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We analyze the low- and high-momentum rest frame modes in the second-order spin hydrodynamics and
check the asymptotic causality of the theory. A truncation scheme of the Israel-Stewart formalism derived
in our earlier work is proposed that extends the minimal causal formulation. It consists of altogether 40
interconnected relaxation-type dynamical equations—16 (24) of them correspond to the independent
components of the energy-momentum (spin) tensor. Similarly to previous studies, we find that the stability
of the perturbations and asymptotic causality require using the spin equation of state that satisfies the
generalized Frenkel condition demanding that the “electric” and “magnetic” components of the spin
density tensor have opposite signs. For low-momentum modes this behavior is similar to that found earlier
for the first-order (Navier-Stokes) spin hydrodynamics.
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I. INTRODUCTION

Investigations of the stability and causality properties of
relativistic spin hydrodynamics have attracted a lot of
attention lately [1-6]. They shed light on the mathematical
structure of the formalism and may determine its usefulness
for description of realistic systems, for example, those
produced in heavy-ion collisions [7-18]. They can also be
useful to distinguish between different formulations of spin
hydrodynamics, the most popular of which are the spin
conserving approach [19-24], the gradient expansion (of
the first and second order [1,2,25-28]) combined with the
condition of positive entropy production, kinetic theory
with nonlocal interactions [29-38], and quantum statistical
mechanics [39-45]; see also [46-67]. Stability and cau-
sality analyses based on the gradient expansion use (in the
leading order) the phenomenological form of the spin
tensor [68]
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where u* is the hydrodynamic flow and S* is the spin
density tensor. Recently, a connection between the phe-
nomenological form (1) and the canonical formalism,
where the spin tensor is totally antisymmetric, has been
established [26]. Moreover, the spin density (1) is taken in
the form

S = S(T, p)a, (2)

where w"” is the spin polarization tensor (namely, the spin
chemical potential Q" divided by the temperature 7),
while S(7,p) is a scalar function of temperature and
chemical potential. We note that the relation (2) can be
treated as a kind of constraint imposed on the spin equation
of state.

In this work we generalize the results obtained in
Refs. [1-4]. In Refs. [1-3] the first-order formulation
was used, while in Ref. [4] the minimal causal spin
hydrodynamics was studied. The latter is defined as an
analog of the minimal causal extension of conventional
hydrodynamics. It concentrates on the essential terms in the
second order of gradient expansion to get a causal theory.
Our present analysis can be treated as a generalization of
the minimal causal spin hydrodynamics, as we consider the
full 40 relaxation-type dynamical equations derived in [28]
[with 16 (24) equations corresponding to the independent
components of the energy-momentum (spin) tensor]. The
only truncation we propose is to neglect the so-called
mixed terms. We systematically repeat the linear stability
analysis of the rest frame low- and high-momentum modes.

Published by the American Physical Society
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Dispersion relations for all possible excitations are derived.
We find that the stability conditions for the extended model
are essentially the same as those found before in the first-
order and minimally causal theories. Hence, going to
higher orders and including more terms in the second-
order theory is not crucial for the stability of the perturba-
tions. Furthermore, we check the asymptotic causality of
our framework and find that causality and stability con-
ditions agree.

As a matter of fact, the fundamental property responsible
for the stability is a specific dependence of the spin density
tensor on the components of the spin polarization tensor,
namely, the derivatives of the spin density tensor with
respect to the “electric” (@”) and “magnetic” (0'/) com-
ponents of the polarization tensor in the fluid rest frame
should have opposite signs. This means that the relation
St = §(T,u)w* should be replaced by a more general
formula, for example, by the expression [6]

S}/(s = (Sl - ‘5'2)(60}/&’"0(”{S - wﬁ(zuauy) + S2w},57 (3)

where S; and S, are two different functions of 7 and y. In
the fluid rest frame, where u# = (1,0,0,0), one finds

SV =80, SU = S0, 4)

The stability conditions found in earlier works are

_ oS oS
)(b—aa)ol- s )(s—awij

> 0, (5)

where the derivatives are taken in the reference frame where
the considered system rests as a whole and is unpolarized.
This leads to the conditions S; < 0 and S, > 0. We note
that the use of Eq. (3) instead of Eq. (2) may be treated as a
minimal improvement to achieve stability. In general, more
complex structures for the spin tensor may be considered
(see, for example, Refs [19-24]).

It is important to emphasize that the frameworks dis-
cussed herein also assume the following thermodynamic
relations'

e+ p="Ts+S%w,, dp = sdT + S%dw,z. (6)
Equation (6) combined with the conservation laws and the
condition of positive entropy production uniquely deter-
mine the structure of spin hydrodynamic equations without
invoking an explicit form of the spin density tensor. Hence,
we can use the results obtained before and decide to choose
between (2) or (3) only at the last stage of the stability
analysis.

'Research employing a quantum statistical approach has
recently demonstrated that these relations may generally require
modifications, as outlined in [45].

Altogether, our analysis demonstrates that both the first-
and second-order theories exhibit stability of the rest frame
low-momentum modes provided the proper spin equation
of state is used. This finding agrees with conventional
relativistic hydrodynamics [69] and other relevant studies
[70-76]. Moreover, the same conditions provide the high
momentum stability and asymptotic causality of the con-
sidered framework (provided the used relaxation times are
sufficiently large). Similar theoretical explorations employ-
ing linear mode analysis have also been conducted in the
context of relativistic magneto-hydrodynamics [77] and
chiral hydrodynamics [78,79]. While we focus here on rest
frame studies, our future work could delve into the stability,
causality, and possible correlations between the two in a
boosted frame. One novel approach leverages the informa-
tion current introduced recently in Refs. [80,81], especially
considering its recent application in minimal spin hydro-
dynamics [82].

This work is organized as follows: Sec. II introduces our
“40 = 16 + 24” relaxation-time dynamical equations,
which lays the foundation for the subsequent linear mode
analysis in Sec. III. Section IV investigates the stability of
the system in both low- and high-momentum regimes.
Section V focuses on the asymptotic causality analysis.
Finally, Sec. VI presents our conclusions and outlines
potential areas for future research.

Throughout the text we use the metric tensor g,, =
diag(+, —, —, —). The projector orthogonal to u* is defined
as A" = ¢g" — y#u”. The partial derivative operator can be
decomposed into two parts, one along the flow direction
and the other orthogonal to it, i.e., d, = u,D + Vﬂ where
D =u!d, and V, = A,“d,. The expansion rate is defined
as 0 = d,u*. For the symmetric and antisymmetric part of

the arbitrary tensor X** we use the notation X’(‘;) = X) =

(X" 4+ X*)/2 and X’(‘Z) = Xl = (x# — X" /2, respec-
tively. A projection orthogonal to u* of a four-vector X* is
represented as X = A*X,. A symmetric, orthogonal, and

traceless part of X* is denoted as X% = A’;ZX“/’ =
HAVF A+ AFGAY =2 AP A )X Similarly, X)) =
A xap = 1(A# Ay — A¥5AY )XY denotes the antisym-

[ap]
metric and orthogonal projection.

II. ISRAEL-STEWART-LIKE
EVOLUTION EQUATION

The framework of relativistic spin hydrodynamics is
based on the conservation laws for energy, momentum,
and angular momentum. They can be represented by the
following differential equations:

9,T" =0, (7)

0,4 = 9, 5b 4 271 = ) (8)
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Here T is the energy-momentum tensor (EMT), while
JHah —= [rab 4 SHaP ig the total angular momentum tensor,
with L¢e# = 2xleT#Pl being its orbital part and S+ =
—S#P its spin part. We use the following decompositions:

T =T + T + T,
= (e + p)u'u* — pg" + 2h%u¥) 4 7 4 TIAW
+ 2gut + g, )

shal = Sy + S
— Ut S 4 2yl AP D + 2u[a1{;ﬁ]
+ zu[afgﬂ] 4 @}t(lﬂ, (10)

where 77 is the equilibrium (perfect fluid) energy-momen-
tum tensor, 7, and T, are the symmetric and antisym-

metric EMT dissipative corrections, whereas 4 and s
represent the zeroth- and first-order contributions to the
spin tensor [28].

The energy-momentum tensor 7+ can typically have 16
independent components corresponding to: the energy
density &, fluid 4-velocity u*, heat flux A* and its anti-
symmetric analog ¢*, the shear-stress tensor z#* and its
antisymmetric counterpart ¢**, and the bulk pressure II.
The variables u#, h*, and ¢* each have three independent
components due to the conditions wu, =1, h*u, =0,
and ¢"u, = 0. Both ## and ¢*"* are orthogonal to u”.
Furthermore, 7 is symmetric and traceless, while ¢** is
antisymmetric. Hence, #** has five independent compo-
nents, and ¢** has three. The bulk pressure I is a scalar.
This counting gives 19 degrees of freedom rather than 16.
Therefore, we adopt the Landau frame with /## = 0. The
spin tensor S#** has in total 24 independent components,
where the spin density S% = u,$*% has six components
and is considered to be of the leading order in the gradient
expansion, i.e., % ~ O(1). The quantity ® is a scalar, 7
is symmetric traceless and orthogonal to u,, so it has five
components, while r’;ﬂ is antisymmetric and transverse
to the u, so it has three components. Finally, LT
antisymmetric orthogonal to u, in all indices, hence it has
only nine components.

Studies examining stability and causality properties of
the relativistic second-order relativistic hydrodynamics
without spin [76,83,84] were done by focusing on the
Naiver-Stokes terms and those proportional to the relaxa-
tion times. The resulting equations are known in the
literature as “simplified I-S equations” and have simple
consequences—dissipative quantities such as #**,II, ...
relax to their corresponding Navier-Stokes values on time-
scales determined by the appropriate relaxation times
T, T, - ... Recently, a study of the stability and causality
properties for the second-order spin hydrodynamics has

been performed following a similar strategy as that outlined
above [4]. In this work, we extend this approach by
considering 40 = 16 + 24 relaxation-type dynamical equa-
tions (where 16 corresponds to the independent compo-
nents of the energy-momentum tensor and 24 to those of
the spin tensor) without neglecting all the second-order
contributions. Therefore, we will keep nonmixing terms
sourcing from Q% and those due to 9, (ﬂa)aﬂ)S’f"ﬁ appearing
at the level of entropy current [see Eq. (21) in Ref. [28] for
details]. Technically, this is equivalent to using

a/PSJIIS = T/fZ(aﬂﬂv + 2)3(0/41/) + Tlllzayﬂv + aﬂQﬂ
= 0,(Barg) S (11)

where

O = w'(a\IP + aya*my, + asq’ q; + as¢™ ¢z
+ (@)D + Ayt Ty, + 3T T + 040"V O ).
(12)
Note that QF neglects mixing terms proportional to
Mg", 7 q,, 0P Pyp, ...; see Ref. [28]. Here f, = u,/T
is the thermal velocity, w,, is the spin polarization tensor
(@,, ~ O(0) in our hydrodynamic counting scheme), while
a;s and a)s are dimension-full coefficients. Therefore, the
evolution equations for the energy, momentum, and dis-

sipative parts of the energy-momentum tensor derived
in [28] are reduced to

De + (e + p)0 = 7“0 u, +110 =V - g + ¢"*o,u,, (13)

(e+p)Du*—V*p=—-ALo,n" — A0,z + xDu® — g"d,u”
+A7Dg" +q"0— Ajo, 4", (14)

DI+ 11 = [0 + Ta, 110 + T11Da,|,  (15)

1
THA’;;Dﬂ“ﬂ + 7 = 2n [(V("u”) - §9A’“’)

+ Ta,0n" + Tﬂ”“Daz} . (16)

7,ADq" + g* = A[(BV'T + Du* — 40 u,)
—Tauq"0 — Tq"Day), (17)

e ALLDYD 1 v = y[(pVI) 1 2P0 A )
+ asOp + ¢ Das), (18)
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where { >0, >0, 1 >0, and y >0 are the corresponding transport coefficients. The relaxation times of various
dissipative quantities are defined as, r; = —2a,¢{T > 0, 7, = —4anT >0, 7, = 2a44T > 0, and 7, = —2asy > 0 [28].
Similarly, the evolution equations of the spin density and spin dissipative currents reduce to

7, AL

[ap]

DS + 89 + 9,8/ = ~2(q"u’ — ¢Pu* + ¢), (19)

toD® + ® = 3, [-2u"VF (Bwy,y) + @60 + ®Da,), (20)

Dt + 7 = {_M" (A“‘Aﬂ” +APAH — % N”M) V, (Bar,) + @07 + 5" Das |, (1)
. APIDIP 4t = s [—ut (A AP — AP APV (Be,,) + 307 + 2V Day), (22)
T®AfA/éA7}D®’wﬁ +@m — —)(4[—A5”A/’”A7“Vy (ﬁwgp) + a400% + @™ Day), (23)

where y; >0, y, >0, y3 >0, and y, >0 are the new
spin transport coefficients. Various spin-relaxation times
can be identified as 7o, = —2a,x; > 0, 7, = —2a,y, > 0,
7., = —2d3y3 20, and 79 = 2a4y4 20 [28]. As previ-
ously discussed, our formalism is composed of 40 =
16 + 24 equations corresponding to 40 unknowns; there-
fore, the system is mathematically closed.

III. LINEAR MODE ANALYSIS

We investigate the dynamic evolution of hydrodynamic
and nonhydrodynamic modes within a spinful relativistic
fluid. This is achieved through the examination of linear
perturbations superimposed on a state of global equilibrium

T 2
Sp = c26¢, ST — 0% e,
& + Do
44 4y
Dbzis Dsziv
Xb Xs
- 20 - bo
X1=—X1» X2 = X2
Xb Xb

where ¢2 is the speed of sound. By linearizing the spin
hydrodynamic equations [Egs. (13)-(23)] with respect to
the perturbation specified in Eq. (24), we arrive at

dode + (29 + po)didu’ + 0;5¢' =0, (26)
(0 + po)0obu’ — c30'8e — 0ySq" + 0ﬂ5ﬂ”i +0'on
+9,5¢" =0, (27)
7001 + 8T — £0,6u' = 0, (28)
. . o o 2 i X
7,000m" 4 61" —n(0'6u! + &' Su'’) +§r]A0 oou* =0, (29)

|
and solving the hydrodynamic equations. Our focus lies on
perturbations characterized by the following form:

e(x) > eg+6e(x),  u > ufy+ou”(x) = (1,0) +(0,567),
o (x) = 0+ 6w (x), S (x)=0+85"(x),
X(x) = 0+6X(x), (24)

where X represents the behavior under linear perturbation
of various dissipative currents of the energy-momentum (9)
and spin tensors (10). Below, we introduce the equation(s)
of state and the constants as follows:

N oSt
= —5 0, s — — O,
b aw,() < X o'
o _th
£ + Po 27
- P - _ P
="k 7a=""1. (25)
Xb Xs
|
7,000q" + 8q' — X' ¢20'5e — Adydu’ + D5S™ = 0, (30)
20000 + 6 = (d6u) — ') —%DS(SSU -0, (31)
008S% + Ak 5® + 0,574 + 0,57k — 25¢' =0, (32)
005517 + 0,50K1 + 2541 — 0, (33)
0006® + 6@ — 7,055 = 0, (34)

7,000t + 6t~ (9557 + I5S°) + 3 780,55% = 0,
(35)
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7, 0087 + 8T + 73(=0'5870 + ¢/557) = 0,
760,00k + 50K — 7,0'65/F = 0.

(36)
(37)
The above perturbations e, 811, S¥, 607k, etc., can be
expressed as plane waves:

Se = &.e—iwt+iz~5€ ST = gfie—ia)ﬂriﬁ)?

5®l/k —1wl+zkx

5SU 5S” —zwt+zkx 5@1]1{ (38)

Since the system exhibits rotational symmetry, we can focus
on waves propagating only in the z direction, with a wave
vector k = (0,0, k.). For such a choice, Egs. (26)—(37) can
be expressed as a matrix equation, where a 40 x 40 block-
diagonal matrix My,4o multiplies a vector V composed of
the 40 Fourier components of the fluctuations, namely, we
derive the condition Myg,40V = 0, where

Ao 0 0 0 0
0 Boow O 0 0
0

Myoxa0 = 0 0 By 0 >
0 0 0 Gy O
0 0 0 0 Doy

V= (VA’VBvaByvVC7VD)T (39)

—iw ik, 0  i(eg+po)k, 0
iclk, iw 0 —i(eg+po)w —ik,
0 0 0 —ik,¢ 1 —ithow
0 0 0 Zink, 0
0 0 0 —2ink, 0
Ajox10 = , . .
ic2lk, 1- it,0 —D, ilw 0
0 -2 —iw 0 0
0 0 i71k 0 0
0 0 Zipsk. 0 0
0 Zigok, 0 0
iw 0 0 (0 + Po) 0
0 0 0 ink, 0
l—it,w —D, 0 iAw 0
0 0o - ffo —iy'k, 0
By, = -2 —iw 0 0 0
0 0 —iw 0 ik
0 —ipok, 0 0 0
0 —ipsk, 0 0 0
0 0 ik, 0

and

Va = (68,60, 67, 677, 811, 657, 6, 58, 57, 6%)),
= (501", 67", 677, 8¢, 68, 677, 6757, 65, 607%),
= (5,65, 677, 5, 65%, 6%, 673, 65°%, 609%),
= (857,59, 60%7),

vp = (877, 6%, 6%, 60", 567, 6077, 56,

5O 567, (40)

The block parts of the matrix Myg,4 represent three
groups of coupled channels and one group of decoupled
channels. The coupled channels are the sound channels
described by the matrix Ajgyj9, the shear channels de-
scribed by Bg,g (appearing twice), and a group of purely
spin channels defined by Cj,3 that is distinctive for spin
hydrodynamics. The decoupled channels are defined by
Dy,9. The explicit forms for the matrices A (.10, Boxg, C3x3,
and Dg, 4 are

0 0 0 0 0
—ik, —ik, 0 0 0
0 0 0 0 0
1-irt,0 0 0 0 0
0 1—it,w 0 0 0
. (41
0 0 0 0 0
0 0 —ik, —ik, —ik,
0 0 0 0 1 —itepw
0 0 1—it, ® 0 0
0 0 0 l—it, w 0
ik, 0 0 ik,
1 —it,0 0 0 0
0 0 0 0
0 0 0 -1 +iry
0 ik, ik, 0 . (42)
0 0 0 =2
0 0 l—it, @ 0
0 l—it, w 0 0
0 0 0 0

114001-5
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Dy

—a7 0 1 —ityw
G = | —iw ik, 2 : (43)
l.)?4kz 1- iT@(D 0
l—ir, @ 0 0 0 0 0 0 0 0
0 l—it, @ 0 0 0 0 0 0 0
0 0 1 —itgw 0 0 0 0 0 0
0 0 0 1 —itgw 0 0 0 0 0
Dy, 9 = 0 0 0 0 1 —itgw 0 0 0 0 . (44)
0 0 0 0 0 1 - itgw 0 0 0
0 0 0 0 0 0 1 —itgw 0 0
0 0 0 0 0 0 0 1 —itgw 0
0 0 0 0 0 0 0 0 1 —it,w
Due to the block-diagonal form of the matrix M. its o4 n ) (48)
determinant becomes the product @4 = 7, 3 ! (9 + po)A; &
det(M) = det(A) det(B)? det(C) det(D). 45
et(M) = det(A) det(B)” det(C) det(D).  (45) N C e )
. : . . . (g0 + Po)An
The dispersion relations are determined by the solutions of
the equation det(M) = 0. In relativistic hydrodynamics i 4.,
without spin, the linearized equilibrium fluctuations are Wo =~ _glz_kz’ (50)
commonly split into the “sound channel” and ‘‘shear - B
channel” modes [70]. Below, we perform a similar clas- —
sification for the case including spin. wrg = —i (1+ \/ng(T‘I A)+1) + (’)(kz), (51)
s Z(Tq _ /1/) Z
A. Low-momentum modes In Egs. (46)—(51), we have introduced the notation
1. Coupled sound channels A
. . . . 2Db7’%{> ZDbT%
The sound channel describes longitudinal fluctuations. 2o =1 +7/1,, ET‘? =1 +7“/y,
They are parallel to the flow direction (0,0, k,). We may (t0 —7,) + (7, =)+
think of them as sound waves propagating alongside the vy A
. . ANp=14——5—"—"— Ap=l4+—5—"—"-—.
moving fluid. In our case, the sound channels can be 2Db1%_|_fﬂ_7q ZDbT%I_l'TH_Tq
identified with the fluctuations forming the vector v, in (52)

Eq. (40). By analyzing the determinant of the matrix A in
Eq. (45), we can isolate the frequencies associated with such
longitudinal waves, and find the following expressions:

4
0, = ek, — iwkg, (46)
’ 2(eo + po)
l X1 2
SLINIY1 s 47
3 To lch vl ( )

’In places where we do not emphasize the importance of the
dimension of a considered matrix, we skip the index containing
this information. We also use the symbols from A to D to denote
the corresponding groups of channels.

We note that it is expected to have here 10 dispersion
relations as the matrix A is 10-dimensional. We display
above only eight of them, as two purely damped modes (for
small values of k,) are shifted down to the group D (that
becomes 11-dimensional in this way). In the following
subsection, we discuss the shear channels.

2. Degenerate coupled shear channels B

The shear channels encompass fluctuations that deviate
from the main flow direction, essentially being orthogonal
to the momentum direction (0, 0, k,). They can be imag-
ined as waves rippling perpendicularly to the overall flow
of matter. In our specific case, the shear channels can be

114001-6
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identified with the fluctuations forming the vectors vg_and

vpy [as defined by Eq. (40)]. These vectors represent - _i(l + V1 -4Ds7yfh) +0(K),  (58)
displacements in the x and y directions, respectively. ’ 2z
Similarly to the previous case, the shear channel modes
are obtained from the condition det(B)? = 0, where the (1+./8Dy(z, = A)+1)
square implies that each shear mode in the group B is wg9 = —I \/2(1 _q ) +0(k2).  (59)
doubly degenerate. After lengthy but straightforward cal- 4
culations we find . )
Here we have introduced the notation
n 2
w, = —I , 53
: (60 +po) ° 53) . :1+2D7br$a
fa (t,, —7,) + 4
i n )
Wy, = —— kz, (54) 2
Tr (80 + pO)Aﬂ.’ T@ =1 + Dsﬁo ( o ) . (60)
T¢ —Te
i X4 2
w3y =——Fi—kZ, 55
3 Ty IT@) ‘ (53) 3. Coupled channels C
; - Our exploration of relativistic hydrodynamics with spin
Wy = —— ,'X_3k§, (56) indicates existence of new phenomena going beyond the
7z, z., familiar sound and shear fluctuations. They correspond to
- channels C and are given by the vector v¢ defined by
w5 = b i)(_zk%’ (57) Eq. (40). Studying the determinant of the matrix C in
2 Z, Eq. (45), we obtain:
|
i . )?4 2
=——+i—kZ, 61
(] o + lTG) z ( )
o — —i (1 - \/1 —4DST¢ﬁ0) _i )?4745(1 + 1 —4DST¢ﬂ0) kz (62)
? 27y —2(2D,70f0 — /T =4Dgzyfo)ry + (1 = /T=4Dsz4B0)70
1+ /1 —-4D;z, Yaty(—1+ /1 —4D1,
0y — —i( \/ sTPo) _ Jaty( v sT¢Po) 2. (63)
2745 2(2DST®ﬂ0 + 1- 4DST¢ﬂ0)T¢ - (1 + 1- 4DST¢ﬂ0)T® i
|
The fluctuations included in C involve spin densities i
and antisymmetric part of the energy-momentum tensor. Wy =—""> (66)
Investigating their physical properties requires separate fa
research.
@1011 =~ - (67)

4. Decoupled nonpropagating channels D

Finally, we present the purely damped modes included in
the group D. They correspond to the deviations described
by the vector vp defined in (40). The frequencies are
obtained again by solving the equation det(D) = 0. In this
way we find:

B. High-momentum modes

We now turn on to the characteristics of the modes within
the high-momentum limit. It is crucial to emphasize that the
channel classification framework we have outlined in
Sec. IIT A remains entirely valid in the high-momentum
regime. From a physical standpoint, when the wave number
along the z direction, k,, assumes large values, it becomes
particularly insightful to prioritize our analysis on two
categories of terms: those constituting the leading order and
those exhibiting proportionality to the momentum itself.
This allows us to extract the most essential information
about the modes.

114001-7
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1. Coupled sound channels A 3 2n
— =0l k.+ 02 71
Similar to the low-momentum case, the longitudinal Osis: = TINNS g n T UsspKe T O\ ) (71)
n=0 nvsl,sz z

fluctuations, vibrations parallel to the flow direction, are
the focus of the sound channel. The sound channels can be
identified with the fluctuations represented by the vector v, in
Eq. (40). By analyzing the determinant of matrix A in Eq. (45)
in the high-momentum limit we obtain the following modes:

wl__Mm(i)w(l), -

3T+ &, : k:

For the sake of simplicity, here, w;, ,, represents four modes
with s; = % and s, = £. The four modes can be thought of
as w, , 0, _,0_,0__, Where

» s A + S26
S1.8, - O1 s
i(%)?z +;?1) 1 1 2(e0 + po)(7y = 4)tatn

1
w=—Z————-+0 <—> o <—> . (69) 4
$te + 111, k2 k? A= ci(eg + po)(zy + 3 )t,mn + 74 <§ nrn + .ff,,) .

25 442 a7 > 4
w3y = - A FaTelr | | 300 THT B2 = A — dcte i, — ) (—mn +5r,,),
20, T T, 71 +3T0k2 T, T 3

+0 <i> , (70)

k. along with the terms,
|
4 47, (4
co == (11 (5 ow b 7)€l 420 ) + 22 (St 500+ 64700 ) ).
1
c = 5 (=3c2(X (4n(rpre + 7, (tn + 70)) + 3&(7,70 + 7, (1, + 70))

= 3(e0 + po) (770 (3¥1 +472) + 4tof2 (1, + ) + 37, 71 (7, + 7))

— (&0 + po)(t4(z2tn(371 +472) + 4t0f2 (1, + nn) + 37, 71 (7, + 7)) + 7,70 (37 01 + 47072)))
+4n(t, (e (371 +472) + 37 71 + 41082) + (37, 71 + 41072))

+ 3&(7, (7,371 +472) + 37,001 + 4102) + 7,37, 71 + 410)2))).

1
=3 ((€0 + Po)(3c(3X (t,tnTe + 7,7, (T + 7o) + T, To) + 7,7, (To + 7. ) + 7, 70 (7,(7, + ) + 7,70))

+ X (7,3t +dtnis + 41ef2) + 4tntefs + 37, 71 (1, + )
— 1,tn(4t07s + 37,01) — 41,02 (1,(tn + 70) + Tnte) — 37, 71 (7, (7, + 1) + 7,701))
+ 477(71'[74/1(1) + TqTrx (TH + T‘D) + THT;?T(D) + 3§(TJTTQT(D + TL]TTX (Tﬂ' + T<l>) + T][T‘L'ST‘I’))’

€3 = _(80 + p0)<_l/ (THTHT‘D + T, 7o (Tﬂ + TH) + TﬂTHT‘cs) + 7o (THTq (TJT + T‘L}) + TaTyTr, + TJTTHTTS) + TJTTHTqTTJ)’

and,

4 4
d() = —ZC%/V <§’77H + 577[) (gﬂ?ZTCD +)?1T‘rs> s
4 4 e 4 , 4
dy=4\1, gﬂ‘fn‘i‘f% 3420 +it., | tos| A te g’?TH‘i‘an + (&0 + Po) T2t (34 +17,) 342% +x17s, )

4 4
dy =67,7; 79 <3'17n + §Tn> +6(€9 + Po)7.Tn <(l/ =) <3)~(zf¢ +)~(le\.> + 57, 10 (31 + n,)) ;

d3 =8(eo + po) (' —7,) 7, T, 7o-
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2. Degenerate coupled shear channels B

Shear channels deal with deviations perpendicular to
the main flow, essentially orthogonal to the momentum
direction (0,0, k). In a similar process, yet in the high-
momentum limit, as in Sec. III A we obtain

i 1 1
iy +n) 1 1
iy — — — 7
O Ty ey, O(’C%) O(’é‘)’ 7

(7 % 1 1
25 o(1) (o2, o
T X2 T T X3 e k?

w3 =

i1 1 A Y +n
@ 2 (;_Fa * Tq(Tq =) - V'Tx +nty

L+o(3). 09

Ty (Y/le + ’7%)

- \/(80 + po)(tg = A)1a7y

i(12 72 + T2 73)
20,7, (10,000 + 70 73)

+0 <ki> , (76)

__ Ly 1
C()g’g = 21@ :l: T@kz + O<k2> . (77)

The shear channel modes are obtained from the condition
det(B)? = 0, where the square implies that each shear
mode in the group B is doubly degenerate.

T‘ra)? 2 + Tr_y)? 3
7., Te,

We7 =

3. Coupled channels C

Channels C corresponding to new phenomena beyond
relativistic hydrodynamics without spin. They are given by
the vector v¢ defined in Eq. (40). Studying the determinant
of the matrix C in Eq. (45), we obtain in the high-
momentum momentum limit

IV. STABILITY STUDY

To guarantee that perturbations of the equilibrium state
do not grow exponentially with time, we demand that they
satisfy the condition

Imfw(k.)] < 0. (80)

A. Low-momentum regime

In the sound channels, this leads to the following list of
conditions:

 p <0&19 >7,— 1, (81)
A, <0, (82)
Ap <0, (83)
T <0&7, >1,-4, (84)
0, > A, (85)

—1</8Dy(c, =) +1<1 (|(z,—X)8Dy|<1). (86)

For the shear channels we find:
T@ < O, &T¢ < 79, (87)

X <0&7, >1,-4, (88)

-1< 1/1_4DST(/1ﬂ0 <1

and for the channels C, after several algebraic manipu-
lations, one can find that the stability conditions is

To
—(1—-4D, —— < /1 -4D
( sﬂOTgb) To — 21_45 s7¢ﬂ0
o)

1-4D _—
< +( SﬂOTqﬁ) T@ _ 2T¢

(90)

(4DST(/)ﬂ0 < 1), (89)

If the conditions (81)—(90) are satisfied, our truncation of
the second-order Israel-Stewart spin hydrodynamics is stable
in the low-momentum range in the system’s rest frame.

In particular, we can see that the stability condition (86)
requires that D, (7, —4') is negative. Since 7, —4" is
positive [see Eq. (85)], we find D, < 0. On the other
hand, Eq. (89) leads to the condition that D, is positive
(note that 7, and f, are both positive). These two findings
agree with the previous results obtained within the minimal
second-order study presented in Ref. [4] and are satisfied
assuming the spin equation of state (3). Thus, we find that
going to higher orders and including more terms in the
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second-order theory is not crucial for the stability of the
low-momentum rest frame perturbations. The necessary
conditions are always those given by Eq. (5).
Within our truncation scheme we find further interesting
relations. For example:
(1) Using expressions derived in [28], the condition (87)
can be further rewritten as

Ty < Tg © —2asy < 2dsx4. (91)

This implies that the transport coefficient y, of the
spin dissipative current @%#* (23) is directly related
to the rotational viscosity transport coefficient y
(introduced in [1,85]) of the current ¢** (18). This
observation supports the full spin tensor decompo-
sition done in Ref. [28].

(2) Similarly, the conditions (81), (84), and (88) imply
that the transport coefficients y, y,, and y3 of the
spin dissipative currents ®, 7§°, and 4 [see
Egs. (20)—(22), respectively] are related to the
transport coefficient 1 of the dissipative current
q" (17).

B. High-momentum regime

To determine the range of applicability of our relativistic
spin hydrodynamic model, it is crucial to check the
behavior of the perturbations also in the k, — co limit.
To get stable perturbations in the high-momentum limit, the
modes (68)—(79) demand according to (80)

Tep > 0, 7, > 0, 7., > 0, 7, > 0, 17,>0,
m >0, 74>0, y>0, 19>0, 7,>7, (92)
71 <0, ¥ <0, 73 <0, (93)
CO > O, d() > 07 (94)
1 1 A !
——+ _TEN o (95)
T, Ty Tty =A) Y.+t

Our verification process has demonstrably confirmed that
all the above conditions are satisfied and exhibit complete
congruence with the established conditions in the low-
momentum limit, as detailed in Sec. IVA.

This provides a compelling foundation for a conclusion:
second-order spin hydrodynamics demonstrably exhibits
stability. While our present investigation has prioritized
the stability question within the high-momentum regime,
there remains a compelling need for future studies to delve
into the realm of stability analysis at finite momentum
values. This deeper examination could be effectively
accomplished by employing the well-established Routh-
Hurwitz criterion [71,86,87]. By incorporating a more

comprehensive analysis at finite momenta, we can ensure
a more robust understanding of the system’s behavior.

V. ASYMPTOTIC CAUSALITY STUDY

The causality of matter generally refers to its property of
admitting only perturbations that propagate no faster than
the speed of light in vacuum within the fluid (i.e., not
admitting superluminal perturbations). After checking sta-
bility in Sec. IV, verifying causality is crucial. Without
causality, any solutions to the equations may not have
physical meaning. If our system satisfies causality, we can
solve our set of 40 interconnected relaxation-type dynami-
cal equations and describe physical observables. This
would allow us in the future to connect our formalism
to other relevant topics [88-91]. Here, we follow the
seminal work of [92], followed by [76], where the
asymptotic causality conditions boil down to

sup [klim <RCZ—U€Z)>] <1, (96)

z—)DO z
and

(k)
k

Z

has a limit for k, - oo (i.e. bounded). (97)

Note that, as formulated mathematically in [92] and
illustrated physically in [76], the first condition alone is
not sufficient to guarantee causality.3’4 This can be seen
through the nonrelativistic, acausal diffusion mode with
o ~ ik?, which satisfies Eq. (96) but not (97).

Therefore, we need to the following constraints:

_%)?2% +717

0< B, (98)
TT; To

A+ B
0< <1, 99
2e + po) (e = M)y ©9)

7,(7' 7, +n7p)

< <1, 100
G0+ po)(eg = V)erty (100
0< _ T A2 T3 <1, (101)

TTaTT:
0<% <. (102)
4]

3Condition (96) is also written in some literature as

limkﬁw()]e%(ms 1. This can be verified as all the real parts of

the dispersidn relations in this limit approach a constant multiple
of k,.

*While (96) and (97) provide strong indications of causality, a
complete causality assessment would require the evaluation of the
characteristics [93].
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Under the conditions (25) discussed in Sec. III, the
coefficients 1, 7», 73 present in the above conditions are
all negative, and 7, is positive. Additionally, 7, > A" as
mandated by the stability conditions (85) and (92). Since
the conditions (98)—(102) all include relaxation times, their
values are critical for ensuring causality. Therefore, to
illustrate, we will first analyze condition (98). The results
obtained will serve as a foundation for analyzing the other
conditions. Starting from conditions (25), the coefficients
71 and ¥, are defined as

- _ 2P - _bPo
XL="—"X X2 = X2
Xb Xb
where y, y, are two spin transport coefficients defined in
Ref. [28]. The expressions of electric y; and magnetic y,
susceptibilities were explicitly derived in Ref. [6].
Henceforth condition (98) explicitly takes the form,

0= T @K, () + 2K, ()

2 4 2
z {ﬁ+£] <1 (103)
3, 7o

where K;(x) is the modified Bessel function of the second
type and x = m/T is the ratio of mass to temperature.
Clearly, the above condition is satisfied if the relaxation
times are sufficiently large. The fulfillment of these con-
ditions allows us to say that second-order dissipative spin
hydrodynamics [28] exhibits asymptotic causality; this
holds provided the new spin equation of state (3) and
sufficiently large relaxation times.

VI. CONCLUSION

In this work, we have analyzed in detail the rest frame
stability and asymptotic causality of the second-order spin

hydrodynamics. We have used the truncation scheme of the
Israel-Stewart formalism derived in our earlier work that
extends the minimal causal formulation studied earlier. The
crucial property to achieve stability is the use of the spin
equation of state, which allows for opposite signs of
the electric and magnetic components of the spin density
tensor. We demonstrate the rest frame stability of both the
first- (Navier-Stokes) and second-order dissipative (Israel-
Stewart) spin hydrodynamics in the low-momentum regime.
Additionally, the second-order theory exhibits stability and
causality at high momentum (with suitably adjusted relax-
ation times, which is similar to the Israel-Stewart theory).

In our future investigations we plan to study stability in a
moving (boosted) frame, as well as the correlation between
these two properties. Among the novel approaches that can
be used, we are going to consider the information current
introduced recently in Refs. [80,81]. The recent application
of this method in minimal spin hydrodynamics [82] makes
this approach particularly attractive.
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