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First measurements of the absolute branching fraction
of A.(2625)* —» A}x*n~ and upper limit
on A,(2595)* > Afrn*tn™
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The absolute branching fraction of the decay A.(2625)" — Afz "z~ is measured for the first time to be
(50.2 £ 5.7 & 3.545) % with 368.48 pb~! of e e~ collision data collected by the BESIII detector at the
center-of-mass energies of /s = 4.918 and 4.950 GeV. Although the central value of the result is lower
than the theoretical prediction of 67%, obtained from isospin symmetry, they are consistent taking the
uncertainties into account. This is the first absolute branching fraction measurement for A, (2625)% since it
was found. This measurement is necessary to obtain the coupling constants for the transitions between
s-wave and p-wave charmed baryons in heavy hadron chiral perturbation theory. In addition, we search for
the decay A.(2595)" — Az x~. No significant signal is observed, and the upper limit on its branching
fraction is determined to be 85.0% at the 90% confidence level.
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I. INTRODUCTION

In recent years, a rich mass spectrum of excited charmed
baryons has been discovered [1-5]. Identifying their quan-
tum numbers and understanding their properties are impor-
tant to study the dynamics of the light quarks in the
environment of a heavy quark. The strong decays of charmed
baryons are most conveniently described by heavy hadron
chiral perturbation theory (HHChPT), in which heavy quark
symmetry and chiral symmetry are incorporated [6,7]. The
chiral Lagrangian involves several coupling constants for
transitions between s-wave and p-wave charmed baryons,
referred to as &, to hy5 [8,9]. Among these, h, and hg can be
determined from the strong decays of A.(2595)" and
A.(2625)% [1]. These coupling constants are critical to
describe the charmed baryon spectrum and make predictions
of decays into other charmed baryons. However, so far, the
strong decays of A.(2595)" and A.(2625)" are poorly
known due to the scarcity of experimental data [2]. The
existing determinations of h, and hg are based on the
measured decay widths of A.(2595)% and A.(2625)%.
Since the width of A.(2625)" is nearly zero [2,5], only
the upper limit on Ag is provided. Precise measurements of
the branching fractions of the strong decays of A.(2595)"
and A.(2625)" are important to determine &, and hg.
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In the quark model, A.(2595)" and A.(2625)" are the
lowest-lying excited states of A having spin parities of
1/27 and 3/27, respectively, and are the degenerate pair of
the p-wave state [1]. Currently, all observed decay modes
are measured relative to the dominant hadronic transitions,
either A.(2595)" —» Afzta~ or A.(2625)" - Afrt ™
[3,4]. However, the absolute branching fractions of these
atx~ transitions have until now never been measured
experimentally. Assuming isospin symmetry, the ratio
between the branching fractions of z*z~ and 7°2° tran-
sitions is 2: 1, which is the basis for the branching fractions
of various strong A.(2595)% and A.(2625)" decays quoted
by the Particle Data Group (PDG) [2]. However, isospin
symmetry in these processes has not been verified by any
experimental measurement. In Ref. [10], a mechanism
called the threshold effect to take into account the limited
transition phase space in these strong decays was proposed.
It would break the 2:1 relation between z*z~ and 7°z°
transitions in A.(2595)" decay. Furthermore, this mecha-
nism is sensitive to the coupling constants [1,10], and the
measurements of their branching fractions are crucial to
determine their coupling constants.

In addition, the internal structure of A.(2595)" and
A,(2625)" have received much attention since the discov-
eries of these two baryons. Significantly, different decay
properties of A.(2595)" and A.(2625)" are observed in
experiments [3,4,11-14]. One example is the decay width:
while being approximately 2.6 MeV in the case of
A.(2595)", it is smaller than 1 MeV for A.(2625)" [2].
In addition, the A.(2595)" is located at the X.7 mass
threshold, and predominantly decays through the inter-
mediate state ¥, to the hadronic final states Al 7z, where
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. represents the isospin triplet 0, X, and X} *. However,
the A, (2625)" decays into . are highly suppressed. Exotic
features, such as a molecule-like state rather than a conven-
tional three-quark structure, have been proposed as explan-
ations for the difference [15-18]. Other interpretations
include dynamically generated meson-baryon states [17],
analogous to the case of A(1405) and A(1520) [19,20], ora
state with large pentaquark components [18].

In this paper, we report the first measurement of the
absolute branching fraction of A.(2625)" — Afz"z~ and
the upper limit on A.(2595)" — Afz "z, obtained from
the processes of e e~ — A7A.(2595)" and A7 A.(2625)*.
We use the data collected with the BESIII at center-of-mass
(c.m.) energies of 4.918 and 4.950 GeV [21]. The integrated
luminosities of the data samples at 4.918 GeV are 208.1 and
160.4 pb~! [22], respectively. Throughout this paper, unless
explicitly stated, charge-conjugate modes are implicitly
included.

II. BESIII DETECTOR

Details about the design and performance of the BESIII
detector can be found in Ref. [23]. Simulated samples are
produced with GEANT4-based [24] Monte Carlo (MC)
software, which includes a full implementation of the
detector geometry and response [25] of the BESIII detector.
The simulations are used to determine the efficiency of the
detector and the reconstruction, and to estimate the back-
ground. The inclusive MC sample, which consists of A A7
events, D, production, y states produced in initial-state
radiation processes, and continuum processes ete™ — gg
(g = u, d, s), is generated to estimate the potential back-
ground. Here, all the known decay modes of charmed
hadrons and charmonia are modeled with EvtGen [26,27]
using branching fractions taken from the PDG [2], while
the remaining unknown decays are modeled with
LundCharm [28,29]. Final-state radiation from charged
final-state particles is incorporated using PHOTOS [30].
The processes of these hadron productions are referred to as
inclusive background hereafter.

III. METHODOLOGY AND MC SIMULATION

To determine the branching fractions, the approach
contains two steps. The first is the determination of the
total yields for A.(2595)" or A.(2625)", N, which
follows the same method as in Ref. [31] by using the
productions eTe™ — AZA.(2595)* and AZA.(2625)%.
Three hadronic decay modes (pK~z*, pK?, and Azx™)
are used to reconstruct the A7 signal, denoted as “tagged
A" hereafter, and the candidates for A.(2595)" and
A.(2625)" are studied with the recoiling mass from the
tagged AF. The second step is the determination of signal
events for A.(2595)" or A (2625)* — Afn"xn~, N, by
further selecting candidates for Az, 7t and 7~ particles.
Finally, the branching fractions are calculated as

i
o Nsig : ZiBtagetag

B = s
i i’
Ntag ' ZiBtagesig

(1)

where i represents each reconstruction mode of the tagged
A}, and B, labels their branching fractions. The €f,, and
G;ig
and signal yields N, respectively.

To select signal events for A.(2595)" and A.(2625)" —
A} zt 7™, apartial reconstruction method is used, where the
A}, #t and 7z~ are reconstructed together with another
unreconstructed A7, as demonstrated in Fig. 1. The Af,
which decays into the three hadronic modes, may come
from the e™ e~ collision, as in Fig. 1(a), or from the decay of
the A.(2595)" or A.(2625)%, as in Fig. 1(b). The process
in Fig. 1(a) is referred to as Sy,chelor and the one in Fig. 1(b)

are the efficiencies of determining the total yields Ny,

as Sdaughter‘

The signal MC samples are generated corresponding to the
two processes, separately, for the two c.m. energies using the
generator KKMC [32] incorporating initial-state radiation
effects and the beam energy spread. The A7 in both processes
is required to decay into any allowed final states. The line
shapes of e*e™ — AZA.(2595)" and AZA.(2625)* cross
sections in the production for signal MC samples are
obtained from the measurements by BESIII [31] and the
amplitudes of ete™ — AZA.(2595)" and A7A.(2625)F
follow the angular distributions measured in Ref. [31]. In
addition, the signal MC samples for the charge-conjugate
partners are also produced for processes Spacheior a0d Sqaughiers
respectively, where the A is reconstructed with the three tag
modes pK*z~, pK?, and Az~, and the A} is required to
decay into any allowed final states.

IV. EVENT SELECTIONS

Charged tracks detected in the helium-based multilayer
chamber (MDC) are required to be within a polar angle (6)

(@

Inclusive Decay,
Unreconstructed

Tagged by three
hadronic modes

Sbachelor Saaughter

Tagged by three
hadronic modes

Inclusive Decay
Unreconstructed

FIG. 1. The signal processes and the partial reconstruction
method are schematically presented. (a) The figure corresponds
to the Sp,chelor Process where the tagged Al comes directly from
the e*e™ collision and is reconstructed by the three hadronic
decay modes. (b) This corresponds to the Sqqygher Process, where
the tagged Al comes from the decays of the AiT, which refers to
either A,(2595)" or A.(2625)*.
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range of | cos 8] < 0.93, where @ is defined with respect to
the z axis, which is the symmetry axis of the MDC. The
distance of closest approach for charged tracks that do
not come from a A or K% decay are required to be within
+10 cm along the z axis and 1 cm in the plane
perpendicular to the beam. Particle identification (PID)
is implemented by combining measurements of the specific
ionization energy loss in the MDC (dE/dx) and the time-
of-flight (TOF) between the interaction point and the
dedicated TOF detector system. Each charged track is
assigned a particle type of pion, kaon or proton, according
to which assignment has the highest probability. For the
mode Al — pK~z", a vertex fit is performed to each
pK~z" combination candidate, and the refitted momenta
are used in the further study.

Candidates for K9 and A are reconstructed by their
dominant modes K% — z"z~ and A — pz~, respectively,
where the charged tracks are required to have distances of
closest approach to the interaction point that are within
420 cm along the z axis. For the A decay, the PID require-
ment is applied to the proton candidate, but not to the charged
pion. A secondary vertex fit is performed to each K% or A
candidate, and the refitted momenta are used in the further
analysis. A Kg /A candidate requires the y? of the secondary
vertex fit to be less than 100. Furthermore, the decay vertex is
required to be separated from the interaction point by a
distance of at least twice the fitted vertex resolution, and the
invariant mass to be within (0.487,0.511) GeV/c? forz ™z~
and (1.111,1.121) GeV/c? for pz~.

In the first step of determining the total yields N, all
combinations for each decay mode are kept, and their
invariant mass distributions are shown in Fig. 2. The tagged
A} candidates are required to fall inside the range
(2.27,2.30) GeV/c?. The distributions of the recoiling mass
from the tagged A}, M\5 . (A}), are shown in Figs. 4(a) and
4(b) by combining the three modes. There are two compo-
nents to the signal at each energy, depending on whether the
tagged Al originated from the eTe™ collision directly or
from the decay of either A.(2595)" or A.(2625)*. If from
the eTe™ collision directly, narrow resonances A,(2595)"
and A.(2625)" are observed at two energy points /s =
4918 and 4.950 GeV, from the processes of ete™ —
AFA(2595)" and ete” — AFA.(2625)7, respectively.
However, if from the decay of either A.(2595)% or
A.(2625)%, the A,.(2595)" and A,(2625)" from the proc-
esses ete” — AZA.(2595)" and A7A.(2625)" distribute
broadly under the resonances. The combined signal shapes
are displayed in Figs. 4(a) and 4(b).

In the second step of determining the N, in addition to
the tagged Al, a #t 7z~ pair is selected by imposing the
same criteria as for the charged pion in the mode
Af — pK~n". A vertex fit is performed to the z and
#~ candidates, and the refitted momenta are retained in the
further analysis. In the signal processes, there exists another

V5=1.918 GeV/

A pK

1000

—
o
S
=)

o
1=}
S

Events / 6 MeV/c?
Events / 6 MeV/c?

225 23 235 24
MEKT) [GeV/c?]

225 23 235
MK [GeV/c?]

V1918 GoV
= pK?

Events / 6 MeV/c?
Events / 6 MeV/c?

M(ng) [GeV/c?]

V5=1.918 GeV
> AT

Events / 6 MeV/c?
Events / 6 MeV/c?

M(A") [GeV/c?] M(Ar") [GeV/c?]

FIG. 2. The distributions of invariant masses of the tagged A
candidates for /s =4.918 (left) and 4.950 GeV (right). The
region between the red arrows in the middle is the signal region
(2.270,2.310) GeV/c? and the regions between two neighbor
green arrows are the sideband regions (2.180,2.250) and
(2.320,2.390) GeV/c?.

A7 besides the tagged A} and the z+ 7~ pair. To improve
the detection efficiency, the A7 is unreconstructed and
considered to be a missing particle. If there is more than one
combination in an event, we select only the best combi-
nation that gives the minimum |AM|,

AM = \/ {2Ebeam - <ZE>T - <§,:ﬁ i>2

—m, (2)

where Ej,, is the beam energy and miPS is the A

nominal mass, E; and p; represent the energy and momen-
tum, respectively, and i labels the tagged A/, z, and z~
particles. To suppress inclusive background contamination,
AM, shown in Fig. 3, is required to be greater than
—0.02 GeV, which keeps more than 97% of signal. With
all the selection criteria, the invariant mass distributions of
the Afz"z~ system, M(Afz"n"), and the A recoiling
mass, M5 (A}), are obtained as shown in Figs. 4(c), 4(d),

recoil

4(e) and 4(f). The resonance A.(2625)" appears in both the
M(Afzntz™) and the ME . (A[) distributions at each

recoil
energy point, corresponding to the processes Sgaygner and
Shachelors Tespectively. However, due to quite low detection

efficiencies for the low-momentum z* and 7=, A.(2595)"
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FIG. 3. The distributions of AM for /s =4.918 (left)

and 4.950 GeV (right). The red arrows indicate the cut
AM > —0.02 GeV/c?.

is not observed. Here, as for Figs. 4(a) and 4(b), the

M (A}) signal shapes in Figs. 4(e) and 4(f) have two

components depending on whether the A} comes from the
ete collision or from A.(2625)*. Also the M(Afztz™)
signal shapes in Figs. 4(c) and 4(d) have two components.
There is a narrow component if the A/ is from the decay of
the A.(2625)", and there is a broad component if the A/ is
from the ete~ collision and matched with the z pair
coming from the A.(2625)". The separated one-dimen-
sional and two-dimensional (2D) signal shape components
are displayed in the Fig. 5 and Fig. 6, and the combined
shapes are shown in Figs. 4(c) to 4(f).
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FIG.4. The distributions of M2 . (Al) at (a) /s = 4.918 GeV
and (b) 4.950 GeV, and distributions of (¢), (d) M(Afz*z~), and
(), () M (A7), with all the selection criteria for A7 7+ 7. The
black points w1th error bars are data, the solid curves represent the
fit results, and the dashed ones describe individual components
including both signal and backgrounds.
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V. BACKGROUND ANALYSES

As shown in Figs. 4(a) and 4(b), the remaining contami-
nation of the ete™ — AZA.(2595)" and A7A.(2625)F
candidates is from inclusive background, ete™ — I X,
and A 7. The inclusive background events are smoothly
distributed under the A.(2595)" and A, (2625)" peaks, and
estimated with sideband events M(A) € (2.18,2.25) and
(2.32,2.39) GeV/c?. X, decays to A} # dominantly, but the
mass distributions from the processes e*e™ — XX, and
Y. A;7m can be distinguished from those of ete™ —
AFA(2595) and AFA,(2625)". In Figs. 4(c) to 4(f), the
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of signal MC S3¢ and SN for Vs =4.918 (left) and
4.950 GeV (right).
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inclusive background contribution is highly suppressed and
is negligible. The remaining contamination comes from
ete” = X 2. and X A-x since they have the same final
states as the signal.

VI. BRANCHING FRACTION MEASUREMENT

The total yields Ny, for A.(2595)* or A.(2625)" are
obtained by performing an unbinned maximum likelihood
fit (fity,g) to the distributions of My, (AF) for each energy
point. The candidates for A.(2595)" and A.(2625)" are
from both Spacheior and Sgaugnier (as Fig. 1). The two
contributions have the same cross section but different
detection efficiencies efag, and their shapes are obtained
with MC simulation. In these MC samples, the decays of
A.(2595)" and A.(2625)" are modeled based on the
information in the PDG [2], and both of them decay into
Afntn~ and Afz°z° final states, where the decay of
A.(2595)" via X7 has a rate of 73%. To account for the
resolution difference between data and MC simulation, the
narrow Spachelor Signal shapes are convoluted with Gaussian
functions, which are shared between the two resonances
due to the limited sample sizes at individual energy points.
The width of the convolution Gaussian, a free parameter,
actually is the resolution difference between data and MC
simulation. The signal shapes of Sy,epelor @nd the broad
Sdaughter are merged together in the fit, which are shown in
Figs. 4(a) and 4(b). The inclusive background distributions
are modeled by ARGUS functions [33] with the fixed
parameters determined by fitting the sideband events. The
magnitudes of the inclusive background background are
free in the fit,,. The backgrounds from e*e™ — ¥ 2. and
¥ A7 7 are taken into account in the fit, shapes of which are
derived from MC simulations and yields are determined in
the fit,,,. The resultant fit curves are depicted in Figs. 4(a)
and 4(b). The significances of the A.(2595)" signal in the

recoil mass distributions from the tagged A are 5.27¢ and
8.3c at /s =4.918 and 4.950 GeV, respectively. The
corresponding values for the A.(2625)" signal are 12.7¢
and 14.0c.

The signal yields Ng, of A.(2595)" or A.(2625)" —
Afn"z~ are obtained by simultaneous 2D unbinned
maximum likelihood fits (fitg,) to the distributions of
M(Afn"7™) and M2, (AS) in the Al signal regions of
the two c.m. energies, which have the same branching
fraction. The 2D signal shapes of A.(2625)" — Afz"n~
and those from e*e™ — X, A7z background are modeled
by MC simulations, with the magnitudes free in the fitg,.
The 2D signal MC distributions are shown in Fig. 6.
Because the decay A.(2595)" — Az z~ is not observed
significantly, as shown in Figs 4(c) to 4(f), its contribution
is not considered in the nominal fitg,. Also, eTe™ — pIBI
is not included, since its contribution is negligible accord-
ing to the result of fit,,. The resulting fit curves are
shown in Figs. 4(c) to 4(f). The statistical significance of
A (2625)" - Afznta™ is 1190, as calculated with the
change of the likelihood values between the fits with and
without the signal component, and accounting for the
change in the number of degrees of freedom.

Finally, we combine the fit,, and fitg, simultaneously
with N, and efficiency (Ngg/Ny,,) as parameters accord-
ing to Eq. (1) to directly obtain the value of the branch-
ing fraction in the fit. The yields of Ny, and N, in the
final combined fit are listed in Table I. The branching
fraction of A.(2625)" — Afzxtz~ is determined to be
(50.2 £ 5.7 £ 3.5)%, where the first uncertainty is statis-
tical and the second systematic. Since no significant
A.(2595)7 signal is observed in the signal process, we
calculate the upper limit of the branching fraction of
A.(2595)" - Afz"n~ based on the method in Ref. [34].
We integrate the likelihood curve as a function of the
branching fraction of A,(2595)" — Az z~ from zero to

TABLEL The branching fractions of A.(2595)" and A.(2625)" — Alz" 7~ and the detection efficiencies of e,

and eg, for each reconstruction mode at /s = 4.918 (4.950) GeV, where the efficiencies are expressed in
percentage. The numbers of events of Ny, and Ny, combine the three reconstruction modes at Vs =4.918
(4.950) GeV.
A decays pK~n* 124 Axt
AZA(2625)F €rag | P 46.7 (48.4) 50.2 (50.1) 38.4 (39.7)
€sig | %o 14.6 (15.1) 16.7 (16.6) 12.8 (12.0)
Niag 438.3 £30.0 (666.0 £ 51.0)
N 69.5+7.9 (105.1 £ 11.9)
B/ % 50.2£5.7£35
AZA(2595)* €rag | P 48.5 (48.8) 49.9 (49.0) 38.5 (37.8)
€gig | %o 2.0 (2.5) 2.2 (2.7) 1.6 2.1)
Nig 159.3 +£33.7 (214.1 £29.7)
N <5.5 (9.6)
B/ % <85.0
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FIG. 7. Likelihood distributions over the branching fraction of

A.(2595)". The black solid curve is the scan result with
systematic uncertainties. The blue arrow indicates the upper
limit of the branching fraction at 90% C.L.

90% of the total area, and the upper limit on its branching
fraction at the 90% confidence level is 85.0% (see Fig. 7),
where both additive and multiplicative uncertainties are
considered.

VII. SYSTEMATIC UNCERTAINTY

The systematic uncertainties in the branching fraction
measurement are associated with the z* tracking and PID
efficiencies, the signal modeling, the requirement of AM,
and the fit strategy. In the measurement of absolute
branching fractions, the selection criteria of the “tagged
Al” affect both Ny, and N, in Eq. (1). Therefore, the
systematic uncertainties of detection efficiency and B,
cancel.

The uncertainties associated with the z* tracking and
PID efficiencies are calculated to be 3.5%, by using the
control sample of J/w — ppata~ [35]. The uncertainty
due to the requirement on AM is 0.1%, which has been
estimated by studies of the resolution difference between
data and MC simulation on the AM distribution. The
uncertainty in the signal MC modeling is 2.2%, determined
by taking into account potential . intermediate resonances
to the signal MC samples. The uncertainties due to the fit
strategy are 5.4%, including those from the wrong match
components of A}z z~, the modeling of eTe™ = X A-x
by varying the ratio of production cross sections of
ete” = X0AZa", A% and TFYAZx~, and consider-
ation of the potential background e*e™ — ATAZzt7~ by
replacing the component e*e™ — XAz by it in the fit.
All other sources from, e.g., the MC statistics, the fitted
ranges and the background shapes in fit,, are found to
be negligible. Assuming all sources are uncorrelated,
the total uncertainties are determined by the quadratic
sum of the individual values, which result in 6.8% for
the decays A.(2595)" and A.(2625)" —» Afz"z~. All

TABLE II. The summary of the systematic uncertainties.
Source Uncertainty
#* tracking and PID efficiencies 3.5%
Requirement on AM 0.1%
Signal MC modeling 2.4%
Fit strategy 5.4%
Total 6.9%

the sources of systematic uncertainties are summarized in
Table II.

VIII. SUMMARY

In summary, the branching fraction of the strong decay
A.(2625)" > Afz"z~ and upper limit for A.(2595)" —
Afntr~ were determined for the first time, in a model-
independent approach by using the 368.5 pb~! of eTe™ data
collected at /s = 4.918 and 4.950 GeV with the BESIII
detector. The absolute branching fraction of A,(2625)" —
Afztz~ was measured to be (50.2 £ 5.7, % 3.5)%.
Although the central value of the result is lower than the
theoretical prediction of 67% [2], obtained from isospin
symmetry, they are consistent taking the uncertainties into
account. Our result provides critical experimental input to
determine the coupling constants in the HHChPT [6,7].
In addition, the measured absolute branching fraction is
also essential to calibrate the relative measurements and
guide the search for unknown decays of A.(2625)*. No
discernible signal of the decay A.(2595)" — Afz"n~ was
observed and the upper limit on its branching fraction at the
90% confidence level is 85.0%.
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