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Light-cone gauge-fixed sigma models on AdSn × Sn backgrounds play an important role in the
integrability formulation of the AdS=CFT correspondence. The string spectrum of the sigma model is
gauge independent, however the Hamiltonian and scattering matrix of the transverse world sheet fields are
not. We study how these change for a large family of inequivalent light-cone gauges, which are interpreted
as TT̄, J̃Tτ, JTσ , and Jτ deformations. We investigate the moduli space of inequivalent light-cone gauges
and, specializing to AdS5 × S5, compute the different light-cone gauge symmetry algebras, well known to
be psuð2j2Þ⊕2 ⊕ uð1Þ⊕2 for the standard gauge-fixing. Many integrable deformations require a
nonstandard light-cone gauge, hence our classification and analysis of inequivalent gauges will be
important for analyzing such models.
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I. INTRODUCTION

The world sheet reparametrization invariance of string
sigma models may be viewed as a gauge freedom that can
be fixed to identify the physical degrees of freedom. In the
context of the AdS=CFT correspondence [1], an important
class of gauges are the uniform light-cone gauges intro-
duced in [2–4], see [5] for a review. These gauges are
engineered such that a certain conserved charge is uniformly
distributed along the spatial extent of the string. Our aim in
this paper is to map out the moduli space of inequivalent
light-cone gauges, focusing in particular on AdSn × Sn

backgrounds, the product of n-dimensional anti–de Sitter
space and an n-dimensional sphere. This is particularly of
interest in the study of integrable string sigma models, such
as AdS5 × S5 [6] and AdS3 × S3 × T4 [7], and their
integrable deformations.
A uniform light-cone gauge can be fixed for any back-

ground that has two commuting isometries, one timelike

and one spacelike. In this paper we will take these
isometries to be realized by shifts in t, a timelike coordinate,
and φ, a spacelike coordinate, such that t ¼ φ ¼ τ is a
classical solution of the sigma model where τ is the world
sheet time. Introducing light-cone coordinates xþ ¼
ðtþ φÞ=2 and x− ¼ φ − t, we expand the world sheet
action around the classical solution and gauge-fix the
fluctuations of the fields xþ and p−, the momentum
conjugate to x−, to zero. Therefore, the light-cone gauge-
fixing essentially demands that these two fields are equal to
their classical configuration, xþ ¼ τ and p− ¼ 1.
The light-cone gauge-fixing procedure results in a

“reduced model” for the fields xμ transverse to the longi-
tudinal fields xþ and x−. The Hamiltonian H of the reduced
model is identified with the target-space charge E − J,
where the energy E and angular momentum J are the
Noether charges for shifts in t and φ, respectively. The
reduced model is invariant under a subalgebra of the full
superisometry algebra of the original background, identified
as the subalgebra that commutes with the xþ shift isometry.
Relaxing the level-matching condition for world sheet
excitations, this subalgebra is centrally extended by charges
depending on the world sheet momentum. In the case of
AdS5 × S5, the psuð2; 2j4Þ superisometry leads to a cen-
trally extended psuð2j2Þ⊕2 residual superalgebra of the
reduced model [8], while in the case of AdS3 × S3 × T4

(ignoring the torus directions and their superpartners), the
psuð1; 1j2Þ⊕2 superisometry leads to a central extension of
½uð1Þ ⋉ psuð1j1Þ⊕2�⊕2 [9]. These residual superalgebras
play a fundamental role in the construction of the exact
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world sheet S matrices, which underpins the integrability
description of these models.
While the spectrum, i.e., the set of eigenvalues of the

spacetime energy E, does not depend on the choice of
gauge, the gauge-fixed Hamiltonian and the world sheet S
matrix are gauge dependent. To analyze the moduli space of
inequivalent light-cone gauges we fix the classical solution,
but change how we identify the longitudinal x� and
transverse xμ fields. In particular, we consider target-space
coordinate transformations ðxþ; x−; xμÞ → ðx̃þ; x̃−; x̃μÞ and
study when they lead to an inequivalent Hamiltonian and S
matrix after gauge-fixing.
The relation between the standard uniform light-cone

gauge and TT̄ deformations due to a coordinate trans-
formation within the longitudinal sector was first elucidated
in [10]. The Hamiltonian analysis, and the interpretation
in terms of current-current deformations, was then later
extended to include more general light-cone gauge-fixings
in [11,12]. In this paper we will build on these results,
presenting general derivations for the variations of
the Hamiltonian and S matrix, and the invariance of the
spectrum. Moreover, focusing on the case of symmetric
spaces, including AdSn × Sn, we will also investigate the
moduli space of inequivalent gauges and provide perturba-
tive evidence for the general derivations.
The motivation for this work comes from the recent

construction of large families of integrable deformations,
see [13] for a review. These include the Yang-Baxter
deformations [14], constructed from solutions to the
classical Yang-Baxter equation on the Lie (super)algebra
of isometries. Another class are elliptic deformations, which
have only recently been started to be incorporated at the
level of string sigma models [15,16]. In general, such
deformations will break the original group of (super)iso-
metries to a smaller subgroup. Crucially, in some cases the
deformations may break the light-cone isometries that are
normally used to gauge-fix the undeformed model. As a
result, gauge-fixing in the presence of the deformation
forces us to choose a different set of light-cone isometries,
see [16,17] for applications to particular models. Since in
the absence of the deformation this can be understood as an
alternative light-cone gauge-fixing, the systematic study
presented here provides key insights into the quantum
integrability description of deformed models.
This paper is organized as follows. In Sec. II we present

our strategy for generating inequivalent gauges on generic
backgrounds. In particular, we analyze when target-space
coordinate transformations lead to inequivalent gauges and
present a general derivation for the effect on the
Hamiltonian of the reduced model. In Sec. III we discuss
the classification of inequivalent gauges for symmetric
spaces, with particular attention to AdSn × Sn, and the
symmetries of the reduced model. In Sec. IV we study how
the S matrix changes under the different gauges, both at
tree level and nonperturbatively. In Sec. V we describe

how to check the gauge invariance of the spectrum. Finally,
in Sec. VI we finish with concluding comments and an
outlook.

II. INEQUIVALENT LIGHT-CONE
GAUGE-FIXINGS

In this section we use the procedure of light-cone gauge-
fixing reviewed in the Appendix; see also [5] and references
therein. In particular, we work with the sigma model action
(A1), which we schematically write as S ¼ R L=2−L=2 dτdσL ,
where L is the Lagrangian density. The target space is
parametrized by D coordinates xM, which we split as
ðxþ; x−; xμÞ, and τ and σ are world sheet time and space
coordinates, respectively, with σ ∼ σ þ L. A dot denotes the
time derivative ẋM ¼ ∂τxM and a prime, the spatial deriva-
tive x0M ¼ ∂σxM.
We assume that the action is invariant under constant

shifts of the two light-cone fields xþ and x−, so that there is
a classical pointlike string solution of the form xþ ¼ τ. We
expand the action around this classical configuration xþ ¼
τ in the Hamiltonian formalism and thus introduce a
conjugate momentum pM for each field xM. More details
on this procedure and what follows are collected in the
Appendix.
The uniform light-cone gauge is fixed by setting the

fluctuations of the fields xþ and p− to zero. Therefore, on
the gauge these fields coincide with their classical con-
figurations, and we may write just xþ ¼ τ and p− ¼ 1.
After light-cone gauge, one obtains a reduced model for the
D − 2 “transverse” fields xμ, whose Lagrangian density we
will denote as L. The Hamiltonian density of the reduced
model will be denoted as H, and in the uniform light-cone
gauge it is identified as H ¼ −pþ.
The question that we would like to address here is: Is it

possible to fix the light-cone gauge in different ways? In
particular, are there alternative light-cone gauge-fixings
that, despite the expansion being carried out around the
same classical solution, yield a different Hamiltonian
density H for the reduced model?
Wewill answer this question by comparing the light-cone

gauge-fixing xþ ¼ τ; p− ¼ 1 with an alternative light-cone
gauge-fixing x̃þ ¼ τ; p̃− ¼ 1 after performing target-space
coordinate transformations (or, equivalently, local field
redefinitions on the world sheet)

xM ¼ ðxþ; x−; xμÞ → x̃M ¼ ðx̃þ; x̃−; x̃μÞ: ð2:1Þ

An important point is that we do not allow for the most
general coordinate transformation: we demand that after the
transformation the background remains invariant under
shifts of the coordinates x̃�, which allows us to fix the
light-cone gauge in the usual way as reviewed in the
Appendix. As we will see, this requirement will constrain
the relevant classes of coordinate transformations.
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After the transformation to the x̃M coordinates and the
alternative gauge-fixing x̃þ ¼ τ, p̃− ¼ 1, in principle one
ends up with a Hamiltonian density H̃. We will then
distinguish “equivalent” and “inequivalent” light-cone
gauges. Our definition is that two gauge-fixings are equiv-
alent if the two Hamiltonian densities H̃ and H are related
by a canonical transformation. We will say that they are
inequivalent if there is no canonical transformation relat-
ing them.
To start, let us give the simplest possible example of a

coordinate transformation (or local field redefinition) that
leads to an equivalent gauge. To simplify the notation, we
collect all transverse fields xμ in the vector x⃗ and consider
the transformation,

xþ ¼ x̃þ; x− ¼ x̃−; xμ ¼ fμð˜x⃗Þ;

p̃þ ¼ pþ; p̃− ¼ p−; p̃μ ¼
∂fν

∂x̃μ
pν; ð2:2Þ

where fμ is an invertible function and the second line
follows from the first. Note that here we choose to imple-
ment a transformation on the transverse fields only, while
the light-cone fields transform trivially. In particular, the
relation p̃þ ¼ pþ implies

H̃ð˜x⃗; ˜p⃗Þ ¼ Hðx⃗ð˜x⃗Þ; p⃗ð˜x⃗; ˜p⃗ÞÞ; ð2:3Þ

where we write explicitly the dependence of the
Hamiltonian densities on the corresponding fields. In other
words, the two Hamiltonians are the same if the transverse
fields and momenta are mapped as

xμ ¼ fμð˜x⃗Þ; p̃μ ¼
∂fν

∂x̃μ
pν: ð2:4Þ

The reader will recognize this as a class of canonical
transformations that are typically called “point transforma-
tions.” Because the two Hamiltonians are related by a
canonical transformation, in this case, according to our
definition, the two light-cone gauges are equivalent.
This result was expected even before considering the

Hamiltonians. Taking into account the above relations

xþ ¼ x̃þ; p̃− ¼ p−; ð2:5Þ

it is obvious that the gauge condition xþ ¼ τ; p− ¼ 1 is
compatible with the gauge x̃þ ¼ τ; p̃− ¼ 1, because the two
are in fact the same condition. In this case, the coordinate
transformation does not affect the gauge condition but only
redefines the transverse fields. This means that the pro-
cedure of light-cone gauge-fixing and the field redefinition
are two commuting operations. From this observation it
should be clear that to generate inequivalent gauges we must
allow the longitudinal coordinates to participate nontrivially
in the coordinate transformation. When doing this, however,

we will need to be careful not to spoil the invariance of the
action under shifts of the x̃� fields, as this is one of our
requirements specified above.
Before presenting the concrete examples of interest, let

us discuss the general strategy that we will use to construct
the transformations and the inequivalent gauges.

A. Inequivalent gauges from current-current
deformations

Our strategy to construct the coordinate transformations
and the corresponding inequivalent gauges is to exploit the
symmetries of the sigma model before gauge-fixing. In
particular, let us assume that the action before gauge-fixing
is invariant under a global continuous transformation, and
therefore an isometry transformation in target space. This
symmetry transformation can be understood as the map

xM ¼ FMðx̃; λÞ; ð2:6Þ

where λ is the continuous parameter. Saying that the action
is invariant under this map for constant λ means that after
the transformation the action does not depend on λ, and the
new action agrees with the old one upon the trivial
replacement x → x̃. From Noether’s theorem, then, it
follows that there is a conserved current. In particular,
one considers the infinitesimal transformation,

δxM ¼ fMδλ; where fM ¼ ∂FM

∂λ

����
λ¼0

; ð2:7Þ

so that the infinitesimal variation of the Lagrangian L is

δL ¼ ∂α

�
∂L

∂ð∂αxMÞ
fMδλ

�
; ð2:8Þ

up to terms that vanish on the equations of motion.
Invariance of the action for constant δλ implies that the
Lagrangian can change at most by a total derivative, so we
write δL ¼ ∂αVα for some Vα. We can then identify the
conserved Noether current as

Jα ¼ Vα −
∂L

∂ð∂αxMÞ
fM: ð2:9Þ

From now on, for simplicity, we assume that Vα ¼ 0.
To construct coordinate transformations that generate

inequivalent gauges we use the global transformation (2.6),
but promote the parameter λ to be a function of the fields. In
particular, let us write

δλ ¼ γcðx̃Þ; ð2:10Þ

for some function c of x̃M. Here we are introducing a
continuous parameter γ that we will use to keep track of the
transformation, so that γ → 0 reduces to the identity.
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Importantly, when δλ is not constant the action is not
necessarily invariant. In other words, the map ceases to be a
symmetry transformation and it is understood just as a local
field redefinition or target space coordinate transformation.
On shell (i.e., on the equations of motion), the infinitesimal
variation of the Lagrangian is still given by (2.8), but
because δλ is no longer constant we now have

δL ¼−∂αðJαδλÞ ¼−∂αJαδλ− Jα∂αδλ¼−Jα∂αδλ; ð2:11Þ

where we used the conservation of the current. At this point
we can define the topological current

J̃αðcÞ ¼ ϵαβ∂βc; ð2:12Þ

which is conserved off shell (i.e., without the need of the
equations of motion). We may therefore rewrite the
variation of the Lagrangian as

δL ¼ γϵαβJ̃αðcÞJ
β: ð2:13Þ

This formally takes the form of an infinitesimal current-
current deformation. Importantly, J̃αðcÞ and Jα are different
objects: the former is a topological current that is identified
by the choice of the function c, while the latter is a Noether
current identified by the symmetry transformation that we
selected.
Finally, let us return to the condition that the action is

invariant under shifts of x̃� after the coordinate trans-
formation. As already mentioned, we require this in order
to follow the usual procedure for the light-cone gauge-
fixing as described in the Appendix. It is clear that at the
level of the infinitesimal transformation we must require
the function c to be of the form

cðx̃þ; x̃−; ⃗x̃Þ ¼ γþx̃þ þ γ−x̃− þ gð ⃗x̃Þ: ð2:14Þ

Here γ� are constant parameters (which may be rescaled by
redefining the overall deformation parameter γ) and g is a
function of transverse fields only. This ensures that the
derivative of δλ, and therefore δL itself, may depend on
derivatives of x̃� but not on x̃� explicitly, and thus the shift
invariance will indeed be preserved.
So far, the discussion has been at the level of the

Lagrangian density L before gauge-fixing. When gauge-
fixing, the Lagrangian density L is evaluated on the
solutions to the Virasoro constraints obtained after setting
xþ ¼ τ; p− ¼ 1. This procedure sends L to L, the
Lagrangian of the reduced model. Schematically, we may
write ðL Þg:f: ¼ L, where “g:f:” denotes the light-cone
gauge-fixing procedure. The transformation of L is then
simply inherited from that of L , and we can write

δL ¼ γϵαβ
�
J̃αðcÞ
�
g:f:

ðJβÞg:f:: ð2:15Þ

Therefore, the evaluation of the topological and Noether
currents on the gauge-fixing constraints will tell us how the
Lagrangian of the reduced model transforms. Taking into
account that H ¼ pμẋμ − L, we can also conclude that the
transformation of the Hamiltonian density of the reduced
model is

δH ¼ −γϵαβ
�
J̃αðcÞ
�
g:f:

ðJβÞg:f:: ð2:16Þ

1. Light-cone currents

Of all the Noether and topological currents that we may
consider, an important role is played by the “light-cone
currents.” First, invariance of L under shifts of x� implies
the conservation of the following two Noether currents:

JαðþÞ ¼ −
∂L

∂ð∂αxþÞ
; Jαð−Þ ¼ −

∂L

∂ð∂αx−Þ
: ð2:17Þ

Second, following analysis above, it is natural to consider
the following topological currents:

J̃αðþÞ ¼ ϵαβ∂βxþ; J̃αð−Þ ¼ ϵαβ∂βx−: ð2:18Þ

We will now show that upon gauge-fixing these currents
become

�
JαðþÞ

�
g:f:

¼ Tα
τ;

�
Jαð−Þ

�
g:f:

¼ −δατ ;�
J̃αðþÞ

�
g:f:

¼ δασ;
�
J̃αð−Þ

�
g:f:

¼ Tα
σ; ð2:19Þ

where Tα
β is the stress-energy tensor of the reduced

model. Importantly, if we call T α
β the stress-energy tensor

of the model before gauge-fixing, it is not true that
ðT α

βÞg:f: ¼ Tα
β. In fact, T α

β is zero as a consequence
of the Virasoro constraints, while Tα

β is not. The latter is
calculated from the Lagrangian L in the usual way
following Noether’s theorem,

Tα
β ¼

∂L
∂ð∂αxμÞ

∂βxμ − δαβL: ð2:20Þ

In the Hamiltonian formalism, each component is

Tτ
τ ¼ H; Tσ

τ ¼ −
∂H
∂x0μ

∂H
∂pμ

;

Tτ
σ ¼ pμx0μ; Tσ

σ ¼ H −
∂H
∂x0μ

x0μ −
∂H
∂pμ

pμ: ð2:21Þ
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To prove the claim (2.19), let us start with the topological
currents. First, we have

J̃τðþÞ ¼ −x0þ⟶
g:f:

0; J̃σðþÞ ¼ ẋþ⟶
g:f:

1; ð2:22Þ

where after the arrow we indicate the evaluation of the
expression upon light-cone gauge-fixing. Now considering
the other topological current, it is easy to identify the time
component as

J̃τð−Þ ¼ −x0−⟶
g:f:

pμx0μ ¼ Tτ
σ: ð2:23Þ

To identify the remaining spatial component we may reason
as follows. Consider two conserved currents Jα1 and Jα2, so
that ∂αJαi ¼ 0. They may be Noether or topological
currents, and in the example that we are considering we
take Jα1 ¼ J̃αð−Þ and Jα2 ¼ Tα

σ. If, as above, we are able to

prove that Jτ1 ¼ Jτ2 then it follows that ∂σðJσ1 − Jσ2Þ ¼ 0. In
other words, the σ components may differ at most by a

function of τ, and we can write Jα1 ¼ Jα2 þ ϵαβ∂βcðτÞ. The
difference ϵαβ∂βcðτÞ is a topological term that can always
be added since it does not spoil the conservation equation.
At this point, redefining one of the currents to include this
term, we see that it is always possible to arrive at the
equality Jα1 ¼ Jα2. To summarize, after proving that one
component of two conserved currents is the same, we can
simply take the full currents to agree.
For completeness, let us be more explicit in the example

we are considering. The relation x0− ¼ −pμx0μ implies that

x−ðτ; σÞ ¼ c̃ðτÞ −
Z

σ

0

dξpμðτ; ξÞx0μðτ; ξÞ: ð2:24Þ

Now, using that

ẋμ ¼ ∂H
∂pμ

; ṗμ ¼ −
∂H
∂xμ

þ ∂σ
∂H
∂x0μ

; ð2:25Þ

we have

ẋ− ¼ ˙̃c −
Z

σ

0

dξðṗμx0μ þ pμẋ0μÞ

¼ ˙̃c −
Z

σ

0

dξ

�
−
∂H
∂xμ

x0μ þ x0μ∂ξ
∂H
∂x0μ

þ pμ∂ξ
∂H
∂pμ

�

¼ ˙̃c −
Z

σ

0

dξ

�
−
∂H
∂xμ

x0μ −
∂H
∂x0μ

x00μ −
∂H
∂pμ

p0
μ þ ∂ξ

�
∂H
∂x0μ

x0μ þ pμ
∂H
∂pμ

��

¼ ˙̃c −
Z

σ

0

dξ∂ξ
�
−Hþ ∂H

∂x0μ
x0μ þ pμ

∂H
∂pμ

�

¼ ċþH −
∂H
∂x0μ

x0μ −
∂H
∂pμ

pμ

¼ ċþ Tσ
σ; ð2:26Þ

where the boundary term evaluated at ξ ¼ 0 is a
function of τ only, whose sum with c̃ we denote c. In
agreement with the discussion above, we find that the
two expressions match up to an unconstrained function of
τ. By redefining, for example, the topological current as
J̃αð−Þ ¼ ϵαβ∂βðx− − cðτÞÞ, we find the expected agreement.
Let us now turn to the Noether currents. First, we have

Jτð−Þ ¼ −
∂L

∂ðẋ−Þ ¼ −p−⟶
g:f:

− 1: ð2:27Þ

In general, after gauge-fixing, the σ component of this
current will be constant, and (by adjusting the topological

term as above) we can fix it to be zero, Jσð−Þ⟶
g:f:

0. Finally,

we have

JτðþÞ ¼ −
∂L

∂ðẋþÞ ¼ −pþ⟶
g:f:

H ¼ Tτ
τ: ð2:28Þ

Having identified the time component, we conclude that the

spatial component can be fixed to be JσðþÞ⟶
g:f:

Tσ
τ.

2. Alternative gauges from current-current deformations

We will organize the presentation of possible alternative
gauges in terms of the Noether symmetry that is used to
construct the transformation. We first analyze alternative
gauges identified by the Noether symmetries shifting the
longitudinal fields x�, before analyzing those identified by
the Noether symmetries acting on the transverse fields only.
The symmetry transformations shifting x� have the advan-
tage of being linear in the deformation parameter at finite
order. The same can be achieved for the Noether symmetries
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acting only on transverse fields if we adapt our para-
metrization of the fields to the symmetry transformation
(e.g., using polar coordinates to study a rotation symmetry,
so that the transformation is implemented as a shift of an
angular coordinate). In general, one may also have Noether
symmetries that act nontrivially on both the longitudinal and
transverse fields, but we will not discuss these explic-
itly here.
After choosing the Noether symmetry, we will also need

to specify the topological current that appears in the
infinitesimal deformation. In particular, we will complete
the analysis by looking at the three independent cases in
which c is a function of transverse fields only, or of xþ, or
of x−.
Some of the transformations that we present here have

appeared in other papers studying the construction of
current-current deformations, see for example [10–12].
The first example was in fact the TT̄ deformation, which,
as we will repeat below, can be understood as arising from a
light-cone gauge-fixing where the longitudinal fields are
subject to a γ-dependent redefinition. Moreover, thanks to
the reasoning explained at the beginning of Sec. II A, it will
be straightforward for us to identify the infinitesimal
variation of the Hamiltonian density H, which sometimes
is referred to as the “flow equation.” For an alternative
derivation of the flow equation, see, for example, [12].
Let us also stress that we interpret the deformations as

generating gauge transformations of the reduced model.
That means that in general the deformation of the
Hamiltonian will be accompanied by the deformation of
other gauge-dependent quantities, such as the length of the
string, in such a way that the spectrum is gauge indepen-
dent. We will demonstrate this explicitly in Sec. V. At the
same time, one may reinterpret the deformations listed here
as genuine deformations by allowing only the Hamiltonian
and not the length of the string to be deformed, in the spirit
of [10–12].
Light-cone symmetries and cð˜x⃗Þ.
(1) Let us start by considering the Noether symmetry

shifting x−, with c a function of transverse fields
only. We then write

xþ ¼ x̃þ; x− ¼ x̃− þ γcð˜x⃗Þ; xμ ¼ x̃μ;

p̃þ ¼ pþ; p̃− ¼ p−; p̃μ ¼ pμ þ γp−∂μc:

ð2:29Þ

Given the invariance of the fields xþ and p−, we
expect it to lead to an equivalent gauge. In fact, the
relation p̃þ ¼ pþ implies that the two Hamiltonian
densities are the same if we relate the transverse
fields as

xμ ¼ x̃μ; p̃μ ¼ pμ þ γ∂μc; ð2:30Þ

where the gauge condition p− ¼ 1 was used. Be-
cause the momenta are shifted by the derivative of a
function cðx⃗Þ, it is easy to check that this is indeed a
canonical transformation. We can also confirm this
using the interpretation as a current-current defor-
mation. Using the results from Sec. II A 1, evaluat-
ing Eq. (2.16) gives

δH ¼ −γϵαβ
�
J̃αðcÞ
�
g:f:

�
Jβð−Þ

�
g:f:

¼ γ∂τc: ð2:31Þ

This is indeed a change by a total derivative. To
conclude, in this case we generate an equivalent
gauge.
As a brief comment, let us mention that taking c to

be linear in the transverse fields is enough to shift the
momenta pμ by generic constants. This freedom is
the reason why in the Appendix we could set the
classical value of the transverse momenta p̄μ to zero.

(2) Let us now consider a similar transformation, but for
the Noether symmetry that shifts xþ. We write

xþ ¼ x̃þ þ γcð˜x⃗Þ; x− ¼ x̃−; xμ ¼ x̃μ;

p̃þ ¼ pþ; p̃− ¼ p−; p̃μ ¼ pμ þ γpþ∂μc:

ð2:32Þ

Because xþ ≠ x̃þ, we now expect this to lead to an
inequivalent gauge. In fact, the two gauge conditions
xþ ¼ τ and x̃þ ¼ τ are not compatible, since de-
manding that the fluctuations of both xþ and x̃þ are
set to zero is possible only if the fluctuations of cð˜x⃗Þ
are also set to zero. This is clearly impossible for a
generic function c as transverse fields do fluctuate.
Despite the relation p̃þ ¼ pþ, it is not correct to

conclude that the two Hamiltonians are the same,
because we have

xμ ¼ x̃μ; p̃μ ¼ pμ − γH∂μc; ð2:33Þ

which is not a canonical transformation.
To identify the explicit finite form of the deformed

Hamiltonian density H̃, we solve for the Virasoro
constraint C2 ¼ 0 as reviewed in the Appendix. This
gives H̃ as an explicit deformation of the Hamil-
tonian density H. We briefly explain the reasoning
for this example. While we will not repeat this for
other gauge transformations, the reasoning is analo-
gous in each case. First, note that the expression for
C2 is invariant under diffeomorphisms in D dimen-
sions, so that we can trivially write

BORSATO, DRIEZEN, HOARE, RETORE, and SEIBOLD PHYS. REV. D 109, 106023 (2024)

106023-6



C2 ¼ GMNpMpN þ T2GMNx0Mx0N

− 2TpMGMNBNQx0Q þ T2GMNBMPBNQx0Px0Q;

¼ G̃MNp̃Mp̃N þ T2G̃MNx̃0Mx̃0N

− 2Tp̃MG̃
MNB̃NQx̃0Q þ T2G̃MNB̃MPB̃NQx̃0Px̃0Q:

ð2:34Þ

The new Hamiltonian is therefore

H̃ ¼ B̃ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B̃2 − 4Ã C̃

p

2Ã
; ð2:35Þ

where

Ã ¼ G̃þþ;

B̃ ¼ 2G̃þmp̃m − 2TG̃þMB̃Mnx̃0n;

C̃ ¼ G̃mnp̃mp̃n þ T2G̃mnx̃0mx̃0n

− 2Tp̃mG̃
mNB̃Nqx̃0q þ T2G̃MNB̃MpB̃Nqx̃0px̃0q:

ð2:36Þ

Thus far, these are just the formulas of the Appendix
with tildes. At this point, to see the explicit γ
dependence, we can use the fact that all these objects
transform as covariant tensors, so that

G̃þþ ¼ Gþþ þ 2γ∂μcGμþ þ γ2∂μc∂νcGμν;

G̃þm ¼ Gþm þ γ∂μcGμm;

G̃mn ¼ Gmn; ð2:37Þ

and similar formulas for the B field. Having gauge-
fixed the fields with tildes, we work with the
transverse fields x̃μ, p̃μ. For ease of notation, and
to interpret the Hamiltonian H̃ as a deformation ofH
where the fields do not change, we will drop the
tildes. In other words we implement the substitution
x̃μ → xμ; p̃μ → pμ. Finally, we arrive at

Ã ¼ Gþþ þ 2γ∂μcGμþ þ γ2∂μc∂νcGμν;

B̃ ¼ 2ðGþm þ γ∂μcGμmÞpm

− 2TðGþM þ γ∂μcGμMÞBMnx0n;

C̃ ¼ Gmnpmpn þ T2Gmnx0mx0n − 2TpmGmNBNqx0q

þ T2GMNBMpBNqx0px0q; ð2:38Þ

where we explicitly see the complicated γ depend-
ence of the Hamiltonian H̃ through Ã and B̃.
To conclude, let us note that according to the

reinterpretation as a current-current deformation we
find that the variation of the Hamiltonian corre-
sponds to

δH ¼ −γϵαβ
�
J̃αðcÞ
�
g:f:

�
JβðþÞ

�
g:f:

¼ −γϵαβJ̃αðcÞT
α
τ ¼ γ∂αcTα

τ: ð2:39Þ

In [12] this deformation was called a J̃T0 deforma-
tion; here we will call it J̃Tτ. While, according to our
definition, it leads to an inequivalent gauge trans-
formation, we will show later that it has no effect on
the S matrix. Indeed, notice that on shell (in particular
when using the conservation of the stress-energy
tensor) the above infinitesimal transformation is just a
total derivative.

Light-cone symmetries and cðx̃�Þ. Taking into account
that the Noether symmetry may shift either xþ or x−, and
that we may choose the function c to be linear in either xþ
or x−, there are a total of four cases to consider.
(1) Let us start with the symmetry shifting xþ and take

c ¼ γx̃þ. Then

xþ ¼ ð1þ γÞx̃þ; x− ¼ x̃−; xμ ¼ x̃μ;

p̃þ ¼ ð1þ γÞpþ; p̃− ¼ p−; p̃μ ¼ pμ: ð2:40Þ

Strictly speaking this yields an inequivalent gauge,
but it is clear from the above formulas that it
corresponds simply to rescaling τ, and consequently
the overall Hamiltonian. Therefore, we may say that
this gauge is “almost equivalent.” According to the
reinterpretation as a current-current deformation, we
have

δH ¼ −γϵαβ
�
J̃αðþÞ

�
g:f:

�
JβðþÞ

�
g:f:

¼ γH: ð2:41Þ

(2) Consider now the symmetry shifting x− and take
c ¼ γx̃þ. Then

xþ ¼ x̃þ; x− ¼ x̃−þ γx̃þ; xμ ¼ x̃μ;

p̃þ ¼ pþ þ γp−; p̃− ¼ p−; p̃μ ¼ pμ: ð2:42Þ

This leads to an equivalent gauge since xþ and p− do
not transform. In fact, it corresponds simply to a shift
of the Hamiltonian by a constant H̃ ¼ H − γ.
According to the interpretation as a current-current
deformation, we indeed have

δH ¼ −γϵαβ
�
J̃αðþÞ

�
g:f:

�
Jβð−Þ

�
g:f:

¼ −γ: ð2:43Þ

(3) Consider the symmetry shifting x− and take
c ¼ γx̃−. Then

xþ ¼ x̃þ; x− ¼ ð1þ γÞx̃−; xμ ¼ x̃μ;

p̃þ ¼ pþ; p̃− ¼ ð1þ γÞp−; p̃μ ¼ pμ: ð2:44Þ
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Strictly speaking this again yields an inequivalent
gauge, but it corresponds to just rescaling p− and x−.
In the reduced model, this can be compensated by
rescaling σ and the tension T. Also in this case, we
may say that this is an almost equivalent gauge.
According to the interpretation as current-current
deformations, we have

δH ¼ −γϵαβ
�
J̃αð−Þ

�
g:f:

�
Jβð−Þ

�
g:f:

¼ −γTσ
σ: ð2:45Þ

This is indeed the variation of the Hamiltonian when
rescaling the world sheet coordinate σ. In fact, taking
δσ ¼ γσ and formally calculating the infinitesimal
variation of the Lagrangian, one finds

δL ¼ ∂αðTα
σδσÞ ¼ Tα

σ∂αδσ ¼ γTσ
σ: ð2:46Þ

(4) Finally, consider the symmetry shifting xþ and take
c ¼ γx̃−. Then

xþ ¼ x̃þ þ γx̃−; x− ¼ x̃−; xμ ¼ x̃μ;

p̃þ ¼ pþ; p̃− ¼ p−þ γpþ; p̃μ ¼ pμ: ð2:47Þ

Both xþ and p− transform nontrivially, and this
leads to an inequivalent gauge. Recalling how we fix
x� in terms of t and φ in the Appendix, this
corresponds to the so-called a-gauge of [18,5]

x̃þ ¼ ð1 − aÞtþ aφ; x̃− ¼ φ − t; ð2:48Þ

if we identify a ¼ 1=2 − γ. As a current-current
deformation, we have

δH ¼ −γϵαβ
�
J̃αð−Þ

�
g:f:

�
JβðþÞ

�
g:f:

¼ −γϵαβTα
σTβ

τ;

ð2:49Þ

which corresponds to the well-known interpretation
as a TT̄ deformation that was given in [10,11]. We
will not write the explicit finite form of the deformed
Hamiltonian density H̃, which may be found for
example in [11].

Transverse symmetries and cðx̃�Þ. Let us now consider
the case of a symmetry transformation that acts nontrivially
only on transverse fields. If the function c entering the
definition of the topological current J̃αðcÞ depends on trans-

verse fields only, then we would end up with a “point-
canonical” transformation as in the discussion at the
beginning of Sec. II. Hence, the only way to generate
inequivalent gauges is to take c either linear in x̃þ or in x̃−.

(1) We first consider the case c ¼ γx̃−, so that

xþ ¼ x̃þ; x−¼ x̃−; xμ ¼Fμð ˜⃗x;λðx̃−ÞÞ;

p̃þ ¼pþ; p̃−¼p−þ
dλ
dx̃−

∂Fμ

∂λ
pμ; p̃μ ¼

∂Fν

∂x̃μ
pν;

ð2:50Þ

where

λðx̃−Þ ¼ cðx̃−Þ þ � � � ¼ γx̃− þ � � � : ð2:51Þ

That is, we identify the leading order of λ with the
function c, as in Sec. II A. If the symmetry trans-
formation is nonlinear, the parameter λ of the finite
transformation may also depend on higher-order
terms in x−. These terms are identified by demand-
ing that shifts of x̃− remain symmetries. We have not
needed to consider this subtlety up to now since
shifts of x� are linear transformations, hence the
infinitesimal and the finite transformations coincide.
If we also assume (as done in [12]) that we work

in adapted target-space coordinates, so that the
symmetry transformation simply acts as the shift
of a transverse field that we call θ,1 we can then write
the finite transformation as

xþ ¼ x̃þ; x−¼ x̃−; xμ ¼ x̃μ; θ¼ θ̃þ γx̃−;

p̃þ ¼pþ; p̃−¼p−þ γpθ; p̃μ ¼pμ; p̃θ ¼pθ:

ð2:52Þ

Even without this assumption, it is obvious that the
two conditions p− ¼ 1 and p̃− ¼ 1 are not compat-
ible, so we expect an inequivalent gauge. In fact,
according to the interpretation as a current-current
deformation, we have

δH ¼ −γϵαβ
�
J̃αð−Þ

�
g:f:

�
Jβ
�
g:f:

¼ −γϵαβTα
σJβ:

ð2:53Þ

Here Jα is the Noether current of the transverse
symmetry that we are using to generate the trans-
formation. In [12] this deformation was called a JT1

deformation; we will call it JTσ .

1If θ is compact it has the interpretation of an angle, but it may
also be noncompact.
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(2) Consider now the choice c ¼ γx̃þ, so that

xþ ¼ x̃þ; x−¼ x̃−; xμ ¼Fμð ˜⃗x;λðx̃þÞÞ;

p̃þ ¼pþþ dλ
dx̃þ

∂Fμ

∂λ
pμ; p̃−¼p−; p̃μ ¼

∂Fν

∂x̃μ
pν;

ð2:54Þ

where, as in the previous discussion, we identify

λðx̃þÞ ¼ cðx̃þÞ þ � � � ¼ γx̃þ þ � � � : ð2:55Þ

In this case the gauge-fixing conditions in the two
coordinate systems are compatible, because neither
xþ nor p− transform. Although the Hamiltonian
densities H̃ and H are related by a canonical
transformation, this is time-dependent since Fμ

depends on xþ ¼ x̃þ ¼ τ. Therefore, H̃ is related
to H by an extra shift as indicated in the relation
between p̃þ and pþ. The fact that a time-dependent
canonical transformation generates an extra shift of
the Hamiltonian density also follows from the
definition H ¼ pμẋμ − L, where the shift comes
from the explicit time derivative of xμ. According to
the interpretation as a current-current deformation,
we have

δH ¼ −γϵαβ
�
J̃αðþÞ

�
g:f:

�
Jβ
�
g:f:

¼ γJτ; ð2:56Þ

where Jα is the Noether current of the transverse
symmetry. We will call this transformation a Jτ

deformation.
Choosing adapted coordinates in target space so

that the symmetry acts simply as the shift of a
coordinate θ, we have

xþ ¼ x̃þ; x−¼ x̃−; xμ ¼ x̃μ; θ¼ θ̃þ γx̃þ;

p̃þ ¼pþþ γpθ; p̃−¼p−; p̃μ ¼pμ; p̃θ ¼pθ:

ð2:57Þ

Therefore, the finite deformation of the Hamilto-
nian density is

H̃ ¼ Hþ γJτ; ð2:58Þ

where we use that the time component of the
Noether current and the momentum conjugate to
θ are related as Jτ ¼ −pθ. Note that the deformed
Hamiltonian (defined as the spatial integration of
the Hamiltonian density) is given by

H̃ ¼ H þ γQ; ð2:59Þ

where Q ¼ R dσJτ is the Noether charge.

A similar discussion holds if we instead assume
that the symmetry transformation is an SOð2Þ
rotation of coordinates x2, x3:

x2 ¼ cos λx̃2 þ sin λx̃3; x3 ¼ cos λx̃3 − sin λx̃2:

ð2:60Þ

Introducing the vector x ¼ ðx2; x3Þ we can write

x ¼ RðλÞx̃; p ¼ RðλÞp̃;

RðλÞ ¼
�

cos λ sin λ

− sin λ cos λ

�
: ð2:61Þ

We also have

dRðλÞ
dλ

¼
� − sin λ cos λ

− cos λ − sin λ

�
¼ RðλÞ

�
0 1

−1 0

�
:

ð2:62Þ

Now taking xM ¼ x̃M for M ≠ 2, 3, we promote the
above redefinition to λ ¼ γx̃þ, which implies

p̃þ ¼ pþ þ ∂xi

∂x̃þ
pi ¼ pþ þ dλ

dx̃þ
∂xi

∂λ
pi

¼ pþ þ γx̃T
�
dRðλÞ
dλ

�
T
p

¼ pþ þ γðx̃3p̃2 − x̃2p̃3Þ: ð2:63Þ

The deformed Hamiltonian density is then

H̃ ¼ Hþ γðx̃2p̃3 − x̃3p̃2Þ; ð2:64Þ

which is again of the form H̃ ¼ Hþ γJτ.
Having analyzed all the relevant coordinate transformations
outlined at the beginning of this section, this concludes our
discussion of inequivalent gauges.

B. Recap of inequivalent gauges

For the reader’s convenience, let us recap the inequiva-
lent gauges that we have identified:
(1) the J̃Tτ deformation obtained by the shift xþ ¼

x̃þ þ γcð˜x⃗Þ;
(2) the TT̄ deformation obtained by the shift xþ ¼

x̃þ þ γx̃−;
(3) the JTσ deformation obtained by promoting the

parameter of a transverse symmetry to a function
of x̃− (for example, θ ¼ θ̃ þ γx̃−);

(4) the Jτ deformation obtained by promoting the
parameter of a transverse symmetry to a function
of x̃þ (for example, θ ¼ θ̃ þ γx̃þ).
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III. INEQUIVALENT LIGHT-CONE GAUGES FOR
SYMMETRIC SPACES

Symmetric spaces, which include anti–de Sitter space
and the spheres, play an important role in integrable world
sheet theories of strings. Therefore, we now investigate the
moduli space of inequivalent light-cone gauges for the
symmetric space sigma model.
Symmetric spaces M ¼ G=H are isomorphic to homo-

geneous spaces for which the Lie algebra g of the Lie group
G admits a Z2 grading g ¼ gð0Þ ⊕ gð2Þ, i.e., such that2

½gðiÞ; gðjÞ� ⊂ gðiþjmod 4Þ; i; j ¼ 0; 2; ð3:1Þ

where gð0Þ ¼ LieðHÞ. Introducing the projectors PðiÞ on the
subspaces gðiÞ and the notation MðiÞ ≡ PðiÞM for generic
Lie algebra elements M∈ g, the symmetric space sigma
model action can be written as

S ¼ −
T
4

Z
Σ
dτdσ γαβSTrðAαPð2ÞAβÞ; ð3:2Þ

with Aα ¼ g−1∂αg, g∶Σ → G=H a coset parametrization,
and STr an ad-invariant nondegenerate bilinear form on g.
Furthermore we have γαβ ¼ ffiffiffiffiffiffijhjp

hαβ where hαβ is the
world sheet metric. The action is invariant under global
left-acting transformations by G and local right-acting
transformations by H, whose combination we denote as
GL ×HR. The equations of motion are

∂αðγαβAð2Þ
β Þ þ γαβ½Að0Þ

α ; Að2Þ
β � ¼ 0; ð3:3Þ

subject to the Virasoro constraints

T αβ ¼ STrðAð2Þ
α Að2Þ

β Þ − 1

2
γαβγ

γδSTrðAð2Þ
γ Að2Þ

δ Þ ¼ 0: ð3:4Þ

Our starting assumption in the light-cone gauge-fixing
procedure relies on having a parametrization of G=H that
realizes at least two manifest Abelian isometries corre-
sponding to shifts of a timelike coordinate t and a spacelike
coordinate φ. The most general coset parametrization
satisfying these criteria is

g ¼ expðΛttþ ΛφφÞgX; ½Λt;Λφ� ¼ 0; ð3:5Þ

where the field gX is a generic parametrization of the
transverse fields xμ. Recalling that xþ ¼ ðtþ φÞ=2 and
x− ¼ φ − t, this parametrization can be equivalently
written as

g ¼ expðΛþxþ þ Λ−x−ÞgX; Λþ ¼ Λt þ Λφ;

Λ− ¼ 1

2
ðΛφ − ΛtÞ; ½Λþ;Λ−� ¼ 0: ð3:6Þ

Shifts in the longitudinal coordinates t, φ, or x� are realized
by left-acting transformations generated by Λt, Λφ or Λ�,
respectively.
In this section we make the assumption that the back-

ground is a Cartesian product of a Lorentzian (noncompact)
symmetric spaceMa ¼ Ga=Ha and a (compact) Euclidean
symmetric space Ms ¼ Gs=Hs, such as AdSn × Sn. We
define the projectors Pa and Ps onto the Lie algebras ga and
gs, which, due to the Cartesian product structure, commute
with Pð0Þ and Pð2Þ. We also make the assumption that the
symmetric spaces are of rank-1, i.e., the maximal Abelian

subalgebra of gð2Þa and gð2Þs is one-dimensional. We will not
assume that t∈Ma and φ∈Ms, i.e., t and φ may mix
coordinates of Ma and Ms.
The classical pointlike string that we use for light-cone

gauge-fixing takes the form

t ¼ φ ¼ τ; gX ¼ 1; γαβ ¼ T−1ηαβ: ð3:7Þ

In general, we may consider arbitrary constant gX ¼ g0,
however we can always use the global GL symmetry to
choose gX ¼ 1 at the expense of a compensating rotation of
Λþ, i.e., Λþ → g0Λþg−10 . Since we have not specified Λþ,
other than that it commutes with Λ−, which is also
unspecified, we take gX ¼ 1 on the classical solution
without loss of generality.
Defining3

Λa;s ¼ Pa;sΛþ; ð3:8Þ

and substituting (3.7) into the equations of motion (3.3) and
Virasoro constraints (3.4), we find the conditions

½Λð0Þ
a ;Λð2Þ

a � ¼ 0; ½Λð0Þ
s ;Λð2Þ

s � ¼ 0;

STrðΛð2Þ
a Λð2Þ

a Þ þ STrðΛð2Þ
s Λð2Þ

s Þ ¼ 0: ð3:9Þ

Therefore, Λð0Þ
a and Λð0Þ

s are valued in the centralizers of

Λð2Þ
a and Λð2Þ

s , respectively. Since we assume gs is compact,

it follows that STrðΛð2Þ
s Λð2Þ

s Þ ≥ 0, hence we must have2We employ a notation that is natural for semisymmetric
spaces, which admit a Z4 decomposition. We do so because of
our motivation to eventually describe superstrings on spacetimes
such as AdS5 × S5.

3Note that only if we take t∈Ma and φ∈Ms we have
Λa ¼ Λt and Λs ¼ Λφ.
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STrðΛð2Þ
a Λð2Þ

a Þ ≤ 0 for the final equation in Eq. (3.9) to
admit a solution. For simplicity we assume that these
quantities are nonvanishing,4 hence by rescaling xþ and τ

we are free to fix the normalization of Λð2Þ
a and Λð2Þ

s . In the
following we will take

STrðΛð2Þ
a Λð2Þ

a Þ ¼ −2; STrðΛð2Þ
s Λð2Þ

s Þ ¼ 2: ð3:10Þ

At this point we note that we could use the local HR

symmetry to remove the Λð0Þ
a and Λð0Þ

s dependence of the
classical pointlike string solution g ¼ expðΛþτÞ. We can

further conjugate Λð2Þ
a and Λð2Þ

s by a constant element of H

to specified elements of gð2Þa and gð2Þs with the same norm.
This reflects the fact that there is a unique pointlike string
solution with nonvanishing momentum in both Ma and
Ms up to global symmetry transformations. However, the
first of these transformations in particular does not preserve
the parametrization (3.5) with gX transverse only, therefore
we instead take Λa and Λs to satisfy (3.9), but otherwise
leave them unfixed.
Only a subset of the original GL ×HR symmetry

preserves our choice of parametrization. Included in the
residual symmetries we have global H transformations
acting vectorially as

HV∶Λa;s→h0Λa;sh−10 ; gX→h0gXh−10 ; h0∈H; ð3:11Þ

and local right-acting transformations that only depend on
the transverse fields and reduce to the identity on the
classical solution. We fix the latter symmetry by setting
gX ¼ expX, with X ≡ Xð2Þ ∈ gð2Þ. We have now parame-
trized the group-valued field in terms of dim gð2Þ þ 2 scalar
fields. This is two more than if we had fully fixed the gauge
symmetry, and indeed our parametrization includes a redun-

dancy x� → x� þ c�ðXÞ, X → X − c�ðXÞΛð2Þ
� þ � � �,

together with a compensating gauge transformation to
restore the original form. The two functions c�ðXÞ can

be used to fix the two components ofX in theΛð2Þ
� directions,

giving a minimal set of transverse fields that we denote by x:

gX ¼ expðxþ fþðxÞΛð2Þ
þ þf−ðxÞΛð2Þ

− Þ; STrðxΛð2Þ
� Þ ¼ 0:

ð3:12Þ

Since the functions f� originate from shifts of the longi-
tudinal coordinates x� by functions of the transverse
coordinates, they can lead to different gauge-fixings.
Therefore, for now we leave them unspecified.
In order to understand the freedom that remains in our

choice of Λa and Λs after imposing (3.9), we observe that

the HV symmetry (3.11) preserves our gauge choice
gX ¼ expX. As we have restricted to rank-1 cosets, this
means that we can take Λa and Λs to lie in given Cartan
subalgebras ta ⊂ ga and ts ⊂ gs with the properties5

STrðtð2Þa tð2Þa Þ < 0; ½tð0Þa ; tð2Þa � ⊂ f0g;
STrðtð2Þs tð2Þs Þ > 0; ½tð0Þs ; tð2Þs � ⊂ f0g: ð3:13Þ

Given that the normalizations of Λð2Þ
a and Λð2Þ

s are fixed,

the remaining freedom is thus rkga − 1 parameters in Λð0Þ
a

and rkgs − 1 parameters in Λð0Þ
s . The origin of these

parameters can be understood as the rotation

gX → expðΛð0Þ
þ xþÞgX expð−Λð0Þ

þ xþÞ, hence by the sum-
mary in Sec. II B, they are expected to correspond to Jτ

deformations.
Finally, we would like to understand the freedom that we

have in choosing Λ−, which is thus far unspecified other
than that it should commute withΛþ and is such that t and φ
are timelike and spacelike, respectively. We will leave a full
analysis of the possible choices of Λ−, which depends on
Λþ and any residualHV symmetry that preservesΛþ for the
future. Here we investigate one possible solution, which is
to take Λ− to be valued in the same Cartan subalgebra as
Λþ. This is the general solution when Λþ is a generic
element of the Cartan subalgebra. Then, of the rkg param-
eters in Λ− one can be fixed by rescaling x−, another one,
the part proportional to Λþ, can be understood as a shift of
xþ by x−, hence corresponds to the TT̄ deformation, and the

remaining rkg − 2 can be taken to parametrize tð0Þa and tð0Þs .6

Therefore, the origin of these parameters can be understood
as the rotation gX → expðΛð0Þ

− x−ÞgX expð−Λð0Þ
− x−Þ, and by

the summary in Sec. II B, they are expected to correspond to
JTσ deformations.
In total, through this analysis, we have found five sets of

freedom in our parametrization, four leading to inequivalent
gauge-fixings, mirroring the summary in Sec. II B, and one
to a total derivative. In particular, the two functions fþðxÞ
and f−ðxÞ correspond to a J̃Tτ deformation and a total
derivative respectively, while the rkg − 2 parameters in each

4Note that this restriction excludes the AdS light-cone
gauge [19] for which STrðΛð2Þ

a Λð2Þ
a Þ ¼ 0.

5We first use the conjugation to fix Λð2Þ
a and Λð2Þ

s . Since the
cosets are rank-1, we can conjugate between any two elements of
gð2Þa or gð2Þs that have the same norm. The remaining freedom is
then conjugation by elements of the centralizer group of Λð2Þ

a and
Λð2Þ
s , which we can use to rotate Λð0Þ

a and Λð0Þ
s to be valued in a

Cartan subalgebra of the centralizer algebra. If the centralizer is
noncompact, there may be inequivalent choices for its Cartan
subalgebra. However, since this is not the case for AdSn × Sn, as
we will discuss in Sec. III B, we will not address this potential
subtlety here.

6Note that there may be bounds on these parameters that
depend on the form of Λþ to ensure that t and φ are timelike and
spacelike, respectively.
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of Λð0Þ
þ and Λð0Þ

− correspond to Jτ and JTσ deformations,
respectively. Finally, the component of Λ− proportional to
Λþ corresponds to the TT̄ deformation.
In the perturbative analyses in Secs. III A, III B, and IV

A, we will make the following simplifying assumption.
We assume that t and φ are coordinates on Ma and
Ms, respectively, i.e., Λt ∈ ga and Λφ ∈ gs. In particular,
this means that PaΛþ ¼ −2PaΛ− ¼ Λt and PsΛþ ¼
2PsΛ− ¼ Λφ, hence the projections of Λþ and Λ− are
not independent. We also assume that the transverse
coordinates are split into a set of coordinates on Ma
and a set on Ms. As a result, an alternative gauge-fixing
that leads to a J̃Tτ will always come with a total derivative:
shifts of x� are now restricted such that t and φ remain in
Ma and Ms respectively, and the transverse coordinates
are still split. Similarly, Jτ and JTσ deformations will be
tied together, with a single parameter controlling both.
Strictly speaking, this would also remove the TT̄ defor-
mation, however, we can reintroduce this by hand and will
do so when studying the tree-level S matrix in Sec. IVA.
We now carry out a more detailed analysis of the light-

cone gauge moduli space for the simplified case of
R ×Ms, with the generalization to Ma ×Ms straightfor-
ward up to the identification of Λa. We will then discuss
explicitly how to appropriately identify Λa and Λs for
AdSn × Sn and the residual symmetry algebras of different
light-cone gauge-fixed theories in Sec. III B.

A. Inequivalent light-cone gauges for strings
on R ×Ms

In order to probe the moduli space of inequivalent light-
cone gauge-fixings around the pointlike string solution
(3.7), it is useful to study the pp-wave limit. For simplicity,
we consider the space R ×Ms such that the metric reads

ds2 ¼ −dt2 þ 1

2
STrððg−1X dφΛsgX þ g−1X dgXÞ

× Pð2Þðg−1X dφΛsgX þ g−1X dgXÞÞ: ð3:14Þ

We set t ¼ xþ − 1
2
ϵ2x− and φ ¼ xþ þ 1

2
ϵ2x−, with ϵ a small

constant parameter, gX ¼ expðXÞ and expand X according
to Eq. (3.12) as

X ¼ ϵxþ ϵfðϵxÞΛð2Þ
s ; STrðxΛð2Þ

s Þ ¼ 0: ð3:15Þ

Finally, we recall that we normalize Λs such that

STrðΛð2Þ
s Λð2Þ

s Þ ¼ 2.

Using that ½Λð0Þ
s ;Λð2Þ

s � ¼ 0, and expanding to quadratic
order in ϵ we find

ds2 ¼ −2ϵdxþdfðϵxÞ þ ϵ2
�
2dxþdx− þ 1

2
STrðdx21Þ

−
1

2
ðdxþÞ2

�
STrð½x1;Λð2Þ

s �2Þ − STrð½x1;Λð0Þ
s �2Þ

�
− dxþSTrðΛð0Þ

s ½x1; dx1�Þ
�
þOðϵ3Þ: ð3:16Þ

For the pp-wave limit to be finite and nondegenerate, we
rescale the string tension T → Tϵ−2 and require that
ϵfðϵxÞ ¼ ϵ2f0ðxÞ þOðϵ3Þ.7 The metric now simplifies to

ds2 ¼ 2dxþdx− þ 1

2
STrðdx2Þ − 1

2
ðdxþÞ2

�
STrð½x;Λð2Þ

s �2Þ

− STrð½x;Λð0Þ
s �2Þ

�
− dxþSTrðΛð0Þ

s ½x; dx�Þ
þ 2dxþdf0ðxÞ þOðϵ3Þ: ð3:17Þ

The freedom in this limit is thus captured by Λð0Þ
s for the

longitudinal sector, which contains rkgs − 1 parameters,
and the function fðxÞ for the transverse sector.
To interpret these freedoms let us note that before taking

the pp-wave limit we can remove Λð0Þ
s from our para-

metrization (3.5) with gX ¼ expX and X given in
Eq. (3.15), by redefining

x → expð−φΛð0Þ
s Þx expðφΛð0Þ

s Þ; ð3:18Þ

where we assume the function f is invariant. From the
summary in Sec. II B we see that this can be understood as a
combination of a JTσ and a Jτ deformation. After taking the

pp-wave limit,Λð0Þ
s can similarly be removed from (3.17) by

the redefinition x → expð−xþΛð0Þ
s Þx expðxþΛð0Þ

s Þ, therefore
only the Jτ deformation survives, while, as we will see, the
JTσ deformation contributes at higher orders in the trans-
verse fields.
Similarly, we can in principle remove fðxÞ from the

pp-wave metric by shifting x− → x− þ f0ðxÞ. However, if
we demand that this does not transform t, then at higher
orders we will also need to shift xþ → xþ − 1

4
f0ðxÞ and we

have an inequivalent gauge-fixing corresponding to a J̃Tτ

deformations as follows from the summary in Sec. II B.
Based on the pp-wave analysis above, we now fix light-

cone gauge in the sigma model onR ×Ms with the goal of
understanding the effect of inequivalent gauge-fixings.
Here we work in the Lagrangian formalism, while analo-
gous results for AdS5 × S5 for the Hamiltonian and tree-
level S matrix T will be derived in Sec. IVA 2.
We start from the metric (3.14) and expand in powers of

the transverse field X ¼ Pð2ÞX. Introducing the operators

7While for a finite pp-wave limit in the sigma model we cannot
have an OðϵÞ term in this expansion, if we light-cone gauge-fix
around xþ ¼ τ, the divergent piece will be a total derivative ∼∂τf
that we can drop.
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D0 ¼ dþ dφadΛð0Þ
s
and expanding to quartic order in X, we

find the metric is given by

ds2 ¼ −dt2 þ dφ2

�
1þ 1

2
STr

�
Λð2Þ
s ad2XΛ

ð2Þ
s

�

þ 1

6
STr

�
Λð2Þ
s ad4XΛ

ð2Þ
s

��
þ dφ

�
STr

�
Λð2Þ
s D0X

�

þ 2

3
STr

�
Λð2Þ
s ad2XD0X

��
þ 1

2
STr½D0XD0X�

þ 1

6
STr½D0Xad2XD0X� þOðX5Þ: ð3:19Þ

In order to light-cone gauge-fix in the Lagrangian formal-
ism we exploit the results of [20], which follows the
method of [3,21]. In terms of the light-cone coordinates

φ¼ xþþð1−aÞx−; t¼ xþ−ax−; a∈ ½0;1�; ð3:20Þ

the metric can be written as

ds2 ¼ Gþþdxþ2 þ 2Gþ−dxþdx− þ G−−dx−2

þ 2Gþdxþ þ 2G−dx− þ Gt; ð3:21Þ

where G� has terms linear in dX and Gt quadratic terms in
dX. Using (3.20), we can straightforwardly read off the
elements of ds2 from (3.19).
The light-cone gauge-fixed action is given by

Sg:f: ¼ −T
Z
Σ
dτdσ

� ffiffiffiffiffiffiffiffi
−M

p
þ 1

2
E
�
¼
Z

dτdσ L; ð3:22Þ

with

M ¼ 1

G2
−−

�
ðG̊þþ þ 2G̊þ;τ þ G̊t;ττÞð1þ G̊t;σσÞ

− ðG̊þ;σ þ G̊t;τσÞ2
�
; ð3:23Þ

E ¼ −
2

G−−
ðGþ− þ G−;τÞ; ð3:24Þ

and we recall that L is the gauge-fixed Lagrangian. The
notation here is as follows: G�;α denotes G� with d
replaced by ∂α, while Gt;αβ denotes Gt with one d replaced
by ∂α and the other by ∂β. This latter step is unambiguous

by the symmetry of Gt. Additionally, the components of G̊
are defined as

G̊þþ ¼ G−−Gþþ − G2þ−;

G̊þ;α ¼ G−−Gþ;α −Gþ−G−;α;

G̊t;αβ ¼ G−−Gt;αβ − G−;αG−;β: ð3:25Þ

1. J̃Tτ deformation for R ×Ms

We start by focusing on the J̃Tτ deformation and

therefore for simplicity assume Λð0Þ
s ¼ 0. In particular, this

implies that D0X ¼ dX. Therefore, to quartic order in X
we find

Gþþ ¼ 1

2
STr

�
Λð2Þ
s ad2XΛ

ð2Þ
s

�
þ 1

6
STr

�
Λð2Þ
s ad4XΛ

ð2Þ
s

�
þOðX5Þ ≔ V2ðXÞ þ V4ðXÞ þOðX5Þ;

G−− ¼ 1 − 2aþ ð1 − aÞ2Gþþ; Gþ− ¼ 1þ ð1 − aÞGþþ;

Gþ ¼ 1

2
STr

�
Λð2Þ
s dX

�
þ 1

3
STr

�
Λð2Þ
s ad2XdX

�
þOðX5Þ ≔ L1ðXÞ þ L3ðXÞ þOðX5Þ;

G− ¼ ð1 − aÞGþ;

Gt ¼
1

2
STr½dXdX� þ 1

6
STr½dXad2XdX� þOðX5Þ ≔ K2ðXÞ þ K4ðXÞ þOðX5Þ: ð3:26Þ

The indices on Vi, Li, and Ki denote the power of X.
We can now compute the light-cone gauge-fixed Lagrangian as defined in Eq. (3.22) up to quartic order. We rescale

X → T−1
2X, substitute the metric (3.26) in the action (3.22) using the expressions (3.23)–(3.25) and expand to obtain

LðXÞ ¼ T
1
2L1ðXÞ þ L2ðXÞ þ T−1

2L3ðXÞ þ T−1L4ðXÞ þOðT−3
2X5Þ; ð3:27Þ

with

L1 ¼ L1;τ; ð3:28Þ
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L2 ¼
1

2
ðK2;τ;τ − K2;σ;σ − L2

1;τ þ L2
1;σ þ V2Þ; ð3:29Þ

L3 ¼ −L1;τV2 þ L3;τ þ a

�
1

2
L1;τðV2 − K2;τ;τ − K2;σ;σ þ L2

1;τ − L2
1;σÞ þ L1;σK2;τ;σ

�
; ð3:30Þ

L4 ¼
1

8

�
K2;τ;τ þ K2;σ;σ − 2K2;τ;σ − ðL1;τ − L1;σÞ2

��
K2;τ;τ þ K2;σ;σ − 2K2;τ;σ − ðL1;τ þ L1;σÞ2

�
− L1;τL3;τ þ L1;σL3;σ −

1

4

�
K2;τ;τ þ K2;σ;σ − 3L2

1;τ þ L2
1;σ þ

3

2
V2

�
V2

þ 1

2
ðK4;τ;τ − K4;σ;σ þ V4Þ þ

a2

2
ðK2;τ;τ − L2

1;τÞðL2
1;τ − L2

1;σÞ

þ a
�
ðK2;τ;σ − L1;τL1;σÞ2 −

1

4
ðK2;τ;τ þ K2;σ;σ − L2

1;τ − L2
1;σÞ2 þ

1

4
V2
2

�
: ð3:31Þ

Note that, as for G� and Gt above, the labels τ and σ on Li and Ki indicate that d should be replaced by ∂τ and ∂σ,
respectively, where the symmetry of Ki again means that this procedure is unambiguous.
From the analysis in Sec. III A, inequivalent gauge-fixings corresponding to J̃Tτ deformations are parametrized by a

function fðxÞ, which can be introduced as8

X ¼ xþ fðxÞΛð2Þ
s ; ð3:32Þ

where we take STr½xΛð2Þ
s � ¼ 0. We will now show that, up to total derivatives and redefinitions of the transverse fields, Lj

for j ¼ 1;…; 4 does not depend on fðxÞ.
Substituting (3.32) into the expansion of the light-cone gauge Lagrangian (3.28)–(3.31) we obtain

L1 ¼ ∂τf; ð3:33Þ

L2 ¼
1

2
ðK2;τ;τðxÞ − K2;σ;σðxÞ þ V2ðxÞÞ; ð3:34Þ

L3 ¼ L3ðxÞ −
1

3
∂τðV2ðxÞfÞ þ a

�
K2;τ;σðxÞ∂σf þ 1

2
∂τfðV2ðxÞ − K2;τ;τðxÞ − K2;σ;σðxÞÞ

�
; ð3:35Þ

L4 ¼
1

2
ðK4;τ;τðxÞ − K4;σ;σðxÞ þ V4ðxÞÞ þ

1

8
ðK2;τ;τðxÞ þ K2;σ;σðxÞ − V2ðxÞÞ2 −

1

2
ðK2;τ;σðxÞ2 þ V2ðxÞ2Þ

−
a
4

�
ðK2;τ;τðxÞ þ K2;σ;σðxÞÞ2 − 4K2;τ;σðxÞ2 − V2ðxÞ2

�
−
1

2
ð∂τ − ∂σÞ

�
L3ðxÞf −

1

6
ð∂τV2ðxÞÞf2

�

þ a2

2
K2;τ;τðxÞðð∂τfÞ2 − ð∂σfÞ2Þ −

1

6
f2STr½ðad2

Λð2Þ
s

xÞDx� − 1

3
fSTr½ðadxadΛð2Þ

s
xÞDx�; ð3:36Þ

where

D ¼ 1

2

�
∂
2

∂τ2
−

∂
2

∂σ2
− ad2

Λð2Þ
s

�
: ð3:37Þ

From this point on we drop total derivatives. Doing so, we can rewrite the above expansion as

L1 ¼ 0; ð3:38Þ

8Here fðxÞ can be related to cðxÞ in the shift φ → φþ cðxÞ (at leading order they are equal). The shift in φ can be split into a shift in
x−, which corresponds to a total derivative after light-cone gauge-fixing and was visible in the pp-wave analysis, and a shift in xþ
corresponding to a J̃Tτ deformation.
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L2 ¼ −
1

2
STr½xDx�; ð3:39Þ

L3 ¼ L3ðxÞ þ aSTr½fẋDx�; ð3:40Þ

L4 ¼
1

2
ðK4;τ;τðxÞ − K4;σ;σðxÞ þ V4ðxÞÞ þ

1

8
ðK2;τ;τðxÞ þ K2;σ;σðxÞ − V2ðxÞÞ2 −

1

2
ðK2;τ;σðxÞ2 þ V2ðxÞ2Þ

−
a
4

�
ðK2;τ;τðxÞ þ K2;σ;σðxÞÞ2 − 4K2;τ;σðxÞ2 − V2ðxÞ2

�
þ a2

2
ðSTr½fẋDfẋ� − STr½f2ẋDẋ�Þ

−
1

6
f2STr½ðad2

Λð2Þ
s

xÞDx� − 1

3
fSTr½ðadxadΛð2Þ

s
xÞDx�: ð3:41Þ

Finally, we can implement the following field redefinition:

x → xþ T−1
2afẋþ T−1

�1
2
a2ðf2ẋÞ̇ − 1

6
f2ad2

Λð2Þ
s

x −
1

3
fadxadΛð2Þ

s
x
�
þ � � � ; ð3:42Þ

f → f þ T−1
2afḟ þ � � � ; ð3:43Þ

which completely eliminates the dependence of the quartic light-cone gauge Lagrangian on f.
Therefore, we find that the effect of inequivalent gauge-fixings corresponding to J̃Tτ deformations in the light-cone

gauge-fixed Lagrangian up to quartic order can be removed by a field redefinition if we drop total derivatives. It follows that
the light-cone gauge S matrix at tree level will not depend on f, and we will see an explicit example of this in Sec. IVA 2
for AdS5 × S5.

2. Jτ and JTσ deformation for R ×Ms

Again based on the pp-wave analysis in Sec. III A, we now study the effect of inequivalent gauge-fixings corresponding
to Jτ and JTσ deformations in the gauge-fixed theory. We will do this in the Lagrangian formalism, fixing light-cone gauge

in the sigma model on R ×Ms as in Sec. III A 1, but now setting f ¼ 0 and keeping Λð0Þ
s nonzero. Recall that in this

analysis the Jτ and JTσ deformations are tied together since Λð0Þ originates from the redefinition (3.18).

Since we now consider Λð0Þ
s ≠ 0, the metric (3.21) has extra terms compared to Eq. (3.26) and can be written as

Gþþ ¼ 1

2
STr

�
Λð2Þ
s ad2XΛ

ð2Þ
s

�
þ 1

6
STr

�
Λð2Þ
s ad4XΛ

ð2Þ
s

�
−
1

2
STr

�
Λð0Þ
s ad2XΛ

ð0Þ
s

�
−
1

6
STr

�
Λð0Þ
s ad4XΛ

ð0Þ
s

�

−
2

3
STr

�
Λð2Þ
s ad3XΛ

ð0Þ
s

�
þOðX5Þ ≔ V2ðXÞ þ V4ðXÞ þ V̄2ðXÞ þ V̄4ðXÞ þ V̄3ðXÞ þOðX5Þ;

G−− ¼ 1 − 2aþ ð1 − aÞ2Gþþ; Gþ− ¼ 1þ ð1 − aÞGþþ;

Gþ ¼ 1

2
STr

�
Λð2Þ
s dX

�
þ 1

3
STr

�
Λð2Þ
s ad2XdX

�
−
1

2
STr

�
dXadXΛ

ð0Þ
s

�
−
1

6
STr

�
dXad3XΛ

ð0Þ
s

�
≔ L1ðXÞ þ L3ðXÞ þ L̄2ðXÞ þ L̄4ðXÞ þOðX5Þ;

G− ¼ ð1 − aÞGþ;

Gt ¼
1

2
STr½dXdX� þ 1

6
STr½dXad2XdX� þOðX5Þ ≔ K2ðXÞ þ K4ðXÞ þOðX5Þ; ð3:44Þ

where we have introduced new functions V̄i and L̄i, which depend on Λ
ð0Þ
s and whose index again indicates the power of X.

Setting X ¼ x where STr½xΛð2Þ
s � ¼ 0, rescaling x → T−1

2x, and computing the light-cone gauge-fixed Lagrangian as
defined in (3.22) to quartic order, we find

LðxÞ ¼ T
1
2L1ðxÞ þ L2ðxÞ þ T−1

2L3ðxÞ þ T−1L4ðxÞ þOðT−3
2x5Þ; ð3:45Þ
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with

L1 ¼ 0; ð3:46Þ

L2 ¼
1

2
ðV2 þ K2;τ;τ − K2;σ;σÞ þ

1

2
V̄2 þ L̄2;τ; ð3:47Þ

L3 ¼ L3;τ þ
1

2
V̄3; ð3:48Þ

L4 ¼
1

8
ð1 − 2aÞ

�
ðK2;τ;τ þ K2;σ;σÞ2 − 4K2

2;τ;σ − ðV2 þ V̄2Þ2
�
−
1

2
aðK2;τ;τ þ K2;σ;σ − V2 − V̄2ÞL̄2;τ

þ aK2;τ;σL̄2;σ þ
1

4
ðV2 þ V̄2ÞðK2;τ;τ þ K2;σ;σ þ V2 þ V̄2 þ 4L̄2;τÞ −

1

2
ðL̄2

2;τ − L̄2
2;σÞ

þ 1

2
ðK4;τ;τ − K4;σ;σ þ V4 þ V̄4 þ 2L̄4;τÞ; ð3:49Þ

where we have used that STr½xΛð2Þ
s � ¼ 0 implies

L1ðxÞ ¼ 0. For clarity, we have also suppressed the
dependence of the functions Vi, Li, and Ki on x.

To see that the effect of Λð0Þ
s is a combination of Jτ and

JTσ deformations as claimed, we start by noting that
Eqs. (3.46)–(3.49) are invariant under the transformation

x → e−αΛ
ð0Þ
s xeαΛ

ð0Þ
s ; ð3:50Þ

for constant α since ½Λð0Þ
s ;Λð2Þ

s � ¼ 0. We can therefore
remove the Jτ deformation by promoting α to be time
dependent and rotating

x → e−τΛ
ð0Þ
s xeτΛ

ð0Þ
s ; ð3:51Þ

under which (i ¼ 1, 2)

L̄2i;τ → L̄2i;τ − V̄2i; L̄2i−1;τ → L̄2i−1;τ −
1

2
V̄2i−1;

K2i;τ;τ →K2i;τ;τ − 2L̄2i;τ þ V̄2i; K2i;τ;σ →K2i;τ;σ − L̄2i;σ;

ð3:52Þ

where V̄1 ¼ 0. The remaining functions do not transform.
The transformed Lagrangian is then given by

LτðxÞ ¼ T
1
2Lτ

1ðxÞ þ Lτ
2ðxÞ þ T−1

2Lτ
3ðxÞ þ T−1Lτ

4ðxÞ
þO

�
T−3

2x5
�
; ð3:53Þ

with

Lτ
1 ¼ 0; ð3:54Þ

Lτ
2 ¼

1

2
ðV2 þ K2;τ;τ − K2;σ;σÞ; ð3:55Þ

Lτ
3 ¼ L3;τ; ð3:56Þ

Lτ
4 ¼

1

8
ð1− 2aÞððK2;τ;τ þK2;σ;σÞ2− 4K2

2;τ;σ −V2
2Þ

− ð1−aÞ
�
K2;τ;σL̄2;σ þ

1

2
ðK2;τ;τ þK2;σ;σ þV2ÞL̄2;τ

�
−
1

4
V2ðK2;τ;τ þK2;σ;σ þV2Þþ

1

2
ðK4;τ;τ −K4;σ;σ þV4Þ:

ð3:57Þ

Computing the conserved current associated to the
symmetry (3.50) we find

Jτ ¼ L̄2;τ; Jσ ¼ −L̄2;σ; ð3:58Þ

while the components of the stress-energy tensor are
given by

Tττ ¼ −
1

2
ðK2;τ;τ þ K2;σ;σ − V2Þ;

Tσσ ¼ −
1

2
ðK2;τ;τ þ K2;σ;σ þ V2Þ; Tτσ ¼ Tστ ¼ K2;τ;σ:

ð3:59Þ

Constructing the TT̄ and JTσ operators as

ÔTT̄ ¼ ϵαβTα
σTβ

τ and ÔJTσ
¼ ϵαβTα

σJβ; ð3:60Þ

we see that we can rewrite Lτ
4 as

Lτ
4 ¼L4jΛð0Þ

s →0;a→1
2

þ
�
1

2
−a

�
ÔTT̄ þð1−aÞÔJTσ

; ð3:61Þ

demonstrating the form of the JTσ deformation explicitly.
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B. Strings on AdSn × Sn

In the remainder of this section, we will focus on string
sigma models on AdSn × Sn backgrounds and explore the
light-cone gauge freedom in their longitudinal sector in
more detail, including analyzing the symmetries of the
resulting light-cone gauge-fixed theories.
The target spacetimes of these sigma models can be

realized as the symmetric cosets

Ma ×Ms ¼
SOðn − 1; 2Þ
SOðn − 1; 1Þ ×

SOðnþ 1Þ
SOðnÞ : ð3:62Þ

Hence, the Lie group G is the product of a noncompact
and a compact group. Their Lie algebras ga ¼ so (n − 1, 2)
and gs ¼ soðnþ 1Þ can be spanned respectively by
anti-Hermitian matrices JIJ, I; J ¼ 0;…; n and RAB,
A;B ¼ 1;…; nþ 1, satisfying

½JIJ; JKL� ¼ ηIKJJL − ηJKJIL þ ηJLJIK − ηILJJK;

JIJ ¼ −JJI;

½RAB; RCD� ¼ δACRBD − δBCRAD þ δBDRAC − δADRBC;

RAB ¼ −RBA; ð3:63Þ

with ηIJ ¼ diagð−1; 1;…; 1;−1Þ. This realizes a symmet-
ric space with gð2Þ ¼ spanðJin; Ranþ1Þ, for i ¼ 0;…; n − 1,
and a ¼ 1;…; n, and the invariant subalgebra gð0Þ spanned
by the remaining orthogonal generators. To explore the
light-cone gauge freedom in the longitudinal sector, we
need to identify the Cartan subalgebras ta and ts.

1. Identifying the Cartan subalgebra

For compact groups, there is a unique Cartan subalgebra
up to inner automorphisms by Cartan’s torus theorem. The
rank of gs ¼ soðnþ 1Þ is bnþ1

2
c and we can take the Cartan

subalgebra to be spanned, e.g., by

ts ¼ span



Rnðnþ1Þ; ⋃

bn−1
2
c

i¼1

Rð2i−1Þð2iÞ

�
; ð3:64Þ

where we have introduced brackets on indices for read-
ability. For example, in the case of soð6Þ we take
ts ¼ spanfR56; R12; R34g. Because of its definite signature,
a generic element Λs ∈ ts is spacelike under STr. In
contrast, for noncompact groups, there can be distinct
Cartan subalgebras not related by inner automorphisms.
To identify the space of inequivalent gauge-fixings, we
should therefore take into account all these possibilities.
However, the Virasoro constraint (3.4) of the AdSn × Sn

string singles out one Cartan subalgebra [22] up to inner
automorphisms. To elaborate, let us consider for simplicity
γαβ ¼ ηαβ, such that in the light-cone coordinates σ� ¼
1
2
ðτ � σÞ we have T þ− ¼ 0 identically. Because of the

Cartesian product structure of the spacetime, we can write
Aα ¼ Aαa þ Aαs, with Aαa (Aαs) the projections of Aα on
the subalgebra ga (gs) for the AdSn (Sn) space. The other
components T �� of the energy-momentum tensor can
similarly be split into a contribution from AdSn and Sn, i.e.,

T �� ¼ T a
�� þ T s

��¼! 0; T aðsÞ
�� ¼ STr

�
Að2Þ
�aðsÞA

ð2Þ
�aðsÞ

�
:

ð3:65Þ

The conformal symmetry of the world sheet means that it is

always possible to choose coordinates such that T aðsÞ
�� ¼

μaðsÞ are real constants. As before, for Sn, which is a space
of definite signature, μs is positive definite under STr. For
AdSn, on the other hand, a space of indefinite signature, μa
can be negative, null, or positive. These cases lead to
three inequivalent one-dimensional Cartan subspaces of
Pð2ÞðgaÞ [22].9 The Virasoro constraints however require
that μs ¼ −μa > 0.10 For all n, this singles out the one-
dimensional Cartan subspace generated by J0n up to inner
automorphisms. The centralizer algebra of J0n is the

compact subalgebra soðn − 1Þ of gð0Þa ¼ so (n − 1, 1).
This means that, up to conjugations by the compact
subgroup SOðn − 1Þ ⊂ SO (n − 1, 1), the requirement that
J0n is an element of the Cartan subalgebra polarizes the full
Cartan subalgebra of ga ¼ so (n − 1, 2) to be the bnþ1

2
c-

dimensional subspace spanned by

ta ¼ span



J0n; ⋃

bn−1
2
c

i¼1

Jð2i−1Þð2iÞ

�
: ð3:66Þ

For example, in the case of soð4; 2Þ we take ta ¼
spanfJ05; J12; J34g. Generic elements Pð2ÞðΛaÞ∈ ta are
now guaranteed to be timelike under STr.
As a side remark, let us note that the above discussion

holds more generally for AdSp × Sq spaces with p ≠ q.

2. Relation to JTσ and Jτ deformations

Let us now consider n ¼ 5 and explore the rkga þ
rkgs − 2 ¼ 4 parameter freedom in the longitudinal sector
of AdS5 × S5. The following can be readily extended to
different values of n. Based on the discussion above, we
parametrize (3.5) with

Λa ¼ α0J05 þ α1J12 þ α2J34;

Λs ¼ β0R56 þ β1R12 þ β2R34; ð3:67Þ

9For n ¼ 2 there are actually two possibilities with μa ¼ 0,
see [22].

10The choices of Cartan resulting in μa ¼ 0 allow to consider
bosonic string configurations on AdSn only. As mentioned above,
we will not consider such examples in this paper.
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where α1;2 and β1;2 are free real parameters, and the
transverse fields as in [5], i.e.,

gX ¼ gXðz; yÞ ¼
0
@1þP4

i¼1 ziJi5ffiffiffiffiffiffiffiffiffiffiffi
1− z2

4

q
1
A⊕

0
@1þP4

i¼1 yiRi6ffiffiffiffiffiffiffiffiffiffiffi
1þ y2

4

q
1
A;

ð3:68Þ

where zi and yi are the transverse coordinates of AdS5 and
S5, respectively, and z2 ¼ zizi, y2 ¼ yiyi. Because of our

assumptions outlined at the beginning of this section, Λð2Þ
a

and Λð2Þ
s must be nonvanishing and thus we must require

α0 ≠ 0 ≠ β0. Furthermore, α0 and β0 will not be true
parameters, as they can be rescaled to fix a definite
normalization of Λa and Λs. The metric reads

ds2 ¼ −α20

 
1þ z2

4

1 − z2
4

!
2

dt2 þ β20

 
1 − y2

4

1þ y2

4

!
2

dφ2

þ ðdz1 − α1z2dtÞ2 þ ðdz2 þ α1z1dtÞ2
ð1 − z2

4
Þ2

þ ðdz3 − α2z4dtÞ2 þ ðdz4 þ α2z3dtÞ2
ð1 − z2

4
Þ2

þ ðdy1 − β1y2dφÞ2 þ ðdy2 þ β1y1dφÞ2
ð1þ y2

4
Þ2

þ ðdy3 − β2y4dφÞ2 þ ðdy4 þ β2y3dφÞ2
ð1þ y2

4
Þ2

; ð3:69Þ

and thus indeed the parameters α0 and β0 can be reabsorbed
by a rescaling of t and φ (and α1;2 and β1;2). From now on
we will set α0 ¼ β0 ¼ 1.
At this stage, we indeed have a four-dimensional

moduli space in the longitudinal sector parametrized by

ðα1;α2; β1; β2Þ. This freedom can be understood as coming
from the action of the generators J12, J34, R12, and R34,
where the would-be symmetry parameters are promoted to
linear functions of the coordinates t and φ (or equivalently
x�). The parameters ðα1; α2; β1; β2Þ thus correspond to JTσ

and Jτ deformations. Let us see this explicitly. Starting from
the standard AdS5 × S5 light-cone gauge-fixed theory with
α1;2 ¼ β1;2 ¼ 0, there is an soð4Þ ⊕ soð4Þ ≅ suð2Þ⊕2 ⊕
suð2Þ⊕2 algebra in the centralizer of Λa þ Λs, which acts
as SOð4Þ × SOð4Þ rotations of the zi and yi fields (see,
e.g., [5]). Of these, there are 2þ 2 Abelian isometries that
can maximally be realized. In the above coordinate system
these can be chosen to correspond to rotations in the planes11

ðz1; z2Þ∶ generated by J12 as GL∶ eζ12J12 ;

ðz3; z4Þ∶ generated by J34 as GL∶ eζ34J34 ;

ðy1; y2Þ∶ generated byR12 as GL∶ eψ12R12 ;

ðy3; y4Þ∶ generated byR34 as GL∶ eψ34R34 ; ð3:70Þ

with ζ12, ζ34, ψ12, ψ34 constant isometry parameters. These
are actually global GL transformations by h∈HL ⊂ GL.
That they amount to rotations in the corresponding planes
can be seen by noticing that, for example, Ri6 transforms as
an SOð4Þ vector under the rotations generated by Rij, i.e.,
hRi6h−1 ¼ Mi

jRj6, withMi
j an orthogonal matrix, and that

multiplications of gX from the right by h−1 are in HR.
We can now promote the parameters of the AdS

isometries to be linear in t and the parameters of the sphere
isometries to be linear in φ,

ζ12¼α1t; ζ34¼α2t; ψ12¼ β1φ; ψ34¼ β2φ; ð3:71Þ

resulting in the following coordinate transformation
xM → x̃M:

z1 ¼ cosðα1t̃Þz̃1 − sinðα1t̃Þz̃2; z2 ¼ cosðα1t̃Þz̃2 þ sinðα1t̃Þz̃1;
z3 ¼ cosðα2t̃Þz̃3 − sinðα2t̃Þz̃4; z4 ¼ cosðα2t̃Þz̃4 þ sinðα2t̃Þz̃3;
y1 ¼ cosðβ1φ̃Þỹ1 − sinðβ1φ̃Þỹ2; y2 ¼ cosðβ1φ̃Þỹ2 þ sinðβ1φ̃Þỹ1;
y3 ¼ cosðβ2φ̃Þỹ3 − sinðβ2φ̃Þỹ4; y4 ¼ cosðβ2φ̃Þỹ4 þ sinðβ2φ̃Þỹ3; ð3:72Þ

and t ¼ t̃ and φ ¼ φ̃. Up to local HR transformations,
one can show that this corresponds to the field redefinition
g → g̃ with

g ¼ expðJ05tþ R56φÞgXðz; yÞ;
g̃ ¼ expððJ05 þ α1J12 þ α2J34Þt̃

þ ðR56 þ β1R12 þ β2R34Þφ̃ÞgXðz̃; ỹÞ; ð3:73Þ

thus giving the parametrization (3.67) after dropping the
tildes. Let us note that we do not mix t̃ and φ̃ in (3.71) since
we are assuming that Λa and Λs should generically remain
elements of ga and gs, respectively. With

11Of course, it is possible to go to a coordinate system in which
these rotations are realized as shifts of angles.
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t̃ ¼ x̃þ − ax̃−; φ̃ ¼ x̃þ þ ð1 − aÞx̃−; ð3:74Þ

for some real parameter a∈ ½0; 1�, this means that the
resulting light-cone gauge-fixed theory will indeed be a
combination of JTσ deformations (due to the promotions
linear in x̃−) and Jτ deformations (due to the promotions
linear in x̃þ), as follows from the summary in Sec. II B.
Furthermore, the introduction of the parameter a will
correspond to a TT̄ deformation.
In Sec. IVA 1, we will verify this at the level of the

gauge-fixed Hamiltonian and tree-level S matrix. For
this, it will be useful to give the explicit expressions of
the time components of the currents for the rotational
isometries (3.70). With the definitions (2.7) and (2.9) and
λ∈ fζ12; ζ34;ψ12;ψ34g we find

Jτða;12Þ ¼ z2pz1 − z1pz2 ; Jτða;34Þ ¼ z4pz3 − z3pz4 ;

Jτðs;12Þ ¼ y2py1 − y1py2 ; Jτðs;34Þ ¼ y4py3 − y3py4 : ð3:75Þ

3. Residual light-cone symmetries

Let us now continue with the background (3.69) with
α0 ¼ β0 ¼ 1 and discuss the residual symmetries of the
resulting inequivalent gauge-fixings. For this, we consider
the pointlike solution

xþ ¼ τ; x− ¼ 0; zi ¼ ai;

yi ¼ bi; γαβ ¼ T−1ηαβ; ð3:76Þ

with xþ ¼ ð1 − aÞtþ aφ, x− ¼ φ − t as usual. Demanding
this ansatz solves the equations of motion and the Virasoro
constraints, as well as giving vanishing transverse canoni-
cal momenta12 p̄μ ¼ 0, we find that we must set
ai ¼ bi ¼ 0. The classical solution then takes precisely
the form (A13).
After fixing the uniform light-cone gauge xþ ¼ τ,

p− ¼ 1, the residual bosonic time-independent charges of
the gauge-fixed theory will come from those GL

transformations that are generated by the centralizer c of
the Abelian algebra generated by Λa and Λs. Depending on
the values of the parameters α1, α2 in the AdS sector the
centralizer ca is given in Table I. For the sphere sector the
centralizer cs depends on the values of the parameters β1, β2
and is given in Table II. We have identified these algebras by
their dimension, dual Coxeter number, and signature.
Furthermore, we have used automorphisms of the central-

izers of Λð2Þ
a and Λð2Þ

s in order to reduce their possible
embeddings within soð4; 2Þ ≅ suð2; 2Þ or soð6Þ ≅ suð4Þ.13
Since we have fixed our choice of Λð2Þ

a and Λð2Þ
s from the

beginning we do not allow for more generic automorphisms
of soð4; 2Þ ≅ suð2; 2Þ or soð6Þ ≅ suð4Þ. This means that,
for example, the second and third lines of Table II cannot be
mapped to each other.
Interestingly, there is an enhancement of the residual

symmetries for specific points in the moduli space of gauge-
fixings. For generic parameters the symmetry algebra is the
smallest possible. For α1;2 ¼ β1;2 ¼ 0 we recover the
bosonic uð1Þ⊕2 ⊕ suð2Þ⊕2 ⊕ suð2Þ⊕2 symmetry algebra
[with Λa ¼ J05 and Λs ¼ R56 corresponding to the central
uð1Þ⊕2] of the standard light-cone gauge-fixed theory [8,5],
which is 14-dimensional. An intriguing case is α1;2 ¼
β1;2 ¼ 1 leading to the largest number of bosonic sym-
metries, namely the 18-dimensional uð1Þ⊕2 ⊕ suð2; 1Þ ⊕
suð3Þ algebra, where the uð1Þ⊕2 elements are again in
the center and given by Λa ¼ J05 þ J12 þ J34 and
Λs ¼ R56 þ R12 þ R34.
In the AdS5 × S5 superstring setting, where g ¼

psuð2; 2j4Þ, the bosonic residual symmetry will be further
enhanced with supercharges. In the light-cone gauge with
a ¼ 1

2
, the bosonic and fermionic generators that give rise

TABLE I. The centralizer of Λa ¼ J05 þ α1J12 þ α2J34 in soð4; 2Þ ≅ suð2; 2Þ. The first line corresponds to
generic α1, α2. The uð1Þ elements are all in the center of ca.

α1 α2 ca Basis

α1 α2 uð1Þ⊕3 fJ05; J12; J34g
α α uð1Þ⊕2 ⊕ suð2Þ fJ05; J12 þ J34g ⊕ fJ13 þ J24; J14 − J23; J12 − J34g
α 1 uð1Þ⊕2 ⊕ suð1; 1Þ fJ12; J05 þ J34g ⊕ fJ03 þ J45; J04 − J35; J05 − J34g
1 1 uð1Þ ⊕ suð2; 1Þ fJ05 þ J12 þ J34g ⊕ fJ05 − J12; J34 − J12; J14 − J23;

J13 þ J24; J04 − J35; J03 þ J45; J02 − J15; J01 þ J25g
0 0 uð1Þ ⊕ suð2Þ ⊕ suð2Þ fJ05g ⊕ fJijji; j ¼ 1;…; 4g

12Recall that this can be achieved by the shift x− → x− þ cμxμ
with constant cμ, which results in an equivalent gauge-fixing, as
explained in Sec. II A 2.

13For example, one can also consider Λ0
a ¼ J05 þ J12 þ αJ34

or Λ00
a ¼ J05 − J12 þ αJ34 with α generic, which will have the

same centralizer algebra as that of Λa ¼ J05 þ αJ12 þ J34,
though embedded differently in soð4; 2Þ ≅ suð2; 2Þ. The differ-
ent embeddings can be related by means of automorphisms in the
centralizer of Λð2Þ

a and Λð2Þ
s , which here is soð4Þ ⊕ soð4Þ. For

these examples, the cases of Λa and Λ0
a are related by the

automorphism replacing the indices as ð1 ↔ 3; 2 ↔ 4Þ, while the
cases of Λ0

a and Λ00
a are related by replacing ð1 ↔ 2Þ.
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to charges independent of xþ ¼ τ have to commute with
Λþ ¼ Λa þ Λs. We will call this superalgebra cþ. Further
specifying the gauge with α1;2 ¼ β1;2 ¼ 0 leads to the
usual cþ ¼ uð1Þ⊕2 ⊕ psuð2j2Þ⊕2 superalgebra of light-
cone symmetries, which has in total eight complex super-
charges [8,5]. For the case with α1;2 ¼ β1;2 ¼ 1we find the
following algebra embedded in psuð2; 2j4Þ:

cþ ¼ pðuð1j1Þ ⊕ suð2; 1j3ÞÞ; ð3:77Þ

where we quotient out by the identity 18.
14 This algebra

has ten complex supercharges, of which one is in uð1j1Þ.
Its structure is most easily obtained working in a repre-
sentation of suð2; 2j4Þ in which Λa and Λs are diagonal,
and the reality condition reads

M†IþIM¼0; I ¼diagð−1;1;1;−1j1;1;1;1Þ; ð3:78Þ

for all M∈psuð2; 2j4Þ. The matrix realization of the cþ
superalgebra (3.77) then schematically is

uð1j1Þ ¼ span

8>>>>><
>>>>>:

 
Λa

!
;

 
Λs

!
;

0
BBBBB@

θ

03
θ†

03

1
CCCCCA

9>>>>>=
>>>>>;
;

suð2;1j3Þ ¼ span

8>>>>><
>>>>>:

0
BBBBB@
0

L

1
CCCCCA;

0
BBBBB@ 0

R

1
CCCCCA;

0
BBBBB@

0

−IQ†

0

Q

1
CCCCCA

9>>>>>=
>>>>>;
; ð3:79Þ

where L∈ suð2; 1Þ, R∈ suð3Þ, Q∈C3×3, θ∈C and
I ¼ diagð1; 1;−1Þ. To work with explicit matrix realiza-
tions (before diagonalization of Λa;Λs and I) we refer,
e.g., to Appendix B of [24] (see also [25,5]).
One can repeat a similar exercise for the other cases in

Tables I and II. Already for a ¼ 1
2
there are many possible

combinations of Λþ ¼ Λa þ Λs to consider, but many of
these choices lead to a centralizer cþ with no supercharges.

IV. EFFECT OF INEQUIVALENT LIGHT-CONE
GAUGES ON THE S MATRIX

In this section we analyze the effect of the different light-
cone gauge-fixings on the perturbative and exact world
sheet S matrix. Taking into account our motivations, we

will focus on the case of factorized scattering. Therefore,
we only need to consider the 2 → 2 S matrix. The argu-
ments are generalizable beyond this case, however we will
not consider this here avoiding subtleties that do not arise in
our setup.
After decompactifying the world sheet, the S matrix

relates incoming states at time τ ¼ −∞ with outgoing
states at τ ¼ þ∞. These asymptotic states are thought of
as collections of wave packets that have a well-defined

TABLE II. The centralizer of Λs ¼ R56 þ β1R12 þ β2R34 in soð6Þ ≅ suð4Þ. The first line corresponds to β1, β2
generic. The uð1Þ elements are all in the center of cs.

β1 β2 cs Basis

β1 β2 uð1Þ⊕3 fR56; R12; R34g
β β uð1Þ⊕2 ⊕ suð2Þ fR56; R12 þ R34g ⊕ fR13 þ R24; R14 − R23; R12 − R34g
β 1 uð1Þ⊕2 ⊕ suð2Þ fR12; R34 þ R56g ⊕ fR35 þ R46; R36 − R45; R34 − R56g
1 1 uð1Þ ⊕ suð3Þ fR56 þ R12 þ R34g ⊕ fR56 − R12; R36 − R45; R35 − R46;

R34 − R12; R16 − R25; R15 þ R26; R14 − R23; R13 þ R24g
0 0 uð1Þ ⊕ suð2Þ ⊕ suð2Þ fR56g ⊕ fRijji; j ¼ 1;…; 4g

14It would be interesting to explore connections with non-
relativistic string theories and spin matrix theories in zero-
temperature critical limits of N ¼ 4 super-Yang-Mills where
similar symmetry subgroups appear, see, e.g., [23].
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momentum and are well separated. On the spatial line they
can be ordered, and for incoming states we take

jp1; p2;…; pNiinμ1;μ2;…;μN ; ð4:1Þ

where p1 > p2 > � � � > pN . In this way, each incoming
particle has a right-moving momentum greater than the
momenta of the particles to its right, hence all the particles
will scatter with each other. Here μ1; μ2;…; μN are labels
that identify the possible different flavors of the N
particles. Because of the restriction to the case of factor-
ized scattering, the outgoing particles will have the same
set of momenta as the incoming particles but, because
scattering has occurred, their ordering will be reversed:

jpN; pN−1;…; p1ioutνN;νN−1;…;ν1 : ð4:2Þ
Here νN; νN−1;…; ν1 label the flavors of the outgoing
particles. We will therefore work in the convention that the
S matrix reduces to the permutation operator when turning
off interactions. In the case of the two-body S matrix, for
example, we write a generic entry as Sν2ν1μ1μ2 , where μ1, μ2 are
the flavors of the incoming particles with momenta p1, p2,
respectively, and ν2, ν1 are the flavors of the outgoing
particles with momenta p2, p1, respectively. The nontrivial
part of the S matrix is given by the T matrix T defined as
S ¼ Πþ i

T T, where Π is the (graded) permutation.
We will now focus on the four inequivalent gauge-

fixings summarized in Sec. II B. We will carry out an
analysis at tree level for AdS5 × S5, before giving argu-
ments for the nonperturbative S matrix.

A. Tree level

1. TT̄, JTσ , and Jτ deformations: AdS5 × S5

tree-level S matrix

We first illustrate the effect of the inequivalent gauge-
fixings discussed in Sec. II A on the perturbative S matrix
for bosonic strings propagating in AdS5 × S5, focusing on
the TT̄, JTσ, and Jτ deformations. The analysis can be
straightforwardly generalized to AdSn × Sn with different
n. Our starting point is the metric (3.69), with α0 ¼ β0 ¼ 1
and free deformation parameters α1, α2 and β1, β2. We
slightly generalize the light-cone gauge-fixing discussed in
the Appendix by including the gauge parameter a∈ ½0; 1� as
in (3.74), so that

xþ ¼ ð1− aÞtþ aφ⟶
g:f:

τ; p− ¼ −aptþða− 1Þpφ⟶
g:f:

1;

x− ¼ −tþφ; pþ ¼ pt þpφ; ð4:3Þ

as is compatible with the classical solution (3.76) [or
equivalently (A13)].
Complex coordinates. The effect of the deformation is

best seen in a basis of eigenstates of the charges associated

with the currents (3.75). As discussed in Sec. III B 2, on the
real transverse coordinates ðzj; yjÞ, j ¼ 1, 2, 3, 4, the
symmetries act as rotations. This motivates the introduction
of the complex fields,

u1 ¼
1ffiffiffi
2

p ðy1 þ iy2Þ; ū1 ¼
1ffiffiffi
2

p ðy1 − iy2Þ;

u2 ¼
1ffiffiffi
2

p ðy3 þ iy4Þ; ū2 ¼
1ffiffiffi
2

p ðy3 − iy4Þ;

u3 ¼
1ffiffiffi
2

p ðz1 þ iz2Þ; ū3 ¼
1ffiffiffi
2

p ðz1 − iz2Þ;

u4 ¼
1ffiffiffi
2

p ðz3 þ iz4Þ; ū4 ¼
1ffiffiffi
2

p ðz3 − iz4Þ; ð4:4Þ

with canonically conjugate momenta

Pu1 ¼
1ffiffiffi
2

p ðpy1 − ipy2Þ; Pū1 ¼
1ffiffiffi
2

p ðpy1 þ ipy2Þ ¼ P̄u1 ;

Pu2 ¼
1ffiffiffi
2

p ðpy3 − ipy4Þ; Pū2 ¼
1ffiffiffi
2

p ðpy3 þ ipy4Þ ¼ P̄u2 ;

Pu3 ¼
1ffiffiffi
2

p ðpz1 − ipz2Þ; Pū3 ¼
1ffiffiffi
2

p ðpz1 þ ipz2Þ ¼ P̄u3 ;

Pu4 ¼
1ffiffiffi
2

p ðpz3 − ipz4Þ; Pū4 ¼
1ffiffiffi
2

p ðpz3 þ ipz4Þ ¼ P̄u4 ;

ð4:5Þ

and we refer to the transverse fields and conjugate momenta
collectively by uj; ūj and Puj; P̄uj with j ¼ 1, 2, 3, 4. It will
also be convenient to rename the currents of (3.75) as

J1 ¼ Jðs;12Þ; J2 ¼ Jðs;34Þ; J3 ¼ Jða;12Þ; J4 ¼ Jða;34Þ;

ð4:6Þ

and identify

β3 ≡ α1; β4 ≡ α2: ð4:7Þ

Light-cone gauge-fixed Hamiltonian. The light-cone
gauge-fixed Hamiltonian density H can be computed as
explained in the Appendix. It admits an expansion in powers
of the transverse fields. For the case at hand the expansion
starts at quadratic order and only includes terms with an
even number of transverse fields,H ¼ H2 þH4 þ � � �. The
quadratic Hamiltonian density is given by

H2 ¼ H0
2 þ

X4
j¼1

βjJτj; ð4:8Þ

where the undeformed quadratic Hamiltonian density
describes a collection of four free complex fields,
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H0
2 ¼

X4
j¼1

ðjPuj j2 þ ju0jj2 þ jujj2Þ; ð4:9Þ

and the currents (3.75) [with the notation (4.6)] read

Jτj ¼ −iðPujuj − P̄uj ūjÞ: ð4:10Þ

As expected, these coincide with the τ component of the
currents associated to the four uð1Þ symmetries of H0

2,
realized as

uj → eiβjuj; j ¼ 1; 2; 3; 4: ð4:11Þ

The σ components of these currents are given by

Jσj ¼ iðujū0j − ūju0jÞ: ð4:12Þ

The undeformed quadratic Hamiltonian (or rather its asso-
ciated quadratic Lagrangian), is also invariant under shifts of
τ and σ. The conserved current associated to these sym-
metries is simply the energy-momentum tensor, whose
explicit form (to quadratic order) is

Tτ
τ ¼

X4
j¼1

ðjPuj j2 þ ju0jj2 þ jujj2Þ;

Tσ
σ ¼

X4
j¼1

ð−jPuj j2 − ju0jj2 þ jujj2Þ; ð4:13Þ

Tτ
σ ¼ −Tσ

τ ¼
X4
j¼1

ðPuju
0
j þ P̄uj ū

0
jÞ: ð4:14Þ

From these conserved currents we then construct the JTσ

and TT̄ operators

Oj
JTσ

¼ −ϵαβTα
σJ

β
j ; OTT̄ ¼ −ϵαβTα

σTβ
τ; ð4:15Þ

where we recall our convention for the antisymmetric tensor
ϵτσ ¼ −ϵτσ ¼ −1. The four JTσ operators correspond to the
four currents (4.6). The quartic Hamiltonian density can
then be written

H4 ¼ H0
4 þ ð1 − aÞβ1O1

JTσ
þ ð1 − aÞβ2O2

JTσ

− aβ3O3
JTσ

− aβ4O4
JTσ

−
�
a −

1

2

�
OTT̄; ð4:16Þ

where the undeformed quartic Hamiltonian is

H0
4 ¼ ðju3j2 þ ju4j2Þð2ju03j2 þ 2ju04j2 þ jPu1 j2

þ jPu2 j2 þ ju01j2 þ ju02j2Þ − ðju1j2 þ ju2j2Þð2ju01j2
þ 2ju02j2 þ jPu3 j2 þ jPu4 j2 þ ju03j2 þ ju04j2Þ: ð4:17Þ

We therefore see that the way the quadratic and quartic
Hamiltonians are deformed by the parameters βj precisely
matches with the discussion in Sec. II A.
Oscillator expansion. To solve the Hamilton equations

of motion associated to H2 and quantize the fields, we
introduce the oscillator expansion

uj ¼
1ffiffiffiffiffiffi
2π

p
Z

dp
1ffiffiffiffiffiffi
2ω

p
�
e−iωj;þτþipσaj;þðpÞ

þ eiωj;−τ−ipσa†j;−ðpÞ
�
; ð4:18Þ

ūj ¼
1ffiffiffiffiffiffi
2π

p
Z

dp
1ffiffiffiffiffiffi
2ω

p
�
e−iωj;−τþipσaj;−ðpÞ

þ eiωj;þτ−ipσa†j;þðpÞ
�
; ð4:19Þ

with the relativistic and shifted dispersion relation

ω¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þ 1

q
; ωj;� ¼ω� βj; j¼ 1;2;3;4: ð4:20Þ

The annihilation and creation operators satisfy the canoni-
cal commutation relations (with all the other commutation
relations vanishing)

½aj;�ðpÞ;a†k;�ðqÞ� ¼ δjkδðp−qÞ; j;k¼ 1;2;3;4: ð4:21Þ

The oscillator representation of the canonically conjugate
momenta directly follows from the equations of motion,
giving

P̄uj ¼ ∂τuj þ iβjuj

¼ 1ffiffiffiffiffiffi
2π

p
Z

dp
1ffiffiffiffiffiffi
2ω

p ð−iωÞ
�
e−iωj;þτþipσaj;þðpÞ

− eiωj;−τ−ipσa†j;−ðpÞ
�
; ð4:22Þ

Puj ¼ ∂τūj − iβjūj

¼ 1ffiffiffiffiffiffi
2π

p
Z

dp
1ffiffiffiffiffiffi
2ω

p ð−iωÞ
�
e−iωj;−τþipσaj;−ðpÞ

− eiωj;þτ−ipσa†j;þðpÞ
�
: ð4:23Þ

Note that, while the exponents in the plane-wave ansatz
depend on the shifted energies ωj;�, since the momentum
is not just given by the τ derivative of the corresponding
field, but also includes a contribution from the Jτj defor-
mation in the quadratic Hamiltonian (4.8), the shift is
precisely canceled. This explains why the normalization of
the fields and momenta depends on the relativistic
dispersion ω. With these expressions for the fields and
momenta in terms of oscillators, the quadratic Hamiltonian
takes the canonical form,
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H2 ¼
Z

dσH2 ¼
Z

dp
X4
j¼1

X
s¼�

�
ωj;sa

†
j;saj;s

�
; ð4:24Þ

while the charges are

Qk ¼
Z

dσJτk ¼
Z

dp
X4
j¼1

X
s¼�

�
sδjka

†
j;saj;s

�
: ð4:25Þ

These results are summarized in Table III.
Tree-level S matrix. Plugging the oscillator expansion

into the quartic Hamiltonian (4.16) gives terms involving
four oscillators of the form

H4 ¼
Z

dσH4 ¼
Z

dp1dp2dp3dp4T
ls4;ks3
is1;js2

a†l;s4ðp4Þa†k;s3ðp3Þaj;s2ðp2Þai;s1ðp1Þ

× δðp1 þ p2 − p3 − p4Þδðω1 þ ω2 − ω3 − ω4Þ; ð4:26Þ

where we use the shorthand

ω1 ¼ ωi;s1ðp1Þ; ω2 ¼ ωj;s2ðp2Þ; ω3 ¼ ωk;s3ðp3Þ; ω4 ¼ ωl;s4ðp4Þ: ð4:27Þ

Only terms with equal number of creation and annihilation operators contribute, which is a consequence of the integrability
of the model. From this we can read off the tree-level S matrix S ¼ Πþ i

T T with the nontrivial elements given by

Tls4;ks3
is1;js2

¼ ðþ2AþOis1js2Þδki δljδs3s1δs4s2 þ Bðδki δljδs3s1δs4s2 þ δliδ
k
jδ

s4
s1δ

s3
s2Þ; i; j; k; l ¼ 1; 2; s1 ¼ s2;

Tls4;ks3
is1;js2

¼ ðþ2AþOis1js2Þδki δljδs3s1δs4s2 þ Bðξilξjkδs3s1δs4s2 þ ξikξjlδ
s4
s1δ

s3
s2Þ; i; j; k; l ¼ 1; 2; s1 ¼ −s2;

Tls4;ks3
is1;js2

¼ ð−2AþOis1js2Þδki δljδs3s1δs4s2 − Bðδki δljδs3s1δs4s2 þ δliδ
k
jδ

s4
s1δ

s3
s2Þ; i; j; k; l ¼ 3; 4; s1 ¼ s2;

Tls4;ks3
is1;js2

¼ ð−2AþOis1js2Þδki δljδs3s1δs4s2 − Bðξilξjkδs3s1δs4s2 þ ξikξjlδ
s4
s1δ

s3
s2Þ; i; j; k; l ¼ 3; 4; s1 ¼ −s2;

Tls4;ks3
is1;js2

¼ ðþ2GþOis1js2Þδki δljδs3s1δs4s2 ; i; k ¼ 1; 2; j; l ¼ 3; 4;

Tls4;ks3
is1;js2

¼ ð−2GþOis1js2Þδki δljδs3s1δs4s2 ; i; k ¼ 3; 4; j; l ¼ 1; 2; ð4:28Þ

where

A ¼ 1

4

ðp1 − p2Þ2
p1ω2 − p2ω1

; B ¼ p1p2

p1ω2 − p2ω1

; G ¼ −
1

4
ðp1ω2 þ p2ω1Þ;

Ois1js2 ¼ −a
X4
n¼3

βnðδnj s2p1 − δni s1p2Þ þ ð1 − aÞ
X2
n¼1

βnðδnj s2p1 − δni s1p2Þ −
�
a −

1

2

�
ðω2p1 − ω1p2Þ; ð4:29Þ

and quantity ξ is defined such that its only nonvanishing
components are

ξ12 ¼ ξ21 ¼ ξ34 ¼ ξ43 ¼ 1: ð4:30Þ

The terms involving A, B, and G reproduce the standard
tree-level S matrix of the bosonic AdS5 × S5 string in the
a ¼ 1=2 gauge. The effect of the free parameters

characterizing different gauge choices is gathered in the
contribution O. This contribution only modifies the term
proportional to the permutation operator (which in our
conventions corresponds to free propagation). One can
check explicitly that the tree-level S matrix (4.28) satisfies
charge conservation for Qj using that the only nonvanish-
ing scattering processes obey s1 þ s2 ¼ s3 þ s4. Finally, let
us conclude by mentioning that the tree-level S matrix still

TABLE III. This Table summarizes the particle content in the
light-cone gauge-fixed AdS5 × S5 theory. Eight different states
can be created from the vacuum using the eight different creation
operators. These states are eigenstates of the quadratic Hamil-
tonian H2 and the four charges Qj, with eigenvalues as given in
the Table.

State H2 Q1 Q2 Q3 Q4

jpi1;� ¼ a†1;�ðpÞj0i ω1;� ¼ ω� β1 �1 0 0 0

jpi2;� ¼ a†2;�ðpÞj0i ω2;� ¼ ω� β2 0 �1 0 0

jpi3;� ¼ a†3;�ðpÞj0i ω3;� ¼ ω� β3 0 0 �1 0

jpi4;� ¼ a†4;�ðpÞj0i ω4;� ¼ ω� β4 0 0 0 �1
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satisfies the classical Yang-Baxter equation, indicating that
the model is classically integrable for all choices of light-
cone gauge-fixing as expected. This will be made more
rigorous when we consider the exact S matrix in Sec. IV B,
of which the tree-level S matrix calculated here is the first
order in the large tension expansion.

2. J̃Tτ deformation

To illustrate the effect of the J̃Tτ deformation on the tree-
level S matrix we start with the metric of (undeformed)
AdS5 × S5 and perform a shift

t → tþ cðxμÞ; φ → φþ cðxμÞ; ð4:31Þ

with a function cðxμÞ of the (real) transverse coordinates
xμ ¼ ðz1; z2; z3; z4; y1; y2; y3; y4Þ. For concreteness we
assume that this function can be expanded in powers of
the transverse fields, starting at linear order,

c ¼ c1 þ c2 þ � � � ¼ βμxμ þ βμνxμxν þ � � � ; ð4:32Þ

with free parameters βμ; βμν;…. For the purpose of com-
puting the tree-level S matrix we use the light-cone gauge-
fixed Hamiltonian up to quartic order in the fields, hence it
is sufficient to consider the expansion of c up to quad-
ratic order.
According to the discussion in Sec. II A 2 [see

also Eq. (2.39)] we expect the light-cone gauge-fixed
Hamiltonian to change as

δH ¼ ∂αcTα
τ ¼ −c∂αTα

τ þ total derivatives: ð4:33Þ

Up to total derivatives, the variation of the Hamiltonian
therefore vanishes on shell. Therefore, in general we
expect that δH can be removed by means of a field
redefinition or canonical transformation of the transverse
variables. Let us illustrate this explicitly at leading order in
fields for the function c in Eq. (4.32). The quadratic
Hamiltonian does not depend on the parameters βμ; βμν;…
and simply reads

H2 ¼ H0
2 ¼

1

2
ðpμpμ þ x0μx0μ þ xμxμÞ; ð4:34Þ

whose associated equations of motion are

ẋμ¼pμ; ṗμ¼−xμþx00μ;⇒Eμ≔ ẍμ−x00μþxμ¼0: ð4:35Þ

The Hamiltonian now also has a cubic term,

H3 ¼ ð∂μcjx¼0
Þ∂αxμTα

τ ¼ βμðpμH2 − x0μpνx0νÞ; ð4:36Þ

where in the energy-momentum tensor is computed from
the quadratic Hamiltonian H2. To see that this cubic
contribution can be removed by an appropriate field

redefinition, we switch to the Lagrangian formalism.
After integrating by parts, the cubic contribution can be
written in terms of the equations of motion as

L2 ¼
1

2
ðẋμẋμ− x0μx0μ− xμxμÞ; L3 ¼−βμxμEνẋν: ð4:37Þ

This can be removed using the field redefinition

xμ → xμ þ βνxνẋμ: ð4:38Þ

In the Hamiltonian formalism the redefinition becomes

xμ → xμþ βνxνpμ; pμ → pμ− βμH2− βνxνxμ; ð4:39Þ

which mixes fields xμ and momenta pμ. One can check
that this corresponds to a canonical transformation to first
order in the fields, meaning that fxμ; pνg ¼ δμν þ � � �
where the ellipses denote terms that are at least quadratic
in the fields. Interestingly, we can understand this canoni-
cal transformation as an improved version of (2.33), which
is the noncanonical transformation corresponding to the
J̃Tτ deformation, which here we want to neutralize.
The canonical transformation is such that δH2 þH3 ¼ 0.

The quartic light-cone gauge-fixed Hamiltonian, fromwhich
the tree-level S matrix is deduced, is then given by
δH3 þH4. We find that the T matrix obtained from the
resulting quartic Hamiltonian does not depend on the
function cðxμÞ, as expected from the general results of
Sec. III A 1.15 This suggests that the 2 → 2 Smatrix does not
depend on a change of gauge that induces a J̃Tτ deforma-
tion. We will argue that this is indeed the case at the level
of the exact S matrix in the next section. Finally, let us
mention that when the function c starts at quadratic order in
fields, then H3 ¼ 0, while the variation of H4 vanishes on
shell and thus the 2 → 2 S matrix is manifestly independent
of c.

B. Nonperturbative

Following on from the explicit tree level calculations, our
aim is to now understand the effect of the gauge trans-
formations on the S matrix nonperturbatively. In order to do
so, we first note that the inequivalent gauge transformations
come in two types: they are either bilinear in the currents
(the J̃Tτ, the TT̄, and the JTσ deformations) or linear (the
Jτ deformation). Here we analyze the two cases separately.
Before turning to the details of the arguments, let us

summarize the result of the gauge transformations on the

15In principle, one can also verify this without using field
redefinitions. H3 vanishing on shell ensures that the 1 → 2 and
2 → 1 processes vanish. However, to compute the 2 → 2 S
matrix, one needs to consider diagrams involving two cubic
vertices, i.e., with four external particles and one internal particle,
as well as quartic diagrams.
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S matrix. If the Hamiltonian of the reduced model is
deformed by a current-current deformation

δH ¼ −γϵαβJα1J
β
2; ð4:40Þ

where Jαi with i ¼ 1, 2 are conserved currents, then the S
matrix S̃ of the deformed model is related to the undeformed
S matrix S simply as

S̃ν2ν1μ1μ2 ¼ e−
iγ
2
ϵijðqν1i q

ν2
j þq

μ1
i q

μ2
j ÞSν2ν1μ1μ2 : ð4:41Þ

Here ϵ12 ¼ 1 and qμ1i , for example, denotes the charge i
(corresponding to the current Ji) of the particle with flavor
μ1. Our argument will only use the fact that the currents Ji
are conserved. In particular, they may be Noether currents
for spacetime or internal symmetries, topological currents,
or any other kind of conserved current. The above formula
agrees with known deformations of the S matrix in the case
of the TT̄ deformation [26,10,11,27,5], the JT deformation
[28], as well as TsT deformations [29].16 It also agrees with
the results of [33] where generalizations of the TT̄ defor-
mation by extensive charges were discussed.17 The S matrix
S̃ is a twisted version of the original S (see Sec. IV C for
more details). This means that integrability in the original
(gauge-fixed) model is preserved for different (gauge)
deformations.
When the Hamiltonian of the reduced model is instead

deformed by a Jτ deformation,

δH ¼ γJτ; ð4:42Þ

then the S matrix S̃ of the deformed model is equal to the
undeformed S matrix S,

S̃ν2ν1μ1μ2 ¼ Sν2ν1μ1μ2 : ð4:43Þ

As we will argue, in this case the deformation of the
Hamiltonian can be completely reabsorbed into the “free
part” H2 of the Hamiltonian that is responsible for the time
evolution of the asymptotic states. Therefore, although the
asymptotic states evolve in time with a deformed dispersion
relation, the scattering matrix remains undeformed.

1. Current-current deformations

To prove the formula (4.41), let us start with the case of a
Hamiltonian deformed by a current-current deformation,
which wewrite explicitly as δH ¼ −γðJτ1Jσ2 − Jσ1J

τ
2Þ. Let us

also define

QiðσÞ ¼
Z

σ

−∞
dσ0 Jτi ðσ0Þ: ð4:44Þ

This field can be thought of as measuring the charge
corresponding to Ji up to the world sheet point σ. The total
charge Qi ¼

R
∞
−∞ dσ0 Jτi ðσ0Þ is related to it as Qi ¼ Qið∞Þ.

When it is not ambiguous, we will omit the explicit
dependence of Qi on σ. First, it is easy to check that

Jτ1J
σ
2 − Jσ1J

τ
2 ¼ −

1

2
ðJα1∂αQ2 − Jα2∂αQ1Þ: ð4:45Þ

Indeed, we have

Jα1∂αQ2− Jα2∂αQ1 ¼ Jτ1ðσÞ
Z

σ

−∞
dσ0 ∂τJτ2ðσ0Þþ Jσ1ðσÞJτ2ðσÞ

− Jτ2ðσÞ
Z

σ

−∞
dσ0 ∂τJτ1ðσ0Þ− Jσ2ðσÞJτ1ðσÞ

¼−Jτ1ðσÞ
Z

σ

−∞
dσ0 ∂0σJσ2ðσ0Þþ Jσ1ðσÞJτ2ðσÞ

þ Jτ2ðσÞ
Z

σ

−∞
dσ0 ∂0σJσ1ðσ0Þ− Jσ2ðσÞJτ1ðσÞ

¼−2ðJτ1Jσ2 − Jσ1J
τ
2Þ; ð4:46Þ

where we have used current conservation and that in the
decompactification limit fields fall off to zero at infinity.
We can now compute the infinitesimal deformation of

the Hamiltonian to be

δH ¼
Z

∞

−∞
dσ δH ¼ γ

2

Z
∞

−∞
dσðJα1∂αQ2 − Jα2∂αQ1Þ

¼ γ

2

Z
∞

−∞
dσ½∂αðJα1Q2 − Jα2Q1Þ − =∂αJα1Q2 þ =∂αJα2Q1�

¼ γ

2

�
∂τ

Z
∞

−∞
dσðJτ1Q2 − Jτ2Q1Þ

þ =Z
∞

−∞
dσ∂σðJσ1Q2 − Jα2Q1Þ

�

¼ γ

2
∂τQ12; ð4:47Þ

where we again use current conservation and that fields fall
off at infinity, and we define the nonlocal quantity

16It is well known that TsT deformations are the integrated
version of current-current deformations, where the currents
correspond to global internal Noether symmetries of the sigma
model [30,29], see also the review [31]. If we consider a sigma
model and perform a TsT deformation along transverse fields
only, then the Hamiltonian density of the light-cone gauge-fixed
model is indeed deformed as δH ¼ −γϵαβJα1J

β
2. See [32] for

examples with TsT deformations also involving the light-cone
directions x�.

17Note that, while in [33] it is assumed that the scattering is
diagonal in the space of flavors, we will not require this.
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Q12¼
Z

∞

−∞
dσ ðJτ1Q2−Jτ2Q1Þ

¼
Z

∞

−∞
dσ
Z

σ

−∞
dσ0 ðJτ1ðσÞJτ2ðσ0Þ−Jτ2ðσÞJτ1ðσ0ÞÞ: ð4:48Þ

Classically, the time derivative of a field is given by the
Poisson bracket with the Hamiltonian, hence we have
δH ¼ γ

2
fH;Q12g. Quantum mechanically, this becomes

δH ¼ iγ
2
½H;Q12�. We may interpret this as a differential

equation for the deformed Hamiltonian H̃ as a function of
the deformation parameter γ:

dH̃
dγ

¼ i
2
½H̃;Q12�: ð4:49Þ

In the Heisenberg picture, using that H̃jγ¼0 ¼ H, this is
solved by

H̃ ¼ e−
iγ
2
Q12He

iγ
2
Q12 : ð4:50Þ

Assuming that the scattering matrix for the undeformed
theory is known, we would like to determine that of the
deformed theory. Scattering is obtained by first rewriting
the Hamiltonian as the sum H ¼ H2 þ V, where H2 is the
free part without interactions (typically quadratic in the
fields, for example a Klein-Gordon Hamiltonian) and V is
the part with interactions only. The asymptotic states evolve
with H2, and the S matrix is given by the time-ordered
exponential of the interacting part of the Hamiltonian,

S ¼ T exp

�
−i
Z

∞

−∞
dτV

�
: ð4:51Þ

The considerations above suggest that in the deformed
theory we should define

H̃2 ¼ e−
iγ
2
Q12H2e

iγ
2
Q12 ; ð4:52Þ

so that

Ṽ ¼ e−
iγ
2
Q12Ve

iγ
2
Q12 ; S̃ ¼ e−

iγ
2
Q12Se

iγ
2
Q12 : ð4:53Þ

To understand the effect of the deformation on these
objects, we first need to look at the action of Q12 on
asymptotic states. Let us take the charges Q1 and Q2 to act
diagonally in the space of flavors, which is possible since
these two charges commute and are simultaneously diag-
onalizable. On one-particle states we write

Qijpiμ ¼ qμi jpiμ; ð4:54Þ

where qμi is the charge of the particle with flavor
μ. Introducing creation and annihilation operators satis-
fying canonical commutation relations ½aμðpÞ; a†νðqÞ� ¼
δμνδðp − qÞ, so that jpiμ ¼ a†μðpÞj0i, we may represent

the quantum charges as Qi ¼
R
dp
P

μ q
μ
i a

†
μðpÞaμðpÞ,

where we sum over all flavors.
The action of Q12 on the multiparticle asymptotic states

can now be constructed. First, consider the spatial line
along which the particles are distributed, and partition it
into a collection of intervals In with n ¼ 1;…; N, where
each interval In contains only the wave packet n. In the
definition of Q12 we have integrals over the spatial
coordinate that we can write as the sum of integrals over
the intervals In. It is then clear that, despite the nonlocal
nature of Q12, its action on asymptotic states is given by
sums of products of local charges. Explicitly, we have

Q12jp1;…; pNiμ1;…;μN ¼
Z

∞

−∞
dσ
Z

σ

−∞
dσ0 ðJτ1ðσÞJτ2ðσ0Þ − Jτ2ðσÞJτ1ðσ0ÞÞjp1;…; pNiμ1;…;μN

¼
XN
n¼1

Z
In

dσ
Xn−1
m¼1

Z
Im

dσ0 ðJτ1ðσÞJτ2ðσ0Þ − Jτ2ðσÞJτ1ðσ0ÞÞjp1;…; pNiμ1;…;μN

¼
XN
n¼1

Xn−1
m¼1

ðqμn1 qμm2 − qμn2 qμm1 Þjp1;…; pNiμ1;…;μN : ð4:55Þ

Note that thanks to antisymmetry we do not need to worry
about the potentially problematic integration over the
intervals In and Im when n ¼ m. It follows that

e
iγ
2
Q12 jp1; p2;…; pNiμ1;μ2;…;μN

¼ e−
iγ
2

P
m<n

ϵijqμmi qμnj jp1; p2;…; pNiμ1;μ2;…;μN ; ð4:56Þ

where we recall ϵ12 ¼ 1. In the case of two-particle states,
we have

e
iγ
2
Q12 jp1; p2iμ1;μ2 ¼ e−

iγ
2
ϵijq

μ1
i q

μ2
2 jp1; p2iμ1;μ2 ; ð4:57Þ

which we may rewrite as
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e
iγ
2
Q12 jp1; p2iμ1;μ2 ¼ e−

iγ
2
ðQ1∧Q2Þjp1; p2iμ1;μ2

¼ e−
iγ
2
ðQ1⊗Q2−Q2⊗Q1Þjp1; p2iμ1;μ2 ; ð4:58Þ

where it is understood that the first and second spaces of the tensor product act on the first and second particles, respectively.
The generalization to the case of N-particle states is

e
iγ
2
Q12 jp1; p2;…; pNiμ1;μ2;…;μN ¼ e−

iγ
2

P
m<n

ðQ1;2;m;n−Q2;1;m;nÞjp1; p2;…; pNiμ1;μ2;…;μN ; ð4:59Þ

where

Qi;j;m;n ¼ 11 ⊗ � � � ⊗ 1m−1 ⊗ ðQiÞm ⊗ 1mþ1 ⊗ � � � ⊗ ðQjÞn ⊗ � � � ⊗ 1N: ð4:60Þ

Since the action of Q12 on asymptotic states is diagonal,
and the free Hamiltonian H2 also acts diagonally on
asymptotic states (e.g., H2jpiμ ¼ ωμ

pjpiμ), it follows that
these two operators commute when acting on asymptotic
states

½H2; Q12�jp1; p2;…; pNiμ1;μ2;…;μN ¼ 0: ð4:61Þ

From this we conclude that we can effectively take the free
part of the deformed and undeformed Hamiltonians to be
equal, H̃2 ≃H2. Strictly speaking, we have not proved that
these operators are equal, only that they have the same
action on asymptotic states, but this will be sufficient for
the following arguments.
We finally turn to the deformation of the S matrix.

Taking into account the simple action ofQ12 on asymptotic
states and Eq. (4.53), we can write

S̃νNνN−1���ν1
μ1μ2���μN ¼ e

iγ
2

P
m>n

ϵijqνmi qνnj e−
iγ
2

P
m<n

ϵijqμmi qμnj SνNνN−1���ν1
μ1μ2���μN :

ð4:62Þ

The only subtle point is that, because of the action of S, the
outgoing states labeled by the momenta p1;…; pN have a
spatial ordering that is reversed compared to that of the
incoming states. For this reason, the exponential coming

from the action of e−
iγ
2
Q12 has a summation with m > n

instead of m < n. As anticipated, in the case of the two-
body S matrix we find

S̃ν2ν1μ1μ2 ¼ e−
iγ
2
ϵijðqν1i q

ν2
j þq

μ1
i q

μ2
j ÞSν2ν1μ1μ2 : ð4:63Þ

As already discussed, this formula can be matched with the
known deformations of the S matrix under TT̄ and JT
deformations. For example, in the case of TT̄, Q1 would

measure minus the world sheet momentum and Q2 the energy,18 so that the TT̄ deformation of the S matrix is

S̃ν2ν1μ1μ2 ¼ eiγðp1ω2−ω1p2ÞSν2ν1μ1μ2 : ð4:64Þ

This matches, for example, with [11], taking into account that the parameter a of the a gauge and γ are related as
a ¼ 1=2 − γ. Similarly, specifying to the case of the JTσ deformation, if J has a conserved charge Q with eigenvalues qμ,
then one finds

18If we take, for example,

xμ ¼ 1ffiffiffiffiffi
2π

p
Z

dpffiffiffiffiffiffiffiffiffi
2ωμ

p

p �
aμðp; τÞeipσ þ aμ†ðp; τÞe−ipσ

�
; pμ ¼

1ffiffiffiffiffi
2π

p
Z

dpffiffiffiffiffiffiffiffiffi
2ωμ

p

p ð−iωμ
pÞ
�
aμðp; τÞeipσ − a†μðp; τÞe−ipσ

�
;

where we allow for different dispersion relations ωμ
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

μ þ p2
q

for each flavor and ½aμðp; τÞ; a†νðp0; τÞ� ¼ δμνδðp − p0Þ, then one has
Z

dσ Tτ
σ ¼

Z
dσ pμx0μ ¼

Z
dp
X
μ

ð−pÞa†μðpÞaμðpÞ;
Z

dσTτ
τ ¼

Z
dσH ¼

Z
dp
X
μ

ωμ
pa

†
μðpÞaμðpÞ;

where we assume that the Hamiltonian is that of massive Klein-Gordon with mass mμ.
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S̃ν2ν1μ1μ2 ¼ e
iγ
2
ðp1qν2−qν1p2þp1qμ2−qμ1p2ÞSν2ν1μ1μ2 ; ð4:65Þ

which agrees with [28]. We have also verified these
formulas with the tree-level results of Sec. IVA 1.
To conclude, let us consider the case of the J̃Tτ

deformation. We denote the eigenvalues of the topological
charge for the current J̃ by wμ, so that

S̃ν2ν1μ1μ2 ¼ e
iγ
2
ðω1ðwν2þwμ2 Þ−ðwν1þwμ1 Þω2ÞSν2ν1μ1μ2 : ð4:66Þ

Taking into account that the topological charge is given by

W ¼
Z þ∞

−∞
dσ J̃τ ¼ −

Z þ∞

−∞
dσ ∂σc ¼ 0; ð4:67Þ

hence vanish in the decompactification limit where we
assume that all fields have fall off at infinity, we find that in
the case of the J̃Tτ deformation the S matrix is not
modified,

S̃ν2ν1μ1μ2 ¼ Sν2ν1μ1μ2 ; ð4:68Þ

again in agreement with the tree-level results.

2. The Jτ deformation

Let us now consider the case of the Jτ deformation,
where

H̃ ¼ H þ γQ: ð4:69Þ

Here Q is the charge for the current J, and it only acts on
transverse fields. As before, we need to separate the
undeformed and deformed Hamiltonians into free and
interacting parts. Our aim is to show that the effect of
the deformation can be completely absorbed in the free part
of the Hamiltonian, so that the interacting part remains
undeformed,

H̃2 ¼ H2 þ γQ; Ṽ ¼ V; ð4:70Þ

allowing us to conclude that the S matrix is independent
of γ,

S̃ ¼ S: ð4:71Þ

To show this, we will make some mild assumptions. In
particular, we assume that the Lagrangian density of the
reduced model before the deformation admits a perturba-
tive expansion in powers of fields such that its quadratic
part is described by M Klein-Gordon fields, each with its
own mass,

L2 ¼ −
1

2

XM
μ¼1

ð∂αxμ∂αxμ þm2
μx2μÞ: ð4:72Þ

This Lagrangian density gives the free Hamiltonian H2.
The charge Q should then come from an internal global
symmetry that is compatible with perturbation theory.
Therefore, we do not consider the possibility that any
fields are massless (mμ ¼ 0 for some μ), in which case L2

would be invariant under constant shifts of these fields, but
we would not have a perturbative description of the
scattering problem. Instead, we consider the setup in which
mμ ¼ mν ≠ 0 for μ; ν ¼ 1;…; d ≤ M, so that we have d
massive fields with SOðdÞ invariance. We will also assume
that the interacting Hamiltonian respects this symmetry, but
for the moment we will focus on the free theory. The fields
xμ; μ ¼ 1;…; d transform in the vector representation of
SOðdÞ. The generators of SOðdÞ can be realized with
matrices ðTμνÞij ∝ ðδiμδνj − δiνδμjÞ, so that Tμν rotates xμ
and xν, leaving the other fields invariant.
Let us consider one such rotation, T12, and focus on x1

and x2 since the other fields are simply spectators. From the
infinitesimal rotation δx1 ¼ λx2, δx2 ¼ −λx1, we find the
Noether current Jα ¼ x2∂αx1 − x1∂αx2. In particular, we
have Jτ ¼ x1p2 − x2p1, where pμ ¼ ẋμ. It is convenient to
introduce the complex field ϕ ¼ 1ffiffi

2
p ðx1 þ ix2Þ, ϕ† ¼

1ffiffi
2

p ðx1 − ix2Þ, such that the quadratic Lagrangian becomes

L2 ¼ −ð∂αϕ†
∂
αϕþm2ϕ†ϕÞ: ð4:73Þ

The conjugate momenta are π ¼ 1ffiffi
2

p ðp1 − ip2Þ and

π† ¼ 1ffiffi
2

p ðp1 þ ip2Þ. Now the infinitesimal transformation

reads δϕ ¼ −iλϕ, and the Noether current is Jα ¼
iðϕ†

∂
αϕ − ∂

αϕ†ϕÞ with Jτ ¼ −iðϕ†π† − πϕÞ.
Following the tree-level discussion in Sec. IVA 1, we

consider the Jτ deformation,

H̃2 ¼H2 þ γJτ ¼ π†πþϕ†0ϕ0 þm2ϕ†ϕ− iγðϕ†π† − πϕÞ:
ð4:74Þ

Computing the Hamilton equation ϕ̇ ¼ fH̃2;ϕg we find
that in the deformed theory the identification of the
conjugate momenta is modified

π ¼ ϕ̇† þ iγϕ†; π† ¼ ϕ̇ − iγϕ: ð4:75Þ

To quantize the theory we let

ϕ¼ 1ffiffiffiffiffiffi
2π

p
Z

dpffiffiffiffiffiffiffiffi
2fp

p �
bpe−iðω

b
pτ−pσÞ þd†peiðω

d
pτ−pσÞ

�
; ð4:76Þ

which implies
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π ¼ −iffiffiffiffiffiffi
2π

p
Z

dpffiffiffiffiffiffiffiffi
2fp

p �
ðωd

p − γÞdpe−iðωd
pτ−pσÞ − ðωb

p þ γÞb†peiðωb
pτ−pσÞ

�
; ð4:77Þ

where fp, ωb
p, and ωd

p are real functions of p to be determined. Similar formulas are obtained for the complex conjugates of
the fields. If we demand that ϕ; π, b; b† and d; d† all satisfy canonical commutation relations, then we obtain the relations

ωb
p ¼ fp − γ; ωd

p ¼ fp þ γ: ð4:78Þ

Assuming that fp is an even function of the momentum (f−p ¼ fp) so that ωb
−p ¼ ωb

p and ωd
−p ¼ ωd

p as well, one finds that
the Hamiltonian is

H̃2 ¼
Z

dp
2fp

�
Zp

�
bpd−pe−iτðω

b
pþωd

pÞ þ d†pb
†
−peiτðω

b
pþωd

pÞ
�
þWb

pb
†
pbp þWd

pd
†
pdp

�
; ð4:79Þ

where we use normal ordering and

Zp ¼ −ðωb
p þ γÞðωd

p − γÞ þ p2 þm2 þ γðωd
p − γÞ − γðωb

p þ γÞ;
Wb

p ¼ ðωb
p þ γÞ2 þ p2 þm2 − 2γðωb

p þ γÞ;
Wd

p ¼ ðωd
p − γÞ2 þ p2 þm2 þ 2γðωd

p − γÞ: ð4:80Þ

To have a diagonal action of H̃2 we require Zp ¼ 0. To solve this we take

fp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

q
⇒ ωb

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

q
− γ; ωd

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

q
þ γ; ð4:81Þ

such that

Wb
p ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

q
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

q
− γÞ; Wd

p ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

q
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

q
þ γÞ; ð4:82Þ

and the Hamiltonian is

H̃2 ¼
Z

dpðωb
pb

†
pbp þ ωd

pd
†
pdpÞ: ð4:83Þ

In other words, particles and antiparticles receive a cor-
rection to the dispersion relation that depends on their
charge. Nevertheless, the Fourier decomposition of the
fields is

ϕ ¼ 1ffiffiffiffiffiffi
2π

p
Z

dpffiffiffiffiffiffiffiffi
2ωp

p �
bpe−iðω

−
pτ−pσÞ þ d†peiðω

þ
p τ−pσÞ

�
;

π ¼ −iffiffiffiffiffiffi
2π

p
Z

dpffiffiffiffiffiffiffiffi
2ωp

p ωp

�
dpe−iðω

þ
p τ−pσÞ − b†peiðω

−
pτ−pσÞ

�
;

ð4:84Þ

where ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
is the standard relativistic

dispersion relation and ω�
p ¼ ωp � γ. Note that the modi-

fied dispersion relation only enters in the plane-wave
exponentials. Let us also add that the charge Q ¼
−i
R
dσðπ†ϕ† − ϕπÞ is equal to

Q ¼
Z

dp ðd†pdp − b†pbpÞ; ð4:85Þ

so that d particles have charge 1 and b particles, charge −1.
This explains the modified dispersion relations ωþ

p ¼ ωd
p

and ω−
p ¼ ωb

p, which can be interpreted as the relativistic
dispersion relation shifted by γ multiplied by the charge of
the particle. The above analysis all fully agrees with the
tree-level considerations in Sec. IVA 1.
Let us now turn to scattering and discuss the claim that

the S matrix remains undeformed because Ṽ ¼ V. We will
see how this works at tree level and argue that it extends to
all loops. When computing the tree-level 2 → 2 S matrix in
the undeformed case we evaluate expressions such as

Z
dp1dp2dp3dp4δðω1 þ ω2 − ω3 − ω4Þ

× δðp1 þ p2 − p3 − p4ÞMðp1; p2; p3; p4Þ; ð4:86Þ

where the delta functions enforcing conservation of
energy and momentum come from the integration over
τ and σ of the products of plane-wave exponentials, and
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Mðp1; p2; p3; p4Þ is written in terms of creation and
annihilation operators, the momenta pi, and the corre-
sponding dispersion relations. Integrating the two delta
functions over the outgoing momenta p3, p4 one finds

Z
dp1dp2

���� p1

ω1

−
p2

ω2

����−1ðMðp1; p2; p1; p2Þ

þMðp1; p2; p2; p1ÞÞ; ð4:87Þ

where we have evaluated the Jacobian using dωp=dp ¼
p=ωp. In the deformed case the situation is similar and one
evaluates expressions such asZ

dp1dp2dp3dp4δðω̃1 þ ω̃2 − ω̃3 − ω̃4Þ

× δðp1 þ p2 − p3 − p4ÞM̃ðp1; p2; p3; p4Þ; ð4:88Þ
where now ω̃p denotes the deformed dispersion relation,
which, depending on the type of particle, equals ωp;ωp þ
γ or ωp − γ. Since Ṽ ¼ V we have that

M̃ðp1; p2; p3; p4Þ ¼ Mðp1; p2; p3; p4Þ: ð4:89Þ
Indeed, since the modified dispersion relation only
appears in the plane-wave exponentials, the deformation
parameter appears in the delta function but not in
Mðp1; p2; p3; p4Þ. However, we also have

δðω̃1 þ ω̃2 − ω̃3 − ω̃4Þ ¼ δðω1 þ ω2 − ω3 − ω4

þ γðq1 þ q2 − q3 − q4ÞÞ
¼ δðω1 þ ω2 − ω3 − ω4Þ; ð4:90Þ

where we have used that charge conservation for Q
implies q1 þ q2 ¼ q3 þ q4. The same conclusion can be
reached by noticing that the modification of the dispersion
relation is such that

dω̃p

dp
¼ dωp

dp
¼ p

ωp
; ð4:91Þ

and the Jacobian is the same as in the undeformed case.
Therefore, all expressions reduce to those of the unde-
formed case with γ ¼ 0. Let us note that the γ deformation
of the dispersion relation does not spoil the identification
of momenta pout

1 ¼ pin
1 ; p

out
2 ¼ pin

2 and pout
1 ¼ pin

2 ; p
out
2 ¼

pin
1 as in the original integrable theory, thanks to the

conservation of the charge Q.
To summarize, the tree-level S matrix T in the deformed

case is related to the undeformed one as T̃ ¼ T. At higher
loops the above reasoning should go through in a similar
way. External legs of scattering amplitudes correspond to
asymptotic states with modified dispersion relations, but
the elements of the scattering matrix are γ independent.
When including quantum corrections, one has to integrate

loops in which off-shell particles run, so the modified
dispersion relation plays no role. To conclude, in the case of
the Jτ deformation, we have argued that the S matrix is
undeformed, S̃ ¼ S.

C. S matrix and symmetries

As discussed in Sec. III B 3, fixing uniform light-cone
gauge breaks symmetries of the string sigma model.
Assuming classical integrability survives quantization, the
exact two-body S matrix can be bootstrapped (up to overall
dressing factors) by requiring compatibility with the sym-
metries of the light-cone gauge-fixed theory. To describe the
scattering of states that do not respect the level-matching
condition, it is necessary to consider the off-shell symmetry
algebra. This is an extension of the subalgebra of the
original string sigma model symmetry algebra that survives
gauge-fixing. For instance, for strings propagating in an
AdS5 × S5 background, in the standard light-cone gauge the
symmetry breaking pattern is

psuð2; 2j4Þ → psuð2j2Þ⊕2
c:e:; ð4:92Þ

where c:e: denotes a central extension of the algebra [8].
The same central elements are shared by the two copies of
psuð2j2Þ. To keep the discussion in this section general we
shall call A ¼ fJg the off-shell symmetry algebra of the
light-cone gauge-fixed theory, spanned by the generators
fJg. Assuming that these generators have a well-defined
action on the asymptotic states, in operator notation the
bootstrap equation then reads

ΔðJÞS ¼ SΔðJÞ; ∀J∈A; ð4:93Þ

where ΔðJÞ denotes the coproduct associated with the
symmetry algebra A (or rather its Hopf algebra). It encodes
how the symmetry generators J act on two-particle states.
To make the link with the notation in the previous section,
we have

Sjp1; p2iμ1;μ2 ¼ Sν2ν1μ1μ2 jp2; p1iν2;ν1 ;
ΔðJÞjp1; p2iμ1;μ2 ¼ ΔðJÞν1ν2μ1μ2

jp1; p2iν1;ν2 : ð4:94Þ

Note in particular that in our conventions the S matrix
exchanges the order of the particles, but this is not the case
for the coproduct.19

19Writing the momentum dependence explicitly, the bootstrap
equation would read J12ðq; pÞS12ðp; qÞ ¼ S12ðp; qÞJ12ðp; qÞ,
where p, q are the two momenta and the indices denote the two
vector spaces in V ⊗ V where the operators act. Defining
R ¼ ΠS with Π the (graded) permutation, one obtains an operator
R that reduces to the identity when interactions are switched
off, and that satisfies the bootstrap equation in the form
ΔopðJÞR ¼ RΔðJÞ, where Δop is the opposite coproduct, or
more explicitly J21ðq; pÞR12ðp; qÞ ¼ R12ðp; qÞJ12ðp; qÞ.
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For a different light-cone gauge-fixing that results in a
current-current type deformation, we have seen in the
previous section that the two-body S matrix changes as

S̃ν2ν1μ1μ2 ¼ e−i
γ
2
ϵijðqν1i q

ν2
j þq

μ1
i q

μ2
j ÞSν2ν1μ1μ2 : ð4:95Þ

In operator form, we can recast this relation in the language
of Drinfel’d-Reshetikhin twists [34], see also [35]. In
particular, from Eq. (4.58), we can write,20

S̃ ¼ FSF−1; ð4:96Þ
where we have defined the twist

F ¼ ei
γ
2
Q1∧Q2 : ð4:97Þ

Therefore, assuming that the S matrix S satisfies the
bootstrap equation (4.93) with coproduct Δ, then the S
matrix S̃ associated to a different gauge-fixing satisfies the
bootstrap equation with the twisted coproduct,

Δ̃ðJÞ ¼ FΔðJÞF−1: ð4:98Þ

The discussion above is mainly relevant for the JTσ

deformation. The TT̄ deformation produces a twist that
is proportional to the identity, hence only affects the
dressing factor not the symmetries, while for the Jτ

deformation, the S matrix is left invariant, S̃ ¼ S, hence
the coproduct also remains the same, Δ̃ðJÞ ¼ ΔðJÞ.
For concreteness, let us focus on the AdS5 × S5 string. In

this case we know that in the standard light-cone gauge the
off-shell symmetry algebra is psuð2j2Þ⊕2

c:e:. It follows from
the result above that, even in a nonstandard light-cone
gauge, the S matrix is still invariant under a psuð2j2Þ⊕2

c:e:
algebra, albeit in a twisted form. In particular, for the JTσ

deformation, the action of generators on two-particle states
will depend on momentum-dependent factors. Such factors
already appear in the coproduct of the supercharges in the
usual realization of the psuð2j2Þ⊕2

c:e: algebra [8,5]. Here,
after fixing a nonstandard light-cone gauge, the coproduct
of the bosonic generators may also contain momentum-
dependent factors.
It is interesting to ask how this result is compatible with

the discussion of symmetries in Sec. III B 3. There, the on-
shell symmetry algebra of the light-cone gauge-fixed theory
was argued to be given by cþ, the centralizer in psuð2; 2j4Þ
of Λþ.

21 This identifies the charges in the gauged-fixed

model that have no explicit dependence on xþ ¼ τ [8],
hence Poisson commute with the Hamiltonian.22 In the
standard light-cone gauge, cþ ¼ psuð2j2Þ⊕2 ⊕ uð1Þ⊕2,
which after relaxing the level-matching condition is cen-
trally extended to psuð2j2Þ⊕2

c:e:. Since these symmetries have
a well-defined action on the asymptotic states (up to
exponentials of x−, which are reinterpreted as exponentials
of the world sheet momentum [8]) this centrally extended
algebra can be identified with the symmetry algebra A of
the S matrix.
For a general light-cone gauge, the relation between cþ

and A may not be as straightforward. First, for a generic
choice of light-cone gauge, the action of cþ will not
necessarily have a well-defined action on asymptotic states.
A priori, it is not obvious how such a symmetry would
constrain the two-body S matrix. A second important point
is that in the full sigma model, as well as light-cone gauge-
fixing the bosonic fields, the fermionic κ symmetry should
also be fixed. It is then necessary to understand how the κ
gauge affects the identification of cþ [8]. Furthermore, as
happens for the supercharges in the standard light-cone
gauge, one should keep in mind that generators that do not
commute with Λ− will give rise to charges with an explicit
dependence on x− and their action on one-particle states
can be nontrivial.
Nevertheless, knowing that different light-cone gauge-

fixings lead to different algebras cþ, let us assume that they
also lead to different S matrix symmetry algebras A. For
example, consider a light-cone gauge-fixing “A” with S
matrix SA invariant under the symmetry algebra AA, and a
light-cone gauge-fixing “B” with SB invariant under AB.
The S matrix SA should then actually be invariant under a
larger symmetry algebra that includes AA and a twisted
version of AB. It would be interesting to verify explicitly
whether this scenario is correct and if, patching together all
possible light-cone gauge-fixings, the full symmetry alge-
bra of the theory before gauge-fixing, i.e., psuð2; 2j4Þ for
the AdS5 × S5 superstring, can be recovered.

V. GAUGE INVARIANCE OF THE SPECTRUM

Despite the fact that the Hamiltonian and the S matrix of
the gauge-fixed model are (almost by definition) gauge-
dependent objects, the spectrum of the string sigma model
should be independent of the gauge. In this section we
check this explicitly, assuming that the asymptotic spec-
trum (i.e., up to wrapping corrections due to the finite string
length L) is encoded in a set of Bethe equations constructed
from the world sheet S matrix. This is the case for
integrable models of interest such as strings on AdS5 ×
S5 and AdS3 × S3 × T4. Without going into the details of
these specific models, we consider a toy example with a

20More explicitly, using the notation of footnote 24 this reads
S̃12ðp; qÞ ¼ F12ðq; pÞS12ðp; qÞF−1

12 ðp; qÞ. Note that the operator
R ¼ ΠS is twisted as R̃ ¼ FopRF−1, where Fop is the conjuga-
tion of the twist by the (graded) permutation. Therefore,
R̃12ðp; qÞ ¼ F21ðq; pÞR12ðp; qÞF−1

12 ðp; qÞ.
21In a general gauge we identify Λþ and Λ−, see also below,

through the relation tΛa þ φΛs ¼ xþΛþ þ x−Λ−.

22The charges may be divided into “kinematical” (if they do
not depend on x−) or “dynamical” (if they depend on x−).
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nested Bethe ansatz that has the necessary level of
complication to demonstrate the gauge invariance of the
spectrum.

A. A toy example of nested Bethe ansatz

For this discussion we will use the coordinate Bethe
ansatz (see, e.g., the reviews [36]). We assume that we have
two particle flavors denoted by ϕ and χ. For simplicity, we
take ϕ to be a boson, although this is not necessary for the
following discussion. Let us suppose that in the two-
particle basis jϕϕi; jϕχi; jχϕi; jχχi the S matrix is

S ¼

0
BBB@

A 0 0 0

0 B C 0

0 D E 0

0 0 0 F

1
CCCA: ð5:1Þ

Braiding unitarity, that is the condition S21S12 ¼ 1, implies
various relations including A12A21 ¼ 1. To adapt to stan-
dard conventions, we adopt a different notation here to that
used in Sec. IV. For example, the two-particle states are
related as jϕ1χ2i ≔ jp1; p2iϕχ and the action of the S
matrix is such that Sjϕ1χ2i ¼ B12jϕ2χ1i þD12jχ2ϕ1i. In
particular, the subscripts denote the momenta of the
scattered particles. We then construct N-particle states as

jϕ1ϕ2 � � �ϕNi¼
X

σ1≪σ2≪���σN
ei
P

N
j¼1

piσj jϕσ1ϕσ2 � � �ϕσN i; ð5:2Þ

where the states on the left-hand side have well-defined
momenta ordered as p1 > p2 > � � � > pN , and on the right-
hand side we create wave packets centered around the
positions σi. Here the formula is written for the case when
all of the particles have flavor ϕ, but the generalization is
straightforward.
The Bethe equations are obtained by requiring perio-

dicity of the wave function for eigenstates of the S matrix.
Let us start with the case of two particles of flavor ϕ.
Because they simply scatter as Sjϕ1ϕ2i ¼ A12jϕ2ϕ1i, it is
sufficient to consider the state

jΨi ¼ jϕ1ϕ2i þ A12jϕ2ϕ1i; ð5:3Þ

and it follows from braiding unitarity that SjΨi ¼ jΨi. If
we write

jΨi ¼
X
σ1≪σ2

ψðσ1; σ2Þjϕσ1ϕσ2i; ð5:4Þ

we then identify the wave function as

ψðσ1; σ2Þ ¼ eiðp1σ1þp2σ2Þ þ A12eiðp2σ1þp1σ2Þ; ð5:5Þ

and the periodicity condition ψðσ2; σ1 þ LÞ ¼ ψðσ1; σ2Þ
implies the two Bethe equations

eip1L ¼ A21; eip2L ¼ A12: ð5:6Þ

The generalization to the case of NI particles of flavor ϕ is

eipkL ¼
YNI

j¼1
j≠k

Ajk: ð5:7Þ

To include particles of flavor χ we need to introduce two
“levels.” We interpret the states constructed with ϕ as
belonging to level I only. On top of level I, we construct
level II excitations to account for χ. The difficulty now
comes from the nondiagonal scattering of ϕ and χ, for
example,

Sjϕ1χ2i ¼ B12jϕ2χ1i þD12jχ2ϕ1i: ð5:8Þ

To construct eigenstates of the S matrix, e.g. in the case of
two particles, we first take

jYyi ¼ fðy; p1Þjχ1ϕ2i þ fðy; p2ÞSII;Iðy; p1Þjϕ1χ2i; ð5:9Þ

where fðy; pÞ and SII;Iðy; pÞ are functions of an auxiliary
root y and the momentum p. The function SII;Iðy; pÞ can be
interpreted as the scattering element between level I and II
excitations. Both functions fðy; pÞ and SII;Iðy; pÞ are
determined by demanding that

SjYyi ¼ A12jYyiπ; ð5:10Þ

where jYyiπ is obtained from jYyi by exchanging p1 and
p2. Let us explicitly write down the constraints imposed by
this equation, since they will be useful later

fðy; p1ÞC12 þ fðy; p2ÞSII;Iðy; p1ÞB12

¼ A12fðy; p1ÞSII;Iðy; p2Þ;
fðy; p1ÞE12 þ fðy; p2ÞSII;Iðy; p1ÞD12

¼ A12fðy; p2Þ: ð5:11Þ

These are functional equations whose solutions will depend
on the coefficients A12, B12, C12, D12, E12, and F12, hence
will be model dependent. If (5.10) is satisfied, then jΨi ¼
jYyi þ A12jYyiπ is an eigenstate of the S matrix. In this
case periodicity of the wave function leads to the new Bethe
equations

eip1L ¼ A21SII;Iðy; p1Þ; eip2L ¼ A12SII;Iðy; p2Þ;
1 ¼ SII;Iðy; p1ÞSII;Iðy; p2Þ: ð5:12Þ
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In principle, there may also be nontrivial scattering among level II excitations, which can be found by constructing states
such as

jYy1Yy2i ¼ fðy1; p1Þfðy2; p2ÞSII;Iðy2; p1Þjχ1χ2i þ fðy2; p1Þfðy1; p2ÞSII;Iðy1; p1ÞSII;IIðy1; y2Þjχ1χ2i: ð5:13Þ

Demanding SjYy1Yy2i ¼ A12jYy1Yy2iπ , where jYy1Yy2iπ is obtained by exchanging p1 and p2, one finds the functional
equation

½fðy1; p1Þfðy2; p2ÞSII;Iðy2; p1Þ þ fðy2; p1Þfðy1; p2ÞSII;Iðy1; p1ÞSII;IIðy1; y2Þ�F12

¼ ½fðy1; p2Þfðy2; p1ÞSII;Iðy2; p2Þ þ fðy2; p2Þfðy1; p1ÞSII;Iðy1; p2ÞSII;IIðy1; y2Þ�A12: ð5:14Þ

As before, we will not need the explicit model-dependent solution to this equation. In the general case the Bethe equations
are given by

eipkL ¼
YN
j¼1
j≠k

Ajk

YNII

j¼1

SII;Iðyj; pkÞ; k ¼ 1;…; N;

1 ¼
YNII

j¼1
j≠k

SII;IIðyk; yjÞ
YN
j¼1

SII;Iðyk; pjÞ; k ¼ 1;…; NII; ð5:15Þ

where NI is the number of excitations of flavor ϕ, NII the
number of excitations of flavor χ, and N ¼ NI þ NII . Note
that multiplying all the Bethe equations gives eip

totL ¼ 1,
where ptot ¼PN

k¼1 pk. We will take the level-matching
condition ptot ¼ 0.
Once a state is fixed and the corresponding solution to

the Bethe equations is found, that is a list of values
p1;…; pN , the conserved charge E − J is given by the
sum of the magnon energies,

E − J ¼
XN
i¼1

Ei; Ei ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i þ 4h2sin2
pi

2

r
; ð5:16Þ

where mi is the mass of the excitation, pi its momentum,
and h is a function of the string tension.

B. Invariance for current-current gauge
transformations

When the gauge transformation is a current-current
deformation, the invariance of the spectrum comes from
the fact that, in addition to the Hamiltonian and S matrix of
the reduced model, the length L of the string is also gauge
dependent. Taking this into account ensures that the Bethe
equations, and therefore the spectrum, are gauge indepen-
dent. For the TT̄ gauge deformation this has been discussed
in the literature, in particular see [10,11,5]. To the best of
our knowledge, the case of the JTσ gauge deformation has
not been discussed before. We first briefly review the case

of the TT̄ gauge deformation below, before discussing the
more involved JTσ gauge deformation.
Let us note that the invariance of the spectrum is a

consequence of interpreting the deformations as gauge
transformations. For genuine TT̄ or JTσ deformations, the
length L is fixed to be γ independent, and the spectrum
would be γ dependent.

1. TT̄

In the case of the TT̄ gauge transformation, we know that
the S matrix changes by an overall factor,

S̃12 ¼ eiγðp1ω2−p2ω1ÞS12: ð5:17Þ

Working with the toy example of Sec. VA, this means that
Ã12 ¼ eiγðp1ω2−p2ω1ÞA12, and similarly for all the other
entries. It is easy to see that, given the γ-dependent factor
is common to all entries of the S matrix, it drops out of
Eqs. (5.11) and (5.14), so that the functions fðy; pÞ,
SII;Iðy; pÞ, SII;IIðyk; yjÞ can be taken to be the same as
in the undeformed case. At the same time, we should take
into account the γ dependence of the length of the string. In
particular, integrating the relation p̃− ¼ p− þ γpþ from
Eq. (2.47), it follows that L̃ ¼ L − γEtot, where Etot ¼P

N
k¼1 Ek is the total energy. Therefore,
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eipkL̃ ¼ eipkLe−iγpkEtot ¼
YN
j¼1
j≠k

eiγðpjωk−pkωjÞAjk

YNII

j¼1

SII;Iðyj; pkÞ

¼ =eiγωkptot
e−iγpkEtot

YN
j¼1
j≠k

Ajk

YNII

j¼1

SII;Iðyj; pkÞ; ð5:18Þ

where we have used ptot ¼ 0. The factor e−iγpkEtot appears on both sides of the equation, hence cancels and the Bethe
equations for pk are γ independent. It is immediate to see that the equations for the auxiliary roots are also independent of
the deformation.

2. JTσ

In the case of a JTσ gauge transformation, verifying that the spectrum is invariant is more involved. First, we notice that

Ã12 ¼ eiγqϕðp1−p2ÞA12; B̃12 ¼ e
i
2
γðqϕþqχÞðp1−p2ÞB12; C̃12 ¼ eiγðp1qϕ−p2qχÞC12;

F̃12 ¼ eiγqχðp1−p2ÞF12; Ẽ12 ¼ e
i
2
γðqϕþqχÞðp1−p2ÞE12; D̃12 ¼ eiγðp1qχ−p2qϕÞD12; ð5:19Þ

where qϕ and qχ denote the charges of ϕ and χ under the symmetry corresponding to the current J. Note that we assume that
ϕ and χ are eigenstates of the charge. Consider now the equations in (5.11). We have similar equations in the deformed case,
but with tildes. The equations without tildes imply those with tildes if we take

f̃ðy; pÞ ¼ fðy; pÞei
2
γpðqϕ−qχÞ; S̃II;Iðy; pÞ ¼ SII;Iðy; pÞeiγpðqϕ−qχÞ: ð5:20Þ

We also note that, with this identification and with S̃II;IIðyk; yjÞ ¼ SII;IIðyk; yjÞ, Eq. (5.14) is automatically solved in the
presence of the deformation.
Now let us look at the Bethe equations, starting with those for the momenta pk. Knowing that p̃− ¼ p− − γJτ from

Eq. (2.52), we conclude that L̃ ¼ L − γqtot, where qtot is the total charge for all the excitations. Therefore, the Bethe
equations become

eipkL̃ ¼ eipkLe−iγpkqtot ¼
YN
j¼1
j≠k

eiγqϕðpj−pkÞAjk

YNII

j¼1

eiγpkðqϕ−qχÞSII;Iðyj; pkÞ

¼ =eiγqϕptot
e−iγpk½Nqϕ−NIIðqϕ−qχÞ�

YN
j¼1
j≠k

Ajk

YNII

j¼1

SII;Iðyj; pkÞ: ð5:21Þ

The γ independence of the equation is a consequence of
ptot ¼ 0 and qtot ¼ NIqϕ þ NIIqχ ¼ Nqϕ − NIIðqϕ − qχÞ,
where we recall N ¼ NI þ NII . The Bethe equations for
the auxiliary roots,

1 ¼
YNII

j¼1
j≠k

SII;IIðyk; yjÞ
YN
j¼1

eiγpjðqϕ−qχÞSII;Iðyk; pjÞ; ð5:22Þ

are γ independent thanks to ptot ¼ 0.

C. Invariance for Jτ deformations

The invariance of the spectrum under a Jτ gauge
deformation is even simpler to see. Before the gauge
transformation, we compute the eigenvalues of the

Hamiltonian H, which are identified by the solutions to
the Bethe equations constructed from the S matrix S. As
already mentioned, given the solution p1;…; pN for a
certain state, the eigenvalue of the Hamiltonian is then

E ¼PN
k¼1 Ek, where Ek ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

k þ 4h2 sin2 pk
2

q
.

After the Jτ gauge deformation, we compute the eigen-
values of the Hamiltonian H̃ ¼ H þ γQ. These are found
by identifying the solutions to the Bethe equations con-
structed from the S matrix S̃, which, in this case, is equal to
the undeformed S matrix, S̃ ¼ S. Hence, both the Bethe
equations and their solutions are trivially γ independent.
From the point of view of the scattering problem, the

dispersion relations of the asymptotic states are modified
by shifts proportional to their charges, as we saw explicitly
in Secs. IVA 1 and IV B 2. Therefore, the eigenvalue of the
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Hamiltonian H̃ will now be obtained by computing
Ẽ ¼PN

k¼1 Ẽk, where Ẽk ¼ Ek þ γqk, with qk the charge
of the excitation. It is clear that the γ dependence of the
spectrum of H̃ is spurious: It is a consequence of the fact
that the definition of H̃ itself depends on γ. Even in this
gauge, if we were computing the eigenvalues of
H ¼ H̃ − γQ, we would find a γ-independent spectrum.

VI. CONCLUSIONS AND OUTLOOK

In this paper we analyzed inequivalent uniform light-
cone gauges for string sigma models with at least two
commuting isometries, one timelike and one spacelike. By
implementing target-space coordinate transformations
before light-cone gauge-fixing, we found four classes of
inequivalent gauge-fixings, which can be understood as
TT̄, JTσ , Jτ, and J̃Tτ deformations. We further demon-
strated that of these, only the TT̄ and JTσ deformations
modify the world sheet S matrix. In the context of string
sigma models, they are understood simply as different
gauge choices, so that the spectrum remains invariant,
see Sec. V.
In Sec. III we investigated the moduli space of inequi-

valent light-cone gauge-fixings for spacetimes given by the
Cartesian product of two rank-1 symmetric spaces
Ma ×Ms, of which AdSn × Sn is an important example.
In particular, we explicitly constructed part of this moduli
space for the unique (up to global symmetries) pointlike
string solution with momentum in both Ma and Ms,
confirming the expected freedom related to TT̄, JTσ, Jτ,
and J̃Tτ deformations. There is also the option of starting
from massless geodesics on Ma. In the case of AdS space
this leads to the AdS light-cone gauge [19], which we have
not discussed. It would also be interesting to study more
general spacetimes, including higher-rank cosets. Since
S3 × S3 is a rank-2 coset, this would be important for the
AdS3 × S3 × S3 × S1 background. In this case there will no
longer be a unique pointlike string solution with momen-
tum in both Ma and Ms up to global symmetries. For
example, in the case of S3 × S3 we have a one-parameter
family of solutions, distinguished by the ratio of momenta
on the two spheres. Nevertheless, once a choice of pointlike
string has been made, the classification of inequivalent
gauges should follow the pattern explained in this paper.
We have focused on fixing uniform light-cone gauge for

bosonic AdSn × Sn backgrounds, i.e., realized in terms of
symmetric spaces. It would be interesting to extend our
systematic analysis to semisymmetric spaces and the
Green-Schwarz superstring, where in addition to fixing
world sheet diffeomorphisms, one should also fix the gauge
of the local fermionic κ-symmetry transformations (see,
e.g., [5,37] for reviews). Since the κ-symmetry commutes
with the superisometries, its gauge-fixing will not affect the
identification of the residual symmetries in the light-cone
gauge-fixed theory. Nevertheless, κ symmetry is important

for understanding how the residual superalgebra acts on the
transverse theory, hence it would be interesting to incor-
porate this analysis.
In general, after gauge-fixing the original supersymmetry

algebra is reduced to a residual superalgebra. In the standard
setup this is a centrally extended psuð2j2Þ⊕2 for AdS5 × S5

and a central extension of ½uð1Þ ⋉ psuð1j1Þ⊕2�⊕2 for
AdS3 × S3 × T4 (ignoring the torus directions and their
superpartners). As shown in Sec. III B 3 [cf. Tables I and II,
and Eq. (3.77)], the residual symmetry algebra may change
depending on the choice of gauge. It would be interesting to
understand if in general the world sheet S matrix is uniquely
fixed by the residual symmetries up to an overall factor, as
in [38] for the standard choice. For this, it would be
necessary to understand how the action of the residual
generators is realized on the transverse theory, as well as the
effect of κ symmetry, which we expect to be nontrivial.
As discussed in Sec. IV C, if we consider, for example,

AdS5 × S5, the centrally extended psuð2j2Þ⊕2 symmetry is
not actually broken under the light-cone gauge transfor-
mation; instead, it undergoes a twist. Since different gauges
have residual symmetries that are different subalgebras of
psuð2; 2j4Þ, it may be possible to identify a larger
invariance of the world sheet AdS5 × S5 S matrix going
beyond the usual centrally extended psuð2j2Þ⊕2, possibly
corresponding to a nonstandard action of the inherent
psuð2; 2j4Þ symmetry on the transverse fields and their
S matrix.
Our motivation for the analysis in this paper came from

the study of integrable deformations of AdSn × Sn sigma
models, their world sheet S matrices, and quantum inte-
grability descriptions. Thinking of an undeformed string
sigma model as a point in a space of theories, its continuous
deformations can be pictured as lines departing from this
point. As we have seen, the undeformed model may have a
moduli space of inequivalent light-cone gauge-fixings, each
describing the same sigma model, with an unchanged string
spectrum. However, an integrable deformation may break
some symmetries, resulting in a smaller moduli space of
light-cone gauge-fixings. In other words, in order to be able
to deform the gauge-fixed model, we would need to restrict
to a subspace of light-cone gauge-fixings. Correspondingly,
to be able to deform the world sheet S matrix we may first
need to apply a JTσ transformation. We refer to [16,17] for
realizations of this scenario.
Knowing that inequivalent light-cone gauges play an

important role in the integrability formulation of integrable
deformations of the string sigma models, it would be
interesting to understand how this is paralleled in the
spin-chain description of the dual gauge theories [39].
This would be the starting point to construct deformations
of the spin chain corresponding to deformations of the
string theory background. The case of the homogeneous
Yang-Baxter deformations, which are expected to be
implemented by Drinfel’d twists, should be particularly
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tractable. Starting with [40], there has been substantial
progress in the identification of the deformations of the
gauge theory that are dual to homogeneous Yang-Baxter
deformations of the string, see in particular the recent [41].
Given that the construction is under control when the
deformation is based on twists of the Poincaré algebra, it
would be interesting to understand if spin-chain construc-
tions could help with the identification of the gauge theory
duals beyond those cases.
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APPENDIX: CONVENTIONS AND REVIEW
OF LIGHT-CONE GAUGE-FIXING

We consider a string sigma model on a D-dimensional
background parametrized by the coordinates xM with
M ¼ 0;…; D − 1,

S ¼ −
T
2

Z L
2

−L
2

dτdσðγαβGMN − ϵαβBMNÞ∂αxM∂βxN; ðA1Þ

where T denotes the string tension and L the length of the
string. Moreover, γαβ is the Weyl-invariant combination of
the world sheet metric, and we use the convention
ϵτσ ¼ −1. The sigma model couplings are the target-space
metric GMN and the B-field BMN . We assume that the
background possesses at least two Abelian isometries
realized by shifts of two coordinates x0 ¼ t and x1 ¼ φ.
Here t is a timelike and φ a spacelike coordinate. The

remaining coordinates will be called transverse and are
denoted by xμ with μ ¼ 2;…; D − 1.
Under the above assumptions, a solution to the equations

of motion of the sigma model is

t̄ ¼ κτ; φ̄ ¼ τ; x̄μ ¼ 0: ðA2Þ

Here the bar denotes a field evaluated on the classical
solution. In this solution the velocity of φ̄ is fixed to 1 (e.g.,
by redefining τ). In principle, x̄μ can be a collection of
nonvanishing constants, but these can be set to zero by
redefining xμ.
The Virasoro constraints fix the value of the parameter κ.

To see this, let us construct the stress-energy tensor of the
sigma model (A1)

T αβ ¼ ∂αxMGMN∂βxN −
1

2
γαβγ

γδ
∂γxMGMN∂δxN: ðA3Þ

If we rewrite our classical solution as x̄M ¼ aMτ with
a0 ¼ κ, a1 ¼ 1, and aμ ¼ 0, then the components of the
stress-energy tensor on the classical solution read

T̄ ττ ¼ C
�
1 −

1

2
γττγ

ττ
�
; T̄ τσ ¼ −

1

2
C γτσγ

ττ;

T̄ σσ ¼ −
1

2
C γσσγ

ττ; ðA4Þ

where

C ¼ ḠMNaMaN ¼ Ḡ00κ
2 þ Ḡ11: ðA5Þ

Here we assumed Ḡ01 ¼ 0, which can be achieved by
redefining t and φ. On the classical solution the Virasoro
constraints T̄ αβ ¼ 0 are satisfied if C ¼ 0. We solve this by
taking

κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
−
Ḡ11

Ḡ00

s
; ðA6Þ

where we are making a choice for the sign of κ. Finally,
rescaling the field t by κ, we can work with a classical
solution of the form t̄ ¼ τ, φ̄ ¼ τ, and x̄μ ¼ 0, so that we
effectively set κ ¼ 1.
Let us now review how to fix uniform light-cone gauge

in the Hamiltonian formalism following the review [5], see
also [4,18]. Starting from the classical sigma model action
(A1), we define the conjugate momenta as

pM ¼ δS
δẋM

¼ −Tγτβ∂βxNGMN − Tx0NBMN: ðA7Þ

Here, and in the rest of the paper, a dot denotes the time
derivative ẋM ¼ ∂τxM and a prime, the spatial derivative
x0M ¼ ∂σxM. On the classical solution the momenta read
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p̄0 ¼ −T γ̄ττḠ00; p̄1 ¼ −T γ̄ττḠ11;

p̄μ ¼ −T γ̄ττðḠμ0 þ Ḡ11Þ: ðA8Þ

In principle, p̄μ can be a nonvanishing constant vector, but
from now on we assume that p̄μ ¼ 0. In Sec. II A 2 we
show that we can always redefine our fields to achieve this,
and that when doing so we end up with an equivalent
gauge-fixing. We also fix γ̄ττ ¼ −ðTḠ11Þ−1 so that p̄1 ¼ 1.
To summarize, thus far we have

t̄ ¼ τ; φ̄ ¼ τ; x̄μ ¼ 0;

p̄0 ¼ −1; p̄1 ¼ 1; p̄μ ¼ 0: ðA9Þ

We now introduce light-cone coordinates as23

xþ ¼ 1

2
ðtþ φÞ; x− ¼ φ − t; ðA11Þ

so that

pþ ¼ p0 þ p1; p− ¼ 1

2
ð−p0 þ p1Þ: ðA12Þ

On the classical solution we have

x̄þ ¼ τ; x̄− ¼ 0; x̄μ ¼ 0;

p̄þ ¼ 0; p̄− ¼ 1; p̄μ ¼ 0: ðA13Þ

After introducing the momenta pM, the action can be
rewritten as

S ¼
Z

dτdσ
�
pMẋM þ γτσ

γττ
C1 þ

1

2Tγττ
C2

�
; ðA14Þ

where

C1 ¼ pMx0M;

C2 ¼ GMNpMpN þ T2GMNx0Mx0N

− 2TpMGMNBNQx0Q þ T2GMNBMPBNQx0Px0Q;

ðA15Þ

and γτσ and γττ are Lagrange multipliers imposing the
Virasoro constraints are C1 ¼ C2 ¼ 0. On these constraints
the action is simply

S ¼
Z

dτdσ pMẋM ¼
Z

dτdσ ðpþẋþ þ p−ẋ− þ pμẋμÞ:

ðA16Þ

We now expand the fields around their classical values as
xM ¼ x̄M þ x̂M and pM ¼ p̄M þ p̂M, where the hats denote
fluctuations. We expand around a classical solution to
ensure the Lagrangian and Hamiltonian start at quadratic
order in the fluctuating fields. Because of the reparamet-
rization invariance on the world sheet, we can choose a
gauge where two fluctuations are set to zero, and we take

x̂þ ¼ 0 ¼ p̂−: ðA17Þ

All other fields are allowed to fluctuate. Taking into
account the classical solution and the gauge choice, we
have

xþ ¼ τ; x− ¼ x̂−; xμ ¼ x̂μ;

pþ ¼ p̂þ; p− ¼ 1; pμ ¼ p̂μ: ðA18Þ

Since each field either coincides with its classical value or
with its fluctuation, the notation is unambiguous if we omit
the bars and hats, and we will do so from now on. The
expansion of the action around the classical solution is
therefore

Sg:f: ¼
Z

dτdσ ðpþ þ ẋ− þ pμẋμÞ

¼
Z

dτdσ ðpþ þ pμẋμÞ; ðA19Þ

where in the second step we dropped a total derivative. We
recognize the action for the transverse fields xμ, pμ with
Hamiltonian density H ¼ −pþ. Indeed, pþ is expressed in
terms of transverse fields once we solve the Virasoro
constraints C1 ¼ C2 ¼ 0 for the fluctuations x− and pþ.
The first equation is solved by

x−0 ¼ −pμxμ0: ðA20Þ

The second equation is quadratic in pþ. If we introduce
indices m; n ¼ −; μ (i.e., all except þ) then writing the
equation as C2 ¼ Ap2þ þ Bpþ þ C ¼ 0, where

23We could use

xþ ¼ ð1 − aÞtþ aφ; x− ¼ φ − t;

pþ ¼ p0 þ p1; p− ¼ −ap0 þ ða − 1Þp1; ðA10Þ

and the classical solution would still remain the same. However,
here we set a ¼ 1=2 and the parameter a will instead be
recovered from the discussion in Sec. II A 2.
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A ¼ Gþþ;

B ¼ 2Gþmpm − 2TGþMBMnx0n;

C ¼ Gmnpmpn þ T2Gmnx0mx0n − 2TpmGmNBNqx0q

þ T2GMNBMpBNqx0px0q; ðA21Þ

we take the solution to be

pþ ¼ −Bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 − 4AC

p

2A
; ðA22Þ

where the sign is chosen to give the correct Hamiltonian. In
this expression p− is replaced by its classical value p̄− ¼ 1
and x−0 using (A20). The solution for the Hamiltonian
density is therefore

H ¼ B −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 − 4AC

p

2A
: ðA23Þ

If we define charges QM ¼ R L
2

−L
2

dσpM, then we have the

relations Qþ ¼ −
R L

2

−L
2

dσH ¼ −H, where H is the

Hamiltonian, and Q− ¼ L.
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