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Various dark matter search experiments employ phonon-based crystal detectors operated at cryogenic
temperatures. Some of these detectors, including certain silicon detectors used by the SuperCDMS
Collaboration, are able to achieve single-charge sensitivity when a voltage bias is applied across the
detector. The total amount of phonon energy measured by such a detector is proportional to the number of
electron-hole pairs created by the interaction. However, crystal impurities and surface effects can
cause propagating charges to either become trapped inside the crystal or create additional unpaired
charges, producing nonquantized measured energy as a result. A new analytical model for describing these
detector response effects in phonon-based crystal detectors is presented. This model improves upon
previous versions by demonstrating how the detector response, and thus the measured energy spectrum, is
expected to differ depending on the source of events. We use this model to extract detector response
parameters for SuperCDMS HVeV detectors, and illustrate how this robust modeling can help statistically
discriminate between sources of events in order to improve the sensitivity of dark matter search
experiments.
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I. INTRODUCTION

Cryogenic solid-state detectors are used in a number of
dark matter (DM) search experiments [1–6]. In these
experiments, incoming DM particles are expected to scatter
off of the detector nuclei or electrons, creating phonon
signals which are measured by high resolution phonon
sensors. Resolution on the order of 1 eV is achieved, which
allows for reduced energy thresholds and enables the
detection of nuclear recoils with energies as low as
∼10 eV [1–3]. Low-mass DM candidates that produce
small interaction energies can be probed via electron recoils
by measuring the ionization signal—the number of pro-
duced e−hþ pairs in the detector [7,8]. In phonon-based

crystal detectors, when a voltage bias is applied across the
crystal, the ionization signal is converted into an amplified
phonon signal via the Neganov-Trofimov-Luke (NTL)
effect [9,10]. A charge carrier with a charge e accelerated
by the electric field scatters off of the crystal lattice and
produces NTL phonons with the total energy equal to the
work done by the electric field to move the charge through
the electric potential difference Δφ:

ENTL ¼ eΔφ: ð1Þ

Normally, when an e−hþ pair is created in the crystal, each
charge drifts in the electric field all the way to the
corresponding electrode on the crystal surface. Together
they traverse the entire voltage bias of the detector, so the
total energy of the produced NTL phonons is given by

ENTL ¼ neheVbias; ð2Þ
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PHYSICAL REVIEW D 109, 112018 (2024)

2470-0010=2024=109(11)=112018(20) 112018-1 © 2024 American Physical Society

https://orcid.org/0000-0002-6723-3795
https://orcid.org/0000-0002-4450-365X
https://orcid.org/0000-0001-5223-3023
https://orcid.org/0009-0006-2262-5839
https://orcid.org/0009-0007-1423-5985
https://orcid.org/0000-0001-9669-426X
https://orcid.org/0009-0001-7614-1497
https://orcid.org/0000-0001-8762-4921
https://orcid.org/0009-0003-2394-2666
https://orcid.org/0000-0002-5872-519X
https://orcid.org/0000-0003-0286-1114
https://orcid.org/0000-0002-7231-8910
https://orcid.org/0000-0003-0922-0475
https://orcid.org/0000-0002-4804-4825
https://orcid.org/0009-0006-8974-5827
https://orcid.org/0000-0001-7118-5936
https://orcid.org/0009-0008-6825-8960
https://orcid.org/0000-0001-8872-5628
https://orcid.org/0000-0002-5717-6379
https://ror.org/04t3en479
https://ror.org/038t36y30
https://ror.org/03dbr7087
https://ror.org/000e0be47
https://ror.org/05gzmn429
https://ror.org/01f5ytq51
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.109.112018&domain=pdf&date_stamp=2024-06-21
https://doi.org/10.1103/PhysRevD.109.112018
https://doi.org/10.1103/PhysRevD.109.112018
https://doi.org/10.1103/PhysRevD.109.112018
https://doi.org/10.1103/PhysRevD.109.112018


where neh is the number of e−hþ pairs and Vbias is the
voltage bias. The total phonon energy produced in an event
is then given by

Eph ¼ Edep þ neheVbias; ð3Þ

where Edep is the energy deposited in the detector by the
incoming particle. For a detector with a good phonon
energy resolution σres and a large voltage bias, where
σres ≪ eVbias, the spectrum of the phonon energy in Eq. (3)
is expected to have quantized peaks corresponding to the
integer number of created e−hþ pairs. This e−hþ-pair
quantization is observed in SuperCDMS high-voltage
(HV) and HV eV-scale (HVeV) detectors when operated
with a voltage bias on the order of 100 V [7,8,11].
Due to the presence of impurities in the crystal, a

nonquantized amount of NTL energy can be produced in
an event. We distinguish two categories of effects causing
nonquantized NTL energy: charge trapping (CT) and
impact ionization (II). In a CT process, a charge carrier
gets trapped in an impurity state in the bulk of the crystal. In
an II process, a propagating charge ejects (or “ionizes”) an
additional unpaired charge from a shallow impurity state.
Trapped charge carriers and unpaired charge carriers
created in an II process terminate or start their trajectories
in the bulk of the detector, respectively. As a result, they
traverse only a fraction of the voltage bias, producing a
nonquantized amount of NTL energy.
A proper modeling of these detector response effects is

crucial for DM search analyses. In Sec. II, we develop an
analytical model (the so-called “exponential CTII” model)
that describes the NTL energy spectrum for events affected
by the CT and II processes. We improve upon the
previously used CT and II model introduced in Ref. [12]
(the so-called “flat CTII” model) by taking into account the
distribution of locations at which the CT and II processes
occur. We demonstrate a difference between the NTL
energy spectra of events produced on the detector surface
and events produced in the detector bulk that can be used
for statistical discrimination between surface background
and bulk DM events. In Sec. III, we incorporate the CT and
II model into the full detector response model, and take into
account additional surface effects that may be relevant to
certain calibration data. This modeling is used in Sec. IV to
extract detector response parameters for HVeV detectors.

II. EXPONENTIAL CTII MODEL

The underlying physical assumption of the exponential
CTII model is that there are three possible processes that
can occur to a charge carrier (an electron or a hole) when it
traverses the bulk of the crystal under the influence of an
electric field. It can get trapped in an impurity state, it can
create a single free electron from an impurity state by
promoting it into the conduction band, or it can promote an
electron from the valence band to an impurity state, creating

a single hole in the valance band. The probabilities for these
processes to occur may differ between holes and electrons;
therefore we consider in the model a total of six different
CT and II processes: electron trapping (“CTe”), hole
trapping (“CTh”), creation of a hole by an electron
(“IIeh”), creation of an electron by an electron (“IIee”),
creation of an electron by a hole (“IIhe”), and creation of a
hole by a hole (“IIhh”).
The model assumes that each of the six processes has a

small constant probability of occurring at any point of the
charge carrier’s trajectory, independent of the location in
the bulk of the crystal, of the path already traveled by the
charge, and the presence of other charges simultaneously
traversing the crystal. Additionally, it is assumed that
charges propagate along some z axis that is parallel to a
uniform electric field (detectors, including the HVeV
detectors used in Refs. [7,8], are typically designed to
have a uniform electric field throughout the bulk). We start
by considering that impurities are distributed uniformly
throughout the bulk of the crystal, where we let pi denote
the probability for a charge to undergo a certain process i
per unit of distance traveled along the z axis. Here, i refers
to the specific CTor II process a charge may undergo (CTe,
CTh, IIee, IIeh, IIhe, or IIhh). pi itself may depend on
various factors, including the impurity density and the
amount of charge diffusion. If a charge travels a distanceΔz
in n steps, the total probability of the charge not undergoing
some CTor II process C̄iðΔzÞ is ð1 − piΔz=nÞn. In the limit
of infinitesimally small step sizes, C̄iðΔzÞ becomes

C̄iðΔzÞ ¼ lim
n→∞

�
1 − pi

Δz
n

�
n

¼ e−piΔz

¼ e−Δz=τi ; ð4Þ

where the pi term in Eq. (4) is replaced with 1=τi, with τi
defining the characteristic length of that particular CT or II
process. C̄iðΔzÞ is the complementary cumulative distri-
bution function of the probability density function (PDF)
that describes the probability for a charge to travel a
distance Δz before a particular CT or II process occurs.
This PDF is therefore given by

PiðΔzÞ ¼
d

dðΔzÞ ð1 − C̄iðΔzÞÞ

¼ d
dðΔzÞ ð1 − e−Δz=τiÞ

¼ 1

τi
e−Δz=τi : ð5Þ

While these PDFs are described in terms of a distance
traveled, the model also imposes the condition that
the charges terminate when reaching the crystal surface.
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That means for a crystal with a thickness Z, the charges are
bound between z ¼ 0 and z ¼ Z. For convenience we
choose Z ¼ 1, and let z describe the proportion of the
crystal thickness rather than a physical distance. The six
characteristic lengths τi measured in fractions of the crystal
thickness are the only fundamental input parameters of the
model. We write these characteristic lengths in terms of
probabilities fi defined as

fi ≡
Z

1

0

PiðΔzÞdðΔzÞ ¼ 1 − e−1=τi : ð6Þ

Hence fi is the probability of a particular process
occurring if a charge can traverse the entire length of the
detector. Equations (5) and (6) are repeated for each of the
six processes, and together make up the fundamental
building blocks of our exponential CTII model.
The end product of the model is a PDF of the NTL

energy produced in an event. This energy is proportional to
the distance traveled by the charges along the field lines.
We adopt an energy scale Eneh such that a unit of Eneh is
equivalent to the amount of NTL energy produced by a
charge that travels a distance equal to the thickness of the
crystal. Using this energy scale, a charge going from z ¼ 0
to z ¼ 1, as well as an e−hþ pair starting at z ¼ 0.5
whereby both charges travel a distance Δz ¼ 0.5, will
result in a total energy of Eneh ¼ 1. With such units, there is
a one-to-one correspondence between the PDFs of the total
NTL energy and the total distance traveled by the charges
along the electric field.
The exponential CTII model is constructed by finding

the analytical solutions for the NTL energy produced by a
single e−hþ pair for events of three distinct classes. The
first are surface events, where a single charge is created at
one of the surfaces (i.e. along the z ¼ 0 or z ¼ 1 plane) and
propagates toward the opposite surface; this class of events
does not include events created along the lateral surfaces of
the crystal. Surface events correspond to laser or light-
emitting diode (LED) calibration data, whereby optical
photons are absorbed near the z ¼ 0 or z ¼ 1 surface of the
crystal, as well as to charge leakage originating at the
crystal surface. The second class of events are single
charges produced throughout the bulk of the crystal.
These events may correspond to some charge leakage
process that happens throughout the detector bulk. The
third class of events are bulk-e−hþ pairs produced through-
out the bulk of the crystal. These events are what is
expected for DM interactions. For each class of events,
we consider various unique combinations of CT and II
processes occurring to the charges, and solve for the
probabilities of measuring an energy of Eneh given those
unique combinations of processes.
Modeling multiple II processes in a single event poses a

significant challenge: Each additional II process allowed
adds an new charge carrier, causing the number of potential
combinations of CTand II processes to grow exponentially,

and the complexity of each new solution greatly increases.
For this reason, we limit the number of solutions to a certain
“order” of processes, where the order of a process is defined
as follows: For processes of order N, charges that partici-
pated or were produced in a primary II process can take part
in no more than (N − 1) additional II processes. For surface
events and bulk-single-charge events, the solutions for
processes up to second order are found, resulting in 28
unique solutions for each event type. For bulk-e−hþ-pair
events, the solutions for processes up to first order are
found, resulting in 16 unique solutions. When solving for
these analytical solutions, we assume that any charges
existing after the order limit is reached will propagate to a
crystal surface with 100% probability. Appendix A pro-
vides a detailed description of how these solutions are
found, with Appendixes A 1–A 3 adding further details on
solving the solutions for each of the three classes of events.
The full list of process combinations and the corresponding
solutions are cataloged in the Supplemental Material [13]
and are displayed in Fig. 1. It is immediately apparent how
the computed PDFs differ for the different classes of events.
Namely, the regions above and below the first e−hþ-pair
peak are relatively flat for surface events, in contrast to
bulk-e−hþ-pair events where the PDF in the same regions
is more curved. Furthermore, the PDF for bulk-single-
charge events does not have a delta function at Eneh ¼ 1.
The analytical solutions are found for when there is

initially only a single charge or e−hþ pair produced.
However large energy depositions in the crystal will often
produce multiple charges or e−hþ pairs for a single event.

Let Fð1Þ
typeðEnehÞ be the probability distribution function for

one charge or e−hþ pair in the neh-energy space. The “type”
refers to the specific event type to model: either surface
events, bulk-single-charge events, or bulk-e−hþ-pair
events. Fð1Þ

typeðEnehÞ is found by summing the analytical
solutions for the given event type, and examples of this
function are shown by the black, dashed curves in Fig. 1.
Without any additional detector response, the PDF for j

e−hþ pairs FðjÞ
typeðEnehÞ is found by convolving Fð1Þ

typeðEnehÞ
with itself (j − 1) times:

FðjÞ
typeðEnehÞ ¼ Fðj−1Þ

type ðEnehÞ � Fð1Þ
typeðEnehÞ: ð7Þ

In practice, FðjÞ
typeðEnehÞ is found using numerical con-

volution. We can use this to construct the PDF for events
that generate multiple e−hþ pairs, defined as HðEnehÞ. The
solution for HðEnehÞ up to J e−hþ pairs is given by

HðEnehÞ ¼
XJ
j¼1

aj · F
ðjÞ
typeðEnehÞ; ð8Þ

where aj are the weights associated with producing j e−hþ

pairs, which are discussed more in Sec. III. A comparison
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of the PDFs for single-e−hþ-pair events Fð1Þ
typeðEnehÞ and

multi-e−hþ-pair events HðEnehÞ for different event types is
shown in Fig. 2 for arbitrary CT and II probabilities. The
PDFs are convolved with a Gaussian function to emulate
the energy resolution for illustrative purposes. Furthermore,
the solutions are compared to the PDFs computed using the
flat CTII model described in Ref. [12].

The example PDFs from Fig. 2 allow us to make some
broad observations about the exponential CTII model. First,
while the higher-order processes are significant for the single-
e−hþ-pair solutions (as seen in the top plot of Fig. 2 above
Eneh ¼ 2), they generally become less significant or even
negligible for multi-e−hþ-pair solutions. Second, the type of
events beingmodeled has a significant impact on the shape of
the PDFs between the e−hþ-pair peaks. Notably, the
between-peak shape for the bulk-e−hþ-pair events differs
greatly from that of surface events, as well as that of the flat
CTIImodelwhich does not differentiate between event types.

III. EXTENDED DETECTOR RESPONSE MODEL

A. Single- and multihit solutions

Equation (8) describes the PDF of producing a certain
amount of NTL energy for a given event type that generates

FIG. 2. Example PDFs found for single-e−hþ-pair events

Fð1Þ
typeðEnehÞ (top) and multi-e−hþ-pair events HðEnehÞ (bottom).

The PDFs are computed for surface events (solid, blue curves),
bulk-e−hþ-pair events (dashed, green curves), and bulk-single-
charge events (dot-dash, orange curves) using the exponential
CTII model. For comparison, the PDFs computed using the flat
CTII model from Ref. [12] are shown by the dotted, purple curves.
These examples are shown for arbitrary CT and II parameters:
fCTe ¼ fCTh ¼ 20% and fIIee ¼ fIIeh ¼ fIIhe ¼ fIIhh ¼ 2%; for
the flat CTII model, fCT ¼ 20% and fII ¼ 4%. Furthermore, the
multi-e−hþ-pair solutions assume that the aj terms in Eq. (8) that
describe the e−hþ-pair probabilities follow a Poisson distribution
with a mean of two e−hþ pairs. For illustrative purposes, the PDFs
are convolved with a Gaussian function with a width of Eneh ¼
0.05 to emulate the detector energy resolution.

FIG. 1. Analytical solutions in the Eneh energy space of the
exponential CTII model for single-e−hþ-pair events. The unique
solutions represented by the solid, colored curves are found for
surface events (top), bulk-single-charge events (middle), and bulk-
e−hþ-pair events (bottom). This example is shown for arbitrary
values of the CT and II parameters: fCTe ¼ 20%, fCTh ¼ 10%,
fIIee ¼ 1%, fIIeh ¼ 3%, fIIhe ¼ 1%, and fIIhh ¼ 5%, and the top
and middle plots assume that the initial charge is an electron. The
black, dashed curves in each plot are the sums of the analytical

solutions for each event type and are examples of Fð1Þ
typeðEnehÞ, the

one-e−hþ-pair PDF.
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multiple e−hþ pairs, HðEnehÞ, which is derived from the
analytical solutions of the exponential CTII model.
HoweverHðEnehÞ can be extended to include other detector
response effects that are either measured or expected. These
additional effects include ionization probabilities, conver-
sion to the phonon energy scale, and continuous spectra of
energy deposition. To start, we define Hð1Þ as the PDF for
events resulting from a single interaction of a particle with
the crystal, which we call “single-hit” events. Examples of
a single-hit event include a single photon absorbed by the
crystal, or a single DM particle scattering off of an electron.
First we will construct a general formula for Hð1Þ, and then
subsequently see how this formula is used to model specific
interactions from various sources.
The first step to extend the detector response model is to

replace the generic weights aj in Eq. (8) with the prob-
ability mass function (PMF) describing the probability of
producing a given amount of ionization. The ionization
PMF is specific to the detector material, and is a function of
the energy deposited in the detector Edep. Let pehðjjEdepÞ
describe the ionization probability of producing j e−hþ
pairs given Edep. For silicon, results of the ionization yield
at low energies can be found in Ref. [14].
Next we need to convert the PDFs to the correct energy

scale. As mentioned in Sec. I, event energies are measured
by the total phonon energy Eph described by Eq. (3),

whereas the Fð1Þ
type functions of the exponential CTII model

are described in the neh-energy space Eneh. Using Eq. (3),
Eneh can be written in terms of Eph as

Eneh ¼
Eph − Edep

eVbias
: ð9Þ

This change in energy units also changes the overall
scaling of the PDFs. To account for this, the PDFs must be
scaled by a factor of jdEneh=dEphj ¼ 1=eVbias. Finally, we
need to consider the general case where there is a continuum
of energy depositions that can occur for a given source of
events. This continuum can be described by a normalized
differential rate spectrum dR̄=dEdepðEdepÞ, where for a
total single-hit event rate of Rtot, dR̄=dEdepðEdepÞ ¼
1=Rtot · dR=dEdepðEdepÞ. Putting this all together, the
extended detector response model for single-hit events in
the phonon energy space modeled up to J e−hþ pairs is
given as

Hð1ÞðEphÞ ¼
XJ
j¼1

�Z
∞

0

dEdeppehðjjEdepÞ

×
FðjÞ
type

�
Eph−Edep

eVbias

�
eVbias

dR̄
dEdep

ðEdepÞ
�
: ð10Þ

Here we assume that J is large enough such that the
ionization PMF sums to unity for all Edep. As the

dR̄=dEdepðEdepÞ function in Eq. (10) is normalized,
Hð1ÞðEphÞ is describing a PDF for single-hit events from
a given source. We also consider so-called “multihit”
events, which are events generated from simultaneous
particle interactions in the detector. In general, the PDF
solutions for multihit events are found by recursively
convolving the single-hit solution from Eq. (10). An
example of constructing a multihit PDF solution is shown
in Sec. III A 1.
Up to this point, the detector response model has been

described without considering the detector energy resolu-
tion σres. While σres can be incorporated into the model in
different ways, this work assumes that the energy resolution
is constant over Eph. Therefore the single-hit model
including the energy resolution Hð1ÞðEph; σresÞ can be
expressed as

Hð1ÞðEph; σresÞ ¼ Hð1ÞðEphÞ � GðEphjμ ¼ 0; σresÞ; ð11Þ

where GðEphjμ ¼ 0; σresÞ is a Gaussian function with a
mean μ ¼ 0 and width of σres. One could also consider, for
example, an energy resolution that depends on neh. In
which case, a Gaussian function with a width equal to the

energy resolution at each e−hþ-pair peak σðjÞres would be

convolved with the corresponding FðjÞ
type function.

1. Photon-calibration events

A typical way to calibrate the energy of HVeV detectors
is to use a photon source. Specifically in Refs. [7,8], a laser
source of optical photons was pointed at one of the detector
surfaces. The laser was pulsed at some known frequency fγ,
and, depending on the laser intensity, produced an average
number of photons per pulse λ that were detected. The
probability of a given number of photons per laser event is
given by a Poisson distribution with a mean of λ. These
photon-calibration events are therefore examples of multi-
hit events, where the probability distribution must also
account for the probability of the simultaneous absorption
of multiple photons in a single event. The differential
rate dR=dEphðEphÞ for photon-calibration events is then
given by

dR
dEph

ðEphÞ ¼ fγ
XL
l¼0

PoisðljλÞHðlÞðEphÞ; ð12Þ

where HðlÞðEphÞ corresponds to the NTL energy produced
in an event with l ≤ L photons absorbed. Hð0ÞðEphÞ
corresponds to events with no photons absorbed. Such
events may be present in the calibration data if the detector
trigger is synchronized with the laser pulses and λ is small.
In the simplest scenario, Hð0ÞðEphÞ ¼ δðEphÞ. However the
zeroth-e−hþ-pair peak can also take a more complex form,
like the modified Gaussian noise peak described in
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Ref. [12]. Hð1ÞðEphÞ corresponds to events with one
photon absorbed and is generally given by Eq. (10).
HðlÞðEphÞwith l>1 is calculated recursively asHðlÞðEphÞ ¼
Hðl−1ÞðEphÞ �Hð1ÞðEphÞ.
For photon-calibration events, we assume that the

photons are absorbed sufficiently close to a detector surface
such that these events can effectively be modeled as surface
events created along the z ¼ 0 or z ¼ 1 plane. Furthermore
for a spectrum of photon energies Eγ , dR̄=dEdep ¼ dR̄=dEγ .
For an LED source, dR̄=dEγ is the normalized energy
spectrum of the LED photons. Yet for a laser source like in
Refs. [7,8], the photons are monoenergetic, and therefore
dR̄=dEdep ¼ δðEdep − EγÞ. Moreover the laser used for the
calibration in Refs. [7,8] produced 1.95 eV photons which,
for silicon, always ionize exactly one e−hþ pair per
absorbed photon [14]. Photons of this energy have an
absorption length in silicon of Oð10 μmÞ which, for a
detector that is 4 mm thick [8], is sufficiently small to
model these events as surface events. For this particular
case, Eq. (10) reduces to

Hð1ÞðEphÞ ¼
Fð1Þ
surf

�
Eph−Eγ

eVbias

�
eVbias

: ð13Þ

Again if we assume a constant energy resolution σres,
Eq. (12) is convolved with a Gaussian function with a mean
μ ¼ 0 and a width of σres in order to compute dR=dEphðEphÞ
with the energy resolution. The distinction between single-
hit andmultihit events displayed here is subtle yet important.
For the case of low-energy photon-calibration events, the
multi-e−hþ-pair peaks observed are not due tomultiple e−hþ
pairs ionized from a single absorbed photon, but rather
simultaneously absorbed photons that each ionize a single
e−hþ pair.

2. Dark matter events

For any dark matter search experiment, a detector
response model is required to determine the expected
signal distribution of a DM candidate in the detector.
Therefore Eq. (10) can also be used to compute expected
DM signals in HVeV detectors. Unlike photon-calibration
events, DM interactions are considered to be single-hit
events; generally DM models exclude the possibility of the
simultaneous interaction of multiple DM particles with a
detector. While the exact signal distribution will depend on
the specific DM candidate that is modeled, we will look at
examples of two DM candidates commonly searched for
using HVeV detectors.
The first candidate is the dark photon that is modeled, for

example, in Ref. [15]. In this model, nonrelativistic dark
photons with a massmA0 constitute all relic dark matter. The
interaction rate of dark photon absorption RA0 ðmA0 ; εÞ
depends on its mass and is proportional to the kinetic

mixing parameter ε that couples dark photons to standard
model photons. In this model dark photons provide a
monoenergetic source of energy deposition equal to its
mass such that dR̄=dEdep ¼ δðEdep −mA0c2Þ, where c is the
speed of light. Substituting this into Eq. (10) and noting that
DM interactions are modeled as bulk-e−hþ-pair events, the
differential rate of dark photon absorption dRA0=dEphðEphÞ
is given by

dRA0

dEph
ðEphÞ ¼ RA0 ðmA0 ; εÞHð1ÞðEphÞ

¼ RA0 ðmA0 ; εÞ
�XJ

j¼1

pehðjjmA0c2Þ

×
1

eVbias
FðjÞ
bulk-eh

�
Eph −mA0c2

eVbias

��
: ð14Þ

The second candidate we consider is light DM that
elastically scatters off of electrons, as described in
Ref. [16]. In this model, the dark matter particle χ with
mass mχ is also assumed to constitute all relic DM, and
scattering interactions with electrons are mediated via a
dark-sector gauge boson. The total rate of DM-electron
scattering interactions Rχðmχ ; σ̄eÞ is dependent on the DM
mass as well as the effective DM-electron scattering cross
section σ̄e. However, this DM-electron scattering process
produces a spectrum of recoil energies Er. Specifically in
Ref. [16], the recoil spectra are provided as rates over
discrete recoil energy bins. Therefore the integral of
dR̄=dEdep in Eq. (10) is replaced by a sum over weights

wk corresponding to the recoil energies EðkÞ
r , where the

weights are normalized such that
P

k wk ¼ 1. The differ-
ential rate of DM-electron scattering dRχ=dEphðEphÞ is then
given by

dRχ

dEph
ðEphÞ ¼ Rχðmχ ; σ̄eÞHð1ÞðEphÞ

¼ Rχðmχ ; σ̄eÞ
�XJ

j¼1

X
k

pehðjjEðkÞ
r Þ

×
wk

eVbias
· FðjÞ

bulk-eh

�
Eph − EðkÞ

r

eVbias

��
: ð15Þ

The different rate functions in Eqs. (14) and (15) do not
yet include the detector energy resolution. As before we
assume that σres is constant over Eph, and therefore the
energy resolution is incorporated by convolving Eqs. (14)
and (15) with a Gaussian function with a mean μ ¼ 0 and a
width of σres.
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B. Nonionizing energy deposition

The detector response model can be extended further by
modeling other phenomena that are observed in the
detector. One such phenomenon is the apparent deposition
of nonionizing energy measured together with photon-
calibration events. We surmise that this detector response
effect occurs in HVeV detectors because of the observed
dependence of the e−hþ-pair peak positions on λ, the
average number of photons per laser or LED pulse [17].
One hypothesis is that some proportion of photons is
absorbed directly into the aluminum fins of the phonon
sensors. Another hypothesis is that, due to the random
initial trajectory of electrons and holes after ionizing, there
is some probability that both charges will happen to
recombine at the nearest detector surface. This so-called
surface-trapping effect has been observed in detector
simulations using G4CMP [18,19], and is illustrated in the
top plot of Fig. 3. In any case, these hypotheses suppose
that some proportion of photons will deposit some non-
ionizing energy without generating a typical e−hþ pair that
undergoes the bulk CT and II processes.
In the case of the hypothesized surface-trapping effect,

we can include this effect in the model by modifying the
single-hit PDF for photon-calibration events described by
Eq. (13). Let α be the probability of the created e−hþ pair to
undergo surface trapping, where 0 ≤ α ≤ 1. That means
there is a (1 − α) probability that the e−hþ pair will
propagate through the crystal, undergoing the typical bulk
CT and II processes. For photons that undergo surface
trapping, the deposited energy will only be the absorption
energy of the photon Eγ. We are then able to include the
surface-trapping effect by modifying Eq. (13) in the
following way:

Hð1ÞðEphÞ → αδðEph − EγÞ þ ð1 − αÞHð1ÞðEphÞ
¼ αδðEph − EγÞ

þ ð1 − αÞ
eVbias

Fð1Þ
surf

�
Eph − Eγ

eVbias

�
: ð16Þ

The multihit solution for photon-calibration data with
the surface-trapping effect is given by Eq. (12), where
HðlÞðEphÞ is found by recursively convolving Eq. (16) with
itself. The result of including the surface-trapping effect in
the detector response model is illustrated in the bottom two
plots of Fig. 3. Due to the presence of nonionizing photons,
each peak in the spectrum splits into multiple subpeaks
separated by Eγ, as seen in the middle plot of Fig. 3 before
resolution smearing. Each subpeak corresponds to q ion-
izing photons and p nonionizing photons, with the subpeak
location defined as q · eVbias þ ðqþ pÞ · Eγ . Note that a

FIG. 3. Top: illustration of the hypothesized surface-trapping
effect as observed from simulation data using G4CMP [18,19].
Two examples are shown of the trajectory of an ionized e−hþ pair
in terms of the depth below the detector surface and the
perpendicular x-coordinate relative to the hit position of the
absorbed photon. The right example shows a typical event, where
the electron eventually travels in the direction opposing the
electric field. The left example shows a surface-trapped event,
where the electron recombines with the detector surface before it
can turn around. Middle and bottom: examples of modeling
the surface-trapping effect using Eqs. (12) and (16) with
Vbias ¼ 100 V, Eγ ¼ 1.95 eV, fγ ¼ 1 Hz, and arbitrary CT
and II probabilities. The additional spikes seen in the middle
plot demonstrate the contribution of nonionizing energy depo-
sition when α > 0which, when smeared by the energy resolution,
widen and shift the e−hþ-pair peaks. This effect also causes a
peak position dependence on λ, as demonstrated by the bottom
plot with α ¼ 0.3.
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subpeak corresponding to p and q is part of the function
HðqþpÞðEphÞ, rather than of the function HðqÞðEphÞ.
Therefore, in order to properly model the substructure of
the qth e−hþ-pair peak, modeling of higher e−hþ-pair
peaks is required. When normalized, the underlying ampli-
tudes of the subpeaks in each e−hþ-pair peak follow a
Poisson distribution of the number of nonionizing photons
with a mean of α · λ (see Appendix B for more details). To
include all the significant subpeaks, it is recommended to
set the maximum number of modeled peaks [L in Eq. (12)]
to a number exceeding the number of peaks in the region
of interest by the mean number of nonionizing photons plus
at least 3 standard deviations of its distribution, i.e. by
ðα · λÞ þ 3 ·

ffiffiffiffiffiffiffiffiffiffiffiffiðα · λÞp
.

When the energy resolution is applied, the peak sub-
structure from nonionizing photons gets smeared and
appears as a shift and a widening of the e−hþ-pair peaks,
as shown in the bottom two plots of Fig. 3. When λ
increases, there is a greater contribution from nonionizing
photons, resulting in wider peaks that are shifted by a larger
amount.

IV. RESULTS

To demonstrate the performance of the exponential
CTII and extended detector response model described in
Secs. II and III, we fit the model to laser-calibration data
acquired from Ref. [8]. Specifically, the model for photon-
calibration events described by Eqs. (12) and (13) is fit to
laser-calibration datasets from Ref. [8] acquired with
Vbias ¼ 100 V and Eγ ¼ 1.95 eV. The individual datasets
differ by the laser intensity used during data acquisition,
and thus by the value of λ. The fits of the model to two of
these datasets are shown in Fig. 4. For simplicity, we
reduced the number of parameters in the fits by requiring

fCTe ¼ fCTh ≡ fCT;

fIIee ¼ fIIeh ¼ fIIhe ¼ fIIhh ≡ fII
2
: ð17Þ

We obtain the best-fit results from the fit to the left (right)
laser-calibration dataset in Fig. 4 of λ ¼ 0.41� 0.01
(0.475� 0.005), σres ¼ 3.30� 0.04 eV (3.37� 0.02 eV),
fCT ¼ 11.6� 0.6% (12.1� 0.3%), and fII ¼ 0.7� 0.4%
(0.9� 0.2%). Within uncertainties, these results are con-
sistent with the results obtained by fitting the flat CTII
model from Ref. [12] to the same datasets. The consistency
of the results is expected, as the flat CTII model has
previously demonstrated that it can accurately describe
photon-calibration data [20]. Figure 4 shows that the
exponential CTII model is able to obtain equivalent results
for this relatively simple scenario. However as will be
shown below, the advantages of the model presented in this

work become apparent when including additional detector
response effects or when modeling different event types.
We can further evaluate the extended detector response

model by performing a simultaneous fit of the model to
multiple photon-calibration datasets. To do this, the simul-
taneous fit to multiple datasets is done separately for data
acquired from two different experiments. The first are three
laser-calibration datasets acquired in Ref. [8]. The second
are three LED-calibration datasets acquired at the
Northwestern EXperimental Underground Site (NEXUS)
at Fermilab (Batavia, IL). This NEXUS facility is located in
the NUMI tunnel, which provides an overburden of 225
mwe [21], and hosts a Cryoconcept dry dilution refriger-
ator. The LED-calibration data reported in this work were
acquired by one of four 1-cm-side HVeV detectors that
were operated at NEXUS between May 14 and July 27,
2022. More information about the experiment design, data
acquisition, and data analysis can be found in Ref. [22].
There are several key similarities and differences

between laser-calibration datasets acquired in Ref. [8]
and the LED-calibration datasets acquired at the NEXUS
facility reported in this work. In both cases, the data were
acquired using an HVeV detector with an “NF-C” sensor
design [11]. Both devices are constituted by a 10 × 10 ×
4 mm3 silicon target with two channels of quasiparticle-
trap-assisted electrothermal-feedback transition-edge sen-
sors [23] (QETs) patterned on the top surface to measure
the phonon signal. While the HVeV detector used to
acquire the NEXUS data is not the same as the one used
in Ref. [8], the substrate from both detectors belongs to the
same silicon wafer. This means that the impurity levels in
both detectors are likely to be similar.
Furthermore, both detectors generated an electric field

throughout the bulk of the crystal by applying a high voltage
to an aluminum electrode deposited on the detector surface

FIG. 4. Results of fitting the exponential CTII and extended
detector response model to two laser-calibration datasets from
Ref. [8] acquired with Vbias ¼ 100 V and Eγ ¼ 1.95 eV. The
residuals from the fit results are shown in the bottom plots.
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opposite the surface patterned with the QETs; the QET
surface of the detectors was kept grounded. In Ref. [8], laser-
calibration data were acquired by emitting 1.95 eV photons
from a laser onto the center of theQET face of the detector. In
contrast, the LED-calibration data from the NEXUS facility
were acquired using an∼2 eV LED collimated on the center
of the electrode face of the detector. Yet the data from both
detectors were acquired with Vbias ¼ þ100 V. This means
that for the laser-calibration data from Ref. [8], the initial
propagating charges are electrons, whereas for the LED-
calibration data from the NEXUS facility, the initial propa-
gating charges are holes. Moreover, because the LED-
calibration data from the NEXUS facility illuminated the
electrode face of the detector, any nonionizing energy
deposition due to photon absorption into the aluminum fins
of the QETs is expected to be minimal, especially compared
to the laser-calibration data from Ref. [8].
We fit the extended model assuming nonionizing energy

deposition caused by surface trapping [Eq. (16)] simulta-
neously to three laser-calibration datasets from Ref. [8] and
three LED-calibration datasets from the NEXUS facility, all
acquired with Vbias ¼ 100 V. Each fit includes the param-
eters λ1, λ2, and λ3 corresponding to the λ value of each
dataset, but includes only one value of fCT, fII, σres, and α
for all datasets. For simplicity, we again reduced the
number of parameters in the fit by imposing the require-
ments given by Eq. (17).
In the fit to the data from Ref. [8], we kept the energy of

the laser photons fixed at Eγ ¼ 1.95 eV, whereas in the fit
to the NEXUS datasets, we allowed the energy of the LED
photons to float. Furthermore, a measurement of the LED
wavelength spectrum at 4 K found the spread in photon
energies to be ∼0.0012 eV, and therefore we can
adequately treat the LED as a monoenergetic source of
photons described by Eq. (13). For the NEXUS datasets,
we additionally included parameters to calibrate the data.
The calibration converts the pulse amplitude A (in units of
μA) of each event to the total phonon energy Eph. The fit
includes three calibration parameters c0, c1, and c2 that
follow the equation

A ¼ c0 þ c1 · Eph þ c2 · E2
ph; ð18Þ

where the quadratic coefficient c2 is included to account for
any saturation effects in the QET sensors that can cause a
nonlinear response at higher energies [11].
The top and bottom plots of Fig. 5 show the fit results to

the datasets from Ref. [8] and the dataset acquired at the
NEXUS facility, respectively. The best-fit results of the fit
parameters are listed in Table I. As the CT and II
probabilities of the initial propagating charge have the
largest impact on the expected signal for photon-calibration
events, we can interpret the values of fCT and fII from the
fits to the datasets from Ref. [8] and the datasets acquired at
the NEXUS facility as the CT and II probabilities for

electrons and holes, respectively. Therefore, these results
suggest that for these detectors (that come from the same
silicon wafer), the CT probability for electrons may be
higher than for holes. By using Eq. (6) and knowing that the
thickness of these detectors is 4 mm, the fitted fCT values in
Table I can be converted to the characteristic lengths of CT,
giving 27.6� 0.4 mm and 32.7� 0.6 mm for electrons
and holes, respectively.

FIG. 5. Results of simultaneous fits of the extended detector
response model to three laser-calibration datasets from the HVeV
detector in Ref. [8] (top) and three LED datasets acquired from a
HVeV detector at the NEXUS facility (bottom). All of the
datasets were acquired with Vbias ¼ 100 V. The model assumes
nonionizing energy deposition caused by surface trapping as
described by Eq. (16). The inset plots show the data and fit
enlarged around the first e−hþ-pair peak in order to clearly
observe the peak shifts between datasets.
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In both cases, the fit determined the amount of surface
trapping to be ∼40%. Indeed the inset plots in Fig. 5 that
are enlarged around the one e−hþ-pair peak clearly show
the peak position dependence on λ—a feature predicted
when assuming surface trapping. Notably, the surface-
trapping probability found for the NEXUS data (where
the LED photons are illuminated on the electrode face of
the detector) is slighter higher compared to the data from
Ref. [8]. This strongly disfavors the hypothesis that non-
ionizing energy deposition occurs due to photons being
absorbed directly into the aluminum fins of the QETs.
While this result supports the surface-trapping hypothesis,
we stress that it is just one interpretation of these data.
Additional dedicated measurements are needed to confirm
these detector response effects, as well as to understand the
differences that these effects have on electrons and holes.
We can additionally demonstrate the differences in the

detector response for expected DM signals which, as
mentioned in Sec. III A, are modeled as bulk-e−hþ-pair
events. To do this, we ran simulations using G4CMP [18,19]
of two DM models by generating events within the bulk of
a silicon HVeV detector with Vbias ¼ 100 V. The first
simulated signal is dark photon absorption following
Ref. [15] with a dark photon mass mA0 ¼ 10 eV=c2 and
kinetic mixing parameter ε ¼ 10−12, and the second is DM-
electron scattering following Ref. [16] with a DM mass
mχ ¼ 5 MeV=c2, effective DM-electron scattering cross
section σ̄e ¼ 10−33 cm2, and a DM form factor of
FDM ¼ 1. The total number of events in both simulations
were determined assuming an exposure of 6 gram days, and
the ionization PMFs in the simulations are computed using
the binomial approach taken in Refs. [7,8]. Finally, we
assumed an energy resolution of σres ¼ 3 eV and the
following CT and II probabilities: fCTe ¼ fCTh ¼ 10%
and fIIee ¼ fIIeh ¼ fIIhe ¼ fIIhh ¼ 1%.

The results of these simulations are shown in Fig. 6,
which also shows the expected signal for the two DM
models computed using the exponential CTII and extended
detector response model from this work following Eqs. (14)
and (15). It is important to note that G4CMP-based simu-
lations model CT and II processes using the same PDF
described by Eq. (5) and are parametrized using character-
istic lengths [18]. The consistency between the solid,
orange curves and simulated data shown in Fig. 6 therefore
provides a verification of the analytical solutions found for
the various CT and II processes modeled. For comparison,
Fig. 6 also shows the expected DM signals computed using
the flat CTII model from Ref. [12] which, unlike the
exponential CTII model, does not distinguish between
surface and bulk event types. Differences in the energy
spectra for different event sources are evident by comparing
Fig. 6 with the energy spectra seen in Figs. 4 and 5. Our
modeling expects the signal shape in the between-peak
regions to differ for a bulk-e−hþ-pair source of events, such
as DM, compared to surface events, such as photon-
calibration data. The signal shape in the between-peak
regions has a lot more curvature for bulk-e−hþ-pair events,
in contrast to the relatively straight signal shape between
the peaks for surface events. This feature is not captured by
the flat CTII model, as evident in Fig. 6.

V. DISCUSSION

The exponential CTII model introduced in Sec. II
addresses several limitations of the flat CTII model from
Ref. [12]. This more robust model adopts a more physically
motivated approach to describe CT and II processes in
phonon-based crystal detectors. Consequently, it effectively
characterizes the detector response across a range of event
types and allows for the differentiation of CT and II
probabilities for electrons and holes. These advantages,

TABLE I. Best-fit results found by fitting the extended model assuming nonionizing energy deposition caused by
surface trapping [Eq. (16)] simultaneously to multiple datasets. The results in the left column are determined from
the fit to three laser-calibration datasets from Ref. [8], and the results in the right column are determined from the fit
to three LED-calibration datasets from the NEXUS facility presented in this work. The fit to the NEXUS data also
allowed the energy of the LED photons Eγ to float, and included the calibration parameters c0, c1, and c2.

Laser data (Reference [8]) LED data (NEXUS)

λ1 3.18� 0.04 2.2� 0.1
λ2 0.66� 0.02 4.2� 0.2
λ3 2.90� 0.03 5.7� 0.2
fCT (%) 13.5� 0.2 11.5� 0.2
fII (%) 0.4� 0.2 0.0þ0.3

−0.0
σres (eV) 3.41� 0.02 2.71� 0.06
α (%) 36.9� 0.7 41� 2
Eγ (eV) 2.02� 0.07
c0 (μA) ð1.7� 0.2Þ × 10−3

c1 (μA=eV) ð9.102� 0.006Þ × 10−4

c2 (μA=eV2) ð−242� 7Þ × 10−10
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coupled with the expanded detector response model
detailed in Sec. III, provide a more accurate representation
of the detector’s response to different sources of events.
The exponential CTII model combined with the

extended response model assuming nonionizing energy
deposition caused by surface trapping is shown in Fig. 5 to
provide an accurate description of laser-calibration data
from Ref. [8] and LED-calibration data acquired from the
NEXUS facility reported in this work. While these results
are encouraging, we note that this model may not encom-
pass all relevant detector response effects that may occur.
Rather, these results motivate us to acquire future mea-
surements in order to continue investigating the full extent
of these effects. Apart from understanding detector
response effects, the result of the fit to the NEXUS data
shown in Fig. 5 and Table I additionally demonstrates how
the extended detector response model can be utilized to

calibrate the detector. Incorporating these additional detec-
tor response effects can help to improve the accuracy of the
energy calibration.
Furthermore, Fig. 6 illustrates how the signal shape

differs for DM models, where the detector response is
instead modeled by bulk-e−hþ-pair events. Indeed the
analytical solutions to the exponential CTII model pre-
sented in this work match the spectra of events simulated
using G4CMP, whereby CT and II processes are also para-
metrized using characteristic lengths [18]. The ability of the
exponential CTII model to describe different event types
provides a large advantage over the flat CTII model from
Ref. [12], and can enable statistical discrimination between
different background signals and expected DM signals.
Yet it is equally important to outline the limitations of the

exponential CTII model. Physically, this model provides no
description of the underlying mechanisms of CT or II
processes, and simply assumes that there is some proba-
bility that these processes occur due to impurities through-
out the crystal bulk. The characteristic lengths of these
processes, τi, could depend not only on the density of
impurities, but also on the strength of the electric field,
prebiasing history, “baking” history (impurity neutraliza-
tion by detector irradiation), and temperature [24,25].
Furthermore, as mentioned in Sec. II, the exponential
CTII model limits the analytical solutions to second-order
processes for surface and bulk-single-charge events, and
first-order processes for bulk-e−hþ-pair events. This limi-
tation is a practical necessity, as including higher-order
processes would exponentially increase the number and the
complexity of solutions to solve for. However, the prob-
ability of II has been found in measurements to be of the
order of 1% [8,20]. Therefore second- and third-order
processes are expected to be extremely subdominant with
probabilities ≪ 0.01%. Nevertheless, this limitation is
quantitatively assessed for each event type in Appendix C.
While the detector response effects described in this

work can also be modeled using Monte Carlo (MC)
simulations, the exponential CTII model also provides a
considerable computational advantage. For instance, cal-
culating a DM exclusion limit requires the calculation of
the expected DM signal, which itself may need to be
computed for a large selection of CT or II values. The
analytical solutions found for the exponential CTII model
provide a quick and easy method for generating multiple
DM signals with different CT or II probabilities compared
to the computationally intense method of running many
MC simulations.
The bulk CT and II processes modeled in this work are

also present in other solid-state DM experiments, including
SENSEI and DAMIC-M [26,27]. These experiments use
charge-coupled devices (CCDs) that read out the amount of
charge collected at each pixel. As such, charges that
become trapped within the bulk of the crystal result in a
signal loss. Furthermore, because charge packets are

FIG. 6. Simulated data of events generated in the bulk of a
silicon HVeV detector with Vbias ¼ 100 V for DM signals using
G4CMP [18,19]. The simulations were run for (top) dark photon
absorption following Ref. [15] with mA0 ¼ 10 eV=c2 and ε ¼
10−12 and (bottom) DM-electron scattering following Ref. [16]
with mχ ¼ 5 MeV=c2, σ̄e ¼ 10−33 cm2, and FDM ¼ 1. For run-
ning the simulations, we assumed an exposure of 6 gram days, an
energy resolution of σres ¼ 3 eV, and CT and II probabilities of
fCTe ¼ fCTh ¼ 10% and fIIee ¼ fIIeh ¼ fIIhe ¼ fIIhh ¼ 1%. The
solid, orange curves are the expected signals computed using our
model following Eqs. (14) and (15). For comparison, the dashed,
purple curves are the expected signals computed using the flat
CTII model from Ref. [12].

IMPROVED MODELING OF DETECTOR RESPONSE EFFECTS IN … PHYS. REV. D 109, 112018 (2024)

112018-11



required to move from pixel to pixel, the drift length of
charges is typically larger for CCD detectors compared to
HVeV detectors. The proposed Oscura experiment aims to
account for this signal loss by considering that these
trapped charges may be released at a later time and
measured as single-electron events [28]. This bulk trapping
is distinct from charge transfer inefficiency that occurs in
CCD detectors, whereby charges are lost to surrounding
pixels as the charge packet is moved from pixel to pixel. As
shown in this work, the advantage of using phonon-based
crystal detectors, including HVeV detectors, lies in the
ability to exploit the nonquantized e−hþ-pair peaks regions
on the energy spectrum to extract CT and II parameters as
well as to differentiate among different sources of events.
Future plans involve dedicated detector response inves-

tigations using HVeV detectors. For example, taking CT
and II measurements using crystals of different impurity
levels while varying the voltage bias or the amount of
prebiasing applied to the crystals can help develop our
understanding of the factors that contribute to CT and II.
Taking measurements with different voltage polarities will
allow us to probe the differences in CT and II processes for
electrons and holes. Furthermore, we aim to explore addi-
tional detector response effects and phenomena, including
sources of nonionizing energy deposition. While these
proposed measurements can be made using a photon-
calibration source, finding a source of low-energy, bulk-
e−hþ-pair events would additionally allow us to investigate
the detector response expected for DM signals. The
nuclear-recoil ionization yield measurement in Ref. [29]
demonstrates a method of producing such events by
measuring low-energy neutron recoils off of the nuclei
of an HVeV detector. The model presented in this work not
only provides a more robust understanding of the detector
response effects in phonon-based crystal detectors, but can
be utilized to help discriminate among different sources of
events in order to improve the sensitivity of DM search
experiments.
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APPENDIX A: SINGLE-e−h+ -PAIR SOLUTIONS

This appendix provides details on how to find the unique
solutions for single-e−hþ-pair events. As mentioned in
Sec. II, the events are categorized into three distinct classes:
surface event, bulk-single-charge events, and bulk-e−hþ-
pair events. Recall that both propagating electrons and holes
have three processes which can occur: charge trapping (CTe
and CTh), creation of a charge of the same kind (IIee and
IIhh), and creation of a charge of the opposite kind (IIeh and
IIhe). When writing the equation for the probability of a
particular scenario occurring, we must consider the prob-
abilities of all possible processes. For example, consider the
probability of CT for a propagating electron as a function of
Δz,PCTeðΔzÞ. The probability ofCTe occurring at a distance
Δz traveled is the probability of CTe occurring atΔz and IIee
not occurring by Δz and IIeh not occurring by Δz. Using
Eqs. (4) and (5), this scenario is described by

PCTeðΔzÞ ¼
1

τCTe
e−Δz=τCTe · C̄IIeeðΔzÞ · C̄IIehðΔzÞ

¼ 1

τCTe
e−Δzð1=τCTeþ1=τIIeeþ1=τIIehÞ

¼ 1

τCTe
e−ΔzTe ; ðA1Þ

where we define

Te ≡ 1

τCTe
þ 1

τIIee
þ 1

τIIeh
: ðA2Þ

Equivalent equations to Eq. (A1) can be found for the
other five unique processes and by defining

Th ≡ 1

τCTh
þ 1

τIIhe
þ 1

τIIhh
: ðA3Þ

We also need to consider the probability of a charge
propagating a distance Δz without any CT or II process
occurring. In this context, it is evaluating the probability of
a charge reaching one of the crystal surfaces after traveling
a distance Δz. We denote this probability as PSðΔzÞ. For a
propagating electron, this probability is given by

PSðΔzÞ ¼ C̄CTeðΔzÞ · C̄IIeeðΔzÞ · C̄IIehðΔzÞ
¼ e−ΔzTe : ðA4Þ

Equivalently, the probability for a propagating hole to
reach a surface without a CT or II process occurring as a
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function ofΔz is PSðΔzÞ ¼ e−ΔzTh . Equation (A4) says that
if a charge travels the full length of the detector (i.e.
Δz ¼ 1), the probability that it does not undergo a CT or II
process is e−Te=h .
So far,wehave onlydescribedprobabilities of propagating

charges undergoing CT and II processes as a function of the
distance traveled.However, detectors donot directlymeasure
the distance charges are able to travel. As mentioned in
Sec. II, the NTL energy measured by the detector is propor-
tional to the distance traveled by the charges. In this para-
metrization, the energy measured due to ionization is
therefore equal to the total distance traveled by all propa-
gating charges involved with an event. The probability of
measuring some energy E (where E is in neh-energy space
denoted as Eneh is Sec. II) can be described as the sum of
probabilities whereby the total distance traveled by all
charges ztot is equal to E. While there is no direct constraint
on ztot, and thus E, individual charges are constrained by the
bounds of the crystal surfaces (i.e. 0 ≤ z ≤ 1).
Using the understanding of how the measured energy is

related to the distance traveled by the propagating charges,
we can start by solving for the almost trivial solutions,
which will also create a set of base equations in which all
other solutions can be found. We consider the solutions for
charges propagating toward the z ¼ 0 and z ¼ 1 surfaces
separately. For a charge traveling toward the z ¼ 1 surface
that starts at a position z0, the total energy that can be
measured by the charge is E ¼ 1 − z0. Conversely for a
charge traveling toward the z ¼ 0 surface that starts at a
position z0, the total energy that can be measured by the
charge is E ¼ z0. Using Eq. (A4), we can write the
probability distribution for a charge reaching the z ¼ 0
and z ¼ 1 surfaces as

P0
S;qðE; z0Þ ¼ δðE − z0Þe−z0Tq ;

P1
S;qðE; z0Þ ¼ δðE − 1þ z0Þe−ð1−z0ÞTq ; ðA5Þ

where the subscript q ¼ ðe; hÞ indicates if the charge is an
electron or hole, and the superscripts 0 and 1 indicate which
surface the charge is traveling toward. Next, we consider
the probability distribution of measuring an energy E
before some CT or II process occurs. For now, whether
the process is CTor II does not matter. These base solutions
are found using Eq. (A1) as a framework and solved
separately for charges propagating toward the z ¼ 0 and
z ¼ 1 surfaces. For charges that undergo some process i
and start at a position z0, these probability distributions
PiðE; z0Þ go as

P0
i ðE; z0Þ ¼

� 1
τi
e−E·Tq ; 0 ≤ E < z0;

0 else;

P1
i ðE; z0Þ ¼

� 1
τi
e−E·Tq ; 0 ≤ E < 1 − z0;

0 else;
ðA6Þ

where again the superscripts 0 and 1 indicate the direction
of propagation.
Some specific solutions can immediately be found from

Eq. (A6). Specifically when a charge undergoes CT, the
charge can no longer propagate and produce more energy
or undergo additional processes. Therefore Eq. (A6) are
also the solutions for the probability distribution of a CT
process for a charge starting at a position z0. This is
decisively not the case for a charge that undergoes II, as
both the initial charge and the newly created charge will
continue to traverse the crystal and increase the energy
measured. Nevertheless, Eqs. (A5) and (A6) provide the
necessary foundation for calculating the probability dis-
tribution for any specific scenario. Equipped with the base
equations of the probability distributions in energy for
propagating charges traveling in either direction with some
starting position, we can now analytically solve for the
single-e−hþ-pair probability distributions corresponding to
specific events and scenarios.

1. Surface events

A surface event starts with the creation of either an e− or
a hþ at the starting position z0 ¼ 0 or z0 ¼ 1. Knowing the
polarity of the voltage bias and the starting position will
necessarily decide whether the propagating charge is an e−

or a hþ. We can reduce the number of solutions to solve for
by accounting for the symmetries that exist in this scenario.
First, if a solution is found for when an e− is the initial
propagating charge, the solution for when a hþ is the initial
propagating charge can be immediately found by swapping
the τ and T parameters. Therefore we need only to keep the
distinction between charges that are the same as the initial
charge and charges that are the opposite. This is done by
replacing the “e” and “h” labels in the τ and T parameters
with “s” and “o” labels to indicate the same or opposite
charge. Second, the solutions should be the same whether
the charge is propagating toward the z ¼ 0 or
z ¼ 1 surface. Therefore solutions need only be found
for one direction of propagation. However for good
practice, the solutions were solved for both directions of
propagation and are confirmed to give matching results.
Here wewill solve some of the solutions for when the initial
charge is propagating toward z ¼ 1.
We start by defining the probability distribution of the

initial starting position of the charges. For surface charges
that propagate toward z ¼ 1, the probability distribution of
the initial starting position Psurfðz0Þ trivially goes as

Psurfðz0Þ ¼ δðz0Þ: ðA7Þ

Next, we can begin to solve for the solutions corre-
sponding to specific scenarios. These probability distribu-
tions are indexed as PkðEÞ, where k iterates through the
different solutions. The first, and easiest, solution to solve
for is the case where the initial charge reaches the surface
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without a CT or II process occurring. This probability
P0ðEÞ is found by combining Eqs. (A5) and (A7),

P0ðEÞ ¼
Z

∞

−∞
Psurfðz0ÞP1

S;sðE; z0Þdz0

¼
Z

∞

−∞
δðz0ÞδðE − 1þ z0Þe−ð1−z0ÞTsdz0

¼ δðE − 1Þe−Ts : ðA8Þ

The solution to P0ðEÞ is a delta function at E ¼ 1 with
an amplitude of e−Ts . This makes sense, as a charge
traveling from z ¼ 0 to z ¼ 1 will produce exactly one
e−hþ pair worth of energy. Next, we can solve for the
solution when the initial charge undergoes CT, P1ðEÞ,
which is found by combining Eqs. (A6) and (A7),

P1ðEÞ ¼
Z

∞

−∞
Psurfðz0ÞP1

CTsðE; z0Þdz0

¼
Z

∞

−∞
δðz0ÞP1

CTsðE; z0Þdz0
¼ P1

CTsðE; 0Þ

¼
� 1

τCTs
e−Ts·E; 0 ≤ E < 1;

0 else:
ðA9Þ

The next scenario to consider is the case where the initial
charge creates a new, like charge, and both the original
charge and the new charge happen to reach the surface. We
call this probability distribution P2ðEÞ. Let zII be the
position where the new charge is created. It is important
to remember that the quantity we are interested in is the
total distance traveled by all the charges in the scenario. It is
helpful to think about the energy gained by each “segment”
of charge propagation. In this scenario, there are three such
segments: the initial charge that travels from z0 to zII, and
the initial and additional charges that each travel from zII to
z ¼ 1. It is additionally helpful to think of E as fixed

number that constrains the problem. We want to find the
combinations of segments that result in E total energy.
Let E2a and E2b be the energy contributions from each of

the two charges after II. The combined energy contribution
from both charges after II is therefore E2 ¼ E2a þ E2b. If
E1 is the energy contribution of the initial charge before II,
then the total energy measured will be E ¼ E1 þ E2. We
also know that E1 can be expressed as zII − z0. Rearranging
gives zII ¼ E − E2 þ z0. What we have done is expressed
zII not as a position in the crystal, but rather in terms of
energy contributions. The choice of expressing the param-
eters this way initially seems odd. After all, we already
know that E2a and E2b are equal in this scenario. But that is
not true for all scenarios, and it turns out that this way of
formulating the problem provides a generic framework for
solving all of the solutions.
We first need to find the probability that the energy

contribution after II is E2. This probability is equal to the
probability that one charge contributes an energy of E2a
times the probability that the other charge contributes an
energy of E2 − E2a, given a starting position of zII and
summed over all possibilities of E2a. Expressed in terms of
the base equations from Eq. (A5) gives

PðE2Þ ¼
Z

∞

−∞
dE2aP1

S;sðE2a; E − E2 þ z0Þ

× P1
S;sðE2 − E2a; E − E2 þ z0Þ

¼
Z

∞

−∞
dE2aδðE2a − 1þ E − E2 þ z0Þ

× δðE2 − E2a − 1þ E − E2 þ z0Þe−2ð1−EþE2−z0ÞTs

¼ δð2E − E2 − 2þ 2z0Þe−2ð1−EþE2−z0ÞTs : ðA10Þ

Next, the probability of having a total energy of E for a
given starting position z0 is the probability that the energy
contribution after II is E2 and the energy contribution
before II is E − E2. We find this by combining Eqs. (A6)
and (A10), and summing over all possibilities of E2,

PðE;z0Þ¼
Z

∞

−∞
dE2PðE2Þ×P1

IIssðE−E2;z0Þ

¼
Z

E

E−1þz0

dE2δð2E−E2−2þ2z0Þ
1

τIIss
e−2ð1−EþE2−z0ÞTse−ðE−E2ÞTs

¼
Z

E

E−1þz0

dE2δð2E−E2−2þ2z0Þ
1

τIIss
e−ð2−EþE2−2z0ÞTs

¼
� 1

τIIss
e−Ts·E; 1−z0≤E<2ð1−z0Þ;

0 else:
ðA11Þ
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The final step to find P2ðEÞ is to integrate over all z0,

P2ðEÞ ¼
Z

∞

−∞
PðE; z0ÞPsurfðz0Þdz0

¼
� 1

τIIss
e−Ts·E; 1 ≤ E < 2;

0 else:
ðA12Þ

The next scenario to consider is when the initial charge
creates an opposite charge, and both the original and new
charge happen to reach the surface. We call this probability
distribution P3ðEÞ. Like the previous scenario, the addi-
tional charge is created at a position zII, and we need to find
the probabilities of each segment of charge propagation.
Because of how we formulated the problem, the way to
solve for P3ðEÞ is exactly the same as how to solve for
P2ðEÞ with just two key substitutions. The II process
created an opposite charge, and that opposite charge will
propagate toward the z ¼ 0 surface. Therefore, one of the
P1
S;s terms in Eq. (A10) is replaced with P0

S;o with the same
inputs. And because the process in this scenario is II to an
opposite charge, the P1

IIss term in Eq. (A11) is replaced with
P1
IIso, also with the same inputs. Making these substitutions

and solving for P3ðEÞ gives

P3ðEÞ ¼
� 1

τIIso
eTo−Ts−To·E; 1 ≤ E < 2;

0 else:
ðA13Þ

The solutions for other scenarios can be found by employ-
ing the same logic of considering segments of energy
contribution, using the correct combination of base equa-
tions, and nested integrals. In total, there are 28 solutions
found for surface charge events, all of which are cataloged in
the Supplemental Material [13]. The individual solutions are
shown together in the top plot of Fig. 1.

2. Bulk-single-charge events

A singe-charge bulk event starts with the creation of
either an e− or hþ at some starting position z0 that ranges
between z ¼ 0 and z ¼ 1. As with surface charges, we can
use the same symmetry arguments to reduce the number of
solutions to solve for. Again, the e and h labels in the
subscripts are replaced with s and o to indicate charges that
are the same and opposite as the initial charge, and
solutions are only needed to be found for charges propa-
gating in one direction. For bulk-single-charge events, the
probability distribution of z0 is defined as a uniform
distribution between z ¼ 0 and z ¼ 1:

Pbulkðz0Þ ¼
�
1 0 ≤ z0 ≤ 1;

0 else:
ðA14Þ

We can again consider the simplest scenarios to solve for
P0ðEÞ (the charge reaches the surface), P1ðEÞ (the charge

undergoes CT), P2ðEÞ (the charge undergoes II to the same
charge and both charges reach the surface), and P3ðEÞ (the
charge undergoes II to the opposite charge and both charges
reach the surface). Fortunately, these solutions are mostly
solved for in Eqs. (A8)–(A13), except now Psurfðz0Þ is
replaced with Pbulkðz0Þ. Making this substitution and
solving for the probability distributions gives

P0ðEÞ ¼
�
e−Ts·E; 0 ≤ E < 1;

0 else;

P1ðEÞ ¼
� 1

τCTs
e−Ts·Eð1 − EÞ; 0 ≤ E < 1;

0 else;

P2ðEÞ ¼
8<
:

1
2τIIss

e−Ts·EE; 0 ≤ E < 1;

1
2τIIss

e−Ts·Eð2 − EÞ; 1 ≤ E < 2;

0 else;

P3ðEÞ ¼

8>><
>>:

eToð1−EÞ−Ts−eTsð1−EÞ−To
τIIsoðTo−TsÞ ; 1 ≤ E < 2; Ts ≠ To;

1
τIIso

e−Ts·Eð2 − EÞ; 1 ≤ E < 2; Ts ¼ To;

0 else:

ðA15Þ

It is evident that the solutions to these problems become
complex. One way to determine if these solutions make
sense is to examine the boundary conditions. For example,
the probability distribution P3ðEÞ in Eq. (A15) ranges from
one to two e−hþ pairs of energy. If a charge has an initial
position of z ¼ 0 and immediately creates an opposite
charge, the event will produce one e−hþ pair of energy. The
same is true if the charge has an initial position of z ¼ 1 and
immediately creates an opposite charge. There is no
scenario where this process can produce an energy less
than one e−hþ pair. Furthermore, if the charge has an initial
position of z ¼ 0 and creates an opposite charge only when
it reaches z ¼ 1, the event will produce two e−hþ pairs of
energy. There is likewise no scenario where this process can
produce an energy greater than two e−hþ pairs. The 28
unique solutions found for bulk-single-charge events are
cataloged in the Supplemental Material [13], and the
individual solutions are shown together in the middle plot
of Fig. 1.

3. Bulk-e −h+ -pair events

A bulk-e−hþ-pair event starts with the creation of both
an electron and hole at some starting position z0 that ranges
between z ¼ 0 and z ¼ 1. As with bulk-single-charge
events, we assume that z0 is a uniform distribution between
the surfaces of the detector and follows Eq. (A14).
However unlike the solutions for single charges, the
solutions for e−hþ-pair events need to keep the distinction
between the parameters for electrons and holes. The initial
e− and hþ will propagate in opposite directions and are

IMPROVED MODELING OF DETECTOR RESPONSE EFFECTS IN … PHYS. REV. D 109, 112018 (2024)

112018-15



treated as independent charges. The only constraint is the
initial starting position that they both share. Like with the
single-charge events, the solutions will be the same
regardless of which direction of propagation is chosen
for the charges.
Here we will demonstrate how to find the solutions for

the simplest scenarios. Let P0ðEÞ be the probability that
both the electron and hole reach the surface. We assume the
electrons and holes travel toward the z ¼ 1 and z ¼ 0
surfaces, respectively. As before, the solution can be found
by considering the segments of charge propagation in the
scenario. If the total energy of the event is E and the
electron contributes an energy of E1, then the hole must
contribute an energy of E − E1. The probability of meas-
uring an energy of E giving a starting position of z0 is
therefore the probability that the electron contributed an
energy of E1 starting at z0 times the probability that the hole
contributed an energy of E − E1 starting at z0 summed over
all possibilities of E1. Using the base equations from
Eq. (A5), this is written as

PðE; z0Þ ¼
Z

∞

−∞
P1
S;eðE1; z0ÞP0

S;hðE − E1; z0ÞdE1

¼
Z

∞

−∞
δðE1 − 1þ z0Þe−ð1−z0ÞTe

× δðE − E1 − z0Þe−z0ThdE1

¼ δðE − 1Þe−Teþz0ðTe−ThÞ: ðA16Þ
The final step to solve for P0ðEÞ is to multiply Eq. (A16)

by Eq. (A14) and integrate over all z0. However this last
step must be considered separately for when Te ¼ Th and
Te ≠ Th in order to avoid undefined solutions. For the case
where Te ≠ Th, P0ðEÞ is found to be

P0ðEÞ ¼
Z

∞

−∞
PðE; z0ÞPbulkðz0Þdz0

¼
Z

1

0

δðE − 1Þe−Teþz0ðTe−ThÞdz0

¼ 1

Te − Th
δðE − 1Þe−Te ½ez0ðTe−ThÞ�10

¼ δðE − 1Þ e
−Th − e−Te

Te − Th
: ðA17Þ

For the case where Te ¼ Th ≡ T, P0ðEÞ is found to be

P0ðEÞ ¼
Z

∞

−∞
PðE; z0ÞPbulkðz0Þdz0

¼
Z

1

0

δðE − 1Þe−Tdz0
¼ δðE − 1Þe−T: ðA18Þ

The next scenario to consider is when the e− is trapped
while the hþ reaches the surface. Let the probability

distribution for this process be P1ðEÞ. As before, E1 is
the energy contribution from the electron, and E − E1 is the
energy contribution from the hole. The probability for
measuring an energy E given a starting position of z0 is
found in the same way as in Eq. (A16), except that for the
electron, the appropriate base equation from Eq. (A6) is
used:

PðE; z0Þ ¼
Z

∞

−∞
P1
CTeðE1; z0ÞP0

S;hðE − E1; z0ÞdE1

¼
Z

1−z0

0

1

τCTe
e−Te·E1

× δðE − E1 − z0Þe−z0ThdE1

¼
� 1

τCTe
e−Te·Eþz0ðTe−ThÞ; z0 ≤ E < 1;

0 else:
ðA19Þ

Again we can find P1ðEÞ by multiplying Eq. (A19) with
Eq. (A14) and integrating over z0. For the case where
Te ≠ Th, P1ðEÞ is found to be

P1ðEÞ ¼
Z

∞

−∞
PðE; z0ÞPbulkðz0Þdz0

¼
Z

1

0

PðE; z0Þdz0

¼
Z

E

0

1

τCTe
e−Te·Eþz0ðTe−ThÞdz0

¼ 1

τCTeðTe − ThÞ
e−Te·E½ez0ðTe−ThÞ�E0

¼
� e−Th·E−e−Te·E

τCTeðTe−ThÞ ; 0 ≤ E < 1;

0 else:
ðA20Þ

For the case where Te ¼ Th ≡ T, P1ðEÞ is found to be

P1ðEÞ ¼
Z

∞

−∞
PðE; z0ÞPbulkðz0Þdz0

¼
Z

1

0

PðE; z0Þdz0

¼
Z

E

0

1

τCTe
e−T·Edz0

¼ 1

τCTe
e−T·E½z0�E0

¼
� e−T·E·E

τCTe
; 0 ≤ E < 1;

0 else:
ðA21Þ

The solutions for the other scenarios can be found by
considering the probabilities for the process that happens to
each charge and constraining the energy contribution from
each charge to the total measured energy. In total there are
16 unique solutions found for bulk-e−hþ-pair events,
which are cataloged in the Supplemental Material [13].
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The individual solutions are shown together in the bottom
plot of Fig. 1.

APPENDIX B: SUBPEAK DISTRIBUTIONS
DUE TO NONIONIZING PHOTONS

Section III B introduced the phenomenon of nonionizing
energy deposition and how the surface-trapping effect can
be incorporated into the extended detector response model.
In this model, the number of photons that hit the detector is
given by a Poisson distribution with a mean of λ. Each
photon will create an e−hþ pair, where there is a probability
α that the e−hþ pair undergoes surface trapping. Absorbed
photons that result in an e−hþ pair that undergoes surface
trapping are classified as nonionizing photons, whereby the
deposited energy in the detector will only be the absorption
energy of the photon Eγ. This effect results in the formation
of a subpeak structure at each e−hþ-pair peak in the energy
spectrum, as can be seen in the middle plot of Fig. 3. This
appendix provides further details on the distribution of
these subpeak structures and its dependence on λ and α.
Each subpeak corresponds to q ionizing photons and p

nonionizing photons. The q ionizing photons will produce
q e−hþ pairs that will propagate through the detector where
they may undergo bulk CT and II processes. As will be
discussed below, the bulk CT and II processes do not affect
the shape of the underlying subpeak distributions, and thus
can be ignored. For the subpeak distribution of p at the qth
e−hþ-pair peak, we want to determine the probability
PðpjqÞ, simply given as

PðpjqÞ ¼ Pðq ∩ pÞ
PðqÞ : ðB1Þ

To find these probabilities, we must first consider the
probabilities of the separate processes. The total number of
photons absorbed in the detector is (pþ q), and the
probability of (pþ q) photons hitting the detector is
determined from a Poisson distribution with a mean of
λ. The probability of having p nonionizing photons is
determined from a binomial distribution with (pþ q) trials
and a probability of α. Therefore Pðq ∩ pÞ is the proba-
bility that (pþ q) photons hit the detector and p photons
are nonionizing:

Pðq ∩ pÞ ¼ Poiss:ððpþ qÞ; λÞ × Binom:ðp; ðpþ qÞ; αÞ

¼ λðqþpÞe−λ

ðqþ pÞ!
ðqþ pÞ!
p!q!

αpð1 − αÞq

¼ λðqþpÞe−λ

p!q!
αpð1 − αÞq: ðB2Þ

If the mean number of photons hitting the detector is λ
and there is a (1 − α) probability that a photon will be
ionizing, then the mean number of ionizing photons hitting

the detector is λ · ð1 − αÞ. Therefore PðqÞ is determined
from a Poisson distribution with a mean of λ · ð1 − αÞ:

PðqÞ ¼ Poiss:ðq; λð1 − αÞÞ

¼ λqð1 − αÞqe−λð1−αÞ
q!

: ðB3Þ

Likewise, PðpÞ is determined from a Poisson distribu-
tion with a mean of λ · α:

PðpÞ ¼ Poiss:ðp; λ · αÞ

¼ λpαpe−λ·α

p!
: ðB4Þ

Using Eqs. (B2) and (B3), Eq. (B1) becomes

PðpjqÞ ¼ q!
p!q!

λðqþpÞe−λαpð1 − αÞq
λqð1 − αÞqe−λð1−αÞ

¼ λpαpe−λ·α

p!

¼ Poiss:ðp; λ · αÞ: ðB5Þ

Equation (B5) shows that the subpeak distribution of p
for a given q is just the probability of having p nonionizing
photons, which is a Poisson distribution with a mean of
λ · α. Importantly, the subpeak distribution is independent
of q, and is therefore the same for each e−hþ-pair peak. As
shown in Fig. 3, when the resolution smearing is applied,
these subpeak distributions shift the location of the e−hþ-
pair peaks in the spectrum. The amount that the peaks are
shifted by ΔEph is determined from mean energy of
nonionizing photons at each e−hþ-pair peak. As the
subpeak distributions are the same for each peak, the
amount that each peak is shifted by is also constant:

ΔEph ¼ Eγ · λ · α: ðB6Þ

Lastly, we consider what effect the bulk CT and II
processes may have on the subpeak distributions. For the
qth e−hþ-pair peak there are q ionizing photons and thus q
e−hþ pairs that propagate through the detector. The peaks
in the subpeak distribution only arise when all of the
primary charges from the e−hþ pairs reach the surface
without undergoing a CT or II process, otherwise the
measured energy will be in a nonquantized region of the
spectrum. Appendix A showed that the probability of a
charge from a surface event to traverse the detector without
undergoing a CTor II process is e−Te=h , where Te=h encodes
the CT and II probabilities for either the electron or hole.
The probability of q charges from a surface event to
traverse the detector without undergoing CT or II processes
is found from a binomial distribution with q trials and
a probability of e−Te=h : Binom:ðq; q; e−Te=hÞ ¼ e−qTe=h .
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Therefore while the overall scaling of the subpeak distri-
bution depends on q, the shape of the underlying distri-
bution remains constant for each e−hþ-pair peak.

APPENDIX C: LIMITATIONS OF THE
SINGLE-e− h+ -PAIR SOLUTIONS

As discussed in Sec. V, the exponential CTII model is
limited by the highest order of processes that are modeled.
Specifically, solutions for surface events and bulk-single-
charge events are found for up to second-order processes,
whereas for bulk-e−hþ-pair events, solutions are found for
up to first-order processes. In order to assess and quantify
these limitations, the single-e−hþ-pair solutions are com-
pared to simple MC simulations of the CT and II processes.
The MC simulations model the CT and II processes using
the same initial assumptions as the analytical model: that
the probability distributions of CT or II occurring are
described by Eq. (5), and where CT and II processes are
parametrized by the characteristic lengths τi. However
unlike the analytical model, the MC simulations are able
to include higher-order CT and II processes. In these MC
simulations, there are no physical or detector response
processes that are modeled other than CT, II, and generic
resolution smearing.
We would like to determine where these higher-order

processes become significant such that the analytical model
is no longer a suitable description of theMC simulations, and
thus of these CTand II processes. There are twomain factors
thatwill cause the analytical solutions todeviate from theMC
simulations. The first is the total probability of impact
ionization, and the second is the total number of events in
the simulation. Increasing either the total probability of II or
the total number of events will increase the number of events
in the MC simulation that undergo higher-order CT or II
process that the analytical solutions do not model.
The limitations of the single-e−hþ-pair solutions can then

evaluated by using a simple procedure. For each event type,
we scanned over the total II probability in the model and the
total number of events in the MC simulation. After comput-
ing the analytical model and running the simulation for each
set of parameters, we performed a Kolmogorov-Smirnov
(KS) test to determine if the simulated spectrum is described
by the analytical model for a given level of confidence. For
simplicity, we define the total II probability of a single charge
fII;tot as fII;tot ¼ fIIee þ fIIeh ¼ fIIhe þ fIIhh, where each fi
is equal tofII;tot=2. For surface events andbulk-single-charge
events, the tests assume that the initial charge is an electron.
Furthermore, each of the solutions and simulations assume a
small CT probability of fCTe ¼ fCTh ¼ 1% in order to
include all possible processes. The KS tests take the null
hypothesis that the MC simulation is described by the same
probability distribution as the analytical model, and the
results from the tests are subsequently placed into three
categories: accepted (failed to reject the null hypothesis at
90% confidence level), rejected the null hypothesis at

a 90% confidence level, and rejected the null hypothesis
at a 99% confidence level. The results of theKS tests for each
event type are shown in Fig. 7.
The test results from Fig. 7 clearly illustrate the regions

of this parameter space where the analytical solutions of the
exponential CTII model deviate from the MC simulations.
For reference, measurements of fII;tot in HVeV detectors
have been on the order of 1% [8,20]. However, these results
represent a worst-case scenario for the model, as other
parameters can extend the boundary of this limitation. For
instance, high CT probabilities will generally lower the
probabilities of high-order II processes. Furthermore, these
tests were performed using the single-e−hþ-pair solutions,

FIG. 7. Results of the KS tests performed using the analytical
CT and II solutions and the MC simulations, where each dot
corresponds to a test performed for a particular value of the total
II probability for a single charge fII;tot and of the total number of
events in the simulation. The tests were performed separately for
surface events (top), bulk-single-charge events (middle), and
bulk-e−hþ-pair events (bottom).
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whereas modeling the full detector response will often
require the multi-e−hþ solutions. In many cases, the multi-
e−hþ solutions will cause the high-order II processes to be
subdominant within the total probability distribution, as can

be seen by comparing the top and bottom plots of Fig. 2. In
these scenarios, the analytical solutions may adequately
describe the CT and II processes even for higher II
probabilities or for a larger number of events.
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