123 12
G (anp3) = (ngk Moy, apa3) + Pyj(ar) Paj(ar) Py(a3) + Cz('j N(ay. a2) Pa(a3)

+ cg,?)

(a1, @3)Paj(a) + C§i3>(0‘2,0€3)P1i(a1)> - 55}2)(0123)1331((05123) - 51(113)((1123)1)2]'((1123)

_(23 5 5 5 5
- C;‘k )(0‘123)P1i(0‘123) = Pri(a123) Paj(a13) Py (a13).- (24)

If c;}z)(al, @, a3) = 0and cl(.},?)

(ay, an, a3) = 0, the spin density matrix of the system in Eq. (22) is the direct product of

single-particle spin density matrices. In this case, we have a similar result for the induced two-particle spin correlations to
Eq. (21), and the induced three-particle spin correlation becomes

5511'133;0) (05123) = <P1i(al)P2j(a2)P3k(a3)> + 2<P1i(a1>><P2j(a2>><P3k(a3)>
— (Pri(a1)Pyj(a2))(P3i(@3)) — (Pria1) Pa(@3))(Paj(@)) — (Paj(@) P3r(az))(Pri(an)).  (25)
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If c<

_(123:1)

G (anns) = <Pu(al) ()P;k(a3)+c(

_(13
,] (a12 k(a123) — Cik )

)P3
—Plz(am)i) (0‘123)13 r(@123).

We see that if the system only has two-particle spin
correlations but has a-dependence, three-particle spin
correlations are not vanishing due to averages over a in

a given region and/or given a-dependent weight. We call
(123:0)

G (aip3) in Eq. (26) the first order induced spin

correlation and El(]]kz 3;0)((1123) in Eq. (25) the zeroth order

induced spin correlation.

II1. SPIN DENSITY MATRIX
FOR VECTOR MESONS

We take a simple case that quarks and antiquarks in the
system combine with each other to form hadrons. We use
this as an illustrating example to show the relationship
between the quark-quark spin correlations and the polari-
zation of hadrons as well as other measurable quantities.

In this section, we consider the combination process
g1 + g, — V and present the results for the spin density
matrix of the vector meson V. We use M to denote the
transition matrix for a ¢;g, to form V in the combination
process so that the spin density matrix of V is given by

A

lf)V = Mﬁ(Q1Q2)MT. (27)

Using this, we will calculate elements of p" in various cases
in this section.

A. With only spin degree of freedom

If we only consider the spin degree of freedom, the
matrix element of pY is given by

PV = (m|Mpad) S jm
= Z <Jm’./\A/1|m”>< n|p (9172)

m,.m,

iy ) (mly | M)
(28)

where j =1 is the spin of V. Hereafter, we will use
shorthand notations |m,) = |jm,, jom,) and |m)) =
|jim), jomh) for spin states of the quark-antiquark system
in case of no ambiguity.

The transition matrix element (jm|M|m,) can be further
written as

)(alaa2)P3k(a3) + CEI? (‘117“3)1)21'(“2) + Cﬁ‘?

ijk )(al, a,, a3) = 0 but there are two-particle spin correlations, the induced three-particle spin correlation has the form,

)(02,053)1)11'(01»

(@123)Paj(@123) = 55-13) (a123)P1i(@123)

(26)
Gl Mim, ) = > _Cm| M\ ') ol |m,), - (29)
j/m/
where (m,|jm) is the well-known Clebsch-Gordan coef-

ficient. The space rotation invariance demands that j = j/

and m = m' and that (jm|M|jm) be independent of m.
We therefore obtain that

Yy =Ny > (m|m,) (m, [p) m) ()| jm').  (30)

[
mysmy,

where Ny is a constant that can be absorbed into the
normalization constant.

We insert ﬁ(q 142) by Eq. (3) into Eq. (30) and obtain the
element of the vector meson’s spin density matrix,

p(\)/ {1 + e\ (4132) + ng,l(b) _ (41112) + Pq]quzx
+Plil)qu) 412 421} (31)
Pl = {Cxqm - ql(h) + PgxPax = PgyPany

[C§%1q2> + C(‘Il‘IZ) + Pq]Xqu) + qu‘qux]} (32)

\%4 {C (4122) + szlfh) +Pq,x<1 +P?121)

Pro = \/_C
\4
+(14+P,,)P;, — l[c%“h) + cg“b)
+ quy(l + P‘?ZZ) (1 + P‘]ll)PQZY]}’ (33)

\4 { C‘Il‘h

Po-1 =
xf 2Cy
+ (1= Py )Py + il ®) 4 (0%
=Py (1 =Pg.) = Pt‘izy(l - quz)]}’ (34)

Cglflqﬁ + Pq]x(l - quz)

qu( 7]2Z>

_3+C(4142)+P P

¢,iPg,i 18 the normali-

where Cy = TrpV
zation constant.

From Egs. (31)-(34), we see clearly that we have
contributions from quark-anti-quark spin correlations in

all elements of the spin density matrix of the vector meson.
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B. With other degrees of freedom

If there are other degrees of freedom, we have

pr\;m’(av) = <]1’Vl, Ofv|/\A/l[)(‘Ill_]z)_/\A/l+|jml’av>

= Z Z<jm,(lv|M|mna an>

mysm, %

X (i, |pU182) () [l ) (il | M i ),

(35)

where similar to m,,, we use a,, to denote (a;,a,); and we
considered only the case discussed in Sec. II B, i.e., we
considered only the a-dependence of p(417%2) but neglected
its off diagonal elements with respect to a.

The transition matrix element (jm,ay|M|m,,a,) is
further simplified as

S (may| M| o)

J ol
ay,.j'm

<jm’ aV|M|mn9an> =

x (jm', o, |m,, a,). (36)

If we consider only the case where all j, m and a are
conserved, we obtain

<jm’aV|M|jmvaV><jm’aV|mn’an>'

(37)

<jm’ aV|M|mnv an> =

where the rotation invariance of M leads to that
(jm,ay|M|jm,ay) is independent of m. In this case,

the matrix element p¥ (ay) is obtained as

Niay) 3 Gmlm, ) (m

My mn

X (m,, |p\%) (ary )| mly), (38)

Pum (aV my |Jm/>

where Ny (ay ) is a constant for given ay and p(%192) (ay,) is
given by

ﬁ 9132) Zp 9132)

Ay

l// (an’aV’m m )
x y(ay;ay;m',my), (39)

that in general depends on m, m’, m,,, and m/, through the
function,

<mn7 anljm’ aV>

say;m,my,) = . 40
l//(an ay;m mn) <mn|Jm> ( )
Note that y does not depend on m and m,, if the wave
function is factorized,

(my, ay|jm, ay) = {a,|ay)(m,|jm). (41)

In this case, we have y(a,;ay;m',m),) = (a,|ay) that

depends on (a,, ay) only and

5(W‘n>(av) = @(q]z‘/z)(an»v

= Z;,(qﬁn)(an) (a

dav)l>. (42)

We have a similar formula to Eq. (17) for p{41%) (ay,),

S A

p(qIQZ)<av) = p(ql>(av) ®;)(1?2)(av)

1 (g2 . .
?Cl('?m)(av)ﬁli ® 03, (43)

+

where the effective spin density of ¢; and the effective spin
correlation are given by

Pl (ay) v—Z|

a,

) (ay) = L) 2Pl ) (ay)

1 +Pq1i(av)6—1i}’
quz(aV) qlz Z| n|aV | quz al)

N[ =

&) (ay) = (c E;“%,,) + Pyi(a)Py(@)),

- <Pq1i(al)>v<Pq2](a2)>vv (44)

and similar for 5% (ay) and P, ;(ay). We see that the
above results are similar to Egs. (19) and (20).

Equation (42) just corresponds to the case discussed in
Sec. I B. We note that the factorization in Eq. (41) is true
in nonrelativistic quark models. In relativistic quantum
systems, spin is not an independent degree of freedom
so the wave function is not factorizable as in Eq. (41). In
the following of this paper, we limit ourselves to the
factorizable case and leave the general case for future
studies.

Using Eqgs. (38) and (43), we can obtain the results for
pY (ay) similar to p”  in Eqs. (31)~(34). The results can
be obtained from Eqgs. (31)—(34) by the replacement of spin
polarization and correlation quantities, P, ; — P, ;(ay),

P-z. - Ptpj( ) and C(qqu) - E'E;lIQZ)(aV)’ where qui( V)

and c(q"m(av) are defined in Eq. (44).

By applying Eq. (20), the above results can be put in
similar forms as those given by Eqs. (31)—(34) but with the
average taken over each numerator and each denominator
separately weighted by |(a, |ay)|*. Here, we show the result
of py, corresponding to Eq. (31),

v 1
poolay) = <C by [1+ <Pq1quzx + PgyPay = Py Pg,:
%
+ C}((‘)I(l‘]z) + ngll?z) _ ngll_lz)>v]' (45)
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In practice, in particular in experiments, we often study
pY (ay) averaged over ay in a given kinematic region. In
this case, we obtain e.g., for p(‘)/o,

1

(pgo) = W[1+<Pq1xp o P

~N

+ quypézy TPzt goz

—(4122)

+ ¢ (QICIZ) + Z.(‘IIQZ) P >S}
1
= TETe [1+ ((Py Py + Py Pgy — Py P
T c§2192) + Cg_ll?z) CSZlq2)>V>S]’ (46)

where § denotes the kinematic region of ay or the
subsystem over that we average.

We emphasized [48] in particular that the average now is
twofold. For example, for c(q‘qz) it is

ql‘]z va qlqz n)>V
= Zf\/ aV)Z‘ n|aV |2 qlqz (an)’ (47)

e

where fy(ay) is the ay, distribution of V. We see that for

(;11‘12)(aq] , aéz) and

polarizations P, (a, ) and Pz (az,) of g, and g,, we
first average over (a, ,ag, ) inside the vector meson V.

qa’
In this step, we obtain <c§7‘q2>(

the genuine quark spin correlation ¢

a, .0z ))y and the

induced correlation c(q‘q72 Day) = (P, (a, )Py, (ag,))y —
(P, (aql))v<qu(aq2)) It is clear that in this step only
local quark-anti-quark spin correlations contribute. In the
second step, we average over V with different ay,. For both
the genuine and induced correlations, we average the
results obtained in the first step at different ay, weighted
by the ay distribution fy (ay ). We never consider a ¢; and
g, separated by a large distance in the @ space. Hence, we
do not have any contribution from long range correlation.
This implies that by studying vector meson spin alignment
and off diagonal elements of the spin density matrix, we
study only local quark-anti-quark spin correlations.

IV. GLOBAL HYPERON POLARIZATION

For hyperon formation from three quarks,
q1 + g> + g3 — H, similar to the vector meson discussed
in Sec. Il A, the spin density matrix for the hyperon is
given by

= Mplaraas) K17, (48)

The calculation of the hyperon’s polarization is also similar
to the vector meson which we will present in this section.

A. With only spin degrees of freedom

In this case, the matrix element of pZm, 1S written as

P = (iml Mpln) A
= > (ml M, ) (my |p 29 ) (s | S ),
30,

(49)
where j = 1/2 is the spin of the hyperon H. For the quark
spin state, we also omit j, in |j,m,) since they are all 1/2
and use the shorthand notation |m,) to stand for

|my, my, m3). Similar to Eq. (29), the transition matrix
element (jm|M|m,) is given by

= (jm|M|j'm)(j’

j/ml

(jm| M(m,,) m'[my). (50)

Similar to the vector meson case discussed in Sec. III A, we
use again the space rotation invariance that demands that
j=j and m = m' and that (jm|M|jm) is independent of
m. We therefore obtain that

Pl =Nu Y (jmlmy) (m, |p@s0) |n) (| jm). - (51)

UMUA

Note in particular that the spin density matrix in Eq. (51)
for the hyperon has the same form as that in Eq. (30) for the
vector meson.

By inserting Eq. (4) into Eq. (51), we obtain the
spin density matrix p¥ and the hyperon polarization
Py = Dpy/Cy, where Apy =pil,,,—p", ), and
Cy = Trpf! is the normalization constant. The result for
A is the simplest one since according to the wave function

IAT) = |uds) \/Li (1) = 11)1) (where 1 or | denotes spin)
spin of A is completely carried by the s quark. The result is
given by

P,=P,. ——=, 52

A sz CA ( )

épA = C< >Pdl + C( )Pul + S:lzdw’ (53)
Cr=1-ci" = P,Py. (54)

From Egs. (52)-(54), we see in particular that the A
polarization is not simply equal to that of the s quark
when quark spin correlations are considered. This is
because to produce a spin-up or spin-down A, we need
not only a spin-up or spin-down s quark but also a spin zero
ud-di-quark. If the spin of s and those of u and d are
correlated, the probability to have a spin zero ud-di-quark
in the case that s is spin-up can be different from that in the
case that s is spin-down. This leads to influences on the
final polarization of A.
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For other J¥ = (1/2)" hyperons, we obtain
1 Spu
Pan :§(4PQ11_P!12Z)+ CHm’ (55)
1 1)
PEOZ_(ZPL¢1+2sz_PW)+ pEO, (56)
3 CEO
where 6py ., Cp,,,» 6pso and Cyo are given by
S — (P —P .P + C(’Il‘]l) _ C(-qqu))(P - P ) —4c (‘11‘]1)}) +2( (‘I]lh _ 26({11‘12))[) .
PH 1 qit qyi qiit qoi ii q1z 422 zi qri
+ Cglqzqu‘h) _ 402?;%(12)’ (57)
Chyp, =3+ Py iPgi = 4Py iPy,i + C(qlq]) _405?1%)7 (58)
2 (ud) 2
Opso = g(Pdez +cji )(Puz + Py, — 2Psz) +3 3 (PmPsz +c )(2Puz dz Psz)
2 ds us us
3 (PaPyi e 2Py = Pu = Pyo) + (el = 2! >>Pd,-
+ () = 26l Py = 2 + )Py + i = 2e) 26, (59)
Cyo =3+ PPy —2P4iPs; —2P,;Py; + C,(',‘Md) - 20,(';”) - zcgids)’ (60)
where H;, denotes J” = (1/2)" hyperon with quark (jm, agy| M|m,, a,)
flavor q,q;q, and we have used ¢\ = 19 and — (jm, ayl M| jm, ay)(jm, aylm,. ), (63)
Hvan) _ (4999) We see a hat th ibu- oH oH P OHVT e Pl
ijk Cjik gain that there are contribu
tions from spin correlations in hyperons’ polarizations. so that the matrix element p (ay) is given by
B. With other degrees of freed(?m . pt (ay) = Ny(ay) Z (jm|m,,) (ml, | jm’)
If there are other degrees of freedom besides spin, the P—
matrix elements of pZm,(aH) is given by x (m, |ﬁ(‘11‘1243)(aH)|m’,,> (64)

P (agy) = (jim, ay| Mp@©) (a,) M| jm', )

= Z Z(]m, aH|./\A/l|mman>

mn’mgx n
D129 () ),

(61)

x (. o, M |jm agg) (m

The transition matrix element (jm, ay|M|m,,a,) can be
further written as

<jm’ aH|M|mnvan>

= > UmoanlM|jm' ) (j'ml dylm, ). (62)

/ ool
Ay j'm

In the case that j, m and a are conserved, we obtain

where p(719:93) (@) in general depends on m,m,,m’, n,
and is given by

CIlefh (l )— g plhflz(h

a,

(aw Qs M, mn)

x y(ay, agsm', my,), (65)
where w(a,, ay;m, m,) is defined as
( ) <mnvm’an|jm’aH> (66)
v(a,, ag;m,m,) = .
" (my,|jm)

If the wave function is factorizable, (m,,a,|jm,ay) =
<an|aH> <mn|]m>? we have W(anv Ay;m, mn) = <an|aH>' So
Eq. (65) is simplified as
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s {anlam) P, (67)

Zp 919293)

ay

Inserting Eq. (67) into Eq. (64), we can calculate the
hyperon polarization and results take exactly the same form

as Egs. (52)-(60) except that all quantities are replaced by

. _(12
effective ones, e.g., P N Pq,, l(] ) ng ) and so on. For

example, the polarizatlon of A is in the form,
(”ds) + C<L”>Pdl + C< )Pul

Pa(ay) :I_’SZ— Ciiz ) . (68)
l_cii — PPy

By applying Eqgs. (17) and (24), we can rewrite Eq. (68) as

Py(ay)
(P (1—ci

e =it Py~

—PiPyi)a

ds
ng )Pui>A

’

_PuiPdi) —C
(1=cii”

(69)
where the averages are taken with the weight |(a,|ay)|*.
We see that the situation is similar to vector mesons. If all
the genuine quark correlations cl(?‘ %) — 0 and cl(?,(‘ 20) =,

we still have induced correlations,

<PSZ(1 - PuiPdi)>A
<1 - PuiPdi>A

Pp(ap) = (70)
Similar to the vector meson’s spin alignment, we often run
into P, (a,) averaged over a, in a given kinematic region.
Then, we will have an additional average over the dis-
tribution f, (@, ). It is also obvious that we have only local
quark-quark spin correlations in this case.

Together with the results obtained in Sec. III, we see that
by the spin polarization of one hadron, we can only probe
local quark spin correlations.

V. GLOBAL SPIN CORRELATIONS
OF HYPERONS

The calculations can be extended in a straightforward
manner to hyperon-hyperon and hyperon-anti-hyperon spin
|

correlations. In this section, we take hyperon-anti-hyperon
as an example to show the calculation and results.

For a spin-1/2 hyperon pair H, H,, the spin correlation is
usually defined in the conventional way as given by
Eq. (12),

HH 2 H H HH
o f+l 2+flj_H2—f+l 2 _ __1‘_ 2

nn fli+H2 —|—fH \H, +fH \H, +fH1H2

(71)

where  fu i, = (mpg,mp, |p" ™ my,mp,) and my,,
mp, =+ denoting the spin states parallel or antiparallel
to the f direction, respectively. We simply adopt this
definition and calculate its relationship to those quantities
defined at the quark level using quark combination mecha-
nism. In the calculation, the most convenient way is to
rotate the Cartesian system so that i direction becomes z
direction in the new system. We choose this case as an
example to do the calculation and denote et by et
the following of this paper.

Now the task is to compute the spin density matrix element

H\H,
pmHI M, My M, —

density operators for vector mesons and hyperons given by
Egs. (27) and (48), p12 is related to that of the six body
system ¢14>43449sqe by

in

= (my, mg, |p"">|my my). Similar to spin

= A A

ﬁHle _ Mﬁ(l...G)MT’ (72)

where we simply used “1...6” to label ¢,¢,9344G5Gs- The
matrix element of py g, is given by

H i,
pmHlmHZ;nl}_]]m;—lz
= (ju,mu, s jr,ma, | MPU O M g, miy, ja,my ).
(73)

The complete expansion of pt'-0) is

1
=0 @i @ ®p* @5 @ p© + 7 [cl(,}z)a” ® 65, ® PP ® p¥ ® p1S @ p© + 14 exchange terms]

ﬁ(l 6) — 5

1

t53 3 ¢ ,(,1133 61; ® 67; @ 631 ® Y ® P ® pl© 4 19 exchange terms]
1 (1239) A(6)

+ =7 4 [ Ciikl 61i ® 62 ® 631 ® 64 ® p ®p + 14 exchange terms]
1 (12345) 5 exch .

+§[ ijkim 010 @ 62 @ 631 & 64 @ 65, @ pl® + 5 exchange terms]
1 ((123456) -

+ 56 Cijkimn 61 ® 62 ® 634 & 641 ® G5, @ G-
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In the rest part of this section, we take AA as an example
to show the calculation of the hyperon-anti-hyperon spin
correlation. For simplicity, we only consider two-particle
spin correlations and set all other correlations with more
than two particles as zero. As before, we consider two
cases, the one with only spin degree of freedom and the one
with other degrees of freedom denoted by a. The calcu-
lations can be extended to other hyperons and/or include
spin correlations of more than two particles in a straight-
forward way.

A. With spin degree of freedom

As in previous sections, we insert the completeness
identity ), |m,)(m,| =1 into Eq. (73) and obtain

H\H Y A
pm;lril,*,z;rrt’,_‘,lrrz’ﬁ7 = Z <mH1m1:12|M|mn><mn|p(l6>|m;1>
- mnvm,n
(| KA oy i ), 73)

where we have suppressed j,, =jg, =1/2 for Hy = A and
H, = A. The transition matrix element can be written as

(mg,mg, | M|m,) = (my mg, | M|mg mg,)(my mg,|m,)
= <mH, |MH|mH|><mI:12|MFI‘mFI2>

x (my,mg,|m,), (76)

where we have assumed a factorization form for

(my mp, | Mlmy mp) with M = MyMgp, so that the

transition matrix contributes only to the normalization
constant and has no effect on the spin part. Then, we obtain

HH ~
Pty iy = Nenis D (g mpg ) (my [p0-0) )
z mll’m;l
X ()| mly, ). (77)

H,

We note that in production processes of H, and H,, g, +
g»+q3 — H, and G4+ gs+ gg — H,, the Clebsch-
Gordan coefficient (my mg,|m,) is just the product of
(mpy,|mymyms) and (mp, [mymsme).

When all two-particle spin correlations are considered,
the result for the spin correlation of AA is

_ 1 5
A= PP, +C—A/_\{c§?)(l —P,iPsi)(1 = Py;Py)

- Psz[
+ (CEZ )PL—“- + Cz(‘?K)Pai)(l — PPyl
— Py [(ct Py + ¢ Py (1 = PyPy)

iz iz

(Cz(';ﬁ)Pui + Cgf)Pdi)(l - PyiPy;)

(ds)

+ (e Py + ¢ Py (1= PPy}, (78)

where the normalization constant C,5 is given by

d) (@d z dd
Cax = CaCr — e elf ) + el PPy + i PP
(dir)

ij

ij
+c PuiPaj + Ct(']L'td)PdiPﬁj’ (79)
where C, is given by Eq. (54) and Cj, is obtained from C,
with the replacement of all quantities for quarks by those
for corresponding antiquarks.

We compare the results given by Egs. (78)—(79) with
those given by Egs. (52)—(54) for A polarization. We note
that we need to put all spin correlations of more than two
quarks and/or antiquarks and products of two particle spin
correlations as zero since we consider only two particle spin

correlations. In this way, we obtain

_ _ PW _ _
M Py Ps 4 el - c [P+ P )
Ps. . (sa) (sit)
- Cx [ci Pai+cy Pyl (80)

From Eq. (80), we see clearly that the spin correlation of A
and A comes from those of quarks and antiquarks. We also
see clearly that ¢ = P, P, if only quark-quark and
antiquark-antiquark spin correlations are considered.

B. With other degrees of freedom

It is clear that in this case the six-quark (antiquark) spin
density matrix p(!-%(a,,) takes the same form as p('-®) in
(74) except that all p() (n=1,...,6) depends on a,

and that all correlation coefficients cl(]ll" ) with n <6

depend on a,. The spin density matrix for H,H, now
H,H,

becomes —_— (ay,,ap,) that depends on ay,

!

and ap,. Then we obtain a similar formula for
H H,
'OmHI Mgy s

o (ag . ag) to Eq. (77). By assuming a

Hy )

factorization condition similar to Eq. (76) for H; and H,
and that for the spin and a parts of wave functions, we
obtain

H\H, _
My, M, ;m;i1 m}iz (aHl ’ aH2>

= Ny, (@, ai,) > (myy,mg,|m,,)
mﬁ7m/7l

x<mn|f,(1...6)(a1_11,a,:lz)|mf1)<mf1|m’l_11m}:12>, (81)
where the effective density matrix is given by

50 g )

- Z Zﬁ<1"'6)(an70‘m)|<an|af1,>|2|<06m|0632>|2. (82)

ay Ay

114003-10



GLOBAL QUARK SPIN CORRELATIONS IN RELATIVISTIC ...

PHYS. REV. D 109, 114003 (2024)

We see the difference between Eq. (77) for the case with
only the spin degree of freedom, and Eq. (81) is the
replacement pl1-+6) — 510 (L ).

We emphasize the average in Eq. (82) can be carried out
inside H, and H, for quarks and antiquarks successively.
This is different from the case for vector meson discussed in
Sec. III B, where the average inside V is carried out for
the quark and antiquark, simultaneously. More precisely,
we have

= Z [Ct(jq](h)(a’h a‘lz) + P’Ili(a

112) + qui(a

e (an, ap,)

= Z [65;{11_12) (aql ’ a@z) + qui((l

[

— § C‘Ilfh
n

We see that c(q““) is independent of az, and c(‘“‘“) is
~(9122)

independent of ay,, while c just reduces to

&9 (ay ag,) = (P (g a5,V (88)

because

< qlt( )quj( <qui(aql)>Hl <P?12/(a52)>f72'

(89)

)>H,H2 =

Here, we neglect the overlap of H, and H, in a space.
In this case, we have no contributions from the induced
spin correlation between the quark and antiquark, i.e.,

~(4132:0) Y
Cij (ap,.ag,) = 0. Also, because a,,

while ag, is inside 1:12, we do not have contributions from

is inside H;

local spin correlations between quarks and antiquarks. This
can be seen more clearly if we assume all genuine two-
particle correlations vanish. In this case, the average of each
term in Eqgs. (82) can be separated into a product of two
factors, one is inside H for quarks and the other is inside
H, for antiquarks. This shows explicitly that we have
contributions from local quark-quark and antiquark-
antiquark correlations but no contribution from local
quark-antiquark correlations. Hence, in spin correlations

4 )PQZ.f(aLIZ)] | <a

ql)quj(aqz)]|<an|aH1>|2

ag, )Py, (ag,)|{anlan, ) [*|{an|an,)[*

511’a52) + PZI|i(a‘I|)P‘IZJ(a¢12)]|<am|aH2>| -

) Pasi(ag,) | {@ala, ) P [(aan,)?

P, (an, alan )1 = (Pg,(ag))m, . (83)

) = ZPq,<aq,)|<a

O‘H

2 Zplll 41

o7

{anlag,)? = (Pg,(ag,))m,- (84)

We obtain two-particle spin correlations as

n|(1H,>|2|<0‘m|(1H2>|2 - qui(aH.)quj(aH,)v

- Pl]li(aHl)Plhj(aHl)’ (85)
- qui(aﬁv)P (aHz)

Py,i(an,)Py,;(ag,). (36)

- pqli(aHl )quj(af{»)

ag, ) {elam,) P {em o, ) |- (87)

between the hyperon and anti-hyperon, there is no con-
tribution from local correlations between the quark and
antiquark.

Now we compute the spin correlation of AA with above
formula. With only two-particle spin correlations, the result
is just those given by Egs. (78)—(80) with the replacement
of all quantities by the corresponding effective ones, i.e.,

CAA (aAv aA)

R ) S ST

We emphasize in particular that all quantities for quarks
and/or antiquarks on the rhs of Eq. (90) are effective ones
and are functions of a, and/or az. More precisely, P,; and

P ; are functions of a, and aj, respectively, while c(q‘qZ) is
a functlon of (an, ay). These results are valid in the case
that we neglect the overlap of the wave function of A with
that of A.

We now discuss a simple case where both quark polar-

izations and quark spin correlations are small so that we can
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neglect the last two terms in Eq. (90) compared with the
first two. In this case, when further averaged over a, and
aj in a given kinematic region, we obtain

(A & (Pps(an)Pr(an)) + (&)
(Pr)(Pr) + () + @), (OD)

Q

550 - - - -
where (e5°7) = (P,.(an)Ps.(ax)) = (P.(an))(Ps.(a3)).
Compared to the correlation inside a hadron, we call
this long range correlation. We see that <a§‘§‘“°)> is the
|

CAA(“A, ) 05/\2)
P Py (an,)
CA(“AI)
I:Jsz(a/\z) {
Calan,)

2

In the simple case considered above for (c AA) we obtain

similar result for ¢} as
(A~ (Pa)? + (@0) + @), (93)

We see that in this case the spin correlation between two
A’s measures the spin correlation between two s quarks.
To compare with the results obtained in Sec. III, we see
clearly that the spin alignment of the ¢» meson probes the
spin correlations between s and s inside the vector meson.
In contrast, AA and AA spin correlations probes the spin
correlations between ss or s5 in the whole QGP system
[13,54,55]. The former is in general short ranged while the
latter includes long range contributions. The strength of
such correlations is determined by the dynamics of the
system and is an important direction for future study.

VI. NUMERICAL ESTIMATES

The global quark spin polarizations and correlations are
determined by the QCD dynamics in heavy-ion collisions
and can be calculated using QCD-based theoretical models.
Having the relationships between measurable quantities at
the hadron level and global spin properties at the quark
level, we can also extract them from data available and
make predictions for other measurable quantities. The
available data are however still far from enough to make
high precision predictions. In this section, we just present a
rough estimate based on the data available [1-6,41].

We use Egs. (70), (45), (91) and take approximately,

(Pr) ~ (Py), (94)

contribution from the induced spin correlation, while (EE;‘)>
is from the genuine quark spin correlation of s5.

Since we do not consider the overlap of the wave
functions of the hyperon and antihyperon, the results
obtained above can be extended directly to hyperon-
hyperon spin correlations. In particular, those given by
Egs. (90)—(91) can be extended to AA spin correlations if
we neglect the overlap of the wave function of the two A’s.
In this case, we need only to replace P, (a,) and Py (a5 ) by
P,(ay,) and P, (ay,), respectively, in order to obtain
CAA(O‘A1 L 0p,),

PAZ (a/\l )P/\Z (a/\z) + ng ) (aA] ’ a/\z)

6 (an, . an,) Puilan,) + e (ay, an, )P alan,)]

Van, an,)Pui(an,) + 257 (an,, ap,)Pailan,))- (92)

—(s5) 2
)~z = 95)
00 3 ~(s5) P2 ’
+ sz;qﬁ =+ < s>
(B ~ 2l (P2, (96)

where all quark spin correlations are effective ones and are
in general sums of genuine and induced contributions. We
use these equations to extract (P,) and 52‘; from data for
(P,) and (pl) [1-6,41], and make estimates of (cAA).
~(s5)

Copgp @S

We take the following forms of (P,) and ¢

functions of /syy:

10 ——
ALICE PRC101.044611(2020) STAR Au+Au 20%-50%

O A Pb+Pb 5%-15% ® A PRC98.014910 (2018) T

O A Pb+Pb 15%-50% B A Nature548.62 (2017)

¢ A PRC104.L061901 (2021)
HADES PLB835.137506(2022)

A A Ag+Ag 20%-40%

(PMI%]
T

V¥ A Au+Au 20%-40%

2 ]
0 T—0 ]
_ vl M | L el
2 10 102 103
V snn [GeV]
FIG. 1. Fit to the global A polarization as a function of energy

/Syn- The data are taken from Refs. [1-6].
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(Py) = asyk +c, (97)
el = esyhy +d. (98)

By taking a =0.123, b =0.42, ¢ =0.002, d = 0.032,
e =—0.25, and f = 0.18, we obtain the fits to (P,) and

0.40———rq ————rry

e ¢ (]y|<1.0&1.0<pr<5.4)

0.38
S
ié; 0.36

0.34

0.32 MR | L L ool
10 102

4 snn [GeV]

FIG. 2. Fitto pg’o as a function of energy ./syy. The data are
taken from Ref. [41].

0.00

-0.05

—(s9)
22,

-0.10

-0.15

0.20———————— —

(chly

zz

0.00

-0.10 1

-0.20 L MR R | L L MR R |
10 102

‘V SNN [GeV]
(s5)
Z

FIG. 3. (a) The effective global spin correlation ¢;; ' between s
and § as a function of energy ,/syy obtained by fitting the
data [1-6,41] using Egs. (94) and (95). (b) Estimates of (c¢2")
as functions of ,/syy in two extreme cases described in
the text.

(pg0> as in Figs. 1 and 2, respectively. The obtained ¢

a function of ,/syy is shown in Fig. 3(a).
: =(s5)  _ ~(s3)
We take two extreme examples, i.e., CooAR = Cozg

_gs/)m = 0 and draw the results for (cA}) as functions of

V/Syn in Fig. 3(b). We see that the results in these two
extreme cases are quite different from each other and they
can be tested by future experiments.

We stress that from Egs. (45), the vector meson spin
alignment for ¢ mesons is determined mainly by the local
spin correlation between s and 5 while those for (c*)
depends mainly on the long range spin correlation between
them. They are in general quite different from each other.
The results in Fig. 3(b) are just for two extreme cases.
Similarly, if we consider, e.g., other vector mesons, the
results are determined by the local spin correlations
between the quark and antiquark with corresponding
flavors. In this sense, measurements, e.g., of K*0 by the
STAR Collaboration [41] at RHIC seem to suggest that the
local spin correlations between d and 5 are much smaller
than those between s and 5.

(s5)
2z as

or

o

VII. SUMMARY AND OUTLOOK

The STAR measurements of the global spin alignment
of vector mesons /’go [41] indicate that there are strong
global quark-antiquark spin correlations in relativistic
heavy-ion collisions. It opens a new window to study
properties of QGP and reaction mechanisms of relativistic
heavy ion collisions. We propose a systematic way of
describing quark and/or antiquark spin correlations in the
QGP. We show that effective quark spin correlations
contain contributions from genuine spin correlations from
dynamics and induced spin correlations due to average
over other degrees of freedom. We derive the relationships
between these spin correlations at the quark level and those
for hyperons and vector mesons that are measurable in
experiments. We show in particular that the vector meson’s
spin density matrix elements, either diagonal or off
diagonal, are sensitive to local spin correlations between
the quark and antiquark, while hyperon-anti-hyperon
spin correlations are sensitive to long rang quark spin
correlations. We present a rough estimate of spin corre-
lations based on available data [1-6,41] to guide future
measurements.

We point out that genuine spin correlations have never
been considered in most theoretical studies of spin phe-
nomena in heavy-ion collisions to our knowledge [46—64].
The global vector meson’s spin alignment in previous
studies comes only from induced quark correlations. We
note that genuine spin correlations exist in general for
quarks and/or antiquarks produced in elementary high
energy processes such as ete™ — gg [65,66] and have
been discussed in connection with dihadron spin correla-
tions in eTe™, Ip or pp collisions [67-70]. The STAR
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data [41] suggest a strong global quark-antiquark spin
correlation, so the study of global genuine quark spin
correlations in heavy-ion collisions at the dynamical level
can be an important direction in the future.

When other degrees of freedom characterized by a are
considered, we assume that the spin and a part of the
wave function are factorizable. This is general true in the
nonrelativistic case. However, in the relativistic case,
spin and other degrees of freedom such as momentum
are usually coupled in an intrinsic way so that such a
factorization is impossible. In such cases, the calculation is
more complicated but can be done, which we reserve for a
future study.
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