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Renormalization of beta decay at three loops and beyond
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The anomalous dimension for heavy-heavy-light effective theory operators describing nuclear beta
decay is computed through three-loop order in the static limit. The result at order Z>a> corrects a previous
result in the literature. An all-orders symmetry is shown to relate the anomalous dimensions at leading and
subleading powers of Z at a given order of a. The first unknown coefficient for the anomalous dimension

now appears at O(Z%a*).
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I. INTRODUCTION

Precision measurements of nuclear beta decay rates pro-
vide important constraints on fundamental constants [1-14]
and can probe new physics [15-25]. Quantum electrody-
namics (QED) radiative corrections are enhanced by the
charge Z of the nucleus, and must be systematically
incorporated. For example, extractions of the Cabibbo-
Kobayashi-Maskawa (CKM) matrix element |V ;| from the
inclusive decay rates of super-allowed beta decays require a
careful account of both short- and long-distance radiative
corrections [4,5,7,11,26]. Similarly, searches for the
energy-dependent Fierz Interference term [15,16,20],
which would shed light on currents induced by short-
distance physics beyond the Standard Model [15,27,28],
requires a detailed understanding of the energy dependence
of the beta decay spectrum and therefore a detailed
understanding of energy dependent QED radiative correc-
tions [29].

Radiative corrections receive contributions from many
scales, ranging from the weak scale u~ My, to the
hadronic scale u~m, and scales sensitive to nuclear
structure u ~ R~!. Physics at short distance scales can be
integrated out, to obtain an effective field theory (EFT)
that describes scales of order u ~ Q ~m, with Q = AM
the mass splitting between the parent and daughter nucleus
and m, the electron mass [26]. For a nuclear beta decay
A — Bue, the effective theory Lagrangian is
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£ = ‘CQED + ‘Cy + ljlg,A) (11} . 6 + EQAU . A)hEJA)
+ 1P (v -0+ eQpv- AP + CRPTRM e, (1)

where Lgp is the QED Lagrangian for a single electron
field, and £, contains the kinetic term for the neutrino. Beta
decay is mediated by a contact operator with a Wilson
coefficient, C ~ G, and v* = (1,0,0,0) is the four-veloc-
ity of the nucleus A and nucleus B (we work in the static
limit neglecting nuclear recoil such that v, = v/, = v#). All
short-distance physics, including nuclear structure, has
been integrated out and absorbed into the Wilson coef-
ficient C. We focus on the theory at leading power, i.e., we
consider terms that are finite in the limit pR — 0 with p the
momentum of the electron in the lab frame.

The effective theory (1) separates contributions into a
low-energy matrix element M (y; ) that can be evaluated at
the “low-scale” u; ~ Q ~ m,, and the Wilson coefficient of
operators at the same scale C(y; ). The Wilson coefficient
at the low scale contains logarithmic enhancements,
log(py/ur), due to renormalization group (RG) evolution
from the “high-scale”, uy ~ R~' (where matching from a
theory with explicit nuclear structure is performed), down
to the low-scale, y;. The RG evolution is described by

) = Clumesp |- | whel )

where y is the anomalous dimension of the operator
associated to the Wilson coefficient of interest, f =
da/dlogpu determines the running of the QED coupling,
and a; y = a(uy g). To systematically resum these loga-
rithmic enhancements, we need the anomalous dimension
for the effective operator multiplying C in Eq. (1).
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In what follows we present the formalism for the heavy-
heavy-light EFT operators in Eq. (1) describing long-distance
QED radiative corrections to nuclear beta decay [26]. We
compute the anomalous dimension of these operators
through order Z%a?. In the massless-electron limit we show
that a symmetry relates different powers of Z at the same
order in a. In particular, this symmetry relates the anomalous
dimension at order Za® to that at order Z?a’, and the
anomalous dimension at order Z>a* to that at order Z*a*.
Since we compute the Z?a® result, and the Z*a* result is
known via a solution of the Dirac equation with a static
background Coulomb field [30], this implies that the first
unknown coefficient now appears at order Za*.

The remainder of the paper is structured as follows. In
Sec. II we describe the new symmetry emerging in the
massless electron limit. Section III introduces notation
for amplitudes and renormalization constants. Section IV
evaluates amplitudes at one, two and three-loop order,
and Sec. V extracts anomalous dimension coefficients.
Section VI provides a summary discussion. Appendices
provide details on the background field Feynman rules used
in the main text, and on the evaluation of three-loop integrals.

II. EFFECTIVE OPERATORS AND SYMMETRY

Consider the heavy-heavy-light effective operator
O = (B, (M) ey (3)
in QED with one massless electron. Here h[UZ] is a heavy

particle field of electric charge Z, and v* = (1,0,0,0) in
|

2

the rest frame of the heavy particle; e is the relativistic
electron field of electric charge —1. The anomalous
dimensions of interest are diagonal in the spin indices 1,
J for the heavy particles and k for the electron. The matrix
element of O;j, can be expanded in powers of the QED
coupling e?. The contribution at a given order, ()", can be
further decomposed into separate, gauge invariant contri-
butions involving different powers of Z: Z°, ..., Z?". It is
straightforward to show that n-loop contributions with
powers of Z larger than n vanish [26,31].

To compute the anomalous dimension of the operator (3)
we consider amplitudes involving one insertion of the
operator, neglecting the electron mass and external momenta
of all particles. Infrared divergences are regulated by includ-
ing a photon mass A. In this limit, symmetry enforces
constraints relating different powers of Z at the same order
in 2. In order to demonstrate the symmetry constraints, we
generalize and consider the heavy-heavy-light amplitudes
involving massless electrons of charge Q,, initial heavy
particle of charge Q4 and final heavy particle of charge Qp.
The amplitudes under consideration are invariant under
the simultaneous transformation 9, - —Q, and Q4 < QOp.
We are interested in the particular case Q, = —1, Q4 =
Z+1and Qp = Z.

Consider the amplitude with arbitrary photon attach-
ments to the electron (with polarizations u, p,, ... and
incoming momenta L, L,,...), to the heavy particle A
(with polarization vq, v, ... and momenta K, K», ...) and
to the heavy particle B (with polarization p{, p,, ... and
momenta Py, P,, ...). Using heavy-particle Feynman rules,
the amplitude is

_ ... (—eQe) (1 + L2)7v"2 (—eQe)fh 1y o —eQ v —eQav”!
- (L1+L2>2+i0 L%—HO U-(K1+K2)+iOU-K1+i0
,EQBUM ,EQBUPZ

v (=P) +i0v- (=P, — Py) +10

)
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where we have suppressed the indices /Jk from Eq. (3) and the external spinor wavefunctions. It is readily seen that under
the transformation Q, - —Q,, Q4 < QOp, L; » —L;, K; > —K; and P; —» —P;, we have

Since the photon propagators and loop integration measure
are invariant under this transformation, the result is un-
changed after summing over subamplitudes.

In conjunction with the constraint that powers of Z larger
than the number of loops do not appear, invariance under
0, » -0, and Q4 < Qp enforces constraints on the Z
dependence of the anomalous dimension at each order in
perturbation theory. For example, at one-loop order the
possible charge structures are

nge(QA_QB)—) 1,1, (6)

i.e., independent of Z. At two-loop order, the possible
structure are

Ae}’ Qg(QA - QB)?
0304 — 05)*. 020,05 > 1.1,1,Z(Z+1), (7)

i.e., a linear combination of 1 and Z(Z + 1). At arbitrary
loop order, the amplitude can similarly be expressed as a
linear combination of powers of Q2 — 1, Q,(Q4 — Q) —
1 and Q,0p = Z(Z + 1), with the total power of Q4 and
Q3 not exceeding the loop order. It is straightforward to see
that the amplitude, and thus the anomalous dimension at a
given loop order n is a linear combination of powers
Z{(Z + 1), where 2i < n.

Expanding
& a \ ! o ntl a\" (i) )
— . — . nl ZH+1—I
o= (&) >3 (o)
n+1
_ 7/(z)Zn-H—z’ (8)

we have in particular at one-loop order, y, = Zy(()o) + y(()])

with

At two-loop order, y; = Zzy(lo) + Zyil) + y(lz) with
1 0
H =, (10)

and at three-loop order, y, = Z3y§0) + Zzyg1> + Zygz) + yf)
with

0 2 1
L ) ()

Using the known Dirac solution [26], 7%, at leading power
in Z, the number of undetermined coefficients describing Z

dependence of the anomalous dimension (i.e., beyond the

result yﬁ,"ﬂ) for the local heavy-light current) is zero for two

loops, and one for three loops. Extended to four loops, the
constraints imply ygl) = 2yg0), y<33) = ng> - ygo), leaving a
single undetermined coefficient ygz) (beyond the Dirac
solution 7" and the heavy-light, Z = 0, limit 7\"). At
arbitrary even loop order,

1 0
y(Zn)—l = ny(Zn)—l’ (12)

and there are n — 1 undetermined coefficients (2n loops,
n=1,2,...). At arbitrary odd loop order,

2
Pon = 13- (13)

and there are n undetermined coefficients (2n + 1
loops, n =1,2,...).

III. RENORMALIZATION CONSTANTS

To determine the anomalous dimension of the effective
operator (3) we compute the amputated amplitude involv-
ing one insertion of the effective operator (3). We work in
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i =iZedl 2m5(q") g =iedl g = —jeqyH

FIG. 1. Vertex Feynman rules. The cross denotes insertion of
background field.

arbitrary covariant gauge with gauge parameter £, and
photon mass A to regulate infrared divergences. We use
dimensional regularization to regulate ultraviolet divergen-
ces using spacetime dimension d = 4 — 2¢, or equivalently
space dimension D =d —1 =3 —2e.

Let us compute the on-shell amplitude for the process
[Z+ 1] - [Z]e™, i.e., for initial state heavy nucleus of
charge Z + 1 and final state heavy nucleus of charge Z and
positron. It is convenient to compute the equivalent process
[+1] — e™ in the presence of a background field for charge
Z, where [+1] is a heavy “proton” field with charge +1.
The Feynman rules are given in Figs. 1 and 2. These
Feynman rules are equivalent, order by order in perturba-
tion theory to a brute force calculation in terms of the

original heavy-particle Feynman rules [i.e., those derived
|

from Eq. (1)] for the [Z + 1] — [Z]e™ process. However,
the number of diagrams is drastically reduced, and powers
of Z can be easily isolated [32]. As discussed in [32] and
explicitly shown in Appendix A, diagrams in which the
heavy “proton” field interacts with the background field do
not contribute to the anomalous dimension and can be
neglected for our purposes.

In terms of the bare coupling e, (whose mass dimension
is [eg] =2 —d/2), let us introduce the dimensionless
quantity

&
(4ny

et = [(47)°T(1 + €)]A7%. (14)

The amputated amplitude can be expanded as
M =1+ M, + efM, + e§M5 + O(ef), (15)
where we use that the photon mass 4 is the only mass scale

in the problem. The one-, two-, and three-loop contribu-
tions can be written as,

B, _
M, =Z(A g+ A e+ ...) + < L=l Bl +Bl,1e+(’)(ez)>

€
M, =77 (Aijl + Ay + +0<e)) +Z (Bze"l + By + O(e)) + (Cj{z + C2€"1 +Coo+ O(e>>
M; =73 <A3’2‘2 p Ao O(e°)> + 72 <B3’2‘2 Baci | (’)(60)> + Z<C3’2_2 4 Gy (’)(eo))
€ € € € € €
+ <D2’3‘3 + DZ';Z 4Dy O(e°)>. (16)
Writing the bare operator as
Obare = Z0Oren(H), (17)

we define the operator renormalization constant Z in the MS scheme, writing

dr ¢ A € €

~ (01 N5 (20) (11)  (02)
z z Z" z
Zo =142 +<i> [ZZ Lz

The MS coupling, a(u), is given by

(02) _ @) 1)
Z 3 Z Z
' }+<1) [Zz( -+ >+]+ (18)
€ 47 € €

62
ﬁ (4n)T(1 + €) = p*Z,a(y), (19)

where (for one dynamical electron flavor)

= /.1 2 /.2 @)
o 21 re 21
Zy,=14+—(— — =+ — cees 20
“ +4ﬂ<€>+<47[> <€2+€>+ (20)
ﬂ —1 q,.q ﬂ )
AN = — y— (1 — Eaid _— =
¢ — X2 +i0 (g" -0z ) ¢° +i0

FIG. 2. Propagator Feynman rules, with gauge parameter £ and photon mass A.
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with zgl) =4/3, zf) =16/9, 252> = 2. The on-shell wave function renormalization constant for the heavy proton is

given by
a (A7) a\2 (A (z7)  Z)
Zy=1+—(2) (Z2L4+Zz0+0 ) (2) (F2 2 o) ). 21
=1 () (B v 00) + (1) () (B B o) @)
The on shell wave function renormalization constant for the massless electron field is given by
_ (1) _ ) @)
ai_2€Z1 (1) azll_4ez2 Zl
Z,=1+—|(= £ +Z45+0 — ) (=) (Z+L+0() ). 22
B G 0) s () E ).
We will require the explicit expressions in arbitrary covariant gauge Zﬁlll) =3-¢, and lelll) = —¢£. The operator

renormalization constant Z» is determined by enforcing that the physical amplitude is finite,
11
Z5'23Z; M = finite. (23)

After expressing bare coupling in terms of renormalized coupling, we find constraints order by order in &, and order by
order in 1/¢. At one-loop order,

1
Olafe): 2™ = B, | + 5 (z) +Z)). (24)

At two-loop order,

1 1 1
O@/e): 7% = Cyy + (zﬁ” +5 (2 + zSB))BI,_l +5(21 + 2, — 5 (2 -z

O(az/e) . Z(IZO) = AZ.—l s

0 1, @ 2 1 L, _1),a (1
ZE '=c, +§(Z§11> + Z.(,A)) + (1(1 = Bi_1)Bi —E(Zg,l)zglo) + Zz(,,le(,,o))-
1 1 1 1, o 2 I, a
O((e?/€)log): €0 =5 (Z,)) + (Z))) - 5 (Z) +2z2) - 3 " =B, _)B,_,. (25)

The final constraint results from the vanishing of the coefficient of (a?/¢) log . Finally, at three-loop order, we focus on the
coefficients involving Z2,

1
O /e): 25" = By 2 + 5 (Zi) +2,))Ar 1 +2545 .
O(@/e?): 2 = Bsy = (21 = Bi_1)(A10)? = AroBai + (22" = By 1) Az = BioAa .
4
O((Z%a’/e)logd): By » = A, <—§ZE” + Bl.—l)- (26)

As usual, the operator anomalous dimension is determined by the coefficient of 1/¢ in Zy:

d 0
——— Oren = 70Orens = 2a—|Zp|;. 27
d]Og/l ren YOUren Yo aa(l[ (9]1 ( )
In particular, our focus is on ygl) = —6Z(121>, where 2521) is determined using Eq. (26). Through three-loop order,

contributions involving at most a single power of a not accompanied by Z involve: the A; ; and B; ; coefficients in the
amputated amplitudes from (16); the coefficient zgl) in Z, given after Eq. (20); and the wave function renormalization

factors Zg]) and Z.(,,1 ) given after Eqgs. (21) and (22).
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IV. AMPLITUDE EVALUATION

We proceed to evaluate amplitudes at one, two, and three loops (see the Appendices for details).

A. One-loop amplitude

Consider the amputated diagrams at one-loop. The contribution of order Z' vanishes due to rotational symmetry:

=0, (28)

implying
AI,O = O, Al,l — 0 (29)

Next for the vertex correction of order Z°,

62 1 (30)
= EM(L1LN) = =5 [(Am) T(L+ A€ —+1+0(e) ),
(47)2 €
where integral M (1,1, 1) is given in Appendix B, implying
By =¢ By =¢. (31)
B. Two-loop amplitude
UV divergences from iterated Coulomb insertions first arise at two loops,
1 L d+d" ot
_ 724 d \(qd 0 0 ofl o
= 2} (@' i) Cmdle") s e e (32)

= 7% (%) [L(1,1,\)A(L,\) + B(1,1,1,\)]

o [m +6)A—26]2 [%2
— 72h | O T

21, 2 0
(4m)2=e € AT+ O]

where (d%) = d?k/(2z)?, and the integrals A, B, and L are given in Appendix B. This implies (in arbitrary covariant
gauge)

A2._1 = 271'2, AZ,O = —471'2. (33)

Here we have used for the numerator,

[(g+4) + (> +2*) — (¢” + 22)]. (34)

| =

N =(d+4)7"4r" — %TT(N) =q-(¢+9)=

113007-6
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While they are not needed for the O(Z%a®) anomalous dimension, the nonvanishing contributions at O(Za?) are as
follows:

+ -—Z%(%)UXLLALMLA)+BUﬂLLAﬂ, (35)

implying (in arbitrary covariant gauge)

BZ,—] = 271'2, Bz’o = —47T2. (36)

C. Three-loop amplitude
We focus on the contributions at order Z?a’. Let us define the following integrals,

1 1 1 1 1 1
1 a1 ... a5.0) = | ) WG9 0 o e R T G T AT
1 1

X

(37)

where (dw) = dw/(2x), and (dk) = dk/(2x)P. Integrals written without a superscript imply b = 0: 1 =1, In the

following we illustrate the procedure by evaluating diagrams (a), (b), (¢), (b1), and (b2) in Feynman gauge. Details of the
evaluation for all diagrams in arbitrary covariant gauge are presented in the Appendix.

1. Jaus diagrams
Consider first diagrams (a), (b), (¢), considered in Ref. [33]. For the first of these, in Feynman gauge (¢ = 1),

1 1 1 1 1 1 1
al, = —72¢b dw)(dk)(dqg)(dqg’ — N¢ 38
M|§7l e/( a))( )( Q)(Q)—k0+i0q2+/12q'2+/12w2+k2+/12w2+(q+ql+k)2(q+q/)2q2 ( )

where k° = ikY), = iw and the numerator is

N = (g +d + R + ) dr" — 5 THN) = Kg - (g +).

(39)
Note that the numerator evaluation is valid in d = 4 — 2¢ dimensions. With the substitution
q+4q =p, (40)
the integral becomes
1
Mooy =220 5(_3_ +27 + 57111010 + 61|, (41)
where we introduce the notation nilal,,_anflanam_“a o = laia, \(a,=1)ay.,ae- The term 81 results from writing
1 1 22
2, 2 77 2 7, 2 (42)
P-q°+2 @P-9° P-9°P-9°+4

After simplification we have

113007-7
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2 1 1
ol = —— (dw)(dk)(dQ)(dp) CHE+ 2o+ (k+p)2

2
5 1 11
P -9°p-9)7°+2]¢*(¢* + #)p*

The integral is finite apart from the subdivergence at w, k — oco. Up to finite terms (we use “~” to denote equality up to finite
terms as € — 0), we thus have

~(p-9)* + ¢ +p

(43)

ooor 1 1 ! !
o ~—5[/(dw)(dk)w2+kz”zwz+kz] [/(d@(dp)(p_q)Z[(p—q)ZHZ]qz(quz)

N _gM(L 1,2) bii%(%(fl(o, r)=f1(4 1’)))}2

(4m)T(1 +¢€)]3/ 8x?
— [T 0T oy ), 44
R ~ 40 (44)
where the (dg)(dp) integration may be performed in D = 3. Evaluating integrals,
. (4m)T(1+¢€)]3 4 4
M ‘521 = 2266 {W 7T2 g - E + 0(60) . (45)

Similar manipulations for diagram (b) yield

1 1 1
Mblé;:] = Z266 |:<—§3_ +§2_ +§5_ + 4= — 6_>1101110 + 51b:|

=Z%¢° [%} 37:2 E (—4 + 87”2> + O(eo)] : (46)

In this case, the second term on the right-hand side of Eq. (42) leads to a finite integral, 5I” ~ 0. Similarly for diagram (c),

1 1 1
MEeey = Z%e° {—41@1101 + (1— +4 +6 —=2"—=-3" — —5—> Lo + 510}

_ 26 {(477)61“(1 + 6)] o {i 1 <_22 n 8”22> n (29(60)] (47)
B (4m)? 3¢? € 9 ’

where 61 ~ 0.

We are unable to make a direct comparison to the results of Ref. [33] (cf., also Ref. [34]), which considered only diagrams
(a), (b) and (c) in Fig. 3. We note that UV subdivergences appear in these diagrams that are not regulated by working at
finite proton mass.' For example, inspection of diagram (c), cf. Eq. (13) below, shows an unregulated divergence when
p|.lg| =  at fixed , [k|.*

’

2. Vacuum polarization diagrams
Diagram (b2) is obtained by inserting

2 2 2 8

= G (AT + @) 575 |- p—e2= ). (48)

"The proton propagator used in Ref. [33] corresponds to the replacement i/ (k% +i0) — 2Mi/(k* + 2MK° + i0) in the heavy particle
propagator, cf. Fig. 2.

In Eq. (3) of Ref. [33] a nuclear form factor is included, which would regulate this subdivergence; however this form factor is later set
to unity, as discussed beneath Eq. (4) of Ref. [33], and can therefore not remove the subdivergence.
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(a) (b) (c)
(p1) (p2)

(U2) %
(b1)

(w)

(62)

FIG. 3. Three-loop amputated amplitude at order Z2a>. Our momentum routing is illustrated with M" where q' = p — q. The photon
labeled with k has a nonzero k, component whereas those labeled with three-vectors do not.

into the skeleton integral (32). A straightforward integration yields the result

MP|_| = 225 [%] "2 {—91—662 +é <33—2 log(2) — %) + 0(60)] . (49)

Similarly, inserting [¢”?/(q"* — 2?)|T1(¢"*) from Eq. (48) into the skeleton integral (32), we obtain the result

M =72 {%} 37:2 [— 91—662 + é (— 33—2log(2) + %) + 0(60)] : (50)

3. Summary of three-loop diagrams

As described in the Appendix, the remaining diagrams are obtained by similar manipulations to those described
for diagrams (a), (b), and (c¢): expanding on the integral basis, extracting subdivergences and writing remainders as 1/e
times convolution integrals in integer dimension. Collecting results for all diagrams, including gauge dependent terms, the
results are

113007-9



BORAH, HILL, and PLESTID

PHYS. REV. D 109, 113007 (2024)

TABLE I. Summary of known coefficients in the perturbative expansion of y for heavy-heavy-light operators for
a U(1) gauge theory with n, light fermions. The coefficients at O(Z"a") are fixed by solutions of the Dirac equation

and vanish for odd-loop orders due to rotational invariance [30]. The one-loop result for yél) was first computed by

Sirlin [35] and the two-loop result for y§2> by Ji and Ramsey-Musolf [36]. The three-loop result for y(23) is given by

yf) = —8084 —36{5 + 64, — % +n.(— %53 + %4’2 + 4;—0) + % n? as computed by Chetyrkin and Grozin [37].

The four-loop result for y§4> has recently been computed by Grozin and is presented in analytic form in Eq. (3.3) of

Ref. [38]. The new results of this work are the coefficient y(zl) and the identification of a symmetry relating

coefficients at a fixed loop-order with differing powers of Z. Entries marked with “?” are currently unknown, while
entries expressed in terms of other coefficients in the table are fixed by the symmetries discussed in Sec. II.

Loops
z" 1-loop 2-loop 3-loop 4-loop
A yé” =-3 y<12> =-16{, +3+2n, y(23) = (see caption) y§4) = (see caption)
1
7 7/(()0) —0 J/51) _ ygo) ygz) _ y;l) }/(33) _ 7/gz) _ ygo)
z T ygo) = —8x2 ygl) = 1672(6 — %) yg2> =7
3 e e 0 0
z 7 =0 7y =2y
74 y§0>:—32ﬂ4

e = s [WOTU LN L[4 4 (—EﬁE) + 0(60)},

L @n)* |7 [3€ e? 3e
S S 2
MP = Z7%e° % x? é<—4+8%) + (1 —§)<é+%> +O(€0)}
, @) T +e)]3 ,[2 1 8 2 2 .
M = Z% T " 2T\ 2ty +(1-¢) 327 + O(%) |,
o .
MO = 720 4(4”)(5()12+ N —g i( 33—21 (2)+%> +(’)(€0)],
L T ] L €
2 _ @) TA L+ o[ 16 132 _32 0
ME=Z2 =g | ™ |Toe Tel\F e — 7 ) + O]
[(4n)T(14+¢)]® ,] 4 16 4

pot = e[Sl 2 -5 ) + o).

N . 13
MP? = 7206 M 2 _%_’_i_i_(l _§)<E+E) +O<€0>:|’
€ € € €

 “@n)? || 3¢?
, [(4r)T(1+¢€)]? ,[ 4 8 2 14
M“:Zz€6 % 71'2 g_g+(l—§)<_€_2_§)+0<€0):|»
[(4m)eT(1 +€)]3 ,[ 4 20 4 4
M1/2:ZZ€6 ()(475)2) 71'2 36‘2_36+(1_§)<_3€2_€> +O(€O):|,
, [(4m)T(1+¢€)]? ,[1 87°
w :ZZ 6 ( 212 _ 0 .
M e @ b3 E 8 5 + O(€Y)
Using the above results we obtain
1472 82 22
By, =-— 9” —222(1-¢), By, :;TZ(%——) +2722(1 = &)
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V. ANOMALOUS DIMENSION

Using Eq. (27), the expansion of the anomalous dimen-
sion reads

a a\?
ro=-2,-2" -4 <E> (2227 + zz{" + 2]

a\? 21 1 02
—6(5) 1222\*) 4+ zZ\" + 7)) (53)
Using the results above, we may read off the results at one
and two-loop order,

= 22 = 3,

) = -47% = 822,

) = -4z = —g22, (54)
In particular, 7’(10> and 751) obey therelation (12). At three-loop

order we verify the consistency condition for B3 _,, Eq. (26).
For the anomalous dimension at O(Z*a?) we obtain

2672
A = =62 = =By -2~ 22201 6))

= 1672 <6 —%2> (55)

This is our main result, and represents new perturbative input
for the evaluation of long-distance QED radiative corrections
to nuclear beta decay.

Using the symmetries of Sec. II, and existing results for
heavy-light currents [35-37], we obtain the anomalous
dimension of the heavy-heavy-light operators complete
through three-loop order. Moreover, fixing the leading-Z
contribution at four loops with the Dirac equation [30] and
again using the symmetries of Sec. II we also fix the Z3a*
coefficient of the anomalous dimension. Our results are
summarized in Table I, where one sees the remaining
unknown coefficient at four-loop order marked with “?”.

VI. DISCUSSION

We have computed the order Z’a® coefficient of the
anomalous dimension for heavy-heavy-light operators
contributing to nuclear beta decay. Our result makes use
of simplified Feynman rules that are valid in the static limit
of zero nuclear recoil. We have identified new symmetries
that relate coefficients in the expansion of the anomalous
dimension. With our new result for yé”, the first unknown
coefficient occurs at O(Z*a*), i.e., at four-loop order and at
second subleading order in Z.

The combination of the symmetry introduced in Sec. 11
and the leading-Z asymptotics discussed in Ref. [30]
implies powerful constraints on logarithmically enhanced
contributions to beta decay. As an illustration, we may

adopt the “intermediate-Z” power counting introduced in
Ref. [26] where Z~L ~a 2 with L =log(uy/u;).
Using the results summarized in Table I the running of
Wilson coefficients can be computed through O(a?) with
unknown coefficients entering first at O(Z%a*L) = (a/?)
and O(Z*a’L) = O(a’/?).

These new perturbative inputs have important numerical
impacts for the extraction of |V,4| from superallowed beta
decays [11]. They allow the systematic resummation of
logarithms arising from RG evolution from short-distance
scales set by nuclear structure, down to long-distance scales
set by the reaction’s Q-value and the electron mass. Given a
short-distance matching calculation of C(uy ), and the RG
evolution determined by Eq. (2) (and discussed in more
detail in Ref. [26]), the remaining operator matrix element
can be evaluated perturbatively using Eq. (1). Evaluation of
this matrix element will be presented in future work.
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APPENDIX A: BACKGROUND FIELD
FEYNMAN RULES

Consider the Lagrangian for heavy particles of charge
04 =Z+ 1 and Qp = Z, interacting by an operator of the
form (3),

£=hr"(v-0+eQuv-A)RY
+ 7P (iv-0+ eQpv- AR +CRPTHViIe, (A1)

where C ~ G is a constant and v* = (1,0,0,0). Consider
the field redefinition,

pA) _ gl),(40)

v v v v = Dy v
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where S and $'®) are Hermitian timelike Wilson lines,

J

exp {—iZe /0o dsv-A(x+ sv)} .
0

@ _ axplize [°
Sy’ =exp|iZe dsv-A(x+ sv)

[Se]

S = (A3)

The choices of integration limits correspond to initial state
A particles and final state B particles,

ELL — iZev" /_Ooo

;}L :iZev“/ dse v 5 i Ze P
0

—isL-v

dse — 1 Zevt

v L+40’
o
—v-L+i0"

(A4)
The Lagrangian becomes

L= l_zi,AO)(iv “0+ev- A)thO) + A% - om0
(40)

+ eSS RO TR e, (A5)
where the combination of Wilson lines is
SS)B)'I'S&A) =exp [iZe /oo dsv-A(x + sv)
= exp[2xiZeS(iv - d)v - A]. (A6)

This Lagrangian leads to the Feynman rules in Fig. 1.

We have omitted diagrams in Fig. 3 involving photons
connecting the background field and the charge +1 proton.
These diagrams correspond to a residual mass for the heavy
proton field and do not affect the computation of the
anomalous dimension. Explicitly, the contribution of these
diagrams to the heavy proton self-energy is

—i 0%, (k%) = g + + o= —idm,
(A7)
where with photon mass regulator,
7 2/11—261—* _1
sm =25 ( 2+€)+...—>—(Za)/1—|—.... (A8)

(4r)r¢

Contributions involving om can be removed by the field
redefinition 7" (x) — expliémuv - x]hgfw) (x) in Eq. (A5).
The additional diagrams involving m could be evaluated
explicitly, yielding finite contributions to amputated ampli-
tudes. In this case, an additional regulator (e.g., residual
momentum) should be used to regulate infrared divergen-
ces in diagrams involving multiple heavy proton propa-
gators. It can be seen explicitly using a momentum regions
analysis that this additional regulator is unnecessary for the
diagrams in Fig. 3.

APPENDIX B: ELEMENTARY INTEGRALS

We collect here results for Euclidean integrals that are
used in the amplitude evaluation. When dimension is not
specified, the integration measures refers to dimension D:
(dk) = (dPk) = dPk/(27)P, (dw) = dw/(2x). First, let us
define the elementary integral,

J(a,b) = /(da))(a)z)%(l + w?)?

1 a+1
= — ) Bl
(% ) ey
where f(x,y) =I'(x)['(y)/T'(x +y). Next, we tabulate
some simple one-loop integrals,

2

A“m‘/@mw:wv‘%j;wz?’ "2

vt = 100 s ot = 2(#57) B
SR R = -~ S YIS
Y(a.b.q?) = /(dp) ﬁm — (g2)5e %A(a L b 1) (g b5 - a>. (BS)
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Another useful one-loop integral is

1 1
(0* + k) (0* + (k +p)*)°

20(ab.p?) = [ (do) @007

s r b D 1+D 1+D
:(pz)%_”‘bMA(a+b,1)J(c,——a_b>ﬂ(c+2+ —b,c+2+ _a>.

[(a)(b) 2

Finally, some simple two-loop results often arise as subintegrals. These are given by
Blay.azas.m) = [ (@p)(da) : 1
(@) [(p —q)* + m?]® (p?)
B (mz)%_“‘_az_a3 T(a; +ay+a;— D)5 —a3.5—a)p(D—a; —as,a; +a; - %)
(47)" [(ap)l(az)I(a3) [(a) + a3 - 3) ’

2
b 1 1 1
K“’)(Gh ay,az,m) = /(dw)(dk)(dp)(w2)2 (0* + k> + m>)a (p?) (0 + (k + p)?)©

(mZ)D—al—az—ays-# [(a, +ay —2)

D
= : J(b7D—a1—az—a3)L<az,(11+a3—5,1)-

(4r)P ['(a;)l(a3)

APPENDIX C: FOURIER TRANSFORMS

The follow Fourier transforms are evaluated in D = 3:

FulM.r) = / (dp)er

(p2 + m2)n ’
with the results (using r = |r|)
1 e—mr
M? = )
Ji(M.r) 4z r
-1 0 1 e™
f2(mar)_%%fl(m’r) _E m s
-10 1 (14 mr)e™™"
falm,r) = o fo(m.r) = P R
The following convolution integrals are evaluated in D = 3 with p = |p|:
1 1 1 p
my,m,, p) = d = —arctan| —— |,
glm,ma, p) /( q)m%+q2m§+(q+p)2 4xp <m1+m2>
1 1 -1 0 11 1
h(m{,m,, p) = d =————qg(my,my, p) = ——— .
(m1, mz. p) /( 2 (mi+q*)m3 +(q+p)* 2m amlg< 2 P) Am2my p* + (my + my)?

The following is also useful:

1 ~
j(n1.m) , k) = d p — kjlmn) , k).
J (m] my ) /( p) (p2+m%)nl [m%+ (p+k>2]n2 J (ml niy )
We have
-1 my; +m m; +m
i(1L1) k) = —— ko LT k312
J (mlva’ ) (47[)2 |:m1-'4< 5y & k +A [Re R k 5
with

Alk,n,p) = k"3 (4x) /oo drr=t! <cos r— g) e,
r

0
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and then also

. -1 0 .

JED(my my, k) = 2—77113—”11J(1'1)(m17m2’k)v

1D (my my. k) = __lij(l,l)(mhmz,k) (C10)
2m2 0m2

APPENDIX D: AMPLITUDES AND NUMERATOR
ALGEBRA

In this section we describe how to arrive at the integral
basis discussed in Eq. (37) from the Feynman rules and by
use of the projector %Tr[. ..] to simplify numerator algebra.
We work in Feynman gauge, however general covariant
gauge expressions are easily obtained by similar manipu-
lations. For the diagrams in Fig. 3, we label the momentum
flowing through the outermost Coulomb photon by q, the
momentum flowing through the innermost Coulomb pho-
ton by p—q and the momentum flowing through the
“dynamical” photon (i.e., that with nonzero energy trans-
fer) by k, = (ko. k). Let us introduce the denominators,

D, =+ (p+ k), (D1)
D, =p?, (D2)
Dy = (p—q)* + 2% (D3)

(1 —¢€)[Dy(Ds — Dy) + Dg(D7 — D3 + Dy — Ds) + 4w*(D; — D)

Dy=a’+(q+k) (D4)
Ds = q2, (DS)

D¢ = o + k2, (D6)
D; =q* + 2%, (D7)
Dg = * + kK2 + 22. (D8)

For the numerator algebra it is convenient to introduce
four-vectors g, = (0,q) such that ¢ =¢g"y, =-y-q.
Similarly, p, = (0,p).

Let us now use the Feynman rules in Figs. 1 and 2 to
determine the relevant integrals that must be computed.
Consider, e.g., M" from Fig. 3. Direct evaluation using the
Feynman rules and Wick rotation k, — iw gives

PPtk gtk
D," D, "D,

MY = 725 / (dp) (dg) (dk) (dw)

ko111
X yo—7r"

— DY
Dy D3 D; Dy (b9)

where we define k = iwy, —7 - k. Acting with {Tr[...]
we find,

MY = 2265 / (dg')(dg) (dk) (dw)

. (D10)
D,D,D3D,D¢D,Dg

Using partial fraction identities this can be re-expressed in terms of the integral basis presented in the main text.

Similarly for diagrams (a), (b), (c), (p1) and (p2), direct evaluation using the Feynman rules, Wick rotating, acting with

1 Tr[...] and performing numerator algebra gives

Mé = 7265 / (dp) (dg) (dk) (de)

— 225 / (dq")(dg) (dk) (de)

Mo =226 [ (dp)(da) k) (o)

— 225 / (dq’) (dg) (dk) (do)

M — 7265 / (dp) (dq) (dk)(de) 7=

1p+k p 4
ia) D4
1 (D, = D3+ D5)

Y0~

2D,D;D,DsD;Dg’

w Dl
1 (D, — D3 + 2D, — 2D4 + D)

(D11)

1 yp+k g+k 4 111

70 D, yOD_SyOD_3D7D8

1 (2D, — D, — D3 + 2Dy — 2Ds + 2Dg + D7 — 8w?)

, (D12)
D,D3D,DsD;Dy

Vp+k g+k £ 111

D, "Dg" Dy D; Dy

=2 [ (4g') () @005

: (D13)
D,D;D,D¢D,Dg
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4;4+ié¢j 111

D. *Ds°D; D, Dy

MP! = (=1)Z25 / <dp><dq><dk><dw>1 i
(1- €)[D1(D3 — D, — D7) + Dy,(D, — Ds) + Dg(D; — D3)]

— 72,6 !
=2 [ (4 da) (@ do) DD DD, . o1y
2 1\ 726 l prk oy 4 111
M = (02 [ @p)aa) i) 3L Bp B
(1 —€)[D\Ds — Dy(Dy + Ds = D) — D3(Dg — Dy) — DyD7 — DsDg + DD
_ 72,6 !
— 2 [ (4 () (@ do) DD DDiD.D: -
(D15)

The vertex correction diagrams (v1) and (v2) involve substantially more complicated numerator algebra. Following the
same steps as above we have

Nvl + €Nvl
M”1:226/d dg)(dk)(d 0 ! , D16
¢ | (@p)(da)(dh)(de) 5B (D16)

NUZ + €Nv2
M2 = 725 / (dp)(dg)(dk)(dw) 0 ! : (D17)

D,DD,DsD¢D7Dyg
with
Ngl = —Dl(—DQ + D3 + D5 - D7) —_ D2(D3 + D5 —_ D7 + 20)2) + D% — D3D4 + D3D5 + D3D6

—2D3D; + 2D3w* + DyD7 + DsDg — DsD7 — DgD7 + D3 — 2D, (D18)
NY' = =D D5 — Dy(Dy — 20?) + D3Dg — 2D30* + DsDg — DgD7 + 2D700?, (D19)
N = =D\Ds + DDy — 2D,0* — D3Dy + D3Ds + 2D30” + DyD; + DsDg — DsD7 — 2D700°, (D20)
N2 = —D\Ds + 2w0*(D, — D3 + D7) + D,Ds — D,Dg + D3Dg + DsDg — DgD. (D21)

The evaluation of M?! and M?*? is discussed explicitly in Sec. IV C 2. Having obtained explicit integral representations of
the amplitudes, Appendix E maps to the integral basis of Eq. (37) and describes the evaluation of the integrals.

APPENDIX E: AMPLITUDE EXPANSION

Let us consider the amplitudes corresponding to the diagrams in Fig. 3, in terms of the basis of integrals (37). Gauge
dependence affects only the photon propagator that is not connected to the background field, and the general amplitude has
the structure

M= M| + (1 =5)AM. (E1)
Subamplitudes M®b| ¢—1 have been given above and corresponding gauge-dependent pieces are
AME = Zzeﬁ{; [1727+173 =175 +(27)2 =273 +274 =267 ,;01, + 5AI“},
AMP = { o 4] S5 =274 1374 35 (4 4TS A6 g+ 5AI”},
AME = 7% 6{215(}1101 + 51767 +376" 476 ) ou0n + 5AI”} (E2)

The quantities SAI?< refer to the replacement (42) and can be evaluated by isolating subdivergences, yielding
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€ 3 2
SAIY — (4n)T(1 +e)|® (82" , SAIY — SAIC — 0. E3
(47)?
TT €

Amplitudes M"!|._; and MP?|,_, have been evaluated in Egs. (48) and (49), and AM"! = AMP? = 0. For the remaining
subamplitudes, we have, at £ =1,

Mpl |<f:l = Zzeﬁ{<1 - €) {1_2_ - 1_3_ + 1_5_ - 2_4_ + 2_5_ + 3_6_ - 5_6_]112]0]0 + 51131}’
MPH o =Z2{(1 —€)[-175" + 274" + 275" =276~ =374 + 376 + 4757|1115 + 617},
» 2 2 2 e | g .
Mooy = Z2e5{2(1 - )10 = Iiibio + Iiiool + (1757 +2747) = (1 + €)376
1727413 423 =3 ) +34 +35 -4 510+ 0I"},
Mooy = Z2e{2(1 —¢) m)%)ml - 15)21)0111 + 1821)1101] +[e(=275"+276"=3767) + (1 +¢)175~
—274 +34 -35 —45 +(5) =56 o;1 + 007},
MYy = Z2e%{4(1 —¢) [_15)21)1101 + 1521)1100] +(1—€e)174" =175 +376™ —4767|1,1,01 +6I"}, (E4)
with
SIP! + SIP? + 51! + 512 = 0, sI" = 0. (ES)
For the remaining gauge-dependent terms,
1
AMP! = Z2e6{ [1‘2‘3‘ -17(27)2 + 3 (-17275 =124 4136 -156
+ (27 = (27)%67 — (17)?37 + (17)?5™ + (17)?27 = (27)3~ + (27)%47) |1 121011 + SAI”! }
AMP? = 2266{ [3—4—5— -4 (5 )+ % (2746 +346 -145-245

+ (5P =3 @)+ @)5 +2 @) -3 (5)P-6(5)+17(5)

~—
L I

L1101 + 5A1”2},
1
AMY = Zze6{—21§%>“01 +3 17275 +124 +1°56 +246 +1 45 +245 -134

$2734 4+ 1735 2735 —2-(47)2 - 1-(57)% — (17)25~ — (2°)247 ][, 1111 + AL }

1
AM? = Zze6{§ 17576+ 27476 —37476" +3756 +4756 —6(5)2+5(6")Io 11110 + 5AI”2},

1
AMY = zze6{21§%}1101 +51(17)%67 = 172767 — 17376 + 175767~ 17(67)* + 273767 — 2747671y + 5AIW},
(E6)

with

SAIPY + SAIP? + SAI' + SAI™ =0,  SAI" = 0. (E7)

The necessary integrals /, Efleza}a Lasa, can be evaluated as follows. For cases involving a single difference of the momenta k,
p and ¢q in Eq. (37), the integrals factorize and can be evaluated using the elementary integrals in Appendix B. For example,

the first term in Eq. (41) for M@ is

1 1 1 1
oo = | [@0@0@0) | [0t~ LKL L) ~ 0 (@
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Integrals involving two momentum differences can be evaluated by first observing that for these single-scale integrals,

d )

b
/Ialalazazawsas = [3(D - 1) + b— 2(a1 + a + as + ay + as + aﬁ)]lglLZQB(MaSaG' (E9)

After isolating and subtracting any divergent subintegrals, the remaining integral has 1 /¢ divergence given by convolution
integrals in D = 3. For example, the second term in Eq. (41) for M@ is

1 1 d
L0010 =3 Zid/l L0010

— 5. [ (o dk)(dp)(dq){ 1 : 1 ~

+k+p)?P—9)° ¢ (@ + 1) (0 + I+ 1)

n 1 1 i A2 1
a)2+(k+p)2 (p—q)2 pz qz(qz —|—/12)20)2 —l—k2—|—/12

1 1 2 1
_ da) dp dQ) 2+(k—|—p)2p2q2( 2+/12)2a)2+k2—|—/12

o[ / &r {m(m 1@ )110.7) 5 110.7) = £1(2.7)]

+f1(\/m DO 10.0) = (0] = £:007)

_1135[;—2 £1(0.7) = 100 7] = fal r)} }} +%/12L(1,2,/1)K(1, 1,1,2)
[ (%) E10

Similarly, the third term in Eq. (41) for M@ is

1 1 1 1
oo = 5= A2B(1,2, ,LAM(1,1,2) + o [ (dw)(dp) —
o = 3 AB(L2 LML 1.4) 450 / @)(dp) 2{/ (@ +k2+/12) w2+(k+p)2}

: [/(d ViEvr ﬂl%z(p q) } /(dw ) %{ 2+k2+12 <;€+p)2

. 1 A 1
Y A e (k +p)? } [/<dq) (" + 2 (- ‘1)2]

1
— 3 2B 1M 1) + [ (Wo)dp) {ﬂzh (Va7 2o, p)g(0. p)
€
+ [g(Va? + 22, @, p) — g(V @? + 22, 0,0))A2h(A }

[%} <§%+3§75>' (El1)

Using Eq. (41), together with the explicit expressions (44), (E8), (E10), and (E11), yields M(?|._, in Eq. (51).

The remaining amplitudes are evaluated similarly. Some basis integrals involve all three momentum differences (i.e.,
a; #0, a3 #0, ay # 0), but can be written as integrals involving only two momentum differences by change of variable,
and then evaluated by the above procedure. For example, from M), withk =k'+¢',p=p' —q¢', g = —¢,

1 1 1 1
I = [ (dw)(dk")(dp")(dq’
101100 /( w)(dk')(dp’)( q)w2+k’2p’2w2+(k’+p’)2 >+ 120+ (K +q)+ 22
N_/ (do) (dK) — k,2g(o 0, K2R, VP + 2, K) + (V@ + 12,4, K)] (E12)
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Some integrals involve all three momentum differences (i.e., a; #0, a3 # 0, a4 # 0), but one of these appears in a
numerator. For example, (after change of variable)

/ 1 / 1 1 / 1 1 / /
111110 = /(dw)(dk)m [/(dp)lﬁm} |:/(dq)q/2(q/2+/12>w2+ CEY I EY: v -q)

. L. .
~ Tioot10 + 1101100 = 2/(dw)(dk’) 100, , K) 2 D0, Veo? + 22, K) = V(2 Ve + 2,K)).

s

(E13)

An exception is / %100. This integral can be evaluated by noting either of the integration by parts (IBP) identities,
D—(a;+a,+2a3)=a;17(37 =47) + a2t (37 - 57),
D—(ay+2a,+a3)=a17(27=67) +a33" (27 -57), (E14)

which result by using that in dimensional regularization
2 , ,
0= [ (@o)(@hdp)(da) 5 (' = ) T(@.k.p.a),

0= / (dw)(dk)(dp)(dq)aip,.pfﬂw,k,p,q» (E15)

for functions Z given by the integrands in Eq. (37). Using these relations, we have

y 1 2) 2) 2) )
1111100 - D—4 [1210100 - 1211000 + 1120100 - 11211—10:| ’
@ _ 1 roe 2) ) 2
1111100 - D— 4 [1201100 - 121110—1 + 1102100 - 11121—10] . (E16)

The basis integrals on the right hand side of Eq. (E16) contain at most two differences of momenta, or a negative subscript
as = —1 or ag = —1. The former integrals are evaluated as above. The latter integrals simplify after partial fractioning. For

example, using the second IBP identity for / (121>, 100 in Eq. (E16), we require

oo ~Z2(1,2,1)B(3 = d/2,1,1,4), (E17)
and
2
2) 1 10} 1 1 1 1
11121—10 ~ _’123(1’ 1, 2’/1) 3M(17 17/1) + /(dw)(dk’)(dp/)(dq') P +k/2p_/2 [(P/ _ q/)z}z w2 + (k/ T q/)2 - 0 + k2
1
a)2 + (k' +p/>2 + /12
1 1 o’ 1
g2 2z x 2 2 ; L
PB(L1.2.4) S M(1.1.4) + 36/(dw)(dk) T h(Vo? 2,0l {h(é, 0K =z 206 o>].
(E18)
The integration by parts identities (E16) also provide an alternative evaluation of other integrals; for example, 7;_;{;o in

Eq. (E13) can be evaluated using the first identity in Eq. (E16).
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