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The vectorlike quark model is one of the extensions of the standard model (SM) of particle physics. The
simplest version of this model introduces a vectorlike singlet quark which can mix with SM quarks and give
rise to new contributions to the flavor-changing decays of the Higgs boson. In this work we first present a
systematic analysis of the branching ratios of the decays H — b5, bd at leading order in the standard model.
Our results show that it is challenging to observe these two modes because of their small branching ratios.
Then augmenting the SM with a vectorlike singlet top quark, assuming the top partner only mixes with the
top quark, complete one-loop contributions are taken into account in the amplitudes. Further results
indicate that the branching ratios of the decays H — b5, bd are sensitive to the mass of the top partner My
and the mixing effects characterized by sin 6;. By tuning the values of M and sin 0;, the branching ratios
may rise to a level accessible to LHC experiments. Combined with the branching ratios obtained from a
probabilistic model, the allowed areas in the M — sin @, plane are displayed. Tagging efficiencies and
feasibility for detecting H — b5 are specifically discussed and we conclude that with large statistics it is
promising to discover the H — b5 decay at the LHC.
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I. INTRODUCTION

The discovery of the long-awaited Higgs boson of the
Standard Model (SM) [1-5] by the ATLAS and by the
CMS collaborations at the LHC in 2012 [6,7] marked a
milestone in particle physics. Since the first observation,
substantial experimental data has been accumulated on
various decays of the Higgs boson in Run I and Run II as
well as the ongoing Run III of the LHC. Full study of the
decays of the Higgs boson holds a prominent role in
deciphering physics of the SM. It is known that a Higgs
boson with mass about 125 GeV can decay to many
particles in the SM [8]. We may classify the dominant
decay modes of the Higgs boson into two main categories
according to the final state particles. The first category is
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decays to vector bosons, and the second category is decays
to flavor-conserving fermion pairs which can occur at tree
level in the SM. Abundant events of these two main
categories have been observed. On the theoretical side,
these two categories of decay modes have been evaluated to
higher order in perturbation theory in the SM and its
supersymmetric extensions [9-15]. Since flavor-changing
neutral currents (FCNC) are forbidden at tree level in the
SM, at leading order in perturbation theory, quark flavor
changing decays of the Higgs boson (denoted by H — ¢g’)
are mediated via triangle diagrams. It has been widely
discussed that the investigation of quark flavor-changing
decays [16-21] of the Higgs boson can offer practical
clues for models of new physics beyond the SM, such as
two-Higgs-doublet models [22-25], supersymmetric mod-
els [25-29], extra dimensions [30] and fourth generation
models [31].

However, observation of the quark flavor-changing
decays need high statistics. Taking the decay H — b5 as
an example, a qualitative estimate shows that it is more
difficult to detect it than any decay modes of the Higgs
boson observed at the LHC because the amplitude of this
decay is suppressed in several ways. First, at leading order
in the SM, the process is mediated by triangle diagrams, so
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the squared amplitude of the process is suppressed by G,
where G denotes the Fermi constant. On the other hand,
the CKM elements [32,33] will provide further suppression
at the order-of-magnitude about 1072 or less. Finally, with
the addition of heavy quarks, the contribution stemming
from the Higgs couplings to light quarks are so small that
they can be neglected. But thanks to the small width of the
decay H — b5, it provides an opportunity to explore effects
of new physics in that a small SM background give us the
chance of observing the small effects of new physics. In this
sense, a comprehensive study on the branching ratios of
H — b5 and other quark flavor changing Higgs decays can
provide constraints on new physics models in which new
particles can contribute to the amplitudes of the quark
flavor changing Higgs decays.

In the quest for the new physics beyond the SM, the
vectorlike fermion models have drawn much attention for
decades [34-55] (see Ref. [56] and references therein for an
up-to-date review on this subject). A practical version of
these models may introduce a new U’(1) gauge group [57],
which is spontaneously broken by the vacuum expectation
of a scalar field ®, transforming as ® ~ (1, 1,0, ¢’) under
SU¢(3) x SUL(2) x Uy(1) x U'(1). The model contains a
colored Dirac fermion transforming as 7" ~ (3,1,2/3, ¢’)
which is often referred to as a top partner. The top partner
also arises in little Higgs models [58-64], top color
models [65,66], and top condensate models [67-70]. In
principle, the top partner will mix with SM quarks, but the
mixing with the first two generations is highly restricted by
precision electroweak data and flavor-changing neutral
processes at low energies [40]. Thus it is reasonable to
assume that the top partner only mixes with the top quark.
In generalized versions of these models, the vectorlike
fermions may be a SU;(2) doublet or triplet [71-74].
The top partner, regardless of being in singlet or in the
generalized models, will introduce new contributions to the
amplitude of H — b5, thereby altering the decay width at a
level which may be accessible to LHC experiments.
Therefore, a careful analysis on the H — b§ decay may
provide an alternative approach to constraining the vector-
like singlet model other than trying to test it through the top
partner decays to SM pat‘ticles.1

Having noted the small SM H — b5 width and the
associated potential for testing the vectorlike singlet quark
model by this decay process, in this paper we will present a
systematic analysis of the H — b3 decay at leading order in
SM and then in the vectorlike singlet top partner model.?
We firstly evaluate the widths and branching fractions in the

ISee the summary tables in Ref. [56] for an exhaustive
compilation of searches for vectorlike singlet quarks by ATLAS
and by CMS.

*The H — b5 decay has been analyzed in Ref. [21] based on
the model of a single generation of vectorlike singlet down-type
quarks. One can refer to the Supplemental Material of Ref. [21]
for details.

SM, then the contribution of top partner to the amplitudes
will be considered. We assume that the top partner only
mixes with the top quark, and mixing with the first two
generation quarks is neglected. Another down-type flavor-
changing decay of the Higgs boson, H — bd, can also be
analyzed by appropriate replacement of the parameters in
the corresponding expressions.

The paper is organized as follows. In Sec. II the
branching ratios of the processes H — b5, bd in the SM
are evaluated, and the analytic and numerical results are
presented. In Sec. III the contributions of the top partner are
taken into account, and the role of top partner mass and
mixing effects are investigated. Employing the upper
bounds of the branching ratios of H — b5 from experi-
ments and using a probabilistic model, the allowed param-
eter spaces are obtained. The tagging efficiencies and
detection feasibility of the decay H — bs at the LHC
are discussed. Our conclusions and outlooks are summa-
rized in Sec. IV. Some necessary formulas are collected in
the Appendices.

II. EVALUATION THE DECAY RATE OF
H — b5 IN THE STANDARD MODEL

A. The amplitude formulas

All the one-loop diagrams3 contributing to the H — b5
decay in the SM are depicted in Fig. 1. We may divide them
into two groups: diagrams (a) and (b) represent quark self-
energy corrections and diagrams (c) and (d) represent
triangle diagrams. The amplitude of diagram (a) in
Fig. 1 in Feynman-"t Hooft gauge is

fo 1/2922‘/ &k 1
wVes (27)*D DD,
X“(P2)(153+mb)7,4PL(153—k+mq)7"PLU(P3>7 (1)

where the summation over ¢ = u,c,t is implied, the
denominators are

M,=-

Dy = p3—m3} + ie, Dy = K> —mj, + ie,
Dy = (k= p3)* = mg + ie, (2)
Vi, and Vg are the elements of the Cabbibo-Kabayashi-

Maskawa (CKM) matrix [32,33], and Gf is the Fermi
coupling constant [8]

9
G p—
f 4\/§m%l,

We denote the momentum of the Higgs boson, » and s to be
P1, P> and ps, respectively. All the external momentum are

=1.1664 x 107 GeV~2. (3)

The Feynman diagrams in this paper are produced by
JAXODRAW [75,76].
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FIG. 1. One-loop diagrams contributing to the H — b5 decay in
the SM. (a) and (b) are quark self-energy corrections, (c) and (d)
represent the triangle contributions.

on their mass-shell and in order to simplify the evaluation
the mass of the strange quark is neglected

pi=my,  pi=mp,  pi=mi=0. (4)

The equations of the motion for the bottom and the strange
quarks are also needed

u(pa) py = myit(ps), p3v(p3) = 0. (5)

The left- and right-handed projection matrices P; and Py in
Eq. (1) are

Pi=3(l-1s). Pe=g(l4rs).  (©

Since

PLya = }/aPR’ PRYa = yaPL’ (7)

Eq. (1) is simplified to

a

2 1/2
92<\/§Gf) «
m, ZquV s

X/ &k i(pa)[—myps + (B3 +mp) ) PLv(ps)
(2x)* D,D; :

(8)

Before proceeding with the subsequent evaluation, it is
necessary to illustrate that the orthogonality relation of the
CKM matrix [77]

Vi Vi, + Ve Vi, + Vi Vi, = 0. (9)

does not appear in Eq. (8), otherwise the whole amplitude
will vanish. The reason is that since all the quarks in the
propagators in Eq. (8) are massive, the integrals are
different from each other, so that the coefficient of the
product Vqu;b(q =u,c,t) is not a common factor, and

hence we get a nonzero contribution. An analogous

discussion can be applied to diagrams (c) and (d) in the
second row of Fig. 1.

Performing the integral in (8) using dimensional regu-
larization [78,79], we obtain M, in the modified minimal
subtraction (MS) scheme

M, = 4(\@Gf)3/2m%VZV;;bVqS

x {[Bo(my) — B, ( i(p2) p1Prv(ps)

+ [Bi(my) - Bo(m,)a(ps)psPro(ps)}. (1)
where B and B, are the Passarino-Veltman functions [80,81]
defined in Appendix D. Imposing momentum conservation
p1 = p>» + p3 and Eq. (5), it is evident that M, = 0. A
similar analysis can be applied to the evaluation of diagram
(b) and we also find M, = 0. Thus we do not need the
numerical value of B, and B, but for completeness we

provide the analytic expressions in Appendix D.
The amplitude corresponding to diagram (c) of Fig. 1 is

< "qVanVas (27)* DD, Dy
Xﬁ(Pz)YMPL(k+mq)(151 —K+my)yPro(ps), (11)

where the three denominators are given by

Dy = k* — m + ie,
D, = <P1
D; = (Pz

— k)? —m + ie,
— k)2 = ml, + ie. (12)

Carrying out the integral in Eq. (11), we can express
Eq. (11) through the Passarino-Veltman function C

M, = 4mbm%v(\ﬁGf)3/2 [Zm%V;bVqSCO(mq, My, my)
q

X @i(pa)Pro(ps). (13)

It is straightforward to write down the amplitude of diagram
(d) in Fig. 1

= —2¢3m%, (V2G/) WZV

4 _
(271') D1D2D3
where the three denominators are
Dy = k* —m}, + ie,
Dy = (p) = k)* — my, + ie,
D; = (py — k) —m2 + ie. (15)
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Performing the integral over k using dimensional regulari-
zation, we obtain

Md = _Smbmév(\/in)yzZVZbVqs[Cl (mW7 myy, mq)
q

+ Coy(my, my, my)

- Co(mw’ myy, mq)]ﬁ(Pz)PL”<P3), (16)
where the explicit expressions of C; and C, can be found in
Appendix D. Combining Egs. (13) and (16), and using
Eq. (5), we obtain the following H — bs decay amplitude

at leading order in the SM

Msy=M.+M,
= 4mbm%v<\/§Gf)3/2(Al +Ay)i(pr)Pro(ps). (17)

where the two dimensionless constants are defined as

A= ZV;thsméCO(mq,mq,mW),

q
A, = —Zm%VZV;bVqS[CI (my, my,m,)
q
+ Ca(my, my, my) — Co(my, my,m,)].  (18)

Summing over the spins of the b and s for Eq. (17) yields
(Mgy|* = 32\/5"1127(;,3«”1%(”1%1 —mp)| A+ A (19)

Then the decay width can be evaluated through the
following expression

Ne(m? —mi)

where N is the number of quark colors, and the incoherent
sum of the two final states H — b5 and H — bs is
considered. Replacing V,, by V ; in Eq. (20), we also
obtain the decay width for H — bd. The other two flavor
changing decays, H — sd, cii, will be not explored in this
paper. The reason is that since we assume m,; = 0, the
amplitude of H — sd vanishes which can be inferred from
Eq. (19) through replacing m,, by m,. Furthermore, we do
not explore the top partner effects on the cii final state
because it is a next-to-leading order effect in the model used
in this paper, and is hence beyond the leading-order scope
of this work. Although the ci final state can be analyzed at
leading order in the context of models containing down-
type vectorlike singlet quark, investigating models of this
type is also beyond the scope the present work.

B. Determination of the quark mass parameters

There are four quark masses to be fixed the Eq. (20), i.e.,
the masses of the u, ¢, t and b. Following the convention in
Refs. [20,21,82],% we use the pole mass for top quark in
the numerical evaluation. While for the other three quarks,
the running mass at the scale my will be employed in the
numerical evaluation. The evolution of 717, (7y) (as given
in Ref. [83]) upward to some higher renormalization scale y
is determined by

i

Mo (u) = mQ(mg)@a (21)

I'(H - b5) = - |Mgm %, (20) where the functions c¢(x) are known up to three
8mmy loops [84,85]
|
9 \4/9
c(x) = <§x> (14 0.895x + 1.371x> + 1.952x%),  for m; < u < m,
25 1\ 12/25
c(x) = (€x> (1 + 1.014x + 1.389x? 4+ 1.091x%),  for m, < p < my,
23\ 12/23
c(x) = (€x> (1 4+ 1.175x + 1.501x% 4 0.1725x%),  for my, < pu < m,
7\ 47
c(x) = <§x> (1 + 1.398x + 1.793x> — 0.6834x%). for m, < u (22)

“In Refs. [20,21], the pole mass of the top quark is used for evaluating the branching ratio of H — b5 at leading order in SM, while in
Ref. [82], the pole mass of the top quark is applied to evaluate the invariant mass distribution of do/dm,,, in the double Higgs production

process gg — hh.

>The evolution functions are first derived in Refs. [84,85], here they are cited from Eq. (11) of Ref. [11].
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TABLE I. The pole masses of ¢ and b as well as their running
masses at the scale 77y (7iy) and at the scale my = 125.25 GeV
for Agep = 0.208 GeV. Reference [83] values are used for the
pole masses and 7y (7). The unit of the masses is GeV.

¢ 1.67 £ 0.07 1.27 +0.02 0.609” 9000
b 4.78 4+ 0.06 4181003 2.79310914

The analytic expression for a,(u) is presented in
Appendix A.

When we apply Eq. (21) and the piecewise evolution
functions in Eq. (22) to evaluate 712y(my), we must cope
with the threshold effects [86]. For instance, if we run
m.(m,.) tom,(my), we should carefully deal with the effects
when the scale passes through 71, (71,). A way out of this
dilemma is as follows. Since there is no threshold between
u = my(my) and g = my, we can directly obtain 7, (my)
from y = m,(m,) via the third function in Eq. (22). Then
combined with the scale-independent ratio [83]

El

b — 4584 +0.007. (23)

Cc

3|

we can obtain 77i.(my). The results are tabulated in Table 1.

Similarly, to avoid threshold-matching issues for the u
quark mass (e.g., Ref. [83] provides the # mass at a scale
of 2 GeV), we again use scale-independent mass ratios.
Defining

and by making use of the scale-independent ratios [83]

L m=%=mwﬁﬁ
we get
mn _ 2§ud (26)
mu N 1 + éud .

Rearranging the ratio m,/m, into the following form

— =0.0020, (27)

mu mu mn ms _ 2§Md 1 1
mc m,, ms mc B 1 + éud fsn écs

then combining with the value .(my) in Table I, we find
the running mass of up quark at scale y = my

W, (my) = 1.22 £ 0.01 MeV. (28)

C. Numerical results and discussion
For definiteness, we list all the masses needed in the
evaluation
i, (my) =1.224+0.01MeV, i (my)=0.6097%% GeV,
iy (my) =2.7935001d GeV,  m,=172.69+0.30GeV,
my =80.377+0.012GeV, my=125.254+0.017GeV,
(29)
As noted earlier, for the top quark we employ the pole
mass, following the conventions of Refs. [20,21,82] in the
evaluation the H — bs at leading order in SM and the
invariant mass distribution in gg — hh process.

The CKM elements are expressed by the Wolfenstein
parametrization [87]

1 1
V=1==12—=-2*+0(9),
ud 2 8 + ( )

Vs =4+ 07,
Vi = AX(p = in),
1
Vg = =4+ EA%Q[l —=2(p +in)] + O(A7),
22 ) 6
Ve =1 —5+§(1 +4A?) + O(19),
Ve = A2 + O(28),
1
Vi =AP {1 —(p+in) (1 - Eﬁﬂ +07),
1
Vis = —AR +2 (1 = 2p)2* — inAX* + O(2°).
1
Vip =1 =A%+ O(2), (30)

with

p=o(1-%) a=a(i-5) e

The up-to-date fit of the above parameters are [83]

A = 0.22500 =+ 0.00067,
p = 0.159 £ 0.010,

A =0.8261001%,
7 =0.348 £ 0.010. (32)
Taking the central values of the parameters in the

expressions for A; and A,, we can compare their con-
tribution to the total amplitude of the SM. Defining

FM iy (VOGS A, i= {12} (33)

leads to the results in Table II. The values of 7$M and F5M
indicate that the main contribution for both decays are from

113003-5



JIN ZHANG, HONG-YING JIN, and T. G. STEELE

PHYS. REV. D 109, 113003 (2024)

TABLE II. Numerical results for 5™ (i = 1,2) in the SM
using central values for all parameters.

Decay FM FM
H—>bs -243x10°—-446x10"% —4.00x 107°—1.61x1077;
H—->bd 4.68x1077-122x1077i 5.87x 1077 - 6.61 x 1077i

diagram (d) which can be understood because the gy
coupling is less than the gyww coupling. Substituting all the
parameters into Eq. (20), we obtain the following SM
Higgs decay width at the scale y = mp for the two decays6

['(H — b5) = 6.17 x 1077 MeV,
['(H - bd) = 2.58 x 1078 MeV. (34)

Combining Eq. (34) with the total width of the Higgs boson
Iy = 3.21“12:;1 MeV [83], we obtain the branching fractions

T(H - b5) _ 193 % 10-7 I'(H - bd)

=8.05 1()_9,
Ty Ty .

(35)

in good agreement with the results based on the one-loop
SM evaluation in Refs. [18,20,24,30].7 The branching
ratios of the two processes are lower than all the observed
channels of the Higgs decay on the LHC, thus it is
challenging to detect them.

We now consider the process H — bs as specific
example to explore possible ways to enhance amplitude.
One obvious choice is the next-to-leading order corrections
induced by QCD. But at the scale of my where the strong
coupling constant a; ~ 0.1, the squared amplitude will be
suppressed compared to leading order. Thus we do not take
it as a viable way to enhance the results in Eq. (34). Another
possibility is exploring contributions from new particles.
As mentioned in the Introduction, the vectorlike singlet
fermion model is promising because the top partner also
can contribute to the decay H — b5 at leading order. This
implies that we can view this decay mode as a sensitive
probe to explore the effects of the vectorlike singlet top
partner. This will be presented in the next section.

®The numerical evaluation is implemented via Mathematica:
https://www.wolfram.com/mathematica/. For details of the codes
see Supplemental Material [88].

The branching ratios in Ref. [30] are evaluated in an universal
extra dimension model. Unlike the four-dimensional SM and its
extensions, there are more Feynman diagrams that contribute to
the amplitudes of H — bs, bd decays due to the Kaluza-Klein
(KK) excited-mode quark fields.

III. EVALUATING THE BRANCHING RATIOS
OF THE PROCESSES H — bs, bd WITH
INCLUSION OF THE VECTORLIKE
SINGLET TOP PARTNER

A. The amplitude formulas

The Lagrangian density describing the interaction of top
partner with the W is [57]

‘CW = _%Vti(CLEW+PLdi + SLTW+PLdi)’ +HC (36)

where V(i =d,s,b) are the elements of the CKM
matrix, and {c;,s;} are respectively abbreviations for
{cos@;,sin@; }. The mixing between the top quark and
its singlet partner is [72,89]

(ZL> <c0s9L —sin6L><Tk>
T, ~ \sin 60, cosO; T% '
t cosfg —sinf T}
()= CGaos wa i) @
Tr sinfr  cosOp T%
where #; r and T p are the respective mass eigenstates of
top quark and the top partner, while 7}, and 7, are the

corresponding weak eigenstates. The interactions with the
SM Higgs boson are [72]

_ M — M _
£ == _ﬂctttLtRh - _TCTTTLTRI’Z - —TCtTtLTRh
v v v
M Totph + He, (38)
v
with

Ctt:CZ’ CTT:Sz7 Cir = Crr = SLCLs (39)
From Egs. (36) and (38), we can obtain six new types of
vertices which are depicted in Fig. 2 and in Fig. 3. At
leading order, the diagrams contributing to the amplitude of
H — bs are depicted in Fig. 4 and in Fig. 5. By using the
equation of motion of the s quark, we conclude that the
contributions from the diagrams in Fig. 4 vanish, so the top
partner contributes to the amplitude through the diagrams
in Fig. 5.

In order to be convenient to sum the contributions from
the diagrams in Fig. 5, we label the amplitudes of diagram
(a)—(e) as M|, M,, ....., M5, respectively. The amplitude of
the first diagram in Fig. 5 is

2
gHm .,
M, :Ezj’v,bvmc,,cﬁ
X/ d*k @(p2)y,rr (K+m)Pr(pr—K+m)y* Pro(ps)
(27‘[)4 D1D2D3 ’

(40)
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d;
(a) (b)

FIG. 2. Two types of couplings to W induced by the top partner.
(a) the SM-like vertex, (b) coupling of top partner to the down-
type SM quarks.

tr
H- - > — —
T lr ;
(a) (b)
i TL
H— — > — H—- — > — —
iMre; imicry
;F} = TR v tR
(c) (d)
FIG. 3. Couplings of the top and its vectorlike singlet partner to

the Higgs boson. (a) the SM-like vertex of the Higgs boson
coupling to the top quark, (b), (c), and (d) are new couplings of
the Higgs boson to top quark and its vector-like partner.

b b
(a) 5 (b)

5

FIG. 4. The negligible one-loop diagrams with inclusion of the
top partner. (a) self-energy correction to the 5 quark, (b) self-
energy correction to the b quark

where the denominators are

D, = k> —m? + ie,

Dy = (p1 = k)* —mi +ie,

D3 = (pz—k)z—mw+l€ (41)
By employing Eq. (7), we obtain

my d*k a(py)kPLv(ps)

(42)

After integrating over the momentum using dimensional
regularization, we obtain the following result

M, = 4Z,mym3y(V2G )2 [CY (my, my, my)
+ M (my, my, my) | a(p2) Pro(ps), (43)

b b

tr Ty
H—- - > — — H - — > —
tr Ty
(2) (b)
b b
tr Ty
H- — > — H—- - > — —
Tr tr
(©) (d)
b
H— — > —
(e)
FIG. 5. One-loop diagrams contributing to H — bs with

inclusion of the top partner. (a) SM like coupling of the Higgs
boson to top quark, (b)—(d) stemming from couplings of the
Higgs boson to top quark and its vectorlike partner and (e) from
the coupling of top partner to the downtype SM quarks.

where the constant Z; is

Z, = _mt2 V;*b VtscttC%’ (44)

we have expressed the vacuum value of the Higgs boson in
terms of the Fermi coupling constant, and C (1])’ C 52) are the
Passarino-Veltman functions listed in Appendix D. The
amplitudes of the next three diagrams can be obtained in a

similar manner

My = AZymym, (V2G)3/? [ng) (My, My, my)
+ CP (M, My, my)|#(p2)PLo(ps),
My = 4Zsmym3y(V2G )2 [C (m,, My, my)

+C ) mt’MT7mW:|u PLU(p3)
My = AZymym3,( \/_Gf 2[ mtaMT’mW)

+ Cz )(mt’MT7mW)]ﬁ(p2)PLU(p3)7 (45)
with Z; (i = 2,3,4) defined as
22 = —M%thVtSS%CTT, Z3 = _M%V:hVISCLsLCtT’
Z4 = —m%V?bV[SCLSLCT[. (46)

The amplitude of the last diagram in Fig. 5 is
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Ms = —2¢m3,sin®0, (V2G ) 2Vi Vg

C=z[c"+cf], i=1234

x/ d4k4 (ps) = ‘ljZ)PLU(m), (47) Cs = Zs [C(IS)(mW’mW7MT) + Cgs)(mw,mW,MT)
(271') D1D2D3 (5)
-G (mW’mW7MT)]’ (52)
where the three denominators are . . (i) (i)
and for brevity the mass dependence in C|’ and C,’ has
) . been suppressed. Combining this result with Eq. (17) yields
Dy = k> —my, + ie, the total amplitude
D, = (p1 = k)* = miyy, + i,
o Mo = Mgy + Myr
D3 = (py —k)* = M7 + ie, (48)

Completing the integral over k using dimensional regu-
larization, we obtain

5
= 4mbm%V(\f2Gf)3/2 <.A1 + Az + ZC,)

i=1

X i(p2)PLo(ps)- (53)

Ms = 4Zsmym?3, (\/EGf)yzﬁ( p2)Pro(ps).  (49) Summing over the spins of the final quarks, we arrive at
2
where Zs is given by |M o> = 32\/_m,2,Gme(mH —m2)| A + Ay + ZC
Zs = —2m3sin0, V3, Vs [CF) (myy, myy. M7) (54)
+ Cg5>(mw,mW,MT) — CE)S)(mW,mW,MT)]. (50)  Substituting Eq. (54) into Eq. (20), we can analyze the

We can now form the total contributions from the top
partner to the amplitude of the process H — bs

5
MVL - ZMI — 4mbm%)v(\/§Gf)3/2

i=1

effects of the top partner on the H — bs branching ratio.
Finally, we note that the total amplitude of the H — bd can
be obtained by replacing V,, by V,; in Eq. (54).

B. Numerical results and discussion

In order to the investigate mixing effects on the branching
ratios of the process H — bs the branching ratios as a

5 function of M for selected values sinf; = {0.04,0.06,0.08 }
E i(p2)PLv(p3), (51) are shown in the left panel of Fig. 6. Conversely, the
i=1 branching ratios as a function of sin 8; for selected values
My = {1200, 1400, 1600 GeV} are presented in the right
where the coefficients C; are given by panel of Fig. 6. Similarly, results for H — bd are presented in
0.50
16 F ] [ 7
045 |- /
14 | / L /
/ 040 T MT=1600G9V
1ol -msine =008 b e M,=1400GeV ,
' . 0.35 - /
R L - sin6 =0.06 . ° L ——M,=1200GeV /
=§ 1.0 T sin6 =0.04 / 'g 0.30 r S/
2 o8l /,/’ 2 o025t y
R 4 S o2
S o6 ya g v
a /,/ K @ o015} Y
04 1 v R A L
- . 0.10 | L
02 /_/_,./ 0.05 | ) g
0.0 P ey W - ‘3;—.—/r/./ 0.00 [ T Pl WO - - 7’%
1000 1200 1400 1600 1800 2000 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
M. (GeV) sin6,

FIG. 6. The H — b5 branching ratios as a function of the mass of the vectorlike top partner with selected sin 8; values (left) and as a
function of the mixing angle with selected My values (right).
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FIG.7. The branching ratios of H — bd as a function of the mass of the vectorlike top partner with selected sin 6, values (left) and as a

function of the mixing angle with selected My values (right).

Fig. 7. It is obvious that the branching ratios of both decays
rise quickly with M or sin ;. This behavior occurs because
the couplings of the top partner to the top quark and the Higgs
boson as well as to W are proportional to the product of sin 8;,
and M7, which can largely compensate for the suppression
caused by G ; and the CKM matrix. As aresult, the amplitude
grows rapidly, leading to a sizeable increase in the branching
ratios. It is evident that the branching ratios of both channels
could therefore increase to an level accessible to LHC
experiments. For instance, taking M; = 1200 GeV and
sind; = 0.025, the H — bs decay width is about 435 eV,
translating to the branching ratio is 1.36 x 10~*, comparable
to the LHC observation of H — u™u~ [8].

TABLE HII.  Values of FY“(i =1,2,...,5) for H — b5 decay
for My = 1500 GeV and sinf; = 0.02, with central values for
all other parameters.

Coefficient Value

FYt -3.23x 107% - 5.94 x 10719}
Fyt -1.19x 1077 = 2.19 x 107%i
Fyt —2.99 x 107* - 5.48 x 1075i
F* -3.95x 1070 - 7.26 x 1078i
Fik —1.72x107% =317 x 1078

TABLE IV. Values of FYL(i=1,2,...,5) for the process
H — bd for M7 = 1500 GeV and sinf; = 0.02, with central
values for all other parameters.

Coefficient Value

FYt 6.22 x 107 — 1.62 x 107
Fyt 229 x 1078 —5.98 x 1077
Fyt 5.73 x 1075 = 1.49 x 1075
Fit 7.60 x 1077 = 1.98 x 1077
FY- 3.32x 1077 = 8.65 x 1078

To compare the relative contribution of each diagram in
Fig. 5, we list the values

FY = dmym3,(V2G,)*C;,  i=1,2,...,5  (55)

for H— b5 and for H — bd for My = 1500 GeV,
sinf; = 0.02 in Tables III and IV, respectively. The results
indicate that the third diagram in Fig. 5 is the dominant
contribution to the amplitude in Eq. (51).

It is foreseeable that if we increase both My and sin @,
simultaneously or solely one of them, the evaluated
H — b5 width will exceed the total width of the Higgs
boson. For example, with sin9; = 0.08, the left panel of
Fig. 6 shows that the branching ratio exceeds 100% for
My >1900GeV. The situation is not physical and
must be excluded. In other words, the H — b§ branching
fraction provides stringent constraints on the {My,sin 6, }
parameter space. The analysis in Ref. [21] proposes
three different upper bounds on the H — bs branching
ratios. The first one is from Higgs boson studies at the
LHC [90,91], imposing an upper limit on undetermined
decays Br(H — undet) < 0.16 at the 95% confidence
level (CL). The second is based on a probabilistic model
and if only the b-tagger is used, the upper bound Br(H —
b5) < 5x 1073 is obtained at the 95% CL. If both the
b-tagger and s-tagger are considered in the probabilistic
model, the upper limit lowered to Br(H — b5) < 9.6 x
10~* at the 95% CL. Since at present there is no direct
experimental data on H — b5, it is advisable to take the
three upper limits as inputs to constrain the allowed
{My,sin@; } parameter space as presented in Fig. 8. It
is evident that a lower branching ratio bound leads to a
smaller area of allowed {My,sin6;} parameter space.
Since the upper limit 16% incorporates all the contribu-
tions from undetermined decays of the Higgs boson, we
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FIG. 8. The allowed region of {M,sin#;} parameter space
determined from different H — b5 branching ratios upper
bounds. For each choice of the branching ratio, the allowed area
is below the line as depicted by the arrow.

conclude that if the mass of the vectorlike top partner is
less than 2000 GeV, then sind; is less than 0.24.

An important issue we would like to address is the
tagging efficiencies in the observation of H — b5s. In this
decay there are two jets in the final state. To single out
the b5 final state, b-tagging and s-tagging are indispen-
sable. We may follow the techniques of the probabilistic
model proposed in Ref. [21]. Applying the b-tagger and
s-tagger to the two jets, the events are distributed in
(ny, ny) €4{(0,0),(1,0),(0,1),(2,0),(1,1),(0,2)} bins,
where n;, and n; denotes the numbers of b-tagger and
s-tagger in the events, respectively. The b-tagger and

s-tagger efficiencies are denoted by the parameters e;;

and € where § = {g, s, ¢, b} labels the flavor of the initial
parton. The signal of the H — b5 decay mostly populates
the (1,1) bin while the other five bins constrain the
backgrounds. In order to scan over possible tagger efficien-
cies, we assume € = €} (true positive rate, TPR) and €. =
€geh (false positive rate, FPR). Then the upper bounds of the
H — b5 branching ratio can be expressed as function of TPR
and FPR, allowing the observation of H — bs at the LHC.
By this approach, the working point (TPR,FPR) =
(0.80,0.004) leads to the upper bound Br(H — b3) <
9.6 x 1074, This bound is close to the branching ratio of
H — utu~ observed by LHC. According to the correlations
between H — b5 and B, — u'u~ given in Ref. [92], it is
possible to detect this decay at the LHC. On the other hand,
the b-tagging channel H — bb has been observed at the
LHC with the branching ratio 53% [93,94], it is the back-
ground for H — b5 and vice versa. Therefore, if the b-tagger
and s-tagger efficiencies can be increased, isolating the signal
of H — b5 is feasible. However, considering the hadronic
noise at the LHC, the ILC [95] may provide a better
environment for discovering H — bs.

C. Extension to H — yy, Zy and
two-doublet vectorlike quark model

Similar to H — bs, the two decays H — yy, Zy are also
affected by the presence of a singlet vectorlike top partner
at leading order and have been investigated in
Refs. [45,49,72]. The model in Ref. [72] is in line with
our model in this work, and the results show that the
deviation of the following ratio

Br(H — yy)yL

R = ,
Br(H = y7)sm

(56)

from 1 is always less than 1% for small mixing
(sin@; < 0.20) at My =1 TeV. Within the framework
of a type-Il two-Higgs doublet model embedding the
vectorlike singlet top partner, in Refs. [45] the two
processes H — yy,Zy are investigated. Results indicate
that in order to compatible with the observed branching
ratios of these two decays, taking the value My = 1 TeV,
the mixing angle satisfies |sinf;| < 0.25. While the
analysis in Ref. [49] is based on a SM extension with a
vectorlike singlet top partner plus a real singlet scalar S,
from the perturbative unitarity bounds on the Yukawa
coefficients y{',, the values M7 =400 GeV, sin6, =
0.20 should be taken to get the optimal situation. This
implies that if the mass of the vectorlike partner signifi-
cantly surpasses 1 TeV as the value employed in our
analysis, the resulting branching ratios may contradict
the experimental constraints. Therefore, supposing the
mass of the top partner is above 1 TeV, in order to
guarantee that the branching ratios of H — yy,Zy are
consistent with present experiments, the value of sin@;
should be taken lower than those obtained in Refs. [45,49].

In addition to the singlet quark model employed in this
work, there are vectorlike doublet and triplet models [73],
where the new vectorlike heavy quarks of these models can
also contribute to H — b5, bd and other quark flavor-
changing decays of the Higgs boson. A full investigation
of the effects of these models on the quark flavor changing
decays of the Higgs boson will modify the main content of
this work. Thus we take the vectorlike doublet model as an
example and briefly comment its implications for the flavor
changing decay of the Higgs boson. Since the flavor
changing neutral current are forbidden at tree level in
the SM, the singlet top partner contributes to the process
H — ci at next-to-leading order. However, the situation
will be changed in the doublet vectorlike quark model.
In this circumstance the Higgs boson will couple to the
down-type vectorlike quark B; and By via the following
Lagrangian [72]
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- M _ _
L D _Cbb@bLth — CBB—BBLBRI’I - CbB@bLBRh
v v v
My -
— Cpp TBBLth + H.C., (57)

where the definition of the parameters can be found in
Eq. (51) of Ref. [72]. In this case we can explore the effects
of the vectorlike down-type quark to the decay H — cit at
leading order.

IV. SUMMARY

The discovery of the SM-like Higgs boson opens a new
window to explore quark flavor changing processes. In this
paper, we first presented a comprehensive analysis of the
H — b5 and H — bd branching ratios at leading order in
the SM. The results agree with the existing work obtained
in the SM [18,20,30].

Subsequently, based on the vectorlike singlet top partner
model, the H — b5 and H — bd branching ratios of were
evaluated. Further results indicate that by tuning the mass
of the top partner and the mixing angle, the branching ratios
of both channels will increase significantly to the level
accessible to LHC experiments. Then combining our
results with three different upper limits on the H — bs
branching ratio, the allowed (two-dimensional) M; —
sin@; parameter space was determined. According to
our results, assuming the top partner mass is less than
2000 GeV, the mixing angle should satisfy sin6; < 0.24.

Combining with a probabilistic model [21], tagging effi-
ciencies and detection feasibility of the H — bs decay are
carefully considered. Our analysis shows that it is promising
to detect H — b5 at the LHC, but high statistics is needed.

Since we only consider the singlet top partner model, the
up-type flavor changing final state ciz has not been taken
into account, but can be included in extensions to doublet
or triplet vectorlike models. Such studies will be explored
in our future work.
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APPENDIX A: THE RUNNING OF THE
STRONG COUPLING CONSTANT

The up-to-date results for the MS-scheme strong cou-
pling is [83]

a,(Mz) =0.1179 £ 0.0009, (A1)
and using the central value we obtain AS&D = 0.208 GeV.
By employing this value, up to three-loop approximation in
QCD [96-99], the running of a, at some energy sale y can
be determined

o (i) = 4r { _2pIn In(u*/A?)
VT B2/ M) U T B (/A

Apt p_1\?
0 U [ (5 P P
+WMWMQK““M 2

Pabo S
——— 7, A2
T "
where the coefficients are given by
2 19
ﬂ():ll—ng, ﬂlel_?Nf’
5033 325
= 2857 - —— — A3
P> 9 Ny + 77 N7 (A3)

with N being the number of the active quarks below the
scale .

APPENDIX B: THE DILOGARITHMS
The dilogarithm is defined as [100]

+o0 .2
) X xIn(1—1)
Li, (x) :;?:—A —dr. |x|<1. (B)
and an equivalent definition is
Un(1 — xt
Liy(x) = — / In(l=xt) (B2)
0 t
where there is a branch cut from 1 to +oo,
Liy(x+ie) =ReLi,(x) +izsgn(e)®(x—1)Inx, -0
(B3)

and the step function ®(x) and the sgn(x) are as follows

1, x>0
O(x) = B4
w={y I, (B4)
and
1, x>0
sgn(x) = {_1 S (B3)

Two other useful formulae are [100]

’

: 1 [*In(1—2tcosO+ 7>
Li,(x,0) =ReLi,(xe?) = _5/ n( CIOS i )dt
0

(B6)
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and

x>1. (B7)

APPENDIX C: USEFUL INTEGRALS
IN THE EVALUATION

The first integral frequently used in our evaluation is
1
F(a,b,c) = / In(ax® + bx + ¢ —ie)dx, (Cl)
0

If b2 — 4ac > 0, there are two zeros of the argument in the
range [0, 1], the logarithm can develop imaginary part, and
the result is [101]

F(a,b,c) =In(a—ie) =2+ (1 —x_)In(1 — x_ + i¢)
+x_In(—x_+ie) + (1 —x; ) In(1 — x, — ie)

+x, In(—x, —ie), (€2)
where
1 1
X, =—(=b+ M)’ x_=—(=b—\/'b*—4ac).
2a 2a
(C3)

If b*> —4ac <0, then the argument of the logarithm is
always positive, and the result reads

b b4c—i
F(a’b’c):ln(a+b+c—i€)—2+2—1nw
a

Vdac - b* <
+————| arct

a

an 2a+b
Vdac — b*

—arctan

ﬁ) . (c4)

The second type integral is

1] 24 —1i
Gla:a,b.c) :/ n(ax + bx + ¢ —ig) du.
0 X+a

(C5)
In this case we should distinguish between three cases:

a>0,—-1<a<0and a < —1. If b* —4ac > 0, for the
three cases of a, the result can be expressed uniformly as

G(a;a,b,c)=In|1+a|ln(a+b+c—ie)—In|a|In(c —i¢)
1|, |acd®—=ba+c

1
n a+b+c

1
—Liz[ ta iesgn(1 +a)}
a+x,

+ iesgn(a)}

| 1+a
—Li, [a+x +iesgn(1 +a)} (C6)

If b?> —dac < 0, the argument of the logarithm is always
positive, and by employing Eq. (B6), we obtain

1 1
G(aza,b,c) =InDln|l +’ —2L12<+“,9)
a m

+ 2L, (3 : 9) (C7)
m
where
b
D = aa® — ba + c, m= az—a——i—g,
a a
2aa — b
6 = arccos . C8
2vaD (C8)

For numerical convenience we recast Eq. (C7) into the
following form

G(a,b,c) =InDIn

1 ,
1 +—‘ — 2Re Li,(x;e™)
a

+ 2Re Liy(x,e™), (C9)
with
X :%, xz—%a. (C10)

APPENDIX D: PASSARINO-VELTMAN
FUNCTIONS

The following two- and three-point functions are fre-
quently needed in the evaluation of the amplitudes. By
employing dimensional regularization, setting d = 4 — 2e,
we obtain the two-point functions B, constrained
by p> =0
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5 — / dk 1
O ] @) (k2 = m, + ie)(k — p)* — m2 + ie]
i

(47)?

E —ve+ 1H<4JZ’):| + By(m,) + O(e),  (DI)

2 .2 dk !
Co(my, my, m3, pi, p3) = (2ﬂ)dl)1D72D3’
dk k,
Cyu(my,my, ms, py, py) = (2;;)"@

=Cipiy+ Capoys (DS)
where y; = 0.5772... is the Euler-Mascheroni constant,
and By(m,) is given by where
i 2 m2 2 D, = k* — m? + ie,
Bo(m,)=——— (—1+1nm—;v+27q21nm—;v>. (D2) : 1 .
(4n) W omy—mg my D, = (p; —k)? —m3 + ie,
The vector two-point function is
In order to express the three-point functions in a concise
dk ky form, it is convenient to define the following parameters
B, = (2r)d (K2 =m2, +ie)[(k— p)? —m% T ie] formed by the masses in the evaluation
ip, [1
232;;2 {E—J/E—Hn(élﬂ)} +B,(my)p,+0(e), (D3) a; = m2,, by = m} —m3 —m3, c; = m3,
a, = mj, by = mi —mj —m3, ¢y = m3,
wih a=mi-nd  b=c=md
2 2 2 2
_ Iy —m3 _m3—m
i 3 mi, m2 =2 2 b= m2 (D7)
Bi(m,) =——= |-z+In—— 2 b H H
1 32722 2 2 my—ml
m2 (2, —m2) In the case p7 = m3;,, p5 = m3, the results read
W e W D4
e (oY - y
Co(my, my, m3, pi, p3) = @) (n, = m2) [G(ay, by, c3)
The general scalar and vector three-point functions are n b
defined as - G(ay, by, cy)], (D8)
|
—i 1
Ci(my,my, m3, pi, p3) = m{l + F(ay, by, i) = (1 +a) {ln 1 +;‘ + G(al,bl,cl)] }
i Cy . a, + bz + ) .
_ @ =) { {;ln(cz —ie) — T Tia In(a, + by + ¢, — i€)
1
+ 2612(1 + F(az, bz, Cz)) + (b2 - 2&612) <ln 1 + a' + G(az, bz, C2)>:|
—(a2<—>a1,b2<—>b1,cz<—>c1)}+(’)(€), (D9)
—i 1
Cy(my, my, my, pi, p3) = @rP (i, —m2) {—1 —F(ay. by, c) + (1 +a) [In 1 +a' + G(ay, 52,62)] }
i i ) a; + by +c .
- —1 —ig) ————1 b -
s — ) { [a n(c, — ie) T+ a n(a, + by + ¢; — ie)
1
+ 2611(1 —+ F(al, bl, Cl)) + (bl - Zaal) <ln 1 + a’ + G((ll, bl, Cl)):|
—(a; <> ar, by <> by, c; < cz)} + O(e). (D10)
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