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The decays of the Higgs boson produce a state in which the spins of the decay products and the orbital
angular momentum (L) are highly entangled. We obtain the tripartite density operator, as well as reduced
operators, for the decay into two weak bosons. For H → ZZ in the four-lepton final state we also estimate
the statistical sensitivity at the Large Hadron Collider and future upgrades, using a binned method to
reconstruct the density operators from distributions. With the expected Run 3 data, establishing genuine
tripartite entanglement would be possible beyond the 5σ level. The violation of Bell inequalities involving
the spins of the two weak bosons could also be established beyond the 5σ level.
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I. INTRODUCTION

High-energy physics experiments offer a new playground
to test quantum entanglement at the energy frontier, with
proposals to test the spin entanglement of pairs of top quarks
[1–8], muons [9], τ leptons [10], weak bosons [11–17], and
particles of different spin [18–20]. It is well-known that, in
addition to spin, particle production and decay involves
orbital angular momentum (hereafter referred to as L).
Therefore, in the aforementioned examples not only the
spins of the two particles S1, S2 may be entangled, but they
can also be entangled with L, as a consequence of total
angular momentum conservation. An obvious step further is
then to test the tripartite entanglement between S1, S2, and L
in these processes. The Hilbert space for L, in which the
eigenstates jlmi, with l ¼ 0;…∞ andm ¼ −l;…; l form an
orthonormal basis, has infinite dimension in general.
However, in decay processes the conservation of total
angular momentum implies that only a finite-dimensional
subspaceHL is relevant. For example, inHiggs bosondecays
toweak bosonpairsVV,V ¼ W,Z, we have l ≤ 2, andHL is
9-dimensional. Likewise, in H → τþτ−, HL has dimension
four, with l ≤ 1.
The Higgs boson is the only elementary scalar, and its

decays produce highly-entangled states. In this work we
address the tripartite entanglement in H → VV decays,
working in the Hilbert spaceHL ⊗ HS1 ⊗ HS2 . We use the
method proposed in Ref. [21] to determine density oper-
ators involving L. In contrast to spin, the density operators
involving L cannot be directly measured from angular

distributions. But they can be related, in a model-indepen-
dent fashion, to measurable quantities. This is done by
exploiting the complementarity between:

(i) Helicity amplitudes [22], in which the spin of the
parent particle is quantized in some fixed axis ẑ, but
for the decay products it is quantized in their
direction of motion. These amplitudes depend on
a small set of parameters that in principle can be
measured in data.

(ii) Canonical amplitudes, in which the spin of all
particles is quantized in a fixed direction ẑ. These
amplitudes allow to build the multipartite density
operators involving L and the spins of the decay
products.

The relation between these sets is model-independent, and
arises from a simple change of basis for the spinors and
polarization vectors entering the amplitudes. It has been used
in Ref. [21] to write down the full density operator for top
quark decays t → Wb, which involves L as well as the spins
of the W boson and b quark. For H → VV, the helicity
amplitudes depend on three complex quantities. Once these
quantities are measured in data, the full 81-dimensional
density operator for L and the spins of the two weak bosons
can be determined. It turns out that L, S1, and S2 are
genuinely entangled, that is, no bipartition of the ðLS1S2Þ
system is separable. Tracing over L degrees of freedom, one
obtains the density operator for the two spin degrees of
freedom S1 and S2, which are highly entangled. Tracing over
one of the spins Si, i ¼ 1, 2, the density operator for LSj
(j ≠ i) is found. We provide leading-order calculations for
all these density operators in the Standard Model (SM) as
well as methods to determine them from experimental data.
We also provide estimates of the statistical sensitivity to
establish the entanglement between the different parties in
H → ZZ → 4l, with l ¼ e, μ, at the Large Hadron Collider
(LHC) and its future high-luminosity upgrade (HL-LHC).
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II. HIGGS DECAY AMPLITUDES

Let us consider a general two-body decay of a spin-J
particle with third spin component M, described in a
coordinate system with a basis fx̂; ŷ; ẑg in its rest frame.
In the helicity framework of Jacob and Wick [22] the decay
amplitudes have the general form

Ah
Mλ1λ2

ðθ;ϕÞ ¼ aλ1λ2D
J
Mλðϕ; θ; 0Þ; ð1Þ

where λ1 and λ2 are the helicities of the decay products,
λ ¼ λ1 − λ2, aλ1λ2 are independent of the angles and

Dj
m0mðα; β; γÞ are the Wigner functions

Dj
mm0 ≡ hjm0je−iαJ3e−iαJ2e−iγJ3 jjmi: ð2Þ

The angles ðθ;ϕÞ correspond to the first decay product
(with helicity λ1). In the case of a scalar decay, D0

00 ¼ 1,
and therefore the helicities are equal. Furthermore, for a
scalar decay into vector bosons, the helicity amplitudes are
parametrized by three quantities a11, a00, a−1−1. The same
parameters enter the canonical amplitudes. For an on shell
decay, these parameters are constant; however, for H →
VV they depend on the invariant mass of the off shell V
boson mV� , or equivalently on the modulus of the three-
momenta in the Higgs rest frame, which we denote as q.
The canonical amplitudes Ac

s1s2 (we omit the trivial index
M) are found by changing the basis for the polarization
vectors. For a vector boson with momentum

pV ¼ ðEV; q sin θ cosϕ; q sin θ sinϕ; q cos θÞ; ð3Þ

the polarization vectors in the helicity basis are

εðþÞ
h ¼ −

1ffiffiffi
2

p ð0; cos θ cosϕ − i sinϕ;

cos θ sinϕþ i cosϕ;− sin θÞ;

εð0Þh ¼ 1

MV
ðq; EV sin θ cosϕ; EV sin θ sinϕ; EV cos θÞ;

εð−Þh ¼ 1ffiffiffi
2

p ð0; cos θ cosϕþ i sinϕ;

cos θ sinϕ − i cosϕ;− sin θÞ: ð4Þ

On the other hand, the polarization vectors in the fixed
basis are

εðþÞ ¼ εðþÞ
R −

1ffiffiffi
2

p sin θeiϕ
q
MV

�
1;

p⃗
MV þ EV

�
;

εð0Þ ¼ εð0ÞR þ cos θ
q

MW

�
1;

p⃗
MV þ EV

�
;

εð−Þ ¼ εð−ÞR þ 1ffiffiffi
2

p sin θe−iϕ
q
MV

�
1;

p⃗
MV þ EV

�
; ð5Þ

where

εðþÞ
R ¼ −

1ffiffiffi
2

p ð0; 1; i; 0Þ;

εð0ÞR ¼ ð0; 0; 0; 1Þ;

εð−ÞR ¼ 1ffiffiffi
2

p ð0; 1;−i; 0Þ ð6Þ

are the V rest-frame polarization vectors. With this change
of basis, the canonical amplitudes acquire a dependence on
ðθ;ϕÞ that is not present in the helicity amplitudes for a
scalar decay. Expanding them in terms of spherical har-
monics Ym

l , and bearing in mind that hΩjlmi ¼ Ym
l ðΩÞ,

with Ω ¼ ðθ;ϕÞ, one can identify the amplitudes into L
eigenstates As1s2;lm. The nonzero ones are

A11;2−2 ¼ A−1−1;22 ¼ −
ffiffiffiffiffiffi
2π

15

r
ða11 þ 2a00 þ a−1−1Þ;

A10;2−1 ¼ A01;2−1 ¼ A0−1;21 ¼ A−10;21

¼
ffiffiffiffiffi
π

15

r
ða11 þ 2a00 þ a−1−1Þ;

A1−1;20 ¼ A−11;20 ¼ −
ffiffiffiffiffiffi
2π

45

r
ða11 þ 2a00 þ a−1−1Þ;

A00;20 ¼ −
ffiffiffiffiffiffi
4π

45

r
ða11 þ 2a00 þ a−1−1Þ;

A10;1−1 ¼ −A1−1;10 ¼ −A01;1−1 ¼ A0−1;11 ¼ A−11;10

¼ −A−10;11 ¼
ffiffiffi
π

3

r
ða11 − a−1−1Þ;

A1−1;00 ¼ −A00;00 ¼ A−11;00

¼ −
ffiffiffiffiffiffi
4π

9

r
ða11 − a00 þ a−1−1Þ: ð7Þ

We finally note that, for an off shell vector boson as in
H → VV, the propagator includes a scalar degree of
freedom. Here we will be interested in decays into light
charged leptons l ¼ e, μ and neutrinos, and when coupled
to massless external fermions the scalar component van-
ishes [23]; therefore, we can safely consider the off shell W
as a spin-1 particle. This assumption is supported by the
comparison of analytical and Monte Carlo calculations.

III. DENSITY OPERATORS FOR HIGGS DECAY

Angular momentum in the two-body decay H → VV is
described by a density operator ρLS1S2 acting on the Hilbert
space HL ⊗ HS1 ⊗ HS2 . For fixed mV� (or q), it can be
calculated from the decay amplitudes found in the previous
section as

ðρLS1S2Þ
s0
1
s0
2
;l0m0

s1s2;lm
¼ As1s2;lmA

�
s0
1
s0
2
;l0m0 : ð8Þ
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Notice that ρLS1S2 as calculated from this equation always
corresponds to a pure state. As mentioned, a11, a00, and
a−1−1 depend on mV� . The kinematical distribution of this
quantity, calculated with Madgraph [24] at the leading order
(LO), is presented in Fig. 1 for H → WW and H → ZZ. In
practice, Eq. (8) can be used to calculate the density
operator within some interval of mV� . For example, in
H → ZZ with mZ� ∈ ½18; 32� GeV (which amounts to 55%
of the events) the exact density operator calculated
with Monte Carlo describes a pure state up to corrections
of the order of 0.5%. Likewise, for H → WW with
mW� ∈ ½30; 44� GeV (49% of the events) the density oper-
ator corresponds to a pure state up to corrections of 1%.
Therefore, using (8) is quite a good approximation even for
bin widths of the order of 10 GeV.
In order to obtain ρLS1S2 for the full decay phase space we

use Monte Carlo calculations of gg→H→ZZ→eþe−μþμ−
and gg → H → WþW− → lþνl−ν with Madgraph at LO,
using 7 × 106 and 107 events, respectively. In H → ZZ, we
label the boson with largest invariant mass as V1, and
in H → WþW− we select V1 ¼ Wþ. (In any case, the
predictions are symmetric under interchange 1 ↔ 2.) We
divide the mV� range in 2 GeV intervals and, within each
bin “k”, the values of a11, a00 and a−1−1 are extracted from
Monte Carlo pseudodata (see Sec. V for details) using

parton-level information.1 The density operator ρðkÞLS1S2
for

that bin is calculated using (8), and the theoretical pre-
diction for ρLS1S2 in the full mV� range is obtained by

summing the operators ρðkÞLS1S2
in the different bins, with the

appropriate weight. This density operator no longer
describes a pure state, but it is quite close. For H → ZZ,
the principal eigenvector has eigenvalue 0.966 (where unity

would correspond to a pure state), and in H → WW the
principal eigenvector has eigenvalue 0.963.
Tracing over the Hilbert space of any of the subsystems

HL, HS1 , or HS2, we obtain the reduced density operators
for the other two, respectively ρS1S2, ρLS2 , and ρLS1 . These
operators correspond to the marginalization over the
corresponding degree of freedom. Tracing over two of
the subsystems one obtains the density operator for a single
subsystem. For the spin degrees of freedom, and since the
scalar decay does not have any preferred direction, the
operators describe a completely unpolarized state,

ρS1 ¼ ρS2 ¼
1

3

0
B@

1 0 0

0 1 0

0 0 1

1
CA; ð9Þ

by construction. For L, the density operator is diagonal, and
for fixed mV� it has entries

ðρLÞ2m2m ¼ 1

30

1

N
ja11 þ 2a00 þ a−1−1j2;

ðρLÞ1m1m ¼ 1

6

1

N
ja11 − a−1−1j2;

ðρLÞ0000 ¼
1

3

1

N
ja11 − a00 þ a−1−1j2; ð10Þ

with

N ¼ ja11j2 þ ja00j2 þ ja−1−1j2: ð11Þ

For the full phase space, the Monte Carlo calculation yields
ðρLÞ2m2m ¼ 0.021, ðρLÞ1m1m ¼ 0, ðρLÞ0000 ¼ 0.895 for bothH →
ZZ and H → WW. It is worthwhile pointing out that, even
if the Higgs decay is isotropic, there are l ¼ 2 contributions
(as well as l ¼ 1 contributions if CP is broken in the
decay). Note that

X2
m¼−2

jYm
2 ðθ;ϕÞj2 ¼

5

4π
;

X1
m¼−1

jYm
1 ðθ;ϕÞj2 ¼

3

4π
: ð12Þ

This cancellation of the angular dependence makes appar-
ent the need to determine ρL indirectly from the measure-
ment of a11, a00, and a−1−1, because one cannot directly
access it through distributions [21].
The entanglement between one of the subsystems (L, S1,

or S2) and the rest can be tested by taking the partial
transpose of ρLS1S2 over the corresponding space HL, HS1 ,
or HS2. For a bipartite system AB (such as HL versus
HS1 ⊗ HS2) the entanglement can be characterized by the
Peres-Horodecki [25,26] criterion. Since the positivity of
the partial transpose over any subsystem, say ρTB, is a
necessary condition for separability, a nonpositive ρTB is a
sufficient condition for entanglement. Furthermore, the

FIG. 1. Invariant mass distribution of the off shell boson in
Higgs decays to WW and ZZ.

1As a cross-check, we do the same in 5 GeV intervals. The
numerical results are the same, with differences in the range
10−4–10−3.
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amount of entanglement can be quantified by the negativity
of ρTB [27],

NðρÞ ¼ kρTBk − 1

2
; ð13Þ

where kXk ¼ tr
ffiffiffiffiffiffiffiffiffi
XX†

p
¼ P

i
ffiffiffiffi
λi

p
, where λi are the (pos-

itive) eigenvalues of the matrix XX†. Equivalently, NðρÞ
equals the sum of the negative eigenvalues of ρTB . (The
result is the same when taking the partial transpose on
subsystem A.) In the separable case NðρÞ ¼ 0. For pure
states the generalized concurrence [28] can also be used as
entanglement measure. For a bipartite system AB, it is
defined as

C2 ¼ 2ð1 − trρ2AÞ; ð14Þ

with ρA the reduced density operator obtained by trace over
the B degrees of freedom. The result is the same when
tracing over HA, and in the separable case C2 ¼ 0.
These tests, performed for the three possible bipartitions,

give sufficient conditions for genuine tripartite entangle-
ment, that is, that the state is not separable under any
bipartition of HL ⊗ HS1 ⊗ HS2 . The entanglement mea-
sures between the different bipartitions are collected in
Table I, for the full decay phase space as well as on selected
bins ofmV� , in which the Higgs decay produces a pure state
to an excellent approximation.2

For pure states the entanglement between one spin Si and
the rest of the system is maximal. This is easily understood
because the Higgs decay is isotropic: tracing over the ðLSjÞ
subsystem (j ≠ i) yields the reduced operator (9), which
corresponds to an unpolarized state. Consequently, for
the Si − ðLSjÞ entanglement the concurrence C2 takes
its maximal value for systems of the dimensionality
(9 × 3 × 3) under consideration. The tripartite operators
transposed in the spacesHS1 orHS2 have three eigenvalues
−1=3, so that for Si − ðLSjÞ entanglement one has N ¼ 1.

Both C2 ¼ 4=3 and N ¼ 1 are guaranteed by construction
when one writes the ρLS1S2 operator from Eq. (8). For the
full phase space, in which ρLS1S2 is a weighted sum of pure

states ρðkÞLS1S2
, N is still quite close to unity. A similar

property does not hold for L − ðS1S2Þ entanglement. As it
follows from Eqs. (12) and the related discussion, there are
many (infinite) possibilities for ρL consistent with a Higgs
isotropic decay.
One can also investigate the entanglement between a pair

of subsystems, when the third one is marginalized. The
eigenvalue λmax of the principal eigenvector is also of
interest, in order to assess to which extent the reduced
density operators correspond to a pure state. Both are
presented in Table II. The L − Si subsystems are weakly
entangled, and in a very mixed state with λmax ≤ 1=3. This
is in agreement with the fact that the entanglement between
one spin and the rest of the system is maximal, as discussed
above. On the other hand, the entanglement between the
two spins is quite large, and their state, even after tracing
overL degrees of freedom, is relatively close to a pure state.

IV. SPIN ENTANGLEMENT AND BELL
INEQUALITIES

The spin entanglement between the two weak bosons has
already been addressed forH → WW [11,13–16] and H →
ZZ [12,15,16] in the helicity basis fr̂; n̂; k̂g where the
quantization axis k̂ is taken in the flight direction of V1,
k̂ ¼ ðθ;ϕÞ. The density operator is obtained after integra-
tion over all decay phase space with this “moving”
coordinate system. The angular integration is trivial in this
case because the Higgs decay is isotropic. On the other
hand, the operator ρS1S2 obtained in the previous section
parametrizes the spin state of the VV pair with a fixed basis
fx̂; ŷ; ẑg and integrated over all decay phase space—the
angular integration is not trivial in this case becausewe fix a
preferred direction. Both descriptions are not equivalent. In
the former case, for H → ZZ (and similarly for H → WW)
the density operator has an eigenvector,

jψi ¼ 0.444½j1 − 1ik̂ þ j−11ik̂� − 0.777j00ik̂; ð15Þ

TABLE I. Entanglement measures for the different bipartitions of HL ⊗ HS1 ⊗ HS2 .

L − ðS1S2Þ S1 − ðLS2Þ S2 − ðLS1Þ
H → ZZ inclusive N ¼ 0.757 N ¼ 0.998 N ¼ 0.998

H → ZZ;mZ� ∈ ½25; 30� GeV N ¼ 0.421 N ¼ 1 N ¼ 1

C2 ¼ 0.108 C2 ¼ 4=3 C2 ¼ 4=3

H → WW inclusive N ¼ 0.746 N ¼ 0.998 N ¼ 0.998

H → WW;mW� ∈ ½35; 40� GeV N ¼ 0.376 N ¼ 1 N ¼ 1

C2 ¼ 0.088 C2 ¼ 4=3 C2 ¼ 4=3

2A global measure of the tripartite entanglement for unequal
systems of these dimensions (9 × 3 × 3) is not currently available
in the literature.
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with eigenvalue 0.970. In the latter, the density operator has
as principal eigenvector the spin singlet

jψi ¼ 1ffiffiffi
3

p ½j1 − 1i − j00i þ j−11i� ð16Þ

with eigenvalue 0.896. The numerical value of the entan-
glement measure N is quite similar in both cases, however.
In this section we address spin entanglement and

possible violation of Bell inequalities using the reduced
density operator in the canonical basis as obtained in the
previous section. We parametrize ρS1S2 in terms of irre-
ducible tensor operators Tl

m, with l ¼ 1, 2 and −l ≤ m ≤ l,
acting on the three-dimensional spin space for each boson
[12]. For convenience we normalize Tl

m such that
tr½Tl

mðTl
mÞ†� ¼ 3, where ðTl

mÞ† ¼ ð−1ÞmTl
m. Specifically,

the operators are defined as

T1
�1 ¼ ∓

ffiffiffi
3

p

2
ðJ1 � iJ2Þ; T1

0 ¼
ffiffiffi
3

2

r
J3;

T2
�2 ¼

2ffiffiffi
3

p ðT1
�1Þ2; T2

�1 ¼
ffiffiffi
2

3

r
½T1

�1T
1
0 þ T1

0T
1
�1�;

T2
0 ¼

ffiffiffi
2

p

3
½T1

1T
1
−1 þ T1

−1T
1
1 þ 2ðT1

0Þ2�; ð17Þ

with Ji the usual spin operators in the Cartesian basis. In
terms of these, the spin density operator reads [12]

ρS1S2 ¼
1

9
½13 ⊗ 13 þ A1

lmT
l
m ⊗ 13 þ A2

lm13 ⊗ Tl
m

þ Cl1m1l2m2
Tl1
m1

⊗ Tl2
m2
�; ð18Þ

with a sum over all indices. Because ρS1S2 is Hermitian, the
coefficients satisfy the relations

ðA1;2
lm Þ� ¼ ð−1ÞmA1;2

l−m;

ðCl1m1l2m2
Þ� ¼ ð−1Þm1þm2Cl1−m1l2−m2

: ð19Þ

For fixed mV� , it is found that the only nonzero coeffi-
cients are3

C1010¼−C111−1 ¼−C1−111≡C1;

C2020¼C222−2 ¼C2−222 ¼−C212−1¼−C2−121≡C2; ð20Þ

with

C1 ¼
1

2

1

N
f−ja11j2 − ja−1−1j2 þ 2Re½ða11 þ a−1−1Þa�00�g;

C2 ¼
1

2

1

N
fja11j2 þ 4ja00j2 þ ja−1−1j2

− 6Re½ða11 þ a−1−1Þa�00� þ 12Re½a11a�−1−1�g: ð21Þ

For the full decay phase space the relations (21) with
helicity amplitudes do not hold, but the relations between
coefficients (20) still do because the density operator
depends linearly on them. Therefore, the full phase-space
reduced operator ρS1S2 can be written as the expansion (18)
in terms of two independent coefficients C1 and C2. The
eigenvalues of the partial transpose ρTB

S1S2
are

λ5 ¼
1

18
ð2 − 3C1 þ C2Þ ðquintupleÞ;

λ3 ¼
1

18
ð2þ 3C1 − 5C2Þ ðtripleÞ;

λ1 ¼
1

9
ð2þ 3C1 þ 5C2Þ: ð22Þ

By the Peres-Horodecki criterion, finding any of these
eigenvalues negative is a sufficient condition for spin
entanglement. Given the SM values C1 ¼ −0.844, C2 ¼
0.906 (both for ZZ and WW), only λ3 is expected to be
negative, λ3 ¼ −0.281, and a useful entanglement test that
is equivalent to the negativity, N ¼ −3λ3.

TABLE II. Eigenvalue of the principal eigenvector and negativity for the different pairs of systems when the third
one is traced out.

L − S1 L − S2 S1 − S2

H → ZZ inclusive λmax ¼ 0.322 λmax ¼ 0.322 λmax ¼ 0.896
N ¼ 0.105 N ¼ 0.105 N ¼ 0.843

H → ZZ;MZ� ∈ ½25; 30� GeV λmax ¼ 1=3 λmax ¼ 1=3 λmax ¼ 0.972
N ¼ 0.038 N ¼ 0.038 N ¼ 0.959

H → WW inclusive λmax ¼ 0.321 λmax ¼ 0.321 λmax ¼ 0.895
N ¼ 0.102 N ¼ 0.102 N ¼ 0.843

H → WW;MW� ∈ ½35; 40� GeV λmax ¼ 1=3 λmax ¼ 1=3 λmax ¼ 0.977
N ¼ 0.031 N ¼ 0.031 N ¼ 0.966

3These relations different from (and not to be confused with)
the ones found for the helicity basis [13].
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Concerning Bell-like inequalities, for a Hilbert space
HA ⊗ HB with both subsystems A, B having dimension 3,
a powerful test is provided by the Collins-Gisin-Linden-
Massar-Popescu (CGLMP) inequality [29]; for observables
A1, A2, in HA, and observables B1, B2 in HB, we have

I3 ¼ PðA1 ¼ B1Þ þ PðB1 ¼ A2 þ 1Þ þ PðA2 ¼ B2Þ
þ PðB2 ¼ A1Þ − PðA1 ¼ B1 − 1Þ
− PðB1 ¼ A2Þ − PðA2 ¼ B2 − 1Þ
− PðB2 ¼ A1 − 1Þ ≤ 2 ð23Þ

in any local realistic theory. Here, PðBi ¼ Aj þ aÞ is the
probability that the measurements of Bi gives the same
result as the measurement of Aj plus a, modulo 3. This
inequality can be conveniently written in terms of Bell
operators OBell, such that

I3 ≡ hOBelli ¼ tr½OBellρS1S2 � ≤ 2 ð24Þ

in a local realistic theory. A choice of Bell operator that
is optimal for the maximally-entangled spin-singlet state
is [30]

OBell ¼
4

3
ffiffiffi
3

p ðT1
1 ⊗ T1

−1 þ T1
−1 ⊗ T1

1Þ

þ 2

3
ðT2

2 ⊗ T2
−2 þ T2

−2 ⊗ T2
2Þ: ð25Þ

However, the VV pair is not produced in a pure spin-singlet
state. An operator that gives a larger value for I3 in the
helicity basis was found in Ref. [12],

O0
Bell ¼ −

4

3
ffiffiffi
3

p T1
0 ⊗ T1

0 þ
1

2
T2
0 ⊗ T2

0

þ 2

3
ffiffiffi
3

p ðT1
1 ⊗ T1

−1 þ T1
−1 ⊗ T1

1Þ

−
1

3
ðT2

1 ⊗ T2
−1 þ T2

−1 ⊗ T2
1Þ

þ 1

12
ðT2

2 ⊗ T2
−2 þ T2

−2 ⊗ T2
2Þ: ð26Þ

In the canonical basis, and given the relations (20) between
coefficients, both operators are equivalent. We compare in
Table III the values obtained for I3 in the helicity basis (as

used in previous works) and in the canonical basis, using
both operators.

V. PARAMETER DETERMINATION

A model-independent measurement of a11, a00, and
a−1−1 and their relative phases is possible from angular
distributions. For the decay V1V2 → f1f01f2f

0
2 we label as

ðθ1;2;ϕ1;2Þ the polar and azimuthal angles of f1;2 in the V1;2

rest frame, with respect to some coordinate system to be
specified later. Then, corresponding to a density operator of
the form (18), the four-dimensional angular distribution
is [12,13]

1

σ

dσ
dΩ1dΩ2

¼ 1

ð4πÞ2 ½1þA1
lmBlYm

l ðθ1;ϕ1ÞþA2
lmBlYm

l ðθ2;ϕ2Þ

þCl1m1l2m2
Bl1Bl2Y

m1

l1
ðθ1;ϕ1ÞYm2

l2
ðθ2;ϕ2Þ�; ð27Þ

with B1, B2 constants. For H → ZZ, and taking f1;2 as the
negative leptons, one has

B1 ¼ −
ffiffiffiffiffiffi
2π

p
ηl; B2 ¼

ffiffiffiffiffiffi
2π

5

r
ð28Þ

with

ηl ¼ 1 − 4s2W
1 − 4s2W þ 8s4W

≃ 0.13; ð29Þ

sW being the sine of the weak mixing angle. ForH → WW,
B1;2 are as in (28) setting ηl ¼ 1 for l− and ηl ¼ −1
for lþ.
As we have remarked in the introduction, the extraction

of the parameters a11, a00, and a−1−1 from data (or pseudo-
data) is done by using the helicity basis fr̂; n̂; k̂g, defined as
follows:

(i) The k̂ axis is taken in the direction of the V1 three-
momentum in the Higgs boson rest frame;

(ii) The r̂ axis is in the production plane and defined as
r̂ ¼ signðcos θÞðp̂p − cos θk̂Þ=sin θ, with p̂p ¼
ð0; 0; 1Þ the direction of one proton in the laboratory
frame, cos θ ¼ k̂ · p̂p. The definition for r̂ is the
same if we use the direction of the other proton −p̂p;

(iii) The n̂ axis is taken such that n̂ ¼ k̂ × r̂, orthogonal
to the production plane.

This reference system is used to measure the angles
ðθ1;2;ϕ1;2Þ. Implicitly, this requires the reconstruction of
the rest frames of the decaying bosons. This is straightfor-
ward for H → ZZ → 4l, whereas for H → WW → lνlν
the system is underconstrained and the kinematics cannot
be uniquely determined. Promising attempts have been
made in this direction using machine-learning techniques
[31]. Alternatively, one can consider the semileptonic
decay mode H → WW → lνqq̄0 [14], in which the full

TABLE III. Values of the quantity I3 signaling violation of the
CGLMP inequalities.

H → ZZ H → WW

OBell O0
Bell OBell O0

Bell

Helicity 2.327 2.691 2.270 2.629
Canonical 2.507 2.506
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reconstruction is possible and the discrimination between
jets originating from up- and down-type quarks is achieved
with charm tagging.
In the remainder of this section we show how the

parameters a11, a00, a−1−1 can be extracted from data.
We will present a model-independent extraction, followed
by a method that assumes CP conservation in the H →
VV decay.

A. Model-independent parameter determination

In the helicity basis, and considering fixed mV� , the
nonzero coefficients in the expansion (18) are given
by [13]4

A1
20 ¼ A2

20 ¼
1ffiffiffi
2

p 1

N
½ja11j2 þ ja−1−1j2 − 2ja00j2�;

C1010 ¼ −
3

2

1

N
½ja11j2 þ ja−1−1j2�;

C2020 ¼
1

2

1

N
½ja11j2 þ ja−1−1j2 þ 4ja00j2�;

C222−2 ¼ C�
2−222 ¼ 3

1

N
a11a�−1−1;

C111−1 ¼ −C212−1 ¼ C�
1−111 ¼ −C�

2−121

¼ −
3

2

1

N
½a11a�00 þ a00a�−1−1�; ð30Þ

and, when CP is broken,

A1
10 ¼ −A2

10 ¼
ffiffiffi
3

2

r
1

N
½ja11j2 − ja−1−1j2�;

C1020 ¼ −C2010 ¼
ffiffiffi
3

p

2

1

N
½ja11j2 − ja−1−1j2�;

C1−121 ¼ −C2−111 ¼ C�
112−1 ¼ −C�

211−1

¼ 3

2

1

N
½a00a�11 − a−1−1a�00�: ð31Þ

In the following we set N ¼ 1 for simplicity, as the
global normalization is irrelevant. By using the relation
ja11j2 þ ja00j2 þ ja−1−1j2 ¼ 1, one can combine the mea-
surements ofA1

20 andA
2
20 to find ja00j, and themeasurements

of A1
10 and A

2
10 to determine ja11j and ja−1−1j. Alternatively,

one can use the cos θ1;2 distributions. By integrating Eq. (27)
and using the above relations, one obtains

1

σ

dσ
dcosθ1

¼ 3

8
ja11j2ð1−2ηl cosθ1þ cos2θ1Þþ

3

4
ja00j2sin2θ1

þ3

8
ja−1−1j2ð1þ2ηl cosθ1þ cos2θ1Þ; ð32Þ

and likewise for θ2. For W boson decays this distribution is
well-known [32]. A fit to the distribution with the constraint
ja11j2 þ ja00j2 þ ja−1−1j2 ¼ 1 provides the three moduli.
Again, the distributions for θ1 and θ2 can be used to improve
the determination. The relative phase between a11 and a−1−1
is found from the measurement ofC222−2. The relative phase
between a11 and a00 can be obtained by measuring for
example C212−1 and C2−111.

B. Determination in the CP-conserving case

Within the SM, CP is conserved in H → VV decays at
the leading-order (LO), and a11 ¼ a−1−1. CP-violating
effects in the SM arise beyond the LO but are at the level
of 10−5 [33]. Therefore, CP conservation is quite a mild
assumption that greatly reduces the statistical uncertainty in
the determination of the amplitudes. Because a11 ¼ a−1−1,
the moduli of the three parameters can be determined from
either measurements of A1

20 or A
2
20, and the two statistically

independent measurements can be combined. The relative
sign between a11 and a00 is fixed by the Lorentz structure
of the vertex [12].

VI. SENSITIVITY IN H → ZZ

In this section we assess the statistical uncertainty in
the measurement of various entanglement observables in
pp → H → ZZ → 4l the LHC, using Run 2 + Run 3 data,
and at the HL-LHC. For the calculation of the expected
number of events we use state-of-the art values of the Higgs
production cross section and branching ratio into four
electrons or muons. The cross section at next-to-next-to-
next-to-leading order is 48.61 pb, 52.23 pb, and 54.67 pb at
center-of-mass energies of 13 TeV, 13.6 TeV, and 14 TeV
[34], and the Higgs branching ratio decay into four leptons
(electrons or muons) is 1.24 × 10−4 [34]. The assumed
luminosities are 350 fb−1 for Runs 2þ 3 and 3 ab−1 for
HL-LHC. In order to have a more realistic estimate of
the number of events in each case a lepton detection
efficiency of 0.7 is assumed, yielding an overall detection
efficiency of 0.25. This efficiency accounts for the mini-
mum transverse momentum (pT) thresholds required for
lepton detection. We do not include any trigger require-
ment. The presence of four leptons from the Higgs decay,
some of them with significant pT , is expected to fulfill one
or many of the trigger conditions for one, two, or three

TABLE IV. Theoretical predictions for the eigenvalues of the
principal eigenvectors, and central values obtained from pseu-
doexperiments.

Theory Runs 2þ 3 HL-LHC

ρLS1 , λmax 0.966 0.970 0.976
ρLS1;2 , λmax 0.322 0.323 0.325
ρS1S2 , λmax 0.896 0.897 0.905

4These relations are different from (and not to be confused
with) the ones presented for the canonical basis in Sec. IV.
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leptons [35]. In addition, we include the efficiency of the
invariant mass cut required to remove the interference in
same-flavor final states (see the Appendix). Overall, the
expected number of events for Runs 2þ 3 and HL-LHC are
N ¼ 490 and N ¼ 4500, respectively.
We do not include backgrounds in our analysis. The

H → ZZ → 4l signal is quite clean, and its main back-
ground is the electroweak process pp → ZZ=Zγ → 4l,
which is about four times smaller at the Higgs peak [36].
Although a background subtraction is necessary to obtain
the relevant signal distributions, the main effect of the
presence of this small background is a slight increase in the
statistical uncertainty of the measurement.
The statistical uncertainty is estimated by performing

pseudo-experiments. In each pseudoexperiment, a subset of
N random events is drawn from the total event set, and for
this subset the density operators are calculated as discussed
in Sec. III, using the parameter determination in the
CP-conserving case. Because the number of events is
not large, we use three mV� bins of 20 GeV. From the
density operators, the eigenvalues of the principal eigen-
vectors, the entanglement measures N, and I3, signaling
violation of the Bell inequalities are obtained. A large
number of 2 × 104 pseudoexperiments is performed in
order to obtain the probability density function (PDF) of
these quantities. The coarse binning used is sufficient even
for the statistics of the HL-LHC, as it can be checked by
comparing the central values obtained from the pseudoex-
periments with those previously obtained in Sec. III. A first
test is provided by the eigenvalues of the principal
eigenvectors. These are collected in Table IV. As it can
be readily observed, the agreement is excellent.
The central values and statistical uncertainties for the

entanglement observables of interest are presented in
Table V, together with their theoretical prediction from
Sec. III.5 Again, the agreement between the central values
and the theoretical calculations using the full event sample
and 2 GeV bins is very good, and sufficient for the statistical
uncertainties present. The PDFs for entanglement

observables are shown in Figs. 2 and 3. We omit those for
Si − ðLSjÞ and L − S2 entanglement; for the former, all the
pseudoexperiments give values in an extremely narrow
range, and the latter is similar to L − S1. For several
observables, marked with an asterisk in Table V, the PDF
is not Gaussian for the small number of events expected in
LHC Runs 2þ 3. Still, the PDF is very well-approximated
by a skew-normal distribution. In those cases, the statistical
significances are computed by using the skew-normal dis-
tribution with the parameters that best-fit the numerical PDF
resulting the pseudoexperiments. The statistical significan-
ces for entanglement, N > 0, and violation of Bell inequal-
ities, I3 > 2, are also presented in Table V.
The improvement of statistical uncertainties achieved

with this binned reconstruction method, with respect to
previous results for S1 − S2 entanglement [12], is remark-
able. If systematic uncertainties are under control, it allows
to establish genuine tripartite entanglement in H → ZZ
decays beyond the 5σ level at the current LHC run. Also, it
allows to verify the violation of Bell inequalities between
the two boson spins beyond the 5σ level.

VII. DISCUSSION

This work extends previous entanglement studies in
H → VV in two aspects. First, we have generalized the
framework to include L, thereby being able to study its
entanglement with the weak boson spins. Second, we have
devised a method to improve the statistical precision in the
determination of density operators from data. This method,
necessary to obtain the tripartite density operator involving
L, involves binning the mV� distribution and using theo-

retical input to obtain the density operator ρðkÞLS1S2
for each

bin, from measurements of robust observables. The density
operator ρLS1S2 for the full decay phase space is then
obtained with a weighted sum of the different bin con-
tributions. This determination is especially resilient against
statistical fluctuations in data when CP conservation is
assumed in the decay. Notably, it can also be used to
improve the extraction of S1S2 operators in the helicity
basis, considered in previous work.
While we have focused on the density operators inte-

grated on the full mV� range for simplicity, experimental

TABLE V. Theoretical predictions of several entanglement observables, and their central values and statistical
uncertainties obtained from pseudoexperiments. For those marked with an asterisk, the PDF is not Gaussian but
skew-normal (see the text). The statistical significance for N > 0, or I3 > 2, is also included.

Theory Runs 2þ 3 HL-LHC

L − ðS1S2Þ, N 0.757 0.75� 0.14 5.3σ 0.75� 0.05 ≫5σ
Si − ðLSjÞ, N 0.998 1.0� 0.004 ≫5σ 0.998� 0.001 ≫5σ
L − S1;2, N 0.105 0.106� 0.032� 4.3σ 0.102� 0.010 ≫5σ
S1 − S2, N 0.843 0.85� 0.05� ≫5σ 0.857� 0.014 ≫5σ
S1 − S2, OBell 2.507 2.51� 0.11� 3.8σ 2.539� 0.033 ≫5σ
S1 − S2, O0

Bell (helicity) 2.691 2.65� 0.09� 5.7σ 2.678� 0.035 ≫5σ

5For O0
Bell in the helicity basis the same binned method of

Sec. III is employed, but using instead Eqs. (30) for the
determination of the density operator.
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measurements in bins are possible provided there are
sufficient statistics. A potential problem for our approach
would be event migration between bins, but we expect the
impact of this effect in our results to be limited, due to the
great similarity between the predictions obtained for
20 GeV bins and 2 GeV bins.
We have not addressed detailed sensitivity estimations

forH → WW. Still, a few remarks are in place. In the semi-
leptonic channel WW → lνqq̄0, Ref. [14] used charm
tagging to identify the jet corresponding to an initial
down-type quark, to be used as spin analyzer. Within
our framework, where we reconstruct the density operator
from measurements of A20, the quark identification is not
necessary because Y0

2ðθ;ϕÞ ¼ Y0
2ðπ − θ;ϕþ πÞ. Similarly,

the yet unexplored decay channel H → ZZ → lþl−qq̄
offers good prospects for experimental measurements.
Finally, our estimation of the expected statistical uncer-

tainties for H → ZZ → 4l offers excellent prospects,

FIG. 3. Probability density functions for hO0
Belli in the helicity

basis, as obtained from the pseudoexperiments. The solid lines
represent the best-fit Gaussian or skew-normal distributions.

FIG. 2. Probability density functions for entanglement observables in the canonical basis, as obtained from the pseudo-experiments.
The solid lines represent the best-fit Gaussian or skew-normal distributions.
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improving over previous results for S1 − S2 entanglement
[12] that also assumed CP conservation in the decay.
For most entanglement observables considered, including
violation of Bell inequalities in the S1S2 system, a statistical
significance over 5σ is expected for the combination of LHC
Run 2 and Run 3 data, and for all observables the statistical
significance is way above the 5σ level at HL-LHC.
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APPENDIX: IDENTICAL PARTICLES
IN H → ZZ DECAY

The decays H → ZZ → 4e and H → ZZ → 4μ involve
identical particles in the final state, and two contributing
diagrams where they are interchanged. While one cannot
properly speak about which Z boson decayed to which
opposite-sign pair, because of the interference between
diagrams, by a suitable invariant mass selection one can
reduce that interference to negligible levels.

We test the effect of identical-particle exchange by
generating a sample of pp → H → 4e with 7.8 × 106

events. There are two possible pairings of opposite-sign
leptons, “a” and “b”, and for each combination we have two
invariant masses meþ

1
e−
1
, meþ

2
e−
2
. We select the pairing that

produces an opposite-sign pair with the maximum invariant

mass, namely the maximum among mðaÞ
eþ
1
e−
1

, mðaÞ
eþ
2
e−
2

, mðbÞ
eþ
1
e−
1

,

mðbÞ
eþ
2
e−
2

. Once the lepton pairing is selected, we identify V1

as the Z boson decaying into the highest invariant mass
pair, and measure angular distributions as described in
Sec. V. We apply the selectionmV1

≥ 80 GeV to reduce the
interference effects. This cut has an efficiency of 0.77.
The effect in angular distributions of identical-particle

exchange can be assessed by comparing the values of
nonzero coefficients in the four-dimensional distribution
(27), for theH → ZZ → eþe−μþμ− and theH → ZZ → 4e
samples. We collect them in the left panel of Table VI.
In addition, one can compare the principal eigenvalues
λmax of the different density operators, extracted from
data using the model-independent method outlined in
Sec. V, and entanglement measures N between differ-
ent subsystems. We collect them in the right panel of
Table VI. It turns out that the differences have not practical
importance even for the higher statistics collected at the
HL-LHC.
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