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Light-cone gauge-fixed sigma models on AdS, x $" backgrounds play an important role in the
integrability formulation of the AdS/CFT correspondence. The string spectrum of the sigma model is
gauge independent, however the Hamiltonian and scattering matrix of the transverse world sheet fields are
not. We study how these change for a large family of inequivalent light-cone gauges, which are interpreted

as TT, JT,, JT,, and J* deformations. We investigate the moduli space of inequivalent light-cone gauges

and, specializing to AdSs x S°, compute the different light-cone gauge symmetry algebras, well known to

be psu(2[2)® @ u(1)® for the standard gauge-fixing. Many integrable deformations require a
nonstandard light-cone gauge, hence our classification and analysis of inequivalent gauges will be

important for analyzing such models.

DOI: 10.1103/PhysRevD.109.106023

I. INTRODUCTION

The world sheet reparametrization invariance of string
sigma models may be viewed as a gauge freedom that can
be fixed to identify the physical degrees of freedom. In the
context of the AdS/CFT correspondence [1], an important
class of gauges are the uniform light-cone gauges intro-
duced in [2-4], see [5] for a review. These gauges are
engineered such that a certain conserved charge is uniformly
distributed along the spatial extent of the string. Our aim in
this paper is to map out the moduli space of inequivalent
light-cone gauges, focusing in particular on AdS, x S”
backgrounds, the product of n-dimensional anti—de Sitter
space and an n-dimensional sphere. This is particularly of
interest in the study of integrable string sigma models, such
as AdSs x S° [6] and AdS; x §* x T* [7], and their
integrable deformations.

A uniform light-cone gauge can be fixed for any back-
ground that has two commuting isometries, one timelike
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and one spacelike. In this paper we will take these
isometries to be realized by shifts in ¢, a timelike coordinate,
and ¢, a spacelike coordinate, such that t=¢ =7 is a
classical solution of the sigma model where 7 is the world
sheet time. Introducing light-cone coordinates x™ =
(t+¢)/2 and x~ =@ —1t, we expand the world sheet
action around the classical solution and gauge-fix the
fluctuations of the fields x™ and p_, the momentum
conjugate to x~, to zero. Therefore, the light-cone gauge-
fixing essentially demands that these two fields are equal to
their classical configuration, x™ = 7 and p_ = I.

The light-cone gauge-fixing procedure results in a
“reduced model” for the fields x* transverse to the longi-
tudinal fields x and x~. The Hamiltonian H of the reduced
model is identified with the target-space charge E —J,
where the energy E and angular momentum J are the
Noether charges for shifts in 7 and ¢, respectively. The
reduced model is invariant under a subalgebra of the full
superisometry algebra of the original background, identified
as the subalgebra that commutes with the x™ shift isometry.
Relaxing the level-matching condition for world sheet
excitations, this subalgebra is centrally extended by charges
depending on the world sheet momentum. In the case of
AdSs x $°, the psu(2,2|4) superisometry leads to a cen-
trally extended psu(2|2)®? residual superalgebra of the
reduced model [8], while in the case of AdS; x §* x T*
(ignoring the torus directions and their superpartners), the
psu(1, 1]2)®2 superisometry leads to a central extension of
[u(1) X psu(1]1)®2]®2 [9]. These residual superalgebras
play a fundamental role in the construction of the exact
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world sheet S matrices, which underpins the integrability
description of these models.

While the spectrum, i.e., the set of eigenvalues of the
spacetime energy E, does not depend on the choice of
gauge, the gauge-fixed Hamiltonian and the world sheet S
matrix are gauge dependent. To analyze the moduli space of
inequivalent light-cone gauges we fix the classical solution,
but change how we identify the longitudinal x* and
transverse x* fields. In particular, we consider target-space
coordinate transformations (x*,x™,x#) — (¥, X, %) and
study when they lead to an inequivalent Hamiltonian and S
matrix after gauge-fixing.

The relation between the standard uniform light-cone
gauge and T7T deformations due to a coordinate trans-
formation within the longitudinal sector was first elucidated
in [10]. The Hamiltonian analysis, and the interpretation
in terms of current-current deformations, was then later
extended to include more general light-cone gauge-fixings
in [11,12]. In this paper we will build on these results,
presenting general derivations for the variations of
the Hamiltonian and S matrix, and the invariance of the
spectrum. Moreover, focusing on the case of symmetric
spaces, including AdS, x S", we will also investigate the
moduli space of inequivalent gauges and provide perturba-
tive evidence for the general derivations.

The motivation for this work comes from the recent
construction of large families of integrable deformations,
see [13] for a review. These include the Yang-Baxter
deformations [14], constructed from solutions to the
classical Yang-Baxter equation on the Lie (super)algebra
of isometries. Another class are elliptic deformations, which
have only recently been started to be incorporated at the
level of string sigma models [15,16]. In general, such
deformations will break the original group of (super)iso-
metries to a smaller subgroup. Crucially, in some cases the
deformations may break the light-cone isometries that are
normally used to gauge-fix the undeformed model. As a
result, gauge-fixing in the presence of the deformation
forces us to choose a different set of light-cone isometries,
see [16,17] for applications to particular models. Since in
the absence of the deformation this can be understood as an
alternative light-cone gauge-fixing, the systematic study
presented here provides key insights into the quantum
integrability description of deformed models.

This paper is organized as follows. In Sec. II we present
our strategy for generating inequivalent gauges on generic
backgrounds. In particular, we analyze when target-space
coordinate transformations lead to inequivalent gauges and
present a general derivation for the effect on the
Hamiltonian of the reduced model. In Sec. III we discuss
the classification of inequivalent gauges for symmetric
spaces, with particular attention to AdS, x S”, and the
symmetries of the reduced model. In Sec. IV we study how
the S matrix changes under the different gauges, both at
tree level and nonperturbatively. In Sec. V we describe

how to check the gauge invariance of the spectrum. Finally,
in Sec. VI we finish with concluding comments and an
outlook.

II. INEQUIVALENT LIGHT-CONE
GAUGE-FIXINGS

In this section we use the procedure of light-cone gauge-
fixing reviewed in the Appendix; see also [5] and references
therein. In particular, we work with the sigma model action

(A1), which we schematically write as S = f LL/?Z drde ?,

where .Z is the Lagrangian density. The target space is
parametrized by D coordinates x™, which we split as
(xT,x7,x#), and 7 and o are world sheet time and space
coordinates, respectively, with ¢ ~ ¢ + L. A dot denotes the
time derivative ¥¥ = 9,xM and a prime, the spatial deriva-
tive xM = g,xM.

We assume that the action is invariant under constant
shifts of the two light-cone fields x* and x~, so that there is
a classical pointlike string solution of the form x* = 7. We
expand the action around this classical configuration x™ =
7 in the Hamiltonian formalism and thus introduce a
conjugate momentum p,, for each field x. More details
on this procedure and what follows are collected in the
Appendix.

The uniform light-cone gauge is fixed by setting the
fluctuations of the fields x™ and p_ to zero. Therefore, on
the gauge these fields coincide with their classical con-
figurations, and we may write just x™ =7 and p_ = 1.
After light-cone gauge, one obtains a reduced model for the
D — 2 “transverse” fields x#, whose Lagrangian density we
will denote as £. The Hamiltonian density of the reduced
model will be denoted as H, and in the uniform light-cone
gauge it is identified as H = —p,..

The question that we would like to address here is: Is it
possible to fix the light-cone gauge in different ways? In
particular, are there alternative light-cone gauge-fixings
that, despite the expansion being carried out around the
same classical solution, yield a different Hamiltonian
density ‘H for the reduced model?

We will answer this question by comparing the light-cone
gauge-fixing x* = 7, p_ = 1 with an alternative light-cone
gauge-fixing ¥t = 7, p_ = 1 after performing target-space
coordinate transformations (or, equivalently, local field
redefinitions on the world sheet)

M= (xt, x4 > M = (37,77, %).  (2.1)
An important point is that we do not allow for the most
general coordinate transformation: we demand that after the
transformation the background remains invariant under
shifts of the coordinates ¥*, which allows us to fix the
light-cone gauge in the usual way as reviewed in the
Appendix. As we will see, this requirement will constrain

the relevant classes of coordinate transformations.
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After the transformation to the ¥ coordinates and the
alternative gauge-fixing ¥ =z, p_ = 1, in principle one
ends up with a Hamiltonian density 7. We will then
distinguish “equivalent” and “inequivalent” light-cone
gauges. Our definition is that two gauge-fixings are equiv-
alent if the two Hamiltonian densities 7{ and H are related
by a canonical transformation. We will say that they are
inequivalent if there is no canonical transformation relat-
ing them.

To start, let us give the simplest possible example of a
coordinate transformation (or local field redefinition) that
leads to an equivalent gauge. To simplify the notation, we
collect all transverse fields x# in the vector X and consider
the transformation,

xt=5T, X~ =i, X = f”@)»
. . . of
Pe =D p-=p-, Dy = ge Pov (2.2)

where f# is an invertible function and the second line
follows from the first. Note that here we choose to imple-
ment a transformation on the transverse fields only, while
the light-cone fields transform trivially. In particular, the
relation p, = p, implies

H(X. p) = H(Z(X). B(X. ). (2.3)
where we write explicitly the dependence of the
Hamiltonian densities on the corresponding fields. In other
words, the two Hamiltonians are the same if the transverse
fields and momenta are mapped as

T

X = fr(X) 5= L 2.4
= o Pu= b (2.4)
The reader will recognize this as a class of canonical
transformations that are typically called “point transforma-
tions.” Because the two Hamiltonians are related by a
canonical transformation, in this case, according to our
definition, the two light-cone gauges are equivalent.

This result was expected even before considering the
Hamiltonians. Taking into account the above relations

(2.5)

it is obvious that the gauge condition x* =7, p_ =1 is
compatible with the gauge X+ = 7, p_ = 1, because the two
are in fact the same condition. In this case, the coordinate
transformation does not affect the gauge condition but only
redefines the transverse fields. This means that the pro-
cedure of light-cone gauge-fixing and the field redefinition
are two commuting operations. From this observation it
should be clear that to generate inequivalent gauges we must
allow the longitudinal coordinates to participate nontrivially
in the coordinate transformation. When doing this, however,

we will need to be careful not to spoil the invariance of the
action under shifts of the ¥* fields, as this is one of our
requirements specified above.

Before presenting the concrete examples of interest, let
us discuss the general strategy that we will use to construct
the transformations and the inequivalent gauges.

A. Inequivalent gauges from current-current
deformations

Our strategy to construct the coordinate transformations
and the corresponding inequivalent gauges is to exploit the
symmetries of the sigma model before gauge-fixing. In
particular, let us assume that the action before gauge-fixing
is invariant under a global continuous transformation, and
therefore an isometry transformation in target space. This
symmetry transformation can be understood as the map

M= FM(x,2), (2.6)
where A is the continuous parameter. Saying that the action
is invariant under this map for constant 4 means that after
the transformation the action does not depend on 4, and the
new action agrees with the old one upon the trivial
replacement x — X. From Noether’s theorem, then, it
follows that there is a conserved current. In particular,
one considers the infinitesimal transformation,

oFM
oxM = fMs),  where fM = i (2.7)

1=0
so that the infinitesimal variation of the Lagrangian .& is

_ a"gﬂ M
‘if—aa(mf ‘“)’

(2.8)
up to terms that vanish on the equations of motion.
Invariance of the action for constant 64 implies that the
Lagrangian can change at most by a total derivative, so we
write 6. = 0,V* for some V*. We can then identify the
conserved Noether current as

0L
JE=Vr— M, 29
0(0,xM) U (29)
From now on, for simplicity, we assume that V¢ = 0.

To construct coordinate transformations that generate
inequivalent gauges we use the global transformation (2.6),
but promote the parameter A to be a function of the fields. In
particular, let us write

64 =yc(X), (2.10)
for some function ¢ of ¥¥. Here we are introducing a
continuous parameter y that we will use to keep track of the
transformation, so that y — O reduces to the identity.

106023-3
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Importantly, when 64 is not constant the action is not
necessarily invariant. In other words, the map ceases to be a
symmetry transformation and it is understood just as a local
field redefinition or target space coordinate transformation.
On shell (i.e., on the equations of motion), the infinitesimal
variation of the Lagrangian is still given by (2.8), but
because 64 is no longer constant we now have

8.L = —0,(J6) = —0,J8% — J*0,54 = —J*3,54, (2.11)

where we used the conservation of the current. At this point
we can define the fopological current

Tt = e"ope,

(2.12)
which is conserved off shell (i.e., without the need of the
equations of motion). We may therefore rewrite the
variation of the Lagrangian as

5L = pegdo I

“ (2.13)

This formally takes the form of an infinitesimal current-

current deformation. Importantly, 7’(10) and J* are different

objects: the former is a topological current that is identified
by the choice of the function c, while the latter is a Noether
current identified by the symmetry transformation that we
selected.

Finally, let us return to the condition that the action is
invariant under shifts of ¥ after the coordinate trans-
formation. As already mentioned, we require this in order
to follow the usual procedure for the light-cone gauge-
fixing as described in the Appendix. It is clear that at the
level of the infinitesimal transformation we must require
the function ¢ to be of the form

(X5 X) =y & i +g®).  (2.14)
Here y. are constant parameters (which may be rescaled by
redefining the overall deformation parameter y) and g is a
function of transverse fields only. This ensures that the
derivative of 64, and therefore §.% itself, may depend on
derivatives of ¥* but not on ¥* explicitly, and thus the shift
invariance will indeed be preserved.

So far, the discussion has been at the level of the
Lagrangian density . before gauge-fixing. When gauge-
fixing, the Lagrangian density .# is evaluated on the
solutions to the Virasoro constraints obtained after setting
xt =17,p_=1. This procedure sends .£ to L, the
Lagrangian of the reduced model. Schematically, we may
write (), = L, where “g.f.” denotes the light-cone
gauge-fixing procedure. The transformation of L is then
simply inherited from that of ., and we can write

5L = yeu (ch))g‘f‘(ﬂ)g.f.. (2.15)

Therefore, the evaluation of the topological and Noether
currents on the gauge-fixing constraints will tell us how the
Lagrangian of the reduced model transforms. Taking into
account that H = p, i — L, we can also conclude that the
transformation of the Hamiltonian density of the reduced
model is

6H = ~reop (1)) (). (2.16)

1. Light-cone currents

Of all the Noether and topological currents that we may
consider, an important role is played by the “light-cone
currents.” First, invariance of .# under shifts of x* implies
the conservation of the following two Noether currents:

___9Z joo —— 92 oy

J(l — ,
) 9(0,x7) 5 0(9,x7)

Second, following analysis above, it is natural to consider
the following topological currents:

Ity = ePopx, Jty = ePopx=.  (2.18)

We will now show that upon gauge-fixing these currents
become

(), =2 (), =T

where T%; is the stress-energy tensor of the reduced
model. Importantly, if we call 7 the stress-energy tensor
of the model before gauge-fixing, it is not true that
(T%), . =T%. In fact, T is zero as a consequence

(2.19)

of the Virasoro constraints, while 7% is not. The latter is
calculated from the Lagrangian £ in the usual way
following Noether’s theorem,

oL
T%; = ———0pxt — 5%, L. 2.20
P 30 P T (2:20)
In the Hamiltonian formalism, each component is
TTT:H, T()‘T:_ﬂﬂ’
ox'* dpﬂ
oH oH
T7 = 3 T, ="H - h———p. . 2.21
.= D Mo e =gy e (22D

106023-4
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To prove the claim (2.19), let us start with the topological
currents. First, we have

— 0, e (2.22)

(+)
where after the arrow we indicate the evaluation of the
expression upon light-cone gauge-fixing. Now considering
the other topological current, it is easy to identify the time
component as

.7(_> = —x’_g'—f}pﬂx’” =T7,.

(2.23)
To identify the remaining spatial component we may reason
as follows. Consider two conserved currents J§ and J9, so
that 0,/¢ =0. They may be Noether or topological
currents, and in the example that we are considering we
take J{ = 7(_> and J§ = T%,. If, as above, we are able to
prove that J§ = J3 then it follows that d,(J] —J3) = 0. In
other words, the 6 components may differ at most by a

im=C- / dg(pux,” + p;txlﬂ)
0

M

ox'H

no_

< 4 oH
—C—A df[—wx

. o d
:E—/ d§05<—H+ Hx’”—i—p
0

ox
_ oH oM
- C+H_0x’”Xﬂ _a—Pppﬂ
— 1T,

where the boundary term evaluated at £=0 is a
function of 7 only, whose sum with ¢ we denote c. In
agreement with the discussion above, we find that the
two expressions match up to an unconstrained function of
7. By redefining, for example, the topological current as
.7?_) = 7% 95(x~ — c(r)), we find the expected agreement.

Let us now turn to the Noether currents. First, we have

PY% /.
Jo=0

0= "3 (2.27)

In general, after gauge-fixing, the ¢ component of this
current will be constant, and (by adjusting the topological

term as above) we can fix it to be zero, JE’_) ﬂo Finally,
we have

. fe [ oM, ., OH
C—/) dcf[—@x”—kx”@gax—,ﬂ—kpﬂag—

function of 7, and we can write J§ = J§ + ¥ dyc(z). The
difference e"‘ﬂdﬂc(r) is a topological term that can always
be added since it does not spoil the conservation equation.
At this point, redefining one of the currents to include this
term, we see that it is always possible to arrive at the
equality J¢ = J4. To summarize, after proving that one
component of two conserved currents is the same, we can
simply take the full currents to agree.

For completeness, let us be more explicit in the example

we are considering. The relation x'~ = —p,x’* implies that
x (z,0) =¢(r) - /0 dé p,(z,&)x"(7,¢). (2.24)
Now, using that
oH oH oH
o= =245, 20 (225
v op, Pu o 07 G (225)
we have
a”]
op,
oH oH oH
M _ 77 ) 0 ( /u _)
* op, Put O\ g™ T P op, }
ary
H apﬂ
(2.26)
|
. 0L 9.f. .
J(+) :—m:—p+—>H:T7. (228)

Having identified the time component, we conclude that the

spatial component can be fixed to be J‘(’H&T",.

2. Alternative gauges from current-current deformations

We will organize the presentation of possible alternative
gauges in terms of the Noether symmetry that is used to
construct the transformation. We first analyze alternative
gauges identified by the Noether symmetries shifting the
longitudinal fields x*, before analyzing those identified by
the Noether symmetries acting on the transverse fields only.
The symmetry transformations shifting x* have the advan-
tage of being linear in the deformation parameter at finite
order. The same can be achieved for the Noether symmetries

106023-5
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acting only on transverse fields if we adapt our para-
metrization of the fields to the symmetry transformation
(e.g., using polar coordinates to study a rotation symmetry,
so that the transformation is implemented as a shift of an
angular coordinate). In general, one may also have Noether
symmetries that act nontrivially on both the longitudinal and
transverse fields, but we will not discuss these explic-
itly here.

After choosing the Noether symmetry, we will also need
to specify the topological current that appears in the
infinitesimal deformation. In particular, we will complete
the analysis by looking at the three independent cases in
which ¢ is a function of transverse fields only, or of x™, or
of x~.

Some of the transformations that we present here have
appeared in other papers studying the construction of
current-current deformations, see for example [10-12].
The first example was in fact the 7T deformation, which,
as we will repeat below, can be understood as arising from a
light-cone gauge-fixing where the longitudinal fields are
subject to a y-dependent redefinition. Moreover, thanks to
the reasoning explained at the beginning of Sec. I A, it will
be straightforward for us to identify the infinitesimal
variation of the Hamiltonian density H, which sometimes
is referred to as the “flow equation.” For an alternative
derivation of the flow equation, see, for example, [12].

Let us also stress that we interpret the deformations as
generating gauge transformations of the reduced model.
That means that in general the deformation of the
Hamiltonian will be accompanied by the deformation of
other gauge-dependent quantities, such as the length of the
string, in such a way that the spectrum is gauge indepen-
dent. We will demonstrate this explicitly in Sec. V. At the
same time, one may reinterpret the deformations listed here
as genuine deformations by allowing only the Hamiltonian
and not the length of the string to be deformed, in the spirit
of [10-12].

Light-cone symmetries and c(X).

(1) Let us start by considering the Noether symmetry

shifting x~, with ¢ a function of transverse fields
only. We then write

T =x", X=X —i—yc():c'), X=X,

=
=

4 pP-=DP- f7,4 = DPu + yp—auc'

(2.29)

St
I
=

+

Given the invariance of the fields x* and p_, we
expect it to lead to an equivalent gauge. In fact, the
relation p, = p, implies that the two Hamiltonian
densities are the same if we relate the transverse
fields as

Xt = X1, Pu=Pu+roec, (230

106023-6
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where the gauge condition p_ = 1 was used. Be-
cause the momenta are shifted by the derivative of a
function ¢(X), it is easy to check that this is indeed a
canonical transformation. We can also confirm this
using the interpretation as a current-current defor-
mation. Using the results from Sec. II A 1, evaluat-
ing Eq. (2.16) gives

_ Ja / _
OH = —y€up (J<C))g,f, (J(_))g.f. =yod,c. (2.31)

This is indeed a change by a total derivative. To
conclude, in this case we generate an equivalent
gauge.

As a brief comment, let us mention that taking ¢ to
be linear in the transverse fields is enough to shift the
momenta p, by generic constants. This freedom is
the reason why in the Appendix we could set the
classical value of the transverse momenta p,, to zero.
Let us now consider a similar transformation, but for
the Noether symmetry that shifts x™. We write

xT =5t +yc(5~c'), X~ =X, Xt =3,
i’y = Pu + 7p+a/4C'

(2.32)

Dy =Dy p-=rp_,

Because x # X7, we now expect this to lead to an
inequivalent gauge. In fact, the two gauge conditions
xt =17 and X" = 7 are not compatible, since de-
manding that the fluctuations of both x™ and X" are

set to zero is possible only if the fluctuations of ¢(X)
are also set to zero. This is clearly impossible for a
generic function c as transverse fields do fluctuate.

Despite the relation p, = p_, it is not correct to
conclude that the two Hamiltonians are the same,
because we have

Xt = XH, Py = p,—rHo,c, (2.33)

which is not a canonical transformation.

To identify the explicit finite form of the deformed
Hamiltonian density 7, we solve for the Virasoro
constraint C, = 0 as reviewed in the Appendix. This
gives H{ as an explicit deformation of the Hamil-
tonian density H. We briefly explain the reasoning
for this example. While we will not repeat this for
other gauge transformations, the reasoning is analo-
gous in each case. First, note that the expression for
C, is invariant under diffeomorphisms in D dimen-
sions, so that we can trivially write
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C, =G" pypy + T*Gyyx™xN
- 2TpMGMNBNQX/Q + TZGMNBMPBNQ.X/P.XIQ,

— GMNIJM]BN + TzéMleMxlN

= 2T pyG"NByox'? + T2GMN By pBy ¥ P %' 2.

(2.34)
The new Hamiltonian is therefore
f=5= I;;_ e (2.35)
where
A=GTt

B =2G""p,, —2TG™™B,,, %",
C=G""pupn+ TG X"%"
—2Tp,,G" By, ¥4 + T>*G"V By, By, ¥ P¥1.

(2.36)

Thus far, these are just the formulas of the Appendix
with tildes. At this point, to see the explicit y
dependence, we can use the fact that all these objects
transform as covariant tensors, so that

G = G* +2y9,cG"" +20,c0,cG",
G =G + y9,cG™,

G" =Gg"", (2.37)
and similar formulas for the B field. Having gauge-
fixed the fields with tildes, we work with the
transverse fields ¥, p,. For ease of notation, and
to interpret the Hamiltonian 7 as a deformation of H
where the fields do not change, we will drop the
tildes. In other words we implement the substitution
X — x*, p, = p,. Finally, we arrive at

A =G +279,cG** + y%9,c0,cG™,
B =2(G™ +y0,cG")p,,

—2T(G™™ + y0,cG*™) By, x™",
C — Gmnpmpn + TZGmnx/mxln _ 2TpmeNBqu/q

+ T*GMN By, By X' x'4, (2.38)
where we explicitly see the complicated y depend-
ence of the Hamiltonian 7{ through A and B.

To conclude, let us note that according to the

reinterpretation as a current-current deformation we

find that the variation of the Hamiltonian corre-
sponds to

oH = VE€ap (J(L)>gf (J(Jf)) q.f.

= —yeaﬂj‘("c) T, =yd,cT?..

(2.39)
In [12] this deformation was called a JT, deforma-
tion; here we will call it J T .. While, according to our
definition, it leads to an inequivalent gauge trans-
formation, we will show later that it has no effect on
the S matrix. Indeed, notice that on shell (in particular
when using the conservation of the stress-energy
tensor) the above infinitesimal transformation is just a
total derivative.

Light-cone symmetries and c(¥*). Taking into account
that the Noether symmetry may shift either x™ or x~, and
that we may choose the function c to be linear in either x*
or x~, there are a total of four cases to consider.

6]

2

3
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Let us start with the symmetry shifting x™ and take
¢ = yx*t. Then

xt=(1+y)i", x =i, x*=3i
Pr=0+7)ps. P-=p-, DPp=pu (240)

Strictly speaking this yields an inequivalent gauge,
but it is clear from the above formulas that it
corresponds simply to rescaling 7, and consequently
the overall Hamiltonian. Therefore, we may say that
this gauge is “almost equivalent.” According to the
reinterpretation as a current-current deformation, we
have

_ Ja B _
5H = —yeu (JH))g.f. (J(H)y'f. —yH. (2.41)

Consider now the symmetry shifting x~ and take
¢ = yx*t. Then

xT=XT, xT =X +yx", x*=3x,
pyr=pitrp-, P-=p_, DPu=pu. (242)

This leads to an equivalent gauge since x* and p_ do
not transform. In fact, it corresponds simply to a shift
of the Hamiltonian by a constant H = H —7.
According to the interpretation as a current-current
deformation, we indeed have

_ Ja p _
SH = —yeqp (J(H)g'f' (J(_>>g.f. — . (2.43)

Consider the symmetry shifting x~ and take
¢ = yX~. Then

xt=x" x=1+y)x, =%,

Pr=p+. P-=0+7)p-.  Pu=pu (244)
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Strictly speaking this again yields an inequivalent
gauge, but it corresponds to just rescaling p_ and x~.
In the reduced model, this can be compensated by
rescaling ¢ and the tension 7'. Also in this case, we
may say that this is an almost equivalent gauge.
According to the interpretation as current-current
deformations, we have

SH = —yeqs (]g_))g‘f' (J/Z_))g.f. — 7o, (2.45)

This is indeed the variation of the Hamiltonian when
rescaling the world sheet coordinate o. In fact, taking
00 = yo and formally calculating the infinitesimal
variation of the Lagrangian, one finds

8L = 0,(T%,86) = T%,0,60 = yT°,.  (2.46)

(4) Finally, consider the symmetry shifting x* and take
c = yx~. Then

x+:x++}/i_’ X_:.% s xﬂ:xﬂ’

Pr=ps  Do=p_+rpi.  Pu=pu  (247)

Both x* and p_ transform nontrivially, and this
leads to an inequivalent gauge. Recalling how we fix
x* in terms of ¢ and ¢ in the Appendix, this

corresponds to the so-called a-gauge of [18,5]
" =(1-a)t+ agp, IT=¢—1 (248)

if we identify a =1/2 —y. As a current-current
deformation, we have

_ Ja b — a Tp
M =—re(70,),, (1), = —real"sT"

(2.49)

which corresponds to the well-known interpretation
as a TT deformation that was given in [10,11]. We
will not write the explicit finite form of the deformed
Hamiltonian density 7/, which may be found for
example in [11].

Transverse symmetries and c¢(%*). Let us now consider
the case of a symmetry transformation that acts nontrivially
only on transverse fields. If the function ¢ entering the
definition of the topological current j?‘c) depends on trans-

verse fields only, then we would end up with a “point-
canonical” transformation as in the discussion at the
beginning of Sec. II. Hence, the only way to generate
inequivalent gauges is to take c either linear in X or in X~.

106023-8

(1) We first consider the case ¢ = yX~, so that

xT=xT, xT=x", X=F(XAX7)),
— . +d/10F” . OF
p+_p+’ p—_p— d)NC_ (M p/u Pu—ax,, pw
(2.50)
where
AME)=c(@ )+ =y +---. (2.51)

That is, we identify the leading order of A with the
function ¢, as in Sec. Il A. If the symmetry trans-
formation is nonlinear, the parameter A of the finite
transformation may also depend on higher-order
terms in x~. These terms are identified by demand-
ing that shifts of X~ remain symmetries. We have not
needed to consider this subtlety up to now since
shifts of x* are linear transformations, hence the
infinitesimal and the finite transformations coincide.

If we also assume (as done in [12]) that we work
in adapted target-space coordinates, so that the
symmetry transformation simply acts as the shift
of a transverse field that we call 9,1 we can then write
the finite transformation as

xt=x", x =x", =X, 0=0+yxi",

Py =P+, P-=p_+YPo» DPu=DPu Do=Do-
(2.52)

Even without this assumption, it is obvious that the
two conditions p_ = 1 and p_ = 1 are not compat-
ible, so we expect an inequivalent gauge. In fact,
according to the interpretation as a current-current
deformation, we have

SH = —yeqy (J((_)L.f‘ (Jﬁ)g.f. = —yeo TP,

(2.53)

Here J* is the Noether current of the transverse
symmetry that we are using to generate the trans-
formation. In [12] this deformation was called a JT';
deformation; we will call it JT,,.

'If 0 is compact it has the interpretation of an angle, but it may
also be noncompact.
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(2) Consider now the choice ¢ = yx™, so that

X = Fr(X, (%)),

XT=X", x =X,

- di oF* - 5 oF*

p+:p++d5c_+ﬁp”’ P-=P-  Pp=giPu
(2.54)

where, as in the previous discussion, we identify

AZ) =c(x )+ =yxt 4. (2.55)
In this case the gauge-fixing conditions in the two
coordinate systems are compatible, because neither
xT nor p_ transform. Although the Hamiltonian
densities 7{ and H are related by a canonical
transformation, this is time-dependent since F*
depends on x* = ¥t = 7. Therefore, H is related
to H by an extra shift as indicated in the relation
between p, and p. . The fact that a time-dependent
canonical transformation generates an extra shift of
the Hamiltonian density also follows from the
definition H = p,&* — L, where the shift comes
from the explicit time derivative of x*. According to
the interpretation as a current-current deformation,
we have

= ea(01),, (), =17 259

where J% is the Noether current of the transverse
symmetry. We will call this transformation a J*
deformation.

Choosing adapted coordinates in target space so
that the symmetry acts simply as the shift of a
coordinate @, we have

xt=x", x =%, x=%, 0=0-+yx",
P+ =p++ypP9s DP-=P-» DPu=DPu Do=Do-
(2.57)

Therefore, the finite deformation of the Hamilto-
nian density is

H="H+yJ, (2.58)
where we use that the time component of the
Noether current and the momentum conjugate to
0 are related as J* = —p,. Note that the deformed
Hamiltonian (defined as the spatial integration of
the Hamiltonian density) is given by

H=H+y0Q, (2.59)

where Q = f doJ® is the Noether charge.

A similar discussion holds if we instead assume
that the symmetry transformation is an SO(2)

rotation of coordinates x2, x3:

3 = cos A%® — sin A%2.

(2.60)

x2 = cos A2 + sin A%, X

Introducing the vector x = (x?, x*) we can write

A in A
R() = < cosa o > (2.61)
—sind  cosAi
We also have
dR(A —sink A 0 1
():< sin cgs ):R(/l)( )
dA —cosA —sinA -1 0
(2.62)

Now taking xM = ™ for M # 2, 3, we promote the
above redefinition to A = yX*, which implies

4 ox' N dA ox'
P+ =P+ Fras Pi= P+ dit ol Pi

L (dRO)\T
:P++VXT<7> )4

= py +r(F Py = ¥p3). (2.63)
The deformed Hamiltonian density is then
H="H+y(®ps - ps), (2.64)

which is again of the form H = H + yJ".

Having analyzed all the relevant coordinate transformations
outlined at the beginning of this section, this concludes our
discussion of inequivalent gauges.

B. Recap of inequivalent gauges

For the reader’s convenience, let us recap the inequiva-
lent gauges that we have identified:

ey
(@)
3

“

106023-9

the JT, deformation obtained by the shift x* =
it 4 ye(X);

the TT deformation obtained by the shift x* =
It 4yxs

the JT, deformation obtained by promoting the
parameter of a transverse symmetry to a function
of ¥~ (for example, 8 = 0 + yi™);

the J* deformation obtained by promoting the
parameter of a transverse symmetry to a function
of ¥ (for example, 0 = 0 + yx™).
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III. INEQUIVALENT LIGHT-CONE GAUGES FOR
SYMMETRIC SPACES

Symmetric spaces, which include anti—de Sitter space
and the spheres, play an important role in integrable world
sheet theories of strings. Therefore, we now investigate the
moduli space of inequivalent light-cone gauges for the
symmetric space sigma model.

Symmetric spaces M = G/H are isomorphic to homo-
geneous spaces for which the Lie algebra g of the Lie group
G admits a Z, grading g = ¢ @ ¢@, i.e., such that®

[g(i>’ g(])} C g(i+jm0d 4)’ l,_] = 0, 2, (31)

where ¢(©) = Lie(H). Introducing the projectors P{) on the
subspaces g”) and the notation M) = PO M for generic
Lie algebra elements M € g, the symmetric space sigma
model action can be written as

T
S=-3 / drdo ySTr(A,PPAy), (32)
z

with A, = ¢g7'd,9, g:X — G/H a coset parametrization,
and STr an ad-invariant nondegenerate bilinear form on g.
Furthermore we have y% = \/|h|h? where h,; is the
world sheet metric. The action is invariant under global
left-acting transformations by G and local right-acting
transformations by H, whose combination we denote as
G x Hy. The equations of motion are

01 AY) Al AP =0, (3.3)
subject to the Virasoro constraints
1
T = STHADAY)) — EyaﬁyyésTr(Af)Agz)) =0. (3.4)

Our starting assumption in the light-cone gauge-fixing
procedure relies on having a parametrization of G/H that
realizes at least two manifest Abelian isometries corre-
sponding to shifts of a timelike coordinate ¢ and a spacelike
coordinate ¢. The most general coset parametrization
satisfying these criteria is

g = exp(At + A,p)gx, (A Ayl =0, (3.5)

*We employ a notation that is natural for semisymmetric
spaces, which admit a Z, decomposition. We do so because of
our motivation to eventually describe superstrings on spacetimes
such as AdSs x S°.

where the field gy is a generic parametrization of the
transverse fields x#. Recalling that x™ = (1 + ¢)/2 and
X~ = ¢ —t, this parametrization can be equivalently
written as

g =exp(A xT + A_x7)gy, AL =N+ A,

A= %(A(p “A), [ALA]=0. (3.6)

Shifts in the longitudinal coordinates ¢, ¢, or x* are realized
by left-acting transformations generated by A, A, or A,
respectively.

In this section we make the assumption that the back-
ground is a Cartesian product of a Lorentzian (noncompact)
symmetric space M, = G,/H, and a (compact) Euclidean
symmetric space Mz = G3/Hg, such as AdS, x S". We
define the projectors P, and P, onto the Lie algebras g, and
g4, Which, due to the Cartesian product structure, commute
with PO and P?). We also make the assumption that the
symmetric spaces are of rank-1, i.e., the maximal Abelian
subalgebra of gflz) and gg) is one-dimensional. We will not
assume that 1€ M, and p € M,, i.e., t and ¢ may mix
coordinates of M, and M.

The classical pointlike string that we use for light-cone
gauge-fixing takes the form

t=¢=r1, gx = 1, vy =Ty, (3.7)
In general, we may consider arbitrary constant gy = ¢,
however we can always use the global G; symmetry to
choose gy = 1 at the expense of a compensating rotation of
Ay ie, AL — gOA+g5]. Since we have not specified A_,
other than that it commutes with A_, which is also
unspecified, we take gy =1 on the classical solution
without loss of generality.

Deﬁning3

Aus = Posh. (3.8)

and substituting (3.7) into the equations of motion (3.3) and
Virasoro constraints (3.4), we find the conditions

AT AT =0, (A AT =0,

STr(APAY) + sTr(APAP) =0.  (3.9)

Therefore, Al(,o) and Aéo) are valued in the centralizers of
Al(,z) and A;z), respectively. Since we assume g is compact,
it follows that STr(AZAP) > 0, hence we must have

Note that only if we take 1€ M, and p € M, we have

Ay = A, and Az = A,

106023-10
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STr(AE,z)Agz)) <0 for the final equation in Eq. (3.9) to
admit a solution. For simplicity we assume that these
quantities are nonvanishing,4 hence by rescaling x™ and ¢
we are free to fix the normalization of A{” and Aéz). In the
following we will take

STr(APAY) = 2.

STr(AP AP = -2, (3.10)

At this point we note that we could use the local Hp

symmetry to remove the A£,0> and Aé()) dependence of the
classical pointlike string solution g = exp(A, 7). We can

further conjugate AE,Z) and Ag) by a constant element of H

to specified elements of gl(,z) and g(ﬁz) with the same norm.

This reflects the fact that there is a unique pointlike string
solution with nonvanishing momentum in both M, and
M up to global symmetry transformations. However, the
first of these transformations in particular does not preserve
the parametrization (3.5) with gy transverse only, therefore
we instead take A, and A; to satisfy (3.9), but otherwise
leave them unfixed.

Only a subset of the original G; x Hp symmetry
preserves our choice of parametrization. Included in the
residual symmetries we have global H transformations
acting vectorially as
Hy: Ags— hoMoshy',  gx— hogxhg', ho€H, (3.11)
and local right-acting transformations that only depend on
the transverse fields and reduce to the identity on the
classical solution. We fix the latter symmetry by setting
gy =expX, with X = X 4. We have now parame-
trized the group-valued field in terms of dim g(® + 2 scalar
fields. This is two more than if we had fully fixed the gauge
symmetry, and indeed our parametrization includes a redun-
dancy 1% - x4 cF(X), X > X—cFX)AY + -,
together with a compensating gauge transformation to
restore the original form. The two functions ¢*(X) can
be used to fix the two components of X in the Af) directions,
giving a minimal set of transverse fields that we denote by x:

STr(xAl?) =0.
(3.12)

gx =exp(x+ fT(0)AY + f~(x)AD),

Since the functions f* originate from shifts of the longi-
tudinal coordinates x* by functions of the transverse
coordinates, they can lead to different gauge-fixings.
Therefore, for now we leave them unspecified.

In order to understand the freedom that remains in our
choice of A, and Ay after imposing (3.9), we observe that

“Note that this restriction excludes the AdS light-cone
gauge [19] for which STr(Aflz) Aff)) =0.

the Hy, symmetry (3.11) preserves our gauge choice
gx = exp X. As we have restricted to rank-1 cosets, this
means that we can take A, and Az to lie in given Cartan
subalgebras t, C g, and t; C g5 with the properties5

sTr(tPt?) <0, 1. 1%] c {o}.

sTrtPtPy >0, [t 1P] c {o}. (3.13)
Given that the normalizations of A((lz) and A(;) are fixed,

the remaining freedom is thus rkg, — 1 parameters in A((IO)

and rkgs; — 1 parameters in Aéo). The origin of these

parameters can be understood as the rotation

gx = exp(A@x*) Jx exp(—A@x*), hence by the sum-
mary in Sec. II B, they are expected to correspond to J*
deformations.

Finally, we would like to understand the freedom that we
have in choosing A_, which is thus far unspecified other
than that it should commute with A | and is such that 7 and ¢
are timelike and spacelike, respectively. We will leave a full
analysis of the possible choices of A_, which depends on
A and any residual Hy, symmetry that preserves A, for the
future. Here we investigate one possible solution, which is
to take A_ to be valued in the same Cartan subalgebra as
A,. This is the general solution when A, is a generic
element of the Cartan subalgebra. Then, of the tkg param-
eters in A_ one can be fixed by rescaling x~, another one,
the part proportional to A, , can be understood as a shift of
x* by x~, hence corresponds to the TT deformation, and the

remaining rkg — 2 can be taken to parametrize tE,O) and téo) N
Therefore, the origin of these parameters can be understood
as the rotation gy — exp(Ax™)gy exp(—=A®x~), and by
the summary in Sec. II B, they are expected to correspond to
JT, deformations.

In total, through this analysis, we have found five sets of
freedom in our parametrization, four leading to inequivalent
gauge-fixings, mirroring the summary in Sec. II B, and one
to a total derivative. In particular, the two functions f(x)
and f~(x) correspond to a JT, deformation and a total
derivative respectively, while the rkg — 2 parameters in each

We first use the conjugation to fix Af,z) and Aéz). Since the

cosets are rank-1, we can conjugate between any two elements of

o’ or g

then conjugation by elements of the centralizer group of A,(,z) and

AS), which we can use to rotate AE,O) and Ag)) to be valued in a
Cartan subalgebra of the centralizer algebra. If the centralizer is
noncompact, there may be inequivalent choices for its Cartan
subalgebra. However, since this is not the case for AdS,, x S”, as
we will discuss in Sec. III B, we will not address this potential
subtlety here.

®Note that there may be bounds on these parameters that

depend on the form of A, to ensure that ¢ and ¢ are timelike and
spacelike, respectively.

that have the same norm. The remaining freedom is

106023-11
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of AS(_)) and A% correspond to J* and JT, deformations,
respectively. Finally, the component of A_ proportional to
A corresponds to the TT deformation.

In the perturbative analyses in Secs. III A, III B, and IV
A, we will make the following simplifying assumption.
We assume that ¢t and ¢ are coordinates on M, and
Ma, respectively, i.e., A, €g, and A, € g5. In particular,
this means that P, A, =-2P,A_ = A, and PzA, =
2PsA_ = A,, hence the projections of A, and A_ are
not independent. We also assume that the transverse
coordinates are split into a set of coordinates on M,
and a set on M. As a result, an alternative gauge-fixing
that leads to a JT, will always come with a total derivative:
shifts of x* are now restricted such that # and ¢ remain in
M, and M, respectively, and the transverse coordinates
are still split. Similarly, J* and JT, deformations will be
tied together, with a single parameter controlling both.
Strictly speaking, this would also remove the TT defor-
mation, however, we can reintroduce this by hand and will
do so when studying the tree-level S matrix in Sec. IVA.

We now carry out a more detailed analysis of the light-
cone gauge moduli space for the simplified case of
R x M,, with the generalization to M, x M, straightfor-
ward up to the identification of A,. We will then discuss
explicitly how to appropriately identify A, and A; for
AdS,, x §" and the residual symmetry algebras of different
light-cone gauge-fixed theories in Sec. III B.

A. Inequivalent light-cone gauges for strings
on R x M,
In order to probe the moduli space of inequivalent light-
cone gauge-fixings around the pointlike string solution

(3.7), it is useful to study the pp-wave limit. For simplicity,
we consider the space R x M such that the metric reads

1
ds* = —di* + ESTY((Q)_(Idé”AggX + gx' dgx)

x P (g5'dpAsgx + gx'dgx)). (3.14)

Wesett =x" —1e?x™and ¢ = x™ 4 Le?x™, with € a small
constant parameter, gy = exp(X) and expand X according
to Eq. (3.12) as

X=ex+ €f(€x)/\;2), STr(xAY) =0.  (3.15)

Finally, we recall that we normalize Az; such that
STr(APAY) = 2.

Using that [Ag)), Aff)] = 0, and expanding to quadratic
order in € we find

1
ds® = —2edx*+df(ex) + € (2dx+dx— +5STr(d})
1 2 0
— 5 (@ P (STr(xy. AT = STr(fn ALP) )

— ax*STe(AY [x,. dxl])> +O(e). (3.16)
For the pp-wave limit to be finite and nondegenerate, we
rescale the string tension 7 — Te™? and require that
ef(ex) = €2fo(x) + O(e?).” The metric now simplifies to

1 1
ds? = 2dx*dx™ + 3 STr(dx?) = 2 (dx*)? (STr(x. ALP)
— STr([x, Ag°>]2>) — dx*STr(A [, dx])

+ 2dxtdfo(x) + O(e?). (3.17)
The freedom in this limit is thus captured by Ag)) for the
longitudinal sector, which contains rkgs — 1 parameters,
and the function f(x) for the transverse sector.

To interpret these freedoms let us note that before taking

the pp-wave limit we can remove A;O) from our para-

metrization (3.5) with gy =expX and X given in
Eq. (3.15), by redefining

0 0
x = exp(—pA ) xexp(pAl),

(3.18)
where we assume the function f is invariant. From the
summary in Sec. II B we see that this can be understood as a
combination of a JT,, and a J* deformation. After taking the

(0)

pp-wave limit, A;" can similarly be removed from (3.17) by

the redefinition x — exp(—x+A;0))x exp(x““Ago)), therefore

only the J* deformation survives, while, as we will see, the
JT, deformation contributes at higher orders in the trans-
verse fields.

Similarly, we can in principle remove f(x) from the
pp-wave metric by shifting x~ — x~ + f(x). However, if
we demand that this does not transform ¢, then at higher
orders we will also need to shift x* — x™ —1 f;(x) and we

have an inequivalent gauge-fixing corresponding to a JT,
deformations as follows from the summary in Sec. II B.

Based on the pp-wave analysis above, we now fix light-
cone gauge in the sigma model on R x M with the goal of
understanding the effect of inequivalent gauge-fixings.
Here we work in the Lagrangian formalism, while analo-
gous results for AdSs x $3 for the Hamiltonian and tree-
level S matrix T will be derived in Sec. IVA 2.

We start from the metric (3.14) and expand in powers of
the transverse field X = P?)X. Introducing the operators

"While for a finite pp-wave limit in the sigma model we cannot
have an O(¢) term in this expansion, if we light-cone gauge-fix
around x* = 7, the divergent piece will be a total derivative ~a,f
that we can drop.

106023-12
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Dy = d + dgad , ) and expanding to quartic order in X, we

find the metric is given by

1
ds? = —d® + dg? (1 +5STr {A;”ad%(/\?]

1
+ g STr [A;2>ad§1\;2>] ) +do <STr [Aéz)DOX]

2 1
+3STr [A;Z) adg(Dox] ) + 5 STrDoX Do X]

1
+e STr[DyXad%DyX] + O(X3). (3.19)

In order to light-cone gauge-fix in the Lagrangian formal-
ism we exploit the results of [20], which follows the
method of [3,21]. In terms of the light-cone coordinates

p=x"+(1-a)x~, t=xt—ax", a€l0,1], (3.20)
the metric can be written as
ds> = G, dx"? +2G,_dx"dx™ + G__dx™?

+2G dxt +2G_dx +G,, (3.21)

where G has terms linear in dX and G, quadratic terms in
dX. Using (3.20), we can straightforwardly read off the
elements of ds? from (3.19).

The light-cone gauge-fixed action is given by

Sgf. = —T/dfdd(\/ —M+%E) = /drdaﬁ, (3.22)
b3
|

with
1 ° o o o
M = GT ((G—H— + ZG+,1 + Gt,n')(l + Gt,aa)
— (Gt ét,fg)z), (3.23)
2
E= o (G- +G_,), (3.24)

and we recall that £ is the gauge-fixed Lagrangian. The
notation here is as follows: G, , denotes G, with d
replaced by d,,, while G, .4 denotes G, with one d replaced
by 9, and the other by dj. This latter step is unambiguous

by the symmetry of G,. Additionally, the components of G
are defined as

é++ =G6G__Gyy - G%r_,
Gia=G6G__G,y—G _G_,,

)

Gt,(l/)’ - G——Gt,a[)’ - G_,{IG_./)’. (325)

1. JT, deformation for R x M,

We start by focusing on the J7, deformation and

therefore for simplicity assume A;O) = 0. In particular, this

implies that DyX = dX. Therefore, to quartic order in X
we find

. 1
G\ =5STr A;z)adg(/\éz)} + STr [AQ ad‘,‘(Aéz)} + O(X%) = V,(X) + V4(X) + O(X7),

G__=1-2a+(1-a)*G..,
1

Gio=1+(1-a)G,,

i 1
G, ==STr Af;)dx} +5STr {A(Qz)adﬁdX] +O(X5) = Ly(X) 4 L3(X) + O(X5),

2

= (1-a)G,.

G_
1 1
G, = ESTr[dXdX] +e STr[dXad%dX] + O(X3) == K»(X) + K4(X) + O(X).

The indices on V;, L;, and K; denote the power of X.

(3.26)

We can now compute the light-cone gauge-fixed Lagrangian as defined in Eq. (3.22) up to quartic order. We rescale
X — T73X, substitute the metric (3.26) in the action (3.22) using the expressions (3.23)—(3.25) and expand to obtain

L(X) = TLy(X) + Lo(X) 4+ THL(X) + T Ly (X) + O(T3X5),

with

El = Ll;rv

(3.27)

(3.28)
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1

£2 = E (K2;r,r - K2;6,O' - L%;‘r + L%;a + VZ)’ (329)
1

£3 = _Ll,TVZ + L3,7: +a <§LI;T(V2 - K2;7,1 - KZ;ﬁ,(r + L%; - L%;a) + Ll;O'Kz;T.O'> P (330)

1
£4 = g (KZ;T,T + KZ;G,G - 2K2;r,a - (Ll;r - L1;6)2> (KZ;T,T + K2;a,5 - 2K2;r,a - (ngr + Ll;a)z)

1 3
- Ll.‘L’L3.T + Ll.O'L3.0' - Z (KZ;f.T + KZ;U.o' - 3L%_¢- + L%,g + E VQ) V2
1 a 2 2 2
+ 5 (K4;T,T - K4;6,0' + V4) + 3 (KQ;f,r - LI,T)(LI,T - Ll,o‘)
1 1
+a ((KZ;r,o' - L1;1L1;5)2 - Z (KZ;T,T + K2;0,6 - L%T - L%.a)z + Z V%) . (331)

Note that, as for G4 and G, above, the labels 7 and ¢ on L; and K; indicate that d should be replaced by 9, and d,,
respectively, where the symmetry of K; again means that this procedure is unambiguous.

From the analysis in Sec. III A, inequivalent gauge-fixings corresponding to JT, deformations are parametrized by a
function f(x), which can be introduced as®

X =x+ f(x)AY, (3.32)
where we take STr[xAéz)] = 0. We will now show that, up to total derivatives and redefinitions of the transverse fields, £;

for j =1,...,4 does not depend on f(x).
Substituting (3.32) into the expansion of the light-cone gauge Lagrangian (3.28)—(3.31) we obtain

L, =o.f, (3.33)
£ = 5 (Kaeol3) = K o0) + V() (3.34)
£3 = Lafx) = 3 0(Va(0)f) + a(Kaieo ()00 + 3 0F(Va(8) = Koy () = K1), (3.35)

L4 = 3 (Ku () = Kaoo) + Va() + g (K (0) F Ky (3) = Va(0))? = 3 (Kaeg (37 + Val2)?)

~ 4 ((Kae0) + Ko ()7 = 4K ()2 = Valx)?) =30, = 0,) (£5(0)f = ¢ (0,Va(x)) )
a2
+ 5 K00 = (00 ?) = ST .x) D] = 3 £5Trl(ad a2 DA, (336)
where

D—%(%—%—adig)) (3.37)

From this point on we drop total derivatives. Doing so, we can rewrite the above expansion as

£, =0, (3.38)

¥Here f(x) can be related to ¢(x) in the shift ¢ — ¢ + c(x) (at leading order they are equal). The shift in ¢ can be split into a shift in
x~, which corresponds to a total derivative after light-cone gauge-fixing and was visible in the pp-wave analysis, and a shift in x*
corresponding to a JT, deformation.
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L= —%STr[xDx], (3.39)
Ly = Ly(x) + aSTr[fxDx], (3.40)
L4 = 3 (Ku () = Ko+ V() + 5 (Ko 0) F Ky (3) = Va(0))? = 3 (Kaeg (27 + V2l2)?)

O (Raar0) + Kl0)? = 4Ky = Vax2) + & (STf5DF) - STl D)

1 1
< fZSTr[(adigzjx)Dx] -3 fSTr[(ad,ad, e x)Dx]. (3.41)
Finally, we can implement the following field redefinition:
. sy Lo o 1
X o x+T3afx+T <§a (f24) = 2 a2 o x = gfadxadAgpc) T (3.42)

fof+T2aff+-, (3.43)

which completely eliminates the dependence of the quartic light-cone gauge Lagrangian on f.

Therefore, we find that the effect of inequivalent gauge-fixings corresponding to JT, deformations in the light-cone
gauge-fixed Lagrangian up to quartic order can be removed by a field redefinition if we drop total derivatives. It follows that
the light-cone gauge S matrix at tree level will not depend on f, and we will see an explicit example of this in Sec. [VA 2
for AdSs x S°.

2. J* and JT deformation for R x M,

Again based on the pp-wave analysis in Sec. III A, we now study the effect of inequivalent gauge-fixings corresponding
to J* and JT, deformations in the gauge-fixed theory. We will do this in the Lagrangian formalism, fixing light-cone gauge

in the sigma model on R x M; as in Sec. IIl A 1, but now setting f = 0 and keeping Aéo) nonzero. Recall that in this

analysis the J7 and JT, deformations are tied together since A(®) originates from the redefinition (3.18).
Since we now consider A;O) # 0, the metric (3.21) has extra terms compared to Eq. (3.26) and can be written as

1 1 1 1
G, =5STr [A‘;)adg(/\(;)] + g STr [A;”ad;‘(/\?] ~5STr {A;%dg(/\;‘”] ~ g STr {Aéo)adiAéo)}

2 _ _ _
~3STr [Af)adiAg})] + O(X) = Vo (X) + Va(X) + Vo (X) + Va(X) + V5(X) + O(X5),
G._=1-2a+(1-a2G.,, G, =1+(1-a)G.,.

1 1 1 1
G, =-STr [Ag)dx} +3STr [Ag”ad%(dx} ~5STr [andXAgO)] ~¢STr {and}Aéo)}

2
= L1 (X) + L3(X) + Ly(X) + Ly(X) + O(X°),

G_=(1-a)G,,

G, = %STr[dXdX} + éSTr[andidX] + O(X%) = K»(X) + K4(X) + O(X%), (3.44)

where we have introduced new functions V; and L;, which depend on A;O) and whose index again indicates the power of X.

Setting X = x where STr[xA(;)] =0, rescaling x — T-2x, and computing the light-cone gauge-fixed Lagrangian as
defined in (3.22) to quartic order, we find

L(x) = T2L,(x) + Lo(x) + T2L5(x) + T L4 (x) + O(T2x5), (3.45)
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with
Ly =0, (3.46)
1 I- -
*CZ = 5 (VZ + Kz;r,r - K2;a.a) + 5 V2 + L2;r’ (347)
1-
Ly =Ly +5Vs, (3.48)
£4 =3 (1 - 261) ((K2;T,r + K2;6,6)2 - 4K%;r,a - (VZ + V2)2> - 7a(K2;T,T + K2;6,(r V2 - ‘72)1:21
. 1 - _ - 1 - -
+ aK2;1,0L2;0 =+ Z (V2 + V2)(K2;r,r + K2;0.zr + V2 =+ V2 + 4L2;7) - E (L%;'r - L%;a)
1 _ _
+ E (K4;T,T - K4;rr.o' +Vi+ Vet 2L4;T)’ (349)
|
where we have used that STr[xAéz)] =0 implies  pr _ 7 (3.56)
L;(x) =0. For clarity, we have also suppressed the } §
dependence of the functions V;, L;, and K; on x. 1
To see that the effect of Aéo) is a combination of J* and ~ £4 = 3 (1=2a)((Kyer + Kap p)* —4K3,, , = V3)

JT, deformations as claimed, we start by noting that
Egs. (3.46)—(3.49) are invariant under the transformation

ENCRNC
x — e xeths (3.50)

for constant a since [ASQ,O),Aéz)] = 0. We can therefore

remove the J© deformation by promoting a to be time
dependent and rotating

O A©
x = "™ xe™s (3.51)

under which (i =1, 2)

Ly — Ly, — Vo, Lyi_1 ;= Lyioi =5 Vai1s

2
Ksiiro = Kaiseo — Lojgs

(3.52)

Kyizr = Koje o = 2L + Vo,

where V| = 0. The remaining functions do not transform.
The transformed Lagrangian is then given by

L7(x) = T2LT(x) 4+ L3(x) + T72L5(x) + T L3 (x)

+ O(T—%xS), (3.53)

with
Li=0, (3.54)
L5 = %(Vz + Kozr = Koo): (3.55)

_ 1 _
- (1 - a) (KZ;T,GLZ;U + 5 (KZ;r,r + K2;0,a + VZ)L2;1>
1 1
- ZVZ (KZ;TVT =+ K2;6,6 + V2) +5 (K4;TVT - K4;a,o‘ + V4)
(3.57)

Computing the conserved current associated to the
symmetry (3.50) we find

J. = Z‘Z;‘w Jo = _Z‘2;w (358)

while the components of the stress-energy tensor are
given by

1
Trr = _E (KZ;‘L',T + K2;0',0 - V2)7

1
T, = _E (KZ;T,T + KZ;G,U + VZ)’ T =T5 = KZ;T*”'

(3.59)
Constructing the 7T and JT, operators as

Orr = €T TP, and O = €,3T°,J%,  (3.60)

we see that we can rewrite £} as

1 A A
££:£4|/\(50)—>0,a—>%+ <§—a> OTT+(1_a>0JTJ, (3.61)

demonstrating the form of the JT', deformation explicitly.
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B. Strings on AdS,, x $"

In the remainder of this section, we will focus on string
sigma models on AdS,, x §" backgrounds and explore the
light-cone gauge freedom in their longitudinal sector in
more detail, including analyzing the symmetries of the
resulting light-cone gauge-fixed theories.

The target spacetimes of these sigma models can be
realized as the symmetric cosets

SO(n—1,2)

o SO(n+1)
SO(n—1,1) ‘

SO(n)

M, x Mg = (3.62)

Hence, the Lie group G is the product of a noncompact
and a compact group. Their Lie algebras g, = 8o (n — 1, 2)
and g, =8o0(n+ 1) can be spanned respectively by
anti-Hermitian matrices J;;, I,J =0,...,n and Ry,
A,B=1,...,n+ 1, satisfying

[JIJs JKL] =mxdjp — ki + ik — Mind ks

Jiy==J,
[Rag. Rcp) = SacRpp — 0pcRap + SgpRac — SapRpc
Rap = —Rpa, (3.63)

with n;; = diag(—1,1, ..., 1,—1). This realizes a symmet-
ric space with g(2> = span(J;,, Rypy1), fori=0,...,n—1,
and a = 1, ..., n, and the invariant subalgebra ¢(*) spanned
by the remaining orthogonal generators. To explore the
light-cone gauge freedom in the longitudinal sector, we
need to identify the Cartan subalgebras t, and t,.

1. Identifying the Cartan subalgebra

For compact groups, there is a unique Cartan subalgebra
up to inner automorphisms by Cartan’s torus theorem. The
rank of gg = 80(n + 1) is ] and we can take the Cartan
subalgebra to be spanned, e.g., by

1454
ts = Span{Rn(n+l)’ U R(2i—1)(2i)}’ (3.64)
i=1

where we have introduced brackets on indices for read-
ability. For example, in the case of 30(6) we take
ts = span{Rs¢, R|», R34 }. Because of its definite signature,
a generic element Az €ty is spacelike under STr. In
contrast, for noncompact groups, there can be distinct
Cartan subalgebras not related by inner automorphisms.
To identify the space of inequivalent gauge-fixings, we
should therefore take into account all these possibilities.
However, the Virasoro constraint (3.4) of the AdS,, x S”
string singles out one Cartan subalgebra [22] up to inner
automorphisms. To elaborate, let us consider for simplicity
y® =y, such that in the light-cone coordinates o+ =

I(r+0) we have T,_ =0 identically. Because of the

Cartesian product structure of the spacetime, we can write
A, = Ay + Ay, With A, (A,e) the projections of A, on
the subalgebra g, (gs) for the AdS,, (S") space. The other
components 7, of the energy-momentum tensor can
similarly be split into a contribution from AdS,, and S", i.e.,

Too=To 47850, T4 = sr(al) Al

+a(8) ia(é)) :
(3.65)

The conformal symmetry of the world sheet means that it is

always possible to choose coordinates such that Tai(? =

Ha(s) are real constants. As before, for S”, which is a space
of definite signature, g is positive definite under STr. For
AdS,,, on the other hand, a space of indefinite signature, y,
can be negative, null, or positive. These cases lead to
three inequivalent one-dimensional Cartan subspaces of
P<2)(ga) [22].” The Virasoro constraints however require
that g = —u, > 0."° For all n, this singles out the one-
dimensional Cartan subspace generated by J, up to inner
automorphisms. The centralizer algebra of J,, is the
compact subalgebra 8o(n —1) of o =80 (n—1, 1).
This means that, up to conjugations by the compact
subgroup SO(n — 1) C SO (n — 1, 1), the requirement that
Jon 1s an element of the Cartan subalgebra polarizes the full
Cartan subalgebra of g, = 80 (n — 1, 2) to be the |25 ]-
dimensional subspace spanned by

1254
t, = Span{f()m U J(2i—1)(2i)}- (3.66)
i—1

1

For example, in the case of 30(4,2) we take t, =
span{Jos.J12. J34}. Generic elements P?)(A,)€t, are
now guaranteed to be timelike under STr.

As a side remark, let us note that the above discussion
holds more generally for AdS, x §7 spaces with p # q.

2. Relation to JT, and J* deformations

Let us now consider n =5 and explore the rkg, +
rkgs — 2 = 4 parameter freedom in the longitudinal sector
of AdSs x $°. The following can be readily extended to
different values of n. Based on the discussion above, we
parametrize (3.5) with

Ao = apJos + a1 1n + apJ 3,

Ag = PoRs + 1Rz + PoRas, (3.67)

For n = 2 there are actually two possibilities with u, = 0,
see [22].

"“The choices of Cartan resulting in u, = 0 allow to consider
bosonic string configurations on AdS,, only. As mentioned above,
we will not consider such examples in this paper.
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where a;, and f,, are free real parameters, and the
transverse fields as in [5], i.e.,

1+3 27 1+34  viR;
gX:gX(Z,y): Z_lz 5 D 2:_17 6 i
V1-% \V1+5
4 4
(3.68)

where z; and y; are the transverse coordinates of AdSs and
S°, respectively, and z> = z,;z;, > = y;y;. Because of our

assumptions outlined at the beginning of this section, A£,2>

and Ag) must be nonvanishing and thus we must require
ag # 0 # py. Furthermore, oy and S, will not be true
parameters, as they can be rescaled to fix a definite
normalization of A, and A4. The metric reads

1+2)\? 1-2\?
dsZ:—a(2)< ;) dtz—i-ﬁ%(—jz dg?

n (dZ1 - (11Z2dt)2 + (de + OtlZldl‘)2
2

(1-57
(dz3 — apz4dt)? + (dzy + ayz3dt)?

2

(1-5)

n (dy) — 1y2de)* + (dy, + pryi1dp)?
2

(1+%)?

n (dys — Pryade)* + (dys + pry;de)?

2
(1+%)?

(3.69)

and thus indeed the parameters a, and S, can be reabsorbed
by a rescaling of ¢ and ¢ (and «; , and f3; ;). From now on
we will set ayg = fy = 1.

At this stage, we indeed have a four-dimensional
moduli space in the longitudinal sector parametrized by
|

71 = cos(a 1)z, — sin(o7)Z,
()Z3 —Sln(az )%
(
(

)

73 = COS

£1#)3
y3 = cos(f2p)$

y1 = cos

and t =7 and ¢ = @. Up to local Hy transformations,
one can show that this corresponds to the field redefinition
g — g with

g = exp(Jost + Rsep)gx (2. ),
g=exp((Jos + a1/ 12 + arJ3y)7

+ (Rse + 1Rz + PaR34)P) 9x (2. 9). (3.73)

(ay, s, By, B>). This freedom can be understood as coming
from the action of the generators J,, J34, Ri3, and Ry,
where the would-be symmetry parameters are promoted to
linear functions of the coordinates ¢ and ¢ (or equivalently
x*). The parameters (a;, @, 1, 3») thus correspond to JT,
and J* deformations. Let us see this explicitly. Starting from
the standard AdSs x S3 light-cone gauge-fixed theory with
a1, =1, =0, there is an 80(4) @ 30(4) = 3u(2)®* @
31(2)®2 algebra in the centralizer of A, + A4, which acts
as SO(4) x SO(4) rotations of the z; and y; fields (see,
e.g., [5]). Of these, there are 2 + 2 Abelian isometries that
can maximally be realized. In the above coordinate system
these can be chosen to correspond to rotations in the plemes11

(z1,2»): generated by J;, as G, : e‘n/i,
(z3,24): generated by J3; as G, : e/,
(y1,y2): generated by R, as G : V1R,
(y3,v4): generated by Ry, as G : V¥R, (3.70)

with {15, {34, W12, W34 constant isometry parameters. These
are actually global G; transformations by he H; C G;.
That they amount to rotations in the corresponding planes
can be seen by noticing that, for example, R4 transforms as
an SO(4) vector under the rotations generated by R;;, i
hR;ch™' = M,/R 6> With M ;/ an orthogonal matrix, and that
multiplications of gy from the right by 4~! are in Hy.

We can now promote the parameters of the AdS
isometries to be linear in # and the parameters of the sphere
isometries to be linear in ¢,

(3.71)

Cn=at, Cu=at, yp=pe, wu=/7Hhoe,

resulting in the following coordinate transformation

M - M.

7 = cos(a;1)Z, + sin(a 1)z,

T4 = cos(azf)24 —+ Sin(azf)23,

y2 = cos(1p)y, + sin(B, )y,

Y4 = Co8(Br) ¥4 + sin(Br) s, (3.72)

I
thus giving the parametrization (3.67) after dropping the
tildes. Let us note that we do not mix 7 and @ in (3.71) since
we are assuming that A, and Az should generically remain
elements of g, and g4, respectively. With

"0f course, it is possible to go to a coordinate system in which
these rotations are realized as shifts of angles.
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TABLE I. The centralizer of A, = Jys + a1J1, + apJ3, in 30(4,2) = 311(2,2). The first line corresponds to
generic a;, ay. The u(1) elements are all in the center of c,,.

a a Cq Basis

a a u(1)® {Joss J12, J34}

a a u(1)®2 @ 3u(2) Vos:Ji2 + T3} @ {J13 + Jogs J1a — o3, 1 — 34}

a 1 u(1)®? @ su(1,1) {J12:J0s + T34} @ {Jo3 + Jus: Jos — J35.Jos — T4}

1 1 u(l) @ su(2,1) {os +J12 + T3} © {Jos = J12. 34 = J12, 14 = J o3,

=)
=)

1(l) @ 3u(2) & 3u(2)

Ji3 +J24.Joa = I35, Jos + Jas. Joo = Jis. Jo + Jos}
{Jos} ® {-’ij|l,J =1,...,4}

i=%"—ai", @=3%"+(-a)i, (3.74)
for some real parameter a € [0, 1], this means that the
resulting light-cone gauge-fixed theory will indeed be a
combination of JT, deformations (due to the promotions
linear in ¥~) and J* deformations (due to the promotions
linear in XT), as follows from the summary in Sec. II B.
Furthermore, the introduction of the parameter a will
correspond to a 7T deformation.

In Sec. IVA 1, we will verify this at the level of the
gauge-fixed Hamiltonian and tree-level S matrix. For
this, it will be useful to give the explicit expressions of
the time components of the currents for the rotational
isometries (3.70). With the definitions (2.7) and (2.9) and

AS {Clz, C3a, W10, l//34} we find

Sla12) = 2Pz =2 Pss  Jla34 = 2Pz — 23Dz,

Jla12) = 92Py =¥1Pyss Jlg34) = YaPy, = Y3Py,  (3.75)

3. Residual light-cone symmetries
Let us now continue with the background (3.69) with
ap = Py = 1 and discuss the residual symmetries of the
resulting inequivalent gauge-fixings. For this, we consider
the pointlike solution

xT =1, x~ =0, 7 = a,

Vi = biv yaﬁ = T_lna/jv (376)
withx™ = (1 — a)t + ap, x~ = ¢ — t as usual. Demanding
this ansatz solves the equations of motion and the Virasoro
constraints, as well as giving vanishing transverse canoni-
cal momenta'” p, =0, we find that we must set
a; = b; = 0. The classical solution then takes precisely
the form (A13).

After fixing the uniform light-cone gauge xt =r,
p_ =1, the residual bosonic time-independent charges of
the gauge-fixed theory will come from those Gy

"2Recall that this can be achieved by the shift x= — x~ + ¢, x*
with constant ¢,, which results in an equivalent gauge-fixing, as
explained in Sec. IT A 2.

transformations that are generated by the centralizer ¢ of
the Abelian algebra generated by A, and A;. Depending on
the values of the parameters a;, a, in the AdS sector the
centralizer ¢, is given in Table I. For the sphere sector the
centralizer ¢; depends on the values of the parameters f;, /3,
and is given in Table II. We have identified these algebras by
their dimension, dual Coxeter number, and signature.
Furthermore, we have used automorphisms of the central-

izers of AE,Z) and A(Q2> in order to reduce their possible
embeddings within 80(4,2) 2 81(2,2) or 80(6) = 8u(4)."”
Since we have fixed our choice of AY and Ag) from the
beginning we do not allow for more generic automorphisms
of 30(4,2) = 3u(2,2) or 80(6) = 3u(4). This means that,
for example, the second and third lines of Table II cannot be
mapped to each other.

Interestingly, there is an enhancement of the residual
symmetries for specific points in the moduli space of gauge-
fixings. For generic parameters the symmetry algebra is the
smallest possible. For a;, = f;, =0 we recover the
bosonic 1(1)®? @ 81u(2)®? @ 3u(2)®? symmetry algebra
[with A, = Jo5 and Az = Rs4 corresponding to the central
1(1)®2] of the standard light-cone gauge-fixed theory [8,5],
which is 14-dimensional. An intriguing case is a;, =
P12 =1 leading to the largest number of bosonic sym-
metries, namely the 18-dimensional 1(1)®?> @ 8u(2,1) &
3u(3) algebra, where the 1(1)®? elements are again in
the center and given by A, =Jyps+J1p +J34 and
Ag = Rsg + Ry2 + Ray.

In the AdSsx S superstring setting, where g =
p3u(2,2[4), the bosonic residual symmetry will be further
enhanced with supercharges. In the light-cone gauge with
a= %, the bosonic and fermionic generators that give rise

BFor example, one can also consider A, = Jos + J1» + a3y
or A =Jys —Jn + aJs, with a generic, which will have the
same centralizer algebra as that of A, = Jos +aJiy + J34,
though embedded differently in 80(4,2) = 811(2,2). The differ-
ent embeddings can be related by means of automorphisms in the
centralizer of Al and Aéz), which here is 80(4) @ 80(4). For
these examples, the cases of A, and A} are related by the
automorphism replacing the indices as (1 <> 3,2 <> 4), while the
cases of A} and A are related by replacing (1 <> 2).
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TABLE II.  The centralizer of A; = Rsg + 51 R + BrR34 in 80(6) = 811(4). The first line corresponds to f;, 3,

generic. The (1) elements are all in the center of ¢;.

b P> (N Basis

b B u(1)® {Rs6, R12, R34 }

p p u(1)% @ su(2) {Rs6.Ri» + R34} @ {Ri3 + Ros. Ry — Ry3. Ri; — Ry}

p 1 u(1)® @ su(2) {R12, R34 + Rsg} @ {R3s5 + Ry, R3g — Rys, R3s — Rsg}

1 1 u(l) @ su(3) {Rs + Rz + R34} @ {Rsg — Rz, R3g — Rys, R3s — Ry,
R34 = Ri2,Ri6 — Rys. Ris + Ry, Ry — Ry, Riz + Ry}

0 0 w(1) ® 8u(2) @ 8u(2) (Reg} ® (Rylij = 1.....4)

to charges independent of x™ = 7 have to commute with
A, = A, + As. We will call this superalgebra ¢, . Further
specifying the gauge with a;, = f8;, =0 leads to the
usual ¢, = u(1)®?> @ psu(2|2)® superalgebra of light-
cone symmetries, which has in total eight complex super-
charges [8,5]. For the case with o , = 1, = 1 we find the
following algebra embedded in pdu(2,2|4):

¢ = p(u(1]1) @ su(2,1]3)), (3.77)

where we quotient out by the identity 15."* This algebra
has ten complex supercharges, of which one is in u(1|1).
Its structure is most easily obtained working in a repre-
sentation of 31(2,2[4) in which A, and Ay are diagonal,
and the reality condition reads

MIT+IM=0, I=diag(-1,1,1,-1

1L1,1,1),  (3.78)

for all M € p3u(2,2[4). The matrix realization of the ¢,
superalgebra (3.77) then schematically is

u(1|1) = span

3u(2,1

3) =span

where L€8u(2,1), Resu(3), QeC>3, 9eC and
I = diag(1,1,-1). To work with explicit matrix realiza-
tions (before diagonalization of A,, Az and 7) we refer,
e.g., to Appendix B of [24] (see also [25,5]).

One can repeat a similar exercise for the other cases in
Tables I and II. Already for a = % there are many possible
combinations of A, = A, + A to consider, but many of
these choices lead to a centralizer ¢, with no supercharges.

IV. EFFECT OF INEQUIVALENT LIGHT-CONE
GAUGES ON THE S MATRIX

In this section we analyze the effect of the different light-
cone gauge-fixings on the perturbative and exact world
sheet S matrix. Taking into account our motivations, we

, (3.79)

will focus on the case of factorized scattering. Therefore,
we only need to consider the 2 — 2 S matrix. The argu-
ments are generalizable beyond this case, however we will
not consider this here avoiding subtleties that do not arise in

our setup.
After decompactifying the world sheet, the S matrix
relates incoming states at time 7 = —oo with outgoing

states at 7 = +o0. These asymptotic states are thought of
as collections of wave packets that have a well-defined

"It would be interesting to explore connections with non-
relativistic string theories and spin matrix theories in zero-
temperature critical limits of N =4 super-Yang-Mills where
similar symmetry subgroups appear, see, e.g., [23].
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momentum and are well separated. On the spatial line they
can be ordered, and for incoming states we take
(4.1)

in
|p1’p27"'va>/4]./12 ..... N

where p; > p, > --- > py. In this way, each incoming
particle has a right-moving momentum greater than the
momenta of the particles to its right, hence all the particles
will scatter with each other. Here uy, y,, ..., yuy are labels
that identify the possible different flavors of the N
particles. Because of the restriction to the case of factor-
ized scattering, the outgoing particles will have the same
set of momenta as the incoming particles but, because
scattering has occurred, their ordering will be reversed:

|pN’pN—l" 7p1>1[/):t1/,\, Loeenl® (42)

Here vy,vy_g,...,v; label the flavors of the outgoing
particles. We will therefore work in the convention that the
S matrix reduces to the permutation operator when turning
off interactions. In the case of the two-body S matrix, for
example, we write a generic entry as S,2,., where u;, u, are
the flavors of the incoming particles with momenta p, p,,
respectively, and v,, vy are the flavors of the outgoing
particles with momenta p,, p,, respectively. The nontrivial
part of the S matrix is given by the T matrix T defined as
S=IT1+ %T, where II is the (graded) permutation.

We will now focus on the four inequivalent gauge-
fixings summarized in Sec. IIB. We will carry out an
analysis at tree level for AdSs x S, before giving argu-
ments for the nonperturbative S matrix.

A. Tree level

1. TT, JT,, and J* deformations: AdSs x S°
tree-level S matrix

We first illustrate the effect of the inequivalent gauge-
fixings discussed in Sec. II A on the perturbative S matrix
for bosonic strings propagating in AdSs x S, focusing on
the TT, JT,, and J* deformations. The analysis can be
straightforwardly generalized to AdS, x $" with different
n. Our starting point is the metric (3.69), with ay = fy = 1
and free deformation parameters a;, @, and f;, f,. We
slightly generalize the light-cone gauge-fixing discussed in
the Appendix by including the gauge parameter a € [0, 1] as
in (3.74), so that
9.

25,

(4.3)

= (1—a)i+aple.  p_=—ap,+(a-1)p,

X =—t+g.  pi=p+D,

as is compatible with the classical solution (3.76) [or
equivalently (A13)].

Complex coordinates. The effect of the deformation is
best seen in a basis of eigenstates of the charges associated

with the currents (3.75). As discussed in Sec. III B 2, on the
real transverse coordinates (z Y j), j=1, 2, 3, 4, the
symmetries act as rotations. This motivates the introduction
of the complex fields,

1 _ 1 .
uy = 75()’1 +iy,), u :75()’1 —iys),
1 _ 1 .
Uy = 75()’3 +iys), Uy = 75()’3 —iys),
1 . _ 1 .
uz = 75(21 +iz2), Uz = E(Zl —iz,),
1 . _ 1 .
Uy = 75(23 +iz4), iy = ﬁ(zs —iz4), (4.4)
with canonically conjugate momenta
1 . 1 _
P“l ﬁ(ph lp)’z)’ Pl—tl %(p)1+lp)z):PM1’
1 . 1 : -
P“z ﬁ(ph lp)’4)’ Pl—iz :E(ph_'_lp}ﬁ) :Puz’
1 . 1 ) -
PM3 ﬁ(pzl lpZz)’ Plji3 :ﬁ(pzl_l_lpzz):Pu;’
1 . 1 ) -
PM4 ﬁ(ng lpZ4)’ Pljl4 :ﬁ(pZz_l_lpZ;;):PM;;’

(4.5)

and we refer to the transverse fields and conjugate momenta
collectively by u;, it; and Py, Puj with j =1, 2,3, 4. It will

jo U
also be convenient to rename the currents of (3.75) as

Ji=Je,  J2=J@ae, S3=J@2)y  Ja=J@34)
(4.6)

and identify
B =ay, Pi=a. (4.7)

Light-cone gauge-fixed Hamiltonian. The light-cone
gauge-fixed Hamiltonian density 7 can be computed as
explained in the Appendix. It admits an expansion in powers
of the transverse fields. For the case at hand the expansion
starts at quadratic order and only includes terms with an
even number of transverse fields, H = H, + H4 + - - -. The
quadratic Hamiltonian density is given by

4
= HI + Z BT,
=1

(4.8)

where the undeformed quadratic Hamiltonian density
describes a collection of four free complex fields,
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4
HY = (|Py, P+ 12 + [u ), (4.9)
j=1
and the currents (3.75) [with the notation (4.6)] read

As expected, these coincide with the 7 component of the
currents associated to the four (1) symmetries of HY,
realized as

u; > eliu;,  j=1,2,3,4. (4.11)
The o components of these currents are given by
JG = i(u;it; — wju). (4.12)

The undeformed quadratic Hamiltonian (or rather its asso-
ciated quadratic Lagrangian), is also invariant under shifts of
7 and 0. The conserved current associated to these sym-
metries is simply the energy-momentum tensor, whose
explicit form (to quadratic order) is

I
hE

T, (1P, [ + 15 + |y ),
j=1
4
T7% =Y (=IPy,* = [} + |u; ), (4.13)
j=1
4
Tty ==T7 = (P, u;+ P, i). (4.14)
j=1

From these conserved currents we then construct the J7T,
and TT operators

0}y = T L 015 = €41 TP, (4.15)

where we recall our convention for the antisymmetric tensor
€ = —¢,, = —1. The four JT, operators correspond to the
four currents (4.6). The quartic Hamiltonian density can
then be written

Hy=Hi+ (1=a)p0)r + (1= a)p,05;,

1
— aps 03T,, —ap, 0§T6 - (a - *) Orr,

> (4.16)

where the undeformed quartic Hamiltonian is
MY = (|us + ua?) 2L P + 20wl + |P,, [P

+ [Py |* + [ |2+ b *) = (Jug|* + Jua ) (2] [
+ 20uh > + [Py P 4 Py, [P + s + | ?). (4.17)

We therefore see that the way the quadratic and quartic
Hamiltonians are deformed by the parameters f3; precisely
matches with the discussion in Sec. IT A.

Oscillator expansion. To solve the Hamilton equations
of motion associated to H, and quantize the fields, we
introduce the oscillator expansion

1 1 . .
U =——— d (e—le.+‘t+lpo'a .
J /—2]7'_ / p /_260 Jt (p)
+ ei("/,—’:_ilma;;_ (p)) ,

(4.18)

1 1 4 4
u: = d (e—le._r+lpﬂa .
! 271/ p\/Za) ~(P)

+ eim‘/-_,‘r—ipn'a;f’Jr (p)> , (4 19)

with the relativistic and shifted dispersion relation

a):\/pz—f—l, a)]i:a):lzﬂj, j:1,2,3,4. (420)

The annihilation and creation operators satisfy the canoni-
cal commutation relations (with all the other commutation
relations vanishing)

la;(p).aj (@) =8;d(p—q). jk=1.273.4. (421)
The oscillator representation of the canonically conjugate
momenta directly follows from the equations of motion,
giving

Pul' = 0,14] + lﬁ]u]

1 1 . .
— 7 —iw;  T+ipo
m/d” Vg ) (¢ aj:+(P)

= ewireg!_(p))), (4.22)
P, = o.i; — ifju;
1 /d 1 ( H )( —iw; _t+ipo ( )
=— ——(—iw) | e™"?i- a;_
2n P V2w J=\P
= eTireg! (p)). (4.23)

Note that, while the exponents in the plane-wave ansatz
depend on the shifted energies w; ., since the momentum
is not just given by the 7 derivative of the corresponding
field, but also includes a contribution from the J; defor-
mation in the quadratic Hamiltonian (4.8), the shift is
precisely canceled. This explains why the normalization of
the fields and momenta depends on the relativistic
dispersion @. With these expressions for the fields and
momenta in terms of oscillators, the quadratic Hamiltonian
takes the canonical form,
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TABLE III. This Table summarizes the particle content in the
light-cone gauge-fixed AdSs x S° theory. Eight different states
can be created from the vacuum using the eight different creation
operators. These states are eigenstates of the quadratic Hamil-
tonian H, and the four charges Q;, with eigenvalues as given in
the Table.

State H, Q1 O, 03 04

[P)1+ aI,i(P)|0> oz =0Ef Fl 0 0 0
Phas =al(p)l0) @x=0xp 0 £ 0 0
|P)ss = a;.i(l’”o) W3 =0 0 0 +1 0
IP)as =aj.(p)|0) @sx=w+fs O 0 0 =+l

Hy - / doH, = / dpydp>dpsdp,T!

x6(p1 + p2— P3

where we use the shorthand

W] = Wj g, (P1), Wy = W, (Pz)’

— pa)d(@) + @y — w3 — wy),

Hy — /daHz - /dpzz (a) a Ya”>, (4.24)

j=1 s==+

while the charges are

4
0= [ dor= [apy>

j=1 §=

(sé,kaﬂ ,‘) (4.25)
£
These results are summarized in Table III.

Tree-level S matrix. Plugging the oscillator expansion

into the quartic Hamiltonian (4.16) gives terms involving
four oscillators of the form

Is4.,ks3

is1,j$2 al s4(p4)ak 53 (P3) ajs, (pZ)ai.sl (P])

(4.26)

W3 = Wy g, (P3>’ Wy = wl.s4(174)- (4-27)

Only terms with equal number of creation and annihilation operators contribute, which is a consequence of the integrability
of the model. From this we can read off the tree-level S matrix S = IT + %T with the nontrivial elements given by

Isy.ksy

DU = (F2A+ Oy, )R8 + B(SkSLan Sy + slkaniey).  ijkI=1.2. 5 =5,
Titin = (42A 4 Ojy, s, )88155 83, + BEnEud5i0% + Endhio%), ikl =12, 51 =—5,
T = (“2A+ Oy 5, )0k8165 0% — B(oSolovoy + dlkariay).,  ijki=3.4. 5 =5,
T = (2A 4 Oy 5, )58 805% = BIEEROUTE + Ealdil). Lkl =34 s =5y,
TS = (426 + Oy, )880k058%, k=12, j1=34,
TH = (226 + O, )0k8lenss, k=34, jl=1.2, (4.28)
where
1 —py)? 1
_ L (pi=p) S T
4 piwy — prw, P10y — Pr; 4
4 2
1
Ois js, = —a Zﬂn(&;‘lszpl = 0tsipa) + (1 —a) Zﬂn(é;‘ISZPI —dis1pa) — (a - 5) (02p1 —w1py).  (4.29)
n=3 n=1

and quantity £ is defined such that its only nonvanishing
components are

512 = 521 = 534 = 543 =1 (430)

The terms involving A, B, and G reproduce the standard
tree-level S matrix of the bosonic AdSs x S° string in the
a=1/2 gauge. The effect of the free parameters

characterizing different gauge choices is gathered in the
contribution . This contribution only modifies the term
proportional to the permutation operator (which in our
conventions corresponds to free propagation). One can
check explicitly that the tree-level S matrix (4.28) satisfies
charge conservation for Q; using that the only nonvanish-
ing scattering processes obey s; + s, = s3 + s4. Finally, let
us conclude by mentioning that the tree-level S matrix still
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satisfies the classical Yang-Baxter equation, indicating that
the model is classically integrable for all choices of light-
cone gauge-fixing as expected. This will be made more
rigorous when we consider the exact S matrix in Sec. IV B,
of which the tree-level S matrix calculated here is the first
order in the large tension expansion.

2. JT, deformation

To illustrate the effect of the JT, deformation on the tree-
level S matrix we start with the metric of (undeformed)
AdSs x $3 and perform a shift

t— 1+ c(x*), @ = @+ c(xH), (4.31)
with a function c¢(x*) of the (real) transverse coordinates
X = (21,22, 23,24, V1> Y2, Y3, ¥4). For concreteness we
assume that this function can be expanded in powers of
the transverse fields, starting at linear order,

c=citceyt =Pt Pt 4 (4.32)
with free parameters f3,,f,,, .... For the purpose of com-
puting the tree-level S matrix we use the light-cone gauge-
fixed Hamiltonian up to quartic order in the fields, hence it
is sufficient to consider the expansion of ¢ up to quad-
ratic order.

According to the discussion in Sec. ITA2 [see
also Eq. (2.39)] we expect the light-cone gauge-fixed
Hamiltonian to change as

6H = 0,cT*, = —cd,T*, + total derivatives.  (4.33)
Up to total derivatives, the variation of the Hamiltonian
therefore vanishes on shell. Therefore, in general we
expect that 0H can be removed by means of a field
redefinition or canonical transformation of the transverse
variables. Let us illustrate this explicitly at leading order in
fields for the function ¢ in Eq. (4.32). The quadratic
Hamiltonian does not depend on the parameters f3,,, f,,, ...
and simply reads

1
Hy =HY == (pupy + 5%, +x,x,),  (4.34)

2

whose associated equations of motion are

X, =Py Pp=—X,tx,,=>E,=%,-x,+x,=0. (4.35)

The Hamiltonian now also has a cubic term,

H3 = (auc|x:0)aaxﬂTaf = )B/l(p/le - )C:lpU.XL), (436)

where in the energy-momentum tensor is computed from
the quadratic Hamiltonian H,. To see that this cubic
contribution can be removed by an appropriate field

redefinition, we switch to the Lagrangian formalism.
After integrating by parts, the cubic contribution can be
written in terms of the equations of motion as

1. .
Ly = 3 (X%, —x,x, —x,x,), Ly=-Bx'Ex". (4.37)
This can be removed using the field redefinition
X = x4+ BV RF. (4.38)

In the Hamiltonian formalism the redefinition becomes

xﬂ _)xu +ﬂvxyp;n p[l _)pﬂ_ﬂ,uHZ_ﬂl/xDxﬂ7 (439)

which mixes fields x, and momenta p,. One can check
that this corresponds to a canonical transformation to first
order in the fields, meaning that {x,.p,} =6, +---
where the ellipses denote terms that are at least quadratic
in the fields. Interestingly, we can understand this canoni-
cal transformation as an improved version of (2.33), which
is the noncanonical transformation corresponding to the
JT, deformation, which here we want to neutralize.

The canonical transformation is such that 6H, + H; = 0.
The quartic light-cone gauge-fixed Hamiltonian, from which
the tree-level S matrix is deduced, is then given by
OH3 + H4. We find that the T matrix obtained from the
resulting quartic Hamiltonian does not depend on the
function c¢(x*), as expected from the general results of
Sec. IIL A 1." This suggests that the 2 — 2 S matrix does not
depend on a change of gauge that induces a JT', deforma-
tion. We will argue that this is indeed the case at the level
of the exact S matrix in the next section. Finally, let us
mention that when the function c starts at quadratic order in
fields, then H; = 0, while the variation of H, vanishes on
shell and thus the 2 — 2 S matrix is manifestly independent
of c.

B. Nonperturbative

Following on from the explicit tree level calculations, our
aim is to now understand the effect of the gauge trans-
formations on the S matrix nonperturbatively. In order to do
so, we first note that the inequivalent gauge transformations
come in two types: they are either bilinear in the currents
(the JT,, the TT, and the JT, deformations) or linear (the
J* deformation). Here we analyze the two cases separately.

Before turning to the details of the arguments, let us
summarize the result of the gauge transformations on the

“In principle, one can also verify this without using field
redefinitions. 5 vanishing on shell ensures that the 1 — 2 and
2 — 1 processes vanish. However, to compute the 2 -2 S
matrix, one needs to consider diagrams involving two cubic
vertices, i.e., with four external particles and one internal particle,
as well as quartic diagrams.

106023-24



INEQUIVALENT LIGHT-CONE GAUGE-FIXINGS OF STRINGS ...

PHYS. REV. D 109, 106023 (2024)

S matrix. If the Hamiltonian of the reduced model is
deformed by a current-current deformation

SH = —ye )05, (4.40)

where J¢ with i = 1, 2 are conserved currents, then the S

matrix S of the deformed model is related to the undeformed
S matrix S simply as

v =%e(q g2 +q) ) o
Sﬂlﬂz =e ! SﬂlMZ‘

(4.41)
Here ¢! =1 and ¢/, for example, denotes the charge i
(corresponding to the current J;) of the particle with flavor
H1. Our argument will only use the fact that the currents J;
are conserved. In particular, they may be Noether currents
for spacetime or internal symmetries, topological currents,
or any other kind of conserved current. The above formula
agrees with known deformations of the S matrix in the case
of the TT deformation [26,10,11,27,5], the JT deformation
[28], as well as TsT deformations [29].16 It also agrees with
the results of [33] where generalizations of the TT defor-
mation by extensive charges were discussed.'’ The S matrix
S is a twisted version of the original S (see Sec. IV C for
more details). This means that integrability in the original
(gauge-fixed) model is preserved for different (gauge)
deformations.

When the Hamiltonian of the reduced model is instead
deformed by a J* deformation,

§H =y, (4.42)

then the S matrix S of the deformed model is equal to the
undeformed S matrix S,

Tty . qhal
Sﬂlﬂz - Sﬂ]ﬂz’

(4.43)

As we will argue, in this case the deformation of the
Hamiltonian can be completely reabsorbed into the “free
part” H, of the Hamiltonian that is responsible for the time
evolution of the asymptotic states. Therefore, although the
asymptotic states evolve in time with a deformed dispersion
relation, the scattering matrix remains undeformed.

"It is well known that TsT deformations are the integrated
version of current-current deformations, where the currents
correspond to global internal Noether symmetries of the sigma
model [30,29], see also the review [31]. If we consider a sigma
model and perform a TsT deformation along transverse fields
only, then the Hamiltonian density of the hght-cone gauge-fixed
model is indeed deformed as 6H = —yeqpJ7 J See [32] for
examples with TsT deformations also 1nvolv1ng the light-cone
directions x*.

Note that, while in [33] it is assumed that the scattering is
diagonal in the space of flavors, we will not require this.

1. Current-current deformations

To prove the formula (4.41), let us start with the case of a
Hamiltonian deformed by a current-current deformation,
which we write explicitly as 6H = —y(J{J3 — J{J5). Letus
also define

Q,(0) = /_ :O do’ Ji (o). (4.44)

This field can be thought of as measuring the charge
corresponding to J; up to the world sheet point ¢. The total
charge Q; = [®_ do’ Ji(o’) is related to it as Q; = Q;(0).
When it is not ambiguous, we will omit the explicit
dependence of Q; on o. First, it is easy to check that

1
5 (‘I{l}laaQZ

I3 :

=JUJ5 = —J50,91). (4.45)

Indeed, we have

190,05 —J99,Q, = J (o) / 4o’ 0,75(c") + J2(0)J5(0)

~Ji(0) / o010 = I5(@)T(0)
——Ji(0) / " e 0, 13() + J1(0)5(0)

+J5(0) / " do' 3, 15() ~ I3(0) (o)

==-2(J5J§ = JJ3%), (4.46)

where we have used current conservation and that in the
decompactification limit fields fall off to zero at infinity.

We can now compute the infinitesimal deformation of
the Hamiltonian to be

5H — /°° do H = g/oo do(J70,9Q2 = J30,Q1)

/_ ) = 45 Qs + 04459,
{a

dolo
T/m do(J3 0, - J50,)

+Wf’r@m@ff

14
=0 ,
2 TQ]2

y a
= E (I(J QZ - J2
_7
2
(4.47)

where we again use current conservation and that fields fall
off at infinity, and we define the nonlocal quantity
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Quz/_“dMQz—J;Ql)
- /_ " do /_ " 4o’ (5 (0)J5(0)) = J5(0) T (6')). (4.48)

Classically, the time derivative of a field is given by the
Poisson bracket with the Hamiltonian, hence we have
0H = %{H , Q1»}. Quantum mechanically, this becomes

SH = % [H, Q),]. We may interpret this as a differential
equation for the deformed Hamiltonian A as a function of
the deformation parameter y:

dH i

d_yzi[ . Q10

(4.49)
In the Heisenberg picture, using that A l,—o = H, this is
solved by

H = e 3QnHet %0, (4.50)
Assuming that the scattering matrix for the undeformed
theory is known, we would like to determine that of the
deformed theory. Scattering is obtained by first rewriting
the Hamiltonian as the sum H = H, + V, where H, is the
free part without interactions (typically quadratic in the
fields, for example a Klein-Gordon Hamiltonian) and V is
the part with interactions only. The asymptotic states evolve
with H,, and the S matrix is given by the time-ordered
exponential of the interacting part of the Hamiltonian,

S = Texp [—i/mdrV].

(4.51)

The considerations above suggest that in the deformed
theory we should define

H, = e 3 [, 0590 (4.52)

so that

V= e ¥V, §=¥ge%,  (4.53)
To understand the effect of the deformation on these
objects, we first need to look at the action of Q;, on
asymptotic states. Let us take the charges O, and Q, to act
diagonally in the space of flavors, which is possible since
these two charges commute and are simultaneously diag-
onalizable. On one-particle states we write

Qilp), = 4 |p),» (4.54)
where q’i‘ is the charge of the particle with flavor
u. Introducing creation and annihilation operators satis-
fying canonical commutation relations [a,(p),a}(q)] =
8,,0(p —q), so that [p), = a}(p)|0), we may represent

the quantum charges as Q; = [dp Do qﬁ’a[,(p)aﬂ(p),
where we sum over all flavors.

The action of Q;, on the multiparticle asymptotic states
can now be constructed. First, consider the spatial line
along which the particles are distributed, and partition it
into a collection of intervals /,, with n =1, ..., N, where
each interval /,, contains only the wave packet n. In the
definition of Q;, we have integrals over the spatial
coordinate that we can write as the sum of integrals over
the intervals 7,. It is then clear that, despite the nonlocal
nature of Q,, its action on asymptotic states is given by
sums of products of local charges. Explicitly, we have

QdmmmmhM:/’w/cwmwwww@wmwmmmmmnw ..... ,,,,,

[Se]

n=1 “1n m=1
N n-1

— E H M

— (qlnqzm _ qznqlm)
n=1 m=1

Note that thanks to antisymmetry we do not need to worry
about the potentially problematic integration over the
intervals /,, and /,, when n = m. It follows that

¥ p i ..o py)
Ly 25 s PN/ py gty

o _ir eijq/fr)z q!fn
— ¢ zzmq i 4 pl?va""pN>;4|,ﬂz ____ sy (456)

N n—1
-y / iy / 46’ (15(0)J5(0") = T ()T (&) P1. oo D)

pl?""pN>M] ..... N (455)

[

where we recall €!> = 1. In the case of two-particle states,
we have

790 |P1 , p2>l4|»l42 = e—%eijq?' 45’ ‘p] ’ p2>”] " (457)

which we may rewrite as

106023-26



INEQUIVALENT LIGHT-CONE GAUGE-FIXINGS OF STRINGS ...

PHYS. REV. D 109, 106023 (2024)

e%le |p1’ p2>yl,/42

_% QinQ2) |p17 p2>y] Mo
_%(Q]®Q2 Q”@Ql |pl p2>

(4.58)

Hisp2?

where it is understood that the first and second spaces of the tensor product act on the first and second particles, respectively.

The generalization to the case of N-particle states is

e%Q12|p p p > =e 7
12 s PN pypy.opiy

where

Qi.j;m.n

Since the action of Q;, on asymptotic states is diagonal,
and the free Hamiltonian H, also acts diagonally on
asymptotic states (e.g., H,|p), = @}|p),), it follows that
these two operators commute when acting on asymptotic
states

[H»., Qo]lp1. pas . (4.61)

’pN>M1-ﬂ2 ~~~~~ wy 0.
From this we conclude that we can effectively take the free
part of the deformed and undeformed Hamiltonians to be
equal, A, ~ H,. Strictly speaking, we have not proved that
these operators are equal, only that they have the same
action on asymptotic states, but this will be sufficient for
the following arguments.

We finally turn to the deformation of the S matrix.

Taking into account the simple action of Q;, on asymptotic
states and Eq. (4.53), we can write

measure minus the world sheet momentum and Q, the energy,18

(Q12:m0=02.1:m1)

:11®"'®1m_1®<Qi>m®1m+l®“'®(Qj)n®

(4.59)

|p17p27"'va>y1.ﬂ2 ..... N

-® 1y. (4.60)

UnLU v lj Ym _ir ij Hm Hn yy U
SNN] 1_62§m>" q; q/ qu q”q" NUN-1"V1

HiHa BN llllh HN

(4.62)

The only subtle point is that, because of the action of S, the
outgoing states labeled by the momenta py, ..., py have a
spatial ordering that is reversed compared to that of the
incoming states. For this reason, the exponential coming
from the action of ¢~39” has a summation with m > n
instead of m < n. As anticipated, in the case of the two-
body S matrix we find

vovy _ =2 (q) ¢+ ) qran
Sﬂlﬂz =e? / / SM]Mz'

(4.63)
As already discussed, this formula can be matched with the

known deformations of the S matrix under 7T and JT
deformations. For example, in the case of TT, Q; would

so that the TT deformation of the S matrix is

S = evrenennsy, (464

This matches, for example, with [11], taking into account that the parameter a of the a gauge and y are related as
a = 1/2 —y. Similarly, specifying to the case of the JT, deformation, if J has a conserved charge Q with eigenvalues ¢*,

then one finds

B1f we take, for example,

1 d
i gl o)
P

where we allow for different dispersion relations ), =

m3, + p? for each flavor and [@*(p. 7).

/dan,, = /dﬂp#x’/‘ = /dp;(—p)a)ﬁ(p)aﬂ(p),

where we assume that the Hamiltonian is that of massive Klein-Gordon with mass m

1

" Von \/20)”

(=i0f) (au(p. 20 = al(p.5)e7).

ay(p.7)]

/daTT —/do'H /dewpa,,

=& ,6(p — p'), then one has

e
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vy T g2 — g py g2 —gt Vv
S = e7(P14? 4" p2+p1g"2 ¢ p2>Sulﬂ27 (4.65)

which agrees with [28]. We have also verified these
formulas with the tree-level results of Sec. IVA 1.

To conclude, let us consider the case of the JT,
deformation. We denote the eigenvalues of the topological
charge for the current J by w*, so that

T (g (W2 w2 )= (W w1 )y ) QP
S — erl@( )=( ) z)Sﬂm'

(4.66)

Taking into account that the topological charge is given by

+o00 - +o00
W—/ dGJT——/ dod,c =0,

hence vanish in the decompactification limit where we
assume that all fields have fall off at infinity, we find that in
the case of the JT, deformation the S matrix is not
modified,

(4.67)

Tt __ Qheal
Sﬂlﬂz - Sﬂ]llv

(4.68)

again in agreement with the tree-level results.

2. The J* deformation

Let us now consider the case of the J° deformation,
where
H=H+y0. (4.69)
Here Q is the charge for the current J, and it only acts on
transverse fields. As before, we need to separate the
undeformed and deformed Hamiltonians into free and
interacting parts. Our aim is to show that the effect of
the deformation can be completely absorbed in the free part
of the Hamiltonian, so that the interacting part remains
undeformed,
H, =H, +70, V=V, (4.70)

allowing us to conclude that the S matrix is independent
of y,

S=S. (4.71)

To show this, we will make some mild assumptions. In
particular, we assume that the Lagrangian density of the
reduced model before the deformation admits a perturba-
tive expansion in powers of fields such that its quadratic
part is described by M Klein-Gordon fields, each with its
Oown mass,

M
Ly==3Y (01,0, +m2x2).  (4.72)
u=1

N[ =

This Lagrangian density gives the free Hamiltonian H,.
The charge Q should then come from an internal global
symmetry that is compatible with perturbation theory.
Therefore, we do not consider the possibility that any
fields are massless (m, = 0 for some ), in which case £,
would be invariant under constant shifts of these fields, but
we would not have a perturbative description of the
scattering problem. Instead, we consider the setup in which
m, =m, #0 for yv=1,...,d <M, so that we have d
massive fields with SO(d) invariance. We will also assume
that the interacting Hamiltonian respects this symmetry, but
for the moment we will focus on the free theory. The fields
X, =1,...,d transform in the vector representation of
SO(d). The generators of SO(d) can be realized with
matrices (7,)’; « (8,6,; — 8,6,;), so that T, rotates x,
and x,, leaving the other fields invariant.

Let us consider one such rotation, 7',, and focus on x;
and x, since the other fields are simply spectators. From the
infinitesimal rotation o0x; = Ax,, 0x, = —Ax;, we find the
Noether current J* = x,0°x; — x;0%,. In particular, we
have J* = x| p, — x,p;, where p, = X,. It is convenient to
introduce the complex field ¢ = % (x) + ix,), ¢ =

% (x; — ix,), such that the quadratic Lagrangian becomes

Ly = —(0.0"0"p + m*¢p' ). (4.73)

The conjugate momenta are 7z = \/%( p1—ipy) and
= % (p1 +ipy). Now the infinitesimal transformation
reads O¢ = —il¢p, and the Noether current is J* =
i(¢pT0%¢h — 0" p) with J* = —i(p'n" — ngh).

Following the tree-level discussion in Sec. IVA I, we
consider the J* deformation,

Ho=Hy +yJ" =a'n+ "¢ + m*¢p*p— iy(¢p'n'" — zgp).
(4.74)

Computing the Hamilton equation ¢ = {H,, ¢} we find
that in the deformed theory the identification of the
conjugate momenta is modified

P i A —p—irp (475)

To quantize the theory we let

1 dp

Vsl VAT,

which implies

¢

(bpeitehmre) + djeitetr), (4.76)
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—i

~Var

b ((wﬁ - y)dpe_i(“’gf_p”) - (wf, + }/)b;ei(“’?)’_l"’)>, (4.77)

dp
V2f
where f,, a)’,’), and a)Z are real functions of p to be determined. Similar formulas are obtained for the complex conjugates of
the fields. If we demand that ¢, 7, b, bt and d,d" all satisfy canonical commutation relations, then we obtain the relations

w;’?:fp_y’

Assuming that f), is an even function of the momentum (f_,

the Hamiltonian is

- d . .
i, = / P {zp (b d_, e @htoh) 4 dj,bi,,e”@%w?’r)) + Whbib, + Widhd, |,

p==pr

2,

where we use normal ordering and

= f,)sothate?, = 0} andw?, = w

wl=f,+7. (4.78)

d

% as well, one finds that

Z,=—(ah+7) (@l —y)+p*+m*+y(of —y) —y(ah +7),
Wﬁ’; = (Ct)f7 +7)?+p>+m? - Zy(a)f, +7),

Wi = (af —7)* + p* + m* + 2y(af) — 7).

To have a diagonal action of H, we require Z » = 0. To solve this we take

fr=y\/m*+p*> = b =\/m*+ p* -y,

such that

Wh = 2y/m? 4 p2(y/m? + p = 7).

and the Hamiltonian is

H, = / dp(ahbyb, + oldyd,). (4.83)

In other words, particles and antiparticles receive a cor-
rection to the dispersion relation that depends on their
charge. Nevertheless, the Fourier decomposition of the
fields is

1 dp —i(w,t—po T i(w)t—po
¢:—2” Tg)(bpe (p p)+dpe(p P))’
V \/ P
=i dp —i(w}t—po T i(wyt—po
r= - wp<dpe (035-p0) _ p il p>>,
v V 4

(4.84)

where ®, =+/m?+ p? is the standard relativistic
dispersion relation and wf = w, t 7. Note that the modi-
fied dispersion relation only enters in the plane-wave
exponentials. Let us also add that the charge Q =
—i [do(n'¢p" — ¢r) is equal to

(4.79)

(4.80)

ol =\/m?+ p* +y, (4.81)

we :2\/m2+p2(\/m2+p2+y), (4.82)
|

0~ [ dp(dd, - bjb,) (4.85)

so that d particles have charge 1 and b particles, charge —1.
This explains the modified dispersion relations w,, = wf,
and w, = a)f,, which can be interpreted as the relativistic
dispersion relation shifted by y multiplied by the charge of
the particle. The above analysis all fully agrees with the
tree-level considerations in Sec. [IVA 1.

Let us now turn to scattering and discuss the claim that
the S matrix remains undeformed because V = V. We will
see how this works at tree level and argue that it extends to
all loops. When computing the tree-level 2 — 2 S matrix in
the undeformed case we evaluate expressions such as

/ dpidp,dp3dp,d(w) + @) — w3 — 0y4)

X 8(p1+ p2— p3 = pa) M(pi1. p2. p3. ps). (4.86)
where the delta functions enforcing conservation of
energy and momentum come from the integration over
7 and o of the products of plane-wave exponentials, and
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M(py, P2, p3» p4) is written in terms of creation and
annihilation operators, the momenta p;, and the corre-
sponding dispersion relations. Integrating the two delta
functions over the outgoing momenta ps3, p, one finds

-1

p p
! : (M(Pl,Pz,Pl,Pz)

/dpldpz o

1 W
+M(pl’p21p2’pl))’

(4.87)

where we have evaluated the Jacobian using dw,/dp =
p/w,. In the deformed case the situation is similar and one
evaluates expressions such as

/dpldpzdp3dp45(5)1 + @y — @3 — @y)

X 8(py + pa— p3 — pa)M(p1. p2. P3. Ps),  (4.88)

where now @, denotes the deformed dispersion relation,
which, depending on the type of particle, equals w,,, w,, +
y or w, —y. Since V =V we have that

M(p1, pas P3» Ps) = M(p1. 2. P3s P4)- (4.89)

Indeed, since the modified dispersion relation only
appears in the plane-wave exponentials, the deformation
parameter appears in the delta function but not in
M(p1, pa2, p3» P4). However, we also have

5(&)1—1—&)2—&)3—&)4):5(a)1—|—a)2—a)3—a)4

+v(q1 + 92— a3 — q4))

= 5((0] + Wy — W3 — 0)4), (490)
where we have used that charge conservation for Q
implies ¢; + ¢, = g3 + q4. The same conclusion can be
reached by noticing that the modification of the dispersion
relation is such that

dé, _dw,  p (4.91)
dp dp w,’ '

P

and the Jacobian is the same as in the undeformed case.
Therefore, all expressions reduce to those of the unde-
formed case with y = 0. Let us note that the y deformation
of the dispersion relation does not spoil the identification
of momenta pS" = pin, pgit = pit and pt = pin, pgut =
pilrl as in the original integrable theory, thanks to the
conservation of the charge Q.

To summarize, the tree-level S matrix T in the deformed
case is related to the undeformed one as T = T. At higher
loops the above reasoning should go through in a similar
way. External legs of scattering amplitudes correspond to
asymptotic states with modified dispersion relations, but
the elements of the scattering matrix are y independent.
When including quantum corrections, one has to integrate

loops in which off-shell particles run, so the modified
dispersion relation plays no role. To conclude, in the case of
the J* deformation, we have argued that the S matrix is
undeformed, S = S.

C. S matrix and symmetries

As discussed in Sec. III B 3, fixing uniform light-cone
gauge breaks symmetries of the string sigma model.
Assuming classical integrability survives quantization, the
exact two-body S matrix can be bootstrapped (up to overall
dressing factors) by requiring compatibility with the sym-
metries of the light-cone gauge-fixed theory. To describe the
scattering of states that do not respect the level-matching
condition, it is necessary to consider the off-shell symmetry
algebra. This is an extension of the subalgebra of the
original string sigma model symmetry algebra that survives
gauge-fixing. For instance, for strings propagating in an
AdSs x S’ background, in the standard light-cone gauge the
symmetry breaking pattern is

psu(2,2[4) — psu(2)2)®2

c.e.’

(4.92)

where c.e. denotes a central extension of the algebra [8].
The same central elements are shared by the two copies of
p311(22). To keep the discussion in this section general we
shall call A= {J} the off-shell symmetry algebra of the
light-cone gauge-fixed theory, spanned by the generators
{G&}. Assuming that these generators have a well-defined
action on the asymptotic states, in operator notation the
bootstrap equation then reads

A(F)S =SA(F), VIeA (4.93)
where A(J) denotes the coproduct associated with the
symmetry algebra A (or rather its Hopf algebra). It encodes
how the symmetry generators J§ act on two-particle states.
To make the link with the notation in the previous section,
we have

S|p1, p2>;4,,/42 = Sll?lll;lz |P2, p1>u2.u1 ’

A<3)|p1’ p2>/41./12 = A(S)lel;/tzz |p17 p2>bl,l/2‘ (494)

Note in particular that in our conventions the S matrix
exchanges the order of the particles, but this is not the case
for the coproduct.lg

19Writing the momentum dependence explicitly, the bootstrap
equation would read F12(q, p)S12(p. q) = S12(p. 9)F12(P. 9),
where p, g are the two momenta and the indices denote the two
vector spaces in V ® V where the operators act. Defining
R = I1S with IT the (graded) permutation, one obtains an operator
R that reduces to the identity when interactions are switched
off, and that satisfies the bootstrap equation in the form
A°P(F)R = RA(F), where A°P is the opposite coproduct, or
more explicitly 321(¢. p)R12(P. q) = Ri2(p. ¢)F12(p. 9)-
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For a different light-cone gauge-fixing that results in a
current-current type deformation, we have seen in the
previous section that the two-body S matrix changes as

Ty _ -kl (g g2 4 ) qrany
Sﬂlllz_e ’ v Y Sﬂlﬂz'

(4.95)

In operator form, we can recast this relation in the language
of Drinfel’d-Reshetikhin twists [34], see also [35]. In
particular, from Eq. (4.58), we can write,20

S =FSF!, (4.96)
where we have defined the twist
F = 30110, (4.97)

Therefore, assuming that the S matrix S satisfies the
bootstrap equation (4.93) with coproduct A, then the S
matrix S associated to a different gauge-fixing satisfies the
bootstrap equation with the twisted coproduct,

A(Z) = FA()F". (4.98)
The discussion above is mainly relevant for the JT,
deformation. The TT deformation produces a twist that
is proportional to the identity, hence only affects the
dressing factor not the symmetries, while for the J*
deformation, the S matrix is left invariant, S = S, hence
the coproduct also remains the same, A(§) = A(F).

For concreteness, let us focus on the AdSs x $° string. In
this case we know that in the standard light-cone gauge the
off-shell symmetry algebra is psu(2|2)®2. It follows from
the result above that, even in a nonstandard light-cone
gauge, the S matrix is still invariant under a pdu(2[2)%2
algebra, albeit in a twisted form. In particular, for the JT,
deformation, the action of generators on two-particle states
will depend on momentum-dependent factors. Such factors
already appear in the coproduct of the supercharges in the
usual realization of the psu(2|2)®2 algebra [8,5]. Here,
after fixing a nonstandard light-cone gauge, the coproduct
of the bosonic generators may also contain momentum-
dependent factors.

It is interesting to ask how this result is compatible with
the discussion of symmetries in Sec. III B 3. There, the on-
shell symmetry algebra of the light-cone gauge-fixed theory
was argued to be given by ¢, the centralizer in p3u(2,2|4)
of A+.21 This identifies the charges in the gauged-fixed

**More explicitly, using the notation of footnote 24 this reads
S12(p.q) = Fia(q, p)Si2(p. q)F1)(p, q). Note that the operator
R =TIS is twisted as R = F°?RF~!, where F°? is the conjuga-
tion of the twist by the (graded) permutation. Therefore,
Rix(p.q) = Fa1(q. P)Ri2(p. 9)F 13 (p. q).

*'In a general gauge we identify A , and A_, see also below,
through the relation tA, + @As = xTAL +x"A_.

model that have no explicit dependence on x™ =7 [8],
hence Poisson commute with the Hamiltonian.”> In the
standard light-cone gauge, ¢, = psu(2]2)®? @ u(1)®?
which after relaxing the level-matching condition is cen-
trally extended to p8u(2|2)®2 . Since these symmetries have
a well-defined action on the asymptotic states (up to
exponentials of x~, which are reinterpreted as exponentials
of the world sheet momentum [8]) this centrally extended
algebra can be identified with the symmetry algebra A of
the S matrix.

For a general light-cone gauge, the relation between ¢
and A may not be as straightforward. First, for a generic
choice of light-cone gauge, the action of ¢, will not
necessarily have a well-defined action on asymptotic states.
A priori, it is not obvious how such a symmetry would
constrain the two-body S matrix. A second important point
is that in the full sigma model, as well as light-cone gauge-
fixing the bosonic fields, the fermionic x symmetry should
also be fixed. It is then necessary to understand how the x
gauge affects the identification of ¢, [8]. Furthermore, as
happens for the supercharges in the standard light-cone
gauge, one should keep in mind that generators that do not
commute with A_ will give rise to charges with an explicit
dependence on x~ and their action on one-particle states
can be nontrivial.

Nevertheless, knowing that different light-cone gauge-
fixings lead to different algebras ¢, let us assume that they
also lead to different S matrix symmetry algebras .A. For
example, consider a light-cone gauge-fixing “A” with S
matrix S, invariant under the symmetry algebra .4, and a
light-cone gauge-fixing “B” with Sp invariant under 4.
The S matrix S, should then actually be invariant under a
larger symmetry algebra that includes A, and a twisted
version of Ag. It would be interesting to verify explicitly
whether this scenario is correct and if, patching together all
possible light-cone gauge-fixings, the full symmetry alge-
bra of the theory before gauge-fixing, i.e., p3u(2,2[4) for
the AdSs x $° superstring, can be recovered.

V. GAUGE INVARIANCE OF THE SPECTRUM

Despite the fact that the Hamiltonian and the S matrix of
the gauge-fixed model are (almost by definition) gauge-
dependent objects, the spectrum of the string sigma model
should be independent of the gauge. In this section we
check this explicitly, assuming that the asymptotic spec-
trum (i.e., up to wrapping corrections due to the finite string
length L) is encoded in a set of Bethe equations constructed
from the world sheet S matrix. This is the case for
integrable models of interest such as strings on AdSs x
$° and AdS; x §? x T*. Without going into the details of
these specific models, we consider a toy example with a

“The charges may be divided into “kinematical” (if they do
not depend on x~) or “dynamical” (if they depend on x7).
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nested Bethe ansatz that has the necessary level of
complication to demonstrate the gauge invariance of the
spectrum.

A. A toy example of nested Bethe ansatz

For this discussion we will use the coordinate Bethe
ansatz (see, e.g., the reviews [36]). We assume that we have
two particle flavors denoted by ¢ and y. For simplicity, we
take ¢ to be a boson, although this is not necessary for the
following discussion. Let us suppose that in the two-

particle basis |p), |¢yx), lxd), lxy) the S matrix is

A 0

(5.1)

o o o
o U wm o
S QO

5 o o o

Braiding unitarity, that is the condition S,;S;, = 1, implies
various relations including A;,A,; = 1. To adapt to stan-
dard conventions, we adopt a different notation here to that
used in Sec. IV. For example, the two-particle states are
related as |¢yy2) = |p1, p2)y, and the action of the S
matrix is such that S|¢y2) = Bia|gox1) + Diolyaghr). In
particular, the subscripts denote the momenta of the
scattered particles. We then construct N-particle states as

G d)= S TP b, ,), (52)

010, <K 0y

where the states on the left-hand side have well-defined
momenta ordered as p; > p, > --- > py, and on the right-
hand side we create wave packets centered around the
positions ¢;. Here the formula is written for the case when
all of the particles have flavor ¢, but the generalization is
straightforward.

The Bethe equations are obtained by requiring perio-
dicity of the wave function for eigenstates of the S matrix.
Let us start with the case of two particles of flavor ¢.
Because they simply scatter as S|@;¢,) = Apa|day), it is
sufficient to consider the state

|¥) = [@1¢2) + Ar2|h21), (5.3)

and it follows from braiding unitarity that S|¥) = |¥). If
we write

¥) = > w(01.02)|ds, ds,)- (5.4)
0,0,
we then identify the wave function as
w(oy,0,) = e P1o1tPnn) 1 A eilmoitro) — (55)

and the periodicity condition w(o,,0, + L) = w(0},0,)
implies the two Bethe equations

€ip'L = A21, e”’lL = AIZ‘

(5.6)

The generalization to the case of N’ particles of flavor ¢ is

Nl
eipkL = HAjk
j=1

#k

(5.7)

To include particles of flavor y we need to introduce two
“levels.” We interpret the states constructed with ¢ as
belonging to level I only. On top of level I, we construct
level 1I excitations to account for y. The difficulty now
comes from the nondiagonal scattering of ¢ and y, for
example,

S|p1x2) = Bialdox1) + Dialiaghy). (5-8)

To construct eigenstates of the S matrix, e.g. in the case of
two particles, we first take

V) = FpO)lada) + £, p2)S™ (v, p1)|dixa). (5.9)

where f(y, p) and S"!(y, p) are functions of an auxiliary
root y and the momentum p. The function S/ (y, p) can be
interpreted as the scattering element between level I and II
excitations. Both functions f(y,p) and S (y,p) are
determined by demanding that

SIYVy) = AplVy)z (5.10)
where [))y), is obtained from |));) by exchanging p, and

P> Let us explicitly write down the constraints imposed by
this equation, since they will be useful later

f.p1)Ci + f(y. p2)S™ (v, p1)B12
= A12f(ya Pl)S”'I()’, Pz),
S PV)En + f(. p2)S™ (y. p1)D1a

= Apf(y. p2)- (5.11)

These are functional equations whose solutions will depend
on the coefficients Ay, B,, C2, D12, Ejo, and F,, hence
will be model dependent. If (5.10) is satisfied, then |¥) =
|Vy) +A12]Yy), is an eigenstate of the S matrix. In this
case periodicity of the wave function leads to the new Bethe
equations

e’ = Ay ™ (y, py), et = ApS™ (v, pa),

1= S"(y, p1)S™(y. pa). (5.12)
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In principle, there may also be nontrivial scattering among level II excitations, which can be found by constructing states

such as

Yy, Vy,) = F01. PO (32. p2)S™ (v2n pO) ri2) + f(v2. pO)S (10 p2)S™ (10 1) ST (010 y2) i)

(5.13)

Demanding S|)y, V,,) = A12|Vy, V), where |V, V), ) is obtained by exchanging p; and p,, one finds the functional

equation

FOre p)f(32e p2)ST (v, p1) + £ (2. P11 P2) S (01, p1) ST (91, v2) ] F 1

= [f1. P2)f 2, PO)ST (320 p2) + £ (2. p2) 1, P1)S™ (91, p2) ST (91, 3)]A .

(5.14)

As before, we will not need the explicit model-dependent solution to this equation. In the general case the Bethe equations

are given by

N NII
ipiL _ 11,1
et = TTAw T S™ s po)-
T Jj=1
T
N N

L= TT8™ e y) TT 8™ s )

J=1 =1
j#k J

where N is the number of excitations of flavor ¢, N’/ the
number of excitations of flavor y, and N = N’ + N/ Note
that multiplying all the Bethe equations gives e?"l = 1,
where p =3%"¥  p,. We will take the level-matching
condition p*' = 0.

Once a state is fixed and the corresponding solution to
the Bethe equations is found, that is a list of values
Pis---» Py, the conserved charge E —J is given by the
sum of the magnon energies,

N
E—J= Zgl., E; = \/m? + 4h3sin? %, (5.16)
i=1

where m; is the mass of the excitation, p; its momentum,
and £ is a function of the string tension.

B. Invariance for current-current gauge
transformations

When the gauge transformation is a current-current
deformation, the invariance of the spectrum comes from
the fact that, in addition to the Hamiltonian and S matrix of
the reduced model, the length L of the string is also gauge
dependent. Taking this into account ensures that the Bethe
equations, and therefore the spectrum, are gauge indepen-
dent. For the TT gauge deformation this has been discussed
in the literature, in particular see [10,11,5]. To the best of
our knowledge, the case of the JT, gauge deformation has
not been discussed before. We first briefly review the case

k=1,....,N,

k=1,.. N (5.15)

of the TT gauge deformation below, before discussing the
more involved JT, gauge deformation.

Let us note that the invariance of the spectrum is a
consequence of interpreting the deformations as gauge
transformations. For genuine 77T or JT, deformations, the
length L is fixed to be y independent, and the spectrum
would be y dependent.

L TT

In the case of the TT gauge transformation, we know that
the S matrix changes by an overall factor,

5'12 — ei}’(lez—Pzwl)Slz. (517)

Working with the toy example of Sec. VA, this means that
Ay = er(mo=po) A and similarly for all the other
entries. It is easy to see that, given the y-dependent factor
is common to all entries of the S matrix, it drops out of
Egs. (5.11) and (5.14), so that the functions f(y,p),
S™(y, p), S"(y,y;) can be taken to be the same as
in the undeformed case. At the same time, we should take
into account the y dependence of the length of the string. In
particular, integrating the relation p_ = p_ +yp, from
Eq. (2.47), it follows that L = L — y&°', where £°' =
SN, & is the total energy. Therefore,
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N N[I
ipel — Lipl =iy _ ir(pjoi—pro; 111
eiPL — pipiL p=iypiE — Hetr(p,an pkw/)AijS ;. Pr)
-l

=1
ik /

NI

N
_ We—iymg“" H Ajy H S (y;, pr),
=1

Jj=1

(5.18)

itk

where we have used p' = 0. The factor e~77+" appears on both sides of the equation, hence cancels and the Bethe
equations for p, are y independent. It is immediate to see that the equations for the auxiliary roots are also independent of
the deformation.

2. JT,

In the case of a JT,, gauge transformation, verifying that the spectrum is invariant is more involved. First, we notice that

Ay = (PP A, By, = et )(pi-p2) B,

C,, = e"(Pas=P29,)C,,,

Fi, = elrtn-r)F E,, = e%y(q¢+q1)(Pl_p2)E12’ Dy, = e7P14,=P299) D, (5.19)
where g, and g, denote the charges of ¢ and y under the symmetry corresponding to the current J. Note that we assume that
¢ and y are eigenstates of the charge. Consider now the equations in (5.11). We have similar equations in the deformed case,

but with tildes. The equations without tildes imply those with tildes if we take

F.p) = f(y, perra=ad, §M(y, p) = §M"(y, p)eirrlas=a),

(5.20)
We also note that, with this identification and with S/ (y,,y;) = S (y;. y;), Eq. (5.14) is automatically solved in the
presence of the deformation.

Now let us look at the Bethe equations, starting with those for the momenta p;. Knowing that p_ = p_ —yJ* from
Eq. (2.52), we conclude that L = L — yq', where ¢*! is the total charge for all the excitations. Therefore, the Bethe
equations become

N N[l
el — piniL p=irprd® — H ei7q¢(pj—pk)Ajk H eiypk(qrq;,)gllyl(yj’ )
-l

=1
ik /

N Nll
= et e irndNay =N = TT A [T 8™ (3 p)- (5.21)
A A

Ttk

The y independence of the equation is a consequence of
ptot =0 and qtot — NICI¢ +N”q)( — NC]¢ _ N”(C]¢ _ q){)’

Hamiltonian H, which are identified by the solutions to
the Bethe equations constructed from the S matrix S. As

where we recall N = N/ + N'!. The Bethe equations for
the auxiliary roots,

NI N
| = HSII.II(yk’yj) H elrPila=a) S (y, p)), (5.22)
j=1 j=1

#k

are y independent thanks to p' = 0.

C. Invariance for J* deformations

The invariance of the spectrum under a J® gauge
deformation is even simpler to see. Before the gauge
transformation, we compute the eigenvalues of the

already mentioned, given the solution py,...,py for a
certain state, the eigenvalue of the Hamiltonian is then

=YW &, where & = \/m} + 4h? sin® £,

After the J* gauge deformation, we compute the eigen-
values of the Hamiltonian A = H + yQ. These are found
by identifying the solutions to the Bethe equations con-
structed from the S matrix S, which, in this case, is equal to
the undeformed S matrix, S = S. Hence, both the Bethe
equations and their solutions are trivially y independent.

From the point of view of the scattering problem, the
dispersion relations of the asymptotic states are modified
by shifts proportional to their charges, as we saw explicitly
in Secs. IVA 1 and IV B 2. Therefore, the eigenvalue of the
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Hamiltonian A will now be obtained by computing
E =N &, where & = &+ yqy, with g, the charge
of the excitation. It is clear that the y dependence of the
spectrum of H is spurious: It is a consequence of the fact
that the definition of H itself depends on y. Even in this
gauge, if we were computing the -eigenvalues of
H = H —yQ, we would find a y-independent spectrum.

VI. CONCLUSIONS AND OUTLOOK

In this paper we analyzed inequivalent uniform light-
cone gauges for string sigma models with at least two
commuting isometries, one timelike and one spacelike. By
implementing target-space coordinate transformations
before light-cone gauge-fixing, we found four classes of
inequivalent gauge-fixings, which can be understood as
TT, JT,, J*, and J T, deformations. We further demon-
strated that of these, only the 77 and JT, deformations
modify the world sheet S matrix. In the context of string
sigma models, they are understood simply as different
gauge choices, so that the spectrum remains invariant,
see Sec. V.

In Sec. III we investigated the moduli space of inequi-
valent light-cone gauge-fixings for spacetimes given by the
Cartesian product of two rank-1 symmetric spaces
M, x M, of which AdS,, x §" is an important example.
In particular, we explicitly constructed part of this moduli
space for the unique (up to global symmetries) pointlike
string solution with momentum in both M, and M,
confirming the expected freedom related to 7T, JT,, J°,
and JT* deformations. There is also the option of starting
from massless geodesics on M,. In the case of AdS space
this leads to the AdS light-cone gauge [19], which we have
not discussed. It would also be interesting to study more
general spacetimes, including higher-rank cosets. Since
§3 x §3 is a rank-2 coset, this would be important for the
AdS; x §3 x §3 x S! background. In this case there will no
longer be a unique pointlike string solution with momen-
tum in both M, and Mg up to global symmetries. For
example, in the case of S° x $? we have a one-parameter
family of solutions, distinguished by the ratio of momenta
on the two spheres. Nevertheless, once a choice of pointlike
string has been made, the classification of inequivalent
gauges should follow the pattern explained in this paper.

We have focused on fixing uniform light-cone gauge for
bosonic AdS,, x §" backgrounds, i.e., realized in terms of
symmetric spaces. It would be interesting to extend our
systematic analysis to semisymmetric spaces and the
Green-Schwarz superstring, where in addition to fixing
world sheet diffeomorphisms, one should also fix the gauge
of the local fermionic x-symmetry transformations (see,
e.g., [5,37] for reviews). Since the k-symmetry commutes
with the superisometries, its gauge-fixing will not affect the
identification of the residual symmetries in the light-cone
gauge-fixed theory. Nevertheless, x symmetry is important

for understanding how the residual superalgebra acts on the
transverse theory, hence it would be interesting to incor-
porate this analysis.

In general, after gauge-fixing the original supersymmetry
algebra is reduced to a residual superalgebra. In the standard
setup this is a centrally extended p31(2(2)®? for AdSs x S°
and a central extension of [u(1) X psu(1]1)®?]®? for
AdS; x §3 x T* (ignoring the torus directions and their
superpartners). As shown in Sec. III B 3 [cf. Tables I and II,
and Eq. (3.77)], the residual symmetry algebra may change
depending on the choice of gauge. It would be interesting to
understand if in general the world sheet S matrix is uniquely
fixed by the residual symmetries up to an overall factor, as
in [38] for the standard choice. For this, it would be
necessary to understand how the action of the residual
generators is realized on the transverse theory, as well as the
effect of x symmetry, which we expect to be nontrivial.

As discussed in Sec. IV C, if we consider, for example,
AdSs x S, the centrally extended ps1t(2|2)®? symmetry is
not actually broken under the light-cone gauge transfor-
mation; instead, it undergoes a twist. Since different gauges
have residual symmetries that are different subalgebras of
psu(2,2/4), it may be possible to identify a larger
invariance of the world sheet AdSs x S° S matrix going
beyond the usual centrally extended p31(2]2)®2, possibly
corresponding to a nonstandard action of the inherent
p3u(2,2/4) symmetry on the transverse fields and their
S matrix.

Our motivation for the analysis in this paper came from
the study of integrable deformations of AdS, x S sigma
models, their world sheet S matrices, and quantum inte-
grability descriptions. Thinking of an undeformed string
sigma model as a point in a space of theories, its continuous
deformations can be pictured as lines departing from this
point. As we have seen, the undeformed model may have a
moduli space of inequivalent light-cone gauge-fixings, each
describing the same sigma model, with an unchanged string
spectrum. However, an integrable deformation may break
some symmetries, resulting in a smaller moduli space of
light-cone gauge-fixings. In other words, in order to be able
to deform the gauge-fixed model, we would need to restrict
to a subspace of light-cone gauge-fixings. Correspondingly,
to be able to deform the world sheet S matrix we may first
need to apply a JT, transformation. We refer to [16,17] for
realizations of this scenario.

Knowing that inequivalent light-cone gauges play an
important role in the integrability formulation of integrable
deformations of the string sigma models, it would be
interesting to understand how this is paralleled in the
spin-chain description of the dual gauge theories [39].
This would be the starting point to construct deformations
of the spin chain corresponding to deformations of the
string theory background. The case of the homogeneous
Yang-Baxter deformations, which are expected to be
implemented by Drinfel’d twists, should be particularly
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tractable. Starting with [40], there has been substantial
progress in the identification of the deformations of the
gauge theory that are dual to homogeneous Yang-Baxter
deformations of the string, see in particular the recent [41].
Given that the construction is under control when the
deformation is based on twists of the Poincaré algebra, it
would be interesting to understand if spin-chain construc-
tions could help with the identification of the gauge theory
duals beyond those cases.
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APPENDIX: CONVENTIONS AND REVIEW
OF LIGHT-CONE GAUGE-FIXING

We consider a string sigma model on a D-dimensional
background parametrized by the coordinates x™ with
M=0,..D-1,

T L
S= _5/12 drdo (Y Gyy — € By )0, xMopxN, (A1)
-3

where 7 denotes the string tension and L the length of the
string. Moreover, y* is the Weyl-invariant combination of
the world sheet metric, and we use the convention
€ = —1. The sigma model couplings are the target-space
metric Gyy and the B-field B,;y. We assume that the
background possesses at least two Abelian isometries
realized by shifts of two coordinates x° = ¢ and x! = ¢.
Here ¢ is a timelike and ¢ a spacelike coordinate. The

remaining coordinates will be called transverse and are
denoted by x* with u =2,...,D — 1.

Under the above assumptions, a solution to the equations
of motion of the sigma model is

T = kr, p=r, ¥ =0. (A2)

Here the bar denotes a field evaluated on the classical
solution. In this solution the velocity of ¢ is fixed to 1 (e.g.,
by redefining 7). In principle, X* can be a collection of
nonvanishing constants, but these can be set to zero by
redefining x*.

The Virasoro constraints fix the value of the parameter .
To see this, let us construct the stress-energy tensor of the
sigma model (A1)

1
Ta/)’ = a(l-xMGMNa[)’xN - EY(I/}yy(SayxMGMNaﬁxN' (A3)
If we rewrite our classical solution as ¥ = g™z with
a® =k, a' =1, and a# = 0, then the components of the

stress-energy tensor on the classical solution read

- 1 - 1
TTT = %(1 — Al TT)? TT{T =—-% 0 ”9
27 4 3 1£74

[

1
o6 — T E%yo‘ayﬂ7 (A4)

where

Cg = (_;MNaMaN = GOQKZ + G] 1- (AS)
Here we assumed G, = 0, which can be achieved by
redefining ¢ and ¢. On the classical solution the Virasoro
constraints 7,5 = 0 are satisfied if 4 = 0. We solve this by

taking
R T
Goo'

where we are making a choice for the sign of x. Finally,
rescaling the field 7 by x, we can work with a classical
solution of the form 7 = 7, ¢ = 7, and X¥* = 0, so that we
effectively set k = 1.

Let us now review how to fix uniform light-cone gauge
in the Hamiltonian formalism following the review [5], see
also [4,18]. Starting from the classical sigma model action
(A1), we define the conjugate momenta as

(A6)

oS
Pm 37 — —TyrﬁaﬁxNGMN - T.X/NBMN.

Here, and in the rest of the paper, a dot denotes the time
derivative ¥¥ = 0,x and a prime, the spatial derivative
xM = 9,x™. On the classical solution the momenta read
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= =T7" Gy,

D1 = —TV”GM,
= =T7" (G, + G11).

(A8)

In principle, p, can be a nonvanishing constant vector, but
from now on we assume that p, = 0. In Sec. [TA2 we
show that we can always redefine our fields to achieve this,
and that when doing so we end up with an equivalent
gauge-fixing. We also fix ** = —(TG,;)~! so that p; = 1.
To summarize, thus far we have

=1, p=r, X =0,
pOZ_L l_)l = l? 1_7/4:0 (Ag)
We now introduce light-cone coordinates as”
1
T=ptte), X =gt (Al1)
so that
1
pe=potpi po=5(=potp). (A12)
On the classical solution we have
xt=m1, x =0, X =0,
py =0, p_=1, P, =0. (A13)

After introducing the momenta p,,, the action can be
rewritten as

TO'

S= / drda pr +—c (Al4)

1
¢ )
+ 2TYTT 2
where

Ci = pyx™,
C2 GMNpMpN + TZGM x/M IN
- 2TpMGMNBNQx/Q + TZG NBMPBNQ.X’PX/Q,

(A15)
We could use
xt=(1-a)t+ ap, X =¢-—t,
p+=po+pi,  p-=-—apy+(a—1)p;, (Al0)

and the classical solution would still remain the same. However,
here we set a =1/2 and the parameter a will instead be
recovered from the discussion in Sec. 1T A 2.

and y™ and y™ are Lagrange multipliers imposing the
Virasoro constraints are C; = C, = 0. On these constraints
the action is simply

S= /dtdaprM = /drda (py&" + p_i™ + p,i*).

(A16)

We now expand the fields around their classical values as
M = xM 4 M and py, = Py + Pu. Where the hats denote
fluctuations. We expand around a classical solution to
ensure the Lagrangian and Hamiltonian start at quadratic
order in the fluctuating fields. Because of the reparamet-
rization invariance on the world sheet, we can choose a

gauge where two fluctuations are set to zero, and we take
(A17)

All other fields are allowed to fluctuate. Taking into
account the classical solution and the gauge choice, we
have

Xt = xH,

p_=1, Py =Dy (Al8)

Since each field either coincides with its classical value or
with its fluctuation, the notation is unambiguous if we omit
the bars and hats, and we will do so from now on. The
expansion of the action around the classical solution is
therefore

Syr = /drda (p+ + X + p,a+)

= /drdo- (py + pui®), (A19)

where in the second step we dropped a total derivative. We
recognize the action for the transverse fields x*, p, with
Hamiltonian density H = —p_. Indeed, p_ is expressed in
terms of transverse fields once we solve the Virasoro
constraints C; = C, = 0 for the fluctuations x~ and p,.
The first equation is solved by

x' =

—p Xt (A20)

The second equation is quadratic in p_. If we introduce
indices m,n = —, u (i.e., all except +) then writing the
equation as C, = Ap2 + Bp, + C = 0, where
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A=G',
B =2G*"p, —2TG™MB,, x",
C = Gm”pmpn + TanlVl'x/mxln - 2TpmeNBqu/q

+ TZGMNBMPBqu/Px/q, (A21)
we take the solution to be
—B +VB?—4AC
Py = A , (A22)

where the sign is chosen to give the correct Hamiltonian. In
this expression p_ is replaced by its classical value p_ = 1
and x~’ using (A20). The solution for the Hamiltonian
density is therefore

b B VB -4AC

o (A23)

If we define charges Q) = ]i dopy, then we have the
2

L
relations Q, = — [*, doH = —H, where H is the
2

Hamiltonian, and Q_ = L.
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