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Radiative corrections due to initial state radiation in electron-positron annihilation are calculated
within the QED structure function approach. Results are shown in the next-to-leading logarithmic
approximation up to O(a*L?) order, where L = In(s/m?2) is the large logarithm. Several mistakes in
previous calculations are corrected. The results are relevant for future high-precision experiments at e*e™

colliders.
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I. INTRODUCTION

The physical program of future electron-positron col-
liders such as FCCee [1], CEPC [2], and ILC [3], foresee
extremely high experimental precision in measurements of
e"e” annihilation and scattering processes. In particular, it
is planned to collect up to 10'? events with production of
Z bosons in the so-called TeraZ operation mode [1] at the
Z peak. The foreseen precision of the experimental mea-
surements requires for increasing accuracy of theoretical
predictions [4].

Computation of the complete O(a?) electroweak and
even QED radiative corrections to realistic observables is
still a difficult problem. The QED structure function [5]
approach [6] allows taking systematically into account the
terms enhanced by the so-called large logarithm

2
u

L :ln—g, (1)
HR

where up is the factorization scale and up is the renorm-
alization scale. The natural choice of ug in QED is the
electron mass. For e e~ annihilation into a Z boson, uy can
be chosen equal to the Z-boson mass. We use the standard
modified minimal subtraction scheme (MS) for treatment
of factorization. Other schemes like Frixione-Kunst-Signer
[7] and deep inelastic scattering [8] can be applied in the
same way.

“arbuzov @theor, jinr.ru
"voznaya@theor jinr.ru

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

2470-0010,/2024/109(11)/113002(10)

113002-1

The method of structure functions in QED was developed
on the base of the QCD parton distribution function
approach. The Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
(DGLAP) evolution equations were reduced to QED
by Kuraev and Fadin [6]. There are numerous applications
and further developments of the method within the leading
logarithmic approximation; see, e.g., Refs. [9-15].
Application of the method in the next-to-leading-order
(NLO) approximation was for the first time demonstrated
in [16] for derivation of QED radiative corrections due to the
initial state radiation (ISR) in electron-positron annihilation.
Then it was applied for calculations of O(a*L) corrections
to a few other processes including muon decay [17], deep
inelastic scattering [18], and Bhabha scattering [19].
Recently, the calculations of next-to-leading ISR corrections
to ete” annihilation were extended to higher orders
up to O(a®L3) [20]. The details on derivation of the electron
NLO parton distribution functions (PDFs) can be found
in [21,22].

Because of the importance of higher-order ISR correc-
tions to eTe” annihilation, we decided to perform an
independent calculation of them. In particular, in [23] we
have already noticed a discrepancy in the O(a’L?) singlet
contribution to the electron PDF with respect to [11].
Below we will show the corresponding effect in the ISR
corrections. We also perform here a detailed comparison
with the results presented in [20].

II. CALCULATIONS

A. Master formula

The cross section of electron-positron annihilation into a
virtual photon or Z boson e*e™ — y*(Z*) can be repre-
sented in the form of convolution of two electron PDFs and
partonic cross sections [16],
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FIG. 1. The scheme of energy fractions in the process.
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where & = e is the positron and e = e~ is the electron,

&%V are the Born (0) and one-loop (1) cross sections of

ij
annihilation to y*(Z*) at the parton level, s is the initial
center-of-mass energy squared, and s’ is the invariant mass
of the produced virtual photon (or Z boson), s’ = sz. For
D® D ® ¢ (see Fig. 1), z = 7,2, = x because of the
absence of the radiation in the Born-level partonic cross
section. In the case of the one-loop contribution, we have to
introduce a variable describing possible energy losses due
to radiation in the one-loop partonic cross section. Let us
assume that y = z/x is the ratio of the squared invariant
mass of the produced virtual photon to the squared invariant
mass of colliding partons i and j. So, the condition s’ = sz
takes the form s’ = sz,z,y = sxy = sz.

The process is schematically shown in Fig. 1.

The master formula for the cross section in terms of
convolutions from the evolution equation reads

doée

ds’

= 6(0) [Dee ® Dz @0+ D, ® Dyé ® Oy

+ D, ® Dpe ® 6o + Dy ® Dz ® 0z
+Dye ® Dyz @ 6y, + D)o @ Doz @ 64
+ Dz ® Dzz ® 0z + Dz ® Dye @ 0,
+D;, ® D,z ® 03] (3)

where D,, are the parton distribution functions of parton i
in the initial particle a and o;; are the partonic cross
sections, which in QCD are called Wilson coefficients [16].
The symbol @ means convolution operation; see, e.g., [22].

In these formulas, all possible contributions to the NLO
order are taken into account. In Table I, these contributions
and their leading powers of a and the large logarithm are
shown. In the table, the symbol of convolution (®) is
omitted for convenience.

TABLE 1. Orders of different contributions.
j
i e Y e
e DeeDééaeé DeeDyEGey DeeDeEO-ee
LO (1) NLO (a2L) NNLO (a*L?)
14 D Decgyc DyeDyéayy DyeDeégye
NLO (@2L) NNLO (a*L?) NLO («*L?)
e D;.D350:¢ Dz»eDyz»O'éy D¢,D 05,
NNLO (a*L?) NLO (a*L?) LO (a*L*)

In works [16,20] only the following four contributions
Dee ® Déé ® Oce> Dee ® Dyé ® Gey’ Dye ® DEE ® ayE’
and Dye ® D,E ® o,, were taken into account, i.e., the
transitions from electrons to positrons (and vice versa) were
omitted. In paper [16], this limitation was well justified
since the authors were interested only in O(a') and O(a?)
corrections to which the electron-into-positron transitions
do not contribute. Meanwhile, for higher-order corrections
calculated in [20], the transitions become relevant even in
the leading logarithmic approximation.

B. Evolution equations

Let us consider QED evolution equations for PDFs in the
spacelike region. The equations are induced by the renorm-
alization group and have the following form, e.g., see
Ref. [24]:

D,,a< —) =61 -X)Sp + > /dtz(jn

i=eey

1
d 2
X/_yDia(y’taﬂ_g>Pbi({>» (4)
y HF y

X

where index a corresponds to the initial particle, e.g., an
electron; and indices b and i mark QED partons that can be
photons (y) or massless electrons (e) and positrons (e).
Note that transition into all three types of partons have to be
taken into account.

Every splitting function, PDF, or radiator can be divided
into ® and A parts as

F(z) = EE(I)

(Fo(z2)O(1 —A—z)+6(1 —z2)F,).
Both appear in the process of A regularization of the
functions divergent at z — 1. The ® part depends on the
energy fraction z and corresponds to hard photon or pair
emission. The A part provides the contribution of virtual
and soft radiation with the emitted energy fraction not more
than A. Details can be found in [22].
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The splitting functions P ;;(x) can be expanded in the fine
structure constant «

P = PP+ APl 0@ (9

We took the expressions for the NLO QCD splitting
functions P 11 from Refs. [25,26] for the spacelike case and
from Refs. [26,27] for the timelike ones. We reduced the
functions to the (Abelian) QED case by taking the
appropriate values of constants: Cp =1, C; =0, Ty -
Np = 1for[26]and Cr = 1,Ne = 0,and T, = 1 for [25].

Note that the expressions for PEII-) must be consistent with

the running of @ to avoid double counting, see Sec. II D
below. Details of the analytical iterative solution of evo-
lution equations can be found in [22].

The initial conditions for the QED DGLAP evolution
equations can be found in, e.g., Refs. [17,28,29]. For the
timelike case, one can use the Abelian part of the initial
conditions for QCD fragmentation functions [27]. Details

on derivation of the déle) function were given in [30].

C. Factorization at NLO

The cross section in the NLO approximation takes into
account the QED radiative corrections enhanced by the
large logarithms and reads

00 a\k k
a3 = o f 14 () Y eut
k=1

I=k—1

+ O(akLH)}, (6)

where ¢, are the coefficients to be computed. The terms of
the type afL¥ provide the leading-order (LO) logarithmic
approximation, and the ones of the type a*L*~! yield the
NLO contribution.

So the expression for the one-loop correction to electron-
positron annihilation (with reduced energy due to the initial
state radiation) reads

() 2

> 1
622(”)50;;)(”):2{[ —|—y} (lns—xz_1>

o) 7 U=y ]\

+5(1—y)<2éz—%>}, yzg, (7)

and, analogously,

Formula (7) for x = 1 represents one-loop ISR correc-
tion to the process of electron-positron annihilation for the
center-of-mass energy +/s. By looking at this expression,
we can see that the (d la Brodsky-Lepage-Mackenzie)
factorization scale choice pr = +/s is well motivated, since
it absorbs the bulk of the one-loop correction. So in our
calculations, we adapt the latter factorization scale. In
work [16] and later in [20] the factorization scale up = \/zs
was chosen, which is the invariant mass of the final state.
The latter choice looks not optimal, especially for small z.

This choice of Sge) (x) satisfies the matching equality

2
50 (sx) =80 (5x) +2% PO ()L +d (y)} +0 (’%) :

©)

where on the left-hand side we have the known one-loop
ISR correction [16].

After the subtraction of mass singularities within
the standard modified minimal subtraction scheme (MS),
we get

ee (5) —%{ [11+_yy T (Inz=Iny) +2(1+) [%] )
+o(1-y) <2éz—%> } (10)

Note that the “bar” over ¢ here means that the latter is
calculated for massless partons. Note also that variable z
above is the energy fraction of the produced virtual photon
or Z boson, and it is not a variable of integration.

In the works [16,20] the factorization scale is implicitly
chosen as p% = sz [31]. So, the large logarithm in the
electron PDFs is In(s/m2) + In z. But in the expression for
the one-loop partonic cross section used in Refs. [16,20],
variable y = z/x was occasionally replaced by x. So
they had

o] =5 { [y meraa e [5]

V3 1—x 1—x

+5(1—x)(2§2—%>}. (11)

The result calculated with this deformation of the factori-
zation scale choice occasionally coincides with the known
result of direct two-loop calculation in the leading and
subleading logarithmic contributions [16,29], but in higher
orders the two schemes give significantly different results.
In particular, our O(a’L?) result for function c3;(z)
[Eq. (A4) in the Appendix] considerably differs from the
one given in [20].
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The coefficient ¢, see Eq. (6), calculated via solving the evolution equation in terms of convolutions contains the one-

loop correction

e (z) = o [2623) ® PY + 3

20 (o

2 _
50 125 @ P +2PY) @ al¥) +2pPL)) — EPEQ +4P0 ® dé?] . (12)

It agrees with the corresponding result in [16]. And its ® part as function of z reads

37 2 29
<) =1 - _= 2
¢(2) nz( 6 3z 6(1-2)

In(1 - z)
1-z

8 4 )
-~ 4+ —In(1-z2)— + 2Liy(1 - 2)
9z 3z

73
9(1 -7z)

7 8 4
+§zln(l —-2) =226, +§z2 —gzzln(l -2),

and the A part is

203 40
C2A1 = —W + 22C2 + 12C3 —?IH2A
292
+ (16§2 —%) InA. (14)

D. Running coupling

We use the expression for the running coupling in the
MS scheme

alu?) = a(ﬂo)
v 1+ T1(y, o, @(0)) 13

that can be found, e.g., in [32,33] with

M a(0) = 22 (3-2) + (“0) (-, %)

Y (E) e

where L = In(u%/u%) is again the large logarithm. After
expansion, we get

(i) :a<o>{1+%€>(—19—0+§L> + %2))2
« (_%H@ —;LJrng) +(’)(a3(0))},

(17)

11 4 1 2 1 2
+In(l —2) ==z 4 zIn(l —Z)+§Zz> +1nzz<———+—z) +=

20In(1-z) 13 42,

3 1-z 3

4 1-7 ' 4 9

71 .
-2 +—z+2zLir(1 — 2)

+ —In( Z)+1—z 5

(13)

|
where {, = {(n) is the Riemann ¢ function. Here we put
ug = m, and assume a(u%) ~ a(0) = a.

Note that, in the traditional way of MS scheme appli-
cation in QCD calculations, the expansion for the running
coupling constant takes into account only the terms propor-
tional to large logs (via f,, ff;, and so on). The effects
due to constant (nonlogarithmic) terms, like —10/9 of the
O(a) order in the above formula, are kept in higher-
order splitting functions, e.g., in PE}). Here we apply a
QED-like scheme in which the nonlogarithmic terms are
preserved in the running @ and thus we modify the NLO

splitting functions in the following way: [PE})(x)]QED =

[Pl(.;)(x)]QCD—F%PE?)(x), see details in [22]. One can
verify that this scheme choice does not affect the final

results.

II1. RESULTS IN TERMS OF CONVOLUTIONS

Parton distribution functions of the types D,; and D,
start to give their contribution to cross sections from the
order a*L2.

The complete results for ¢33, €44, €37, and c43 in terms of
convolutions read

2 1 8
en() =3 PY @ P + 3 P o P @ PV + > pY

5 4 4
+3P ® Py @ P+ 3 PP 1P
(18)
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+ 171)
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12

cp(z) = Ug {522)

4.
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9
1
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3
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27° 7 3

44 I
cu3(2) _62(;){522) ® (_P(O) +—P§2> ® Py ®Péy+3

3

10 o p0) o p©) , 350 44
27

+3Py ® P ® Py +§Peﬁ ®PY @PY+

4 _0)e3
_Pee
+ 3

1 5
+§P£‘?®P§?®P§3>+5

11 10 8 _a 10
_gPey ®Pye +3Pey 76

9

9

5
®dye +=

4
+= Pey ®Pey 3

3
20

+§dee ®Pey ®Pye ®P;/y +3

50 16

~ 5 P @ PY @ P 4Pl @ P+

7 8
®Pee +3Pee ®Pey ®dye +3Pee

where PEQ)®" is the successive convolution of n P,(-;))

functions. There are no positron-induced contributions in
c3, because they appear only starting from the O(a*) order.
The formula for ¢32 in terms of convolutions coincides
with the one given in [20]. But we do not agree in the final
result for this contribution (as a function of z) given in the
Appendix below because of the difference in treatment of
NLO factorization.

In the O(a*L*) contribution, we have the difference with
respect to the result from the work [20],

PY) ® Py) ® P\) ® P + -

4
.

® %PE‘?@“) ,

® (P @ P +3PL) @ P+ 2P}
2 20
P @dY-TPY @P + P @dy ® P +

+3P) @ P @ dyY) + 4P} @ P +

Pery +
PP e P+ gPS? QP QP + gPS? P ® P§2)>
P+
) 059 @ PP +;Pw ® P @ PlY) +

2
PY ®@dy @ Py ® Py +5

Pee®Pey®Pye+ dee®Pey®Pye+
5 4
_Pee ®Pey ®Pye +=

10
PR @ du) +

8
®d€€ —"__

1
Pe}/ ®Pye ®Pyy

3 ey ®Pre ®PW

12
5

1
3Pee ®Pey ®Pye +

2Pee ®Pey ®P}/e ®PV}’

(19)

)o@ (PG @ PR +2Pl +2PL) @ PLY)

4
S P

9 3

4 4
. PY @ d\) - 30 PY & Pl

(20)

I o 0 0 0 0
§P§2 ®PY @ PY +4PY) @ P

8 <), =) (4 p0) (0)
+—=05,; +06,; | =Pe Py
27 ee ee 3 14 ® 4

8 5
3P€€ ®P€€ +6P}’€ ®Pee ®P€y

8
Pey ®Pye

Py @ P @ P+

ey ® dye

6 27

1
el er) LY edl ol o

1
®P77 + < Pee —gpey ®P7€ ®PW +2P€7 ®P7’e ®d7€ &

10P<)+5
81 “ '3

dv @ P @ Py ®@PY) +2P) @ PY ® d))

Pee ®Pye ®Pe}/

3

2
PR @ dw ® PY) @ P — 2 PP +4p)®

3 9

Y ®dL @ P ®3}, (21)

368

1
Acy = ggi? P erY PPy

(22)
because of taking into account electron-into-positron tran-
sitions. We have two sources of these transitions: including
such transitions in evolution equations and including the
term proportional to D,; ® D;, in the master formula (3).
If we exclude both parts, our result for ¢4y completely
coincides with the result from the work [20]. From the
evolution equation, when we include the transitions into
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FIG. 2. Higher-order contribution to the ISR radiator function.

positrons in the equations for D,, and D,,, we get

res
502‘;)1322) ® Pﬁ? ® P}(,g) ® P(ég), and the last term in
Eq. (3) yields 1oYPY) @ PY @ P2 @ PY.

Numerical illustrations of our results in the orders
O(a’L?), O(a*L*), and O(a*L?) are shown in Fig. 2.

We plot the values
a\i . c;
== Y
% <2”> - ¥

ee

(23)

as functions of z (we put L = 24, i.e., up % M ). Note that
these quantities are contributions to the ISR radiator
functions, which have to be later integrated with the
Born-level cross section over z in an interval defined by
the experiment. We also show the difference Ads; in the
O(a’L?) order, which comes from the correction in the
singlet part of D,, with respect to the result given in [11],
and the difference Ad,, between our fourth-order leading
logarithmic contribution &,44 and the one from [20], which is
due to the electron-into-positron transitions. One can see
that all shown contributions are relevant for future experi-
ments with the precision tag of the order 1073, The radiator
function contributions typically diverge for z — 1, but
taking into account A parts cancels out this divergence
in the total correction. The differences Ads; and Adyy are
enhanced at small z since both are related to singlet
transitions.

|

o 461 7z 710 16

€33 =

1_8_E+27(1—z) 272

4072
+<9+

9 _3(1—z)+T 9

32 1 16 1
x In(z) — 42} In(l1-z)+ (—162 tr 16>1n2(1 -2)+ <—9Z+ —39>1n2(z),

—Z

32 447 44\ . 872
+—+C2<l6z—l—_z+16> + (—Z—F—)le(l—z)"‘r%—

IV. CONCLUSIONS

In this way, we revisited the application of the QED
structure function method for calculations of higher-order
NLO ISR radiative corrections to e*e™ annihilation. A bug
in the singlet part of the O(a’L?) of the electron PDF is
corrected.

Several other issues that arose in earlier calculations of
these corrections are clarified and improved. The relevance
of positron in electron (and vice versa) PDF is demon-
strated explicitly. Taking into account splitting of electron
into positron (and vice versa) appears to be also significant
in solutions of the QED evolution equations. Moreover,
treatment of the factorization scale in NLO was refined.
The issues listed above lead to a considerable difference of
our results (both the leading and next-to-leading ones) from
the ones given in [20].

The obtained results will be implemented into the
ZFITTER computer code [34]. We would like to underline
that the applied method leads to results being integrated
over angular variables of the ISR radiation, and hence they
can not take into account all possible experimental cuts.
Nevertheless, first of all, one can use our results as
benchmarks to verify the precision of Monte Carlo codes.
Moreover, after implementation of the completely differ-
ential two-loop radiative corrections in a Monte Carlo code,
one can add certain higher-order corrections in the collinear
approximation without spoiling the theoretical precision
too much. Extension of the presented here results to higher
orders, like cs5 and csy4, is straightforward. The correspond-
ing results will be presented elsewhere.
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APPENDIX: RESULTS AS FUNCTIONS OF z

Here, we show explicit results for the higher-order
coefficients ¢, from Eq. (6) as functions of the energy
fraction z.

1622

33 (1-z) 27

3 1—z+3

128z 88 242 4072 50z 176 40  [/92z 32 92
In(z) + |——— - == =

3 3029 T e:

3 3(1-2) (D)
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Here H(ay, ..., a;; z) are harmonic polylogarithms [35,36].
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