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Understanding the interface dynamics in nonequilibrium quantum systems remains a challenge. We study
the interface dynamics of strongly coupled immiscible binary superfluids by using holographic duality. The
full nonlinear evolution of the binary superfluids with a relative velocity shows rich nonlinear patterns
toward quantum turbulence, which is reminiscent of the quantum Kelvin-Helmholtz instability. The wave
number of the fastest growing modes k0 extracted from the interface pattern yields a nonmonotonic
dependence of the relative velocity, independent of the temperature and interaction. The value of k0 first
increases with the velocity difference and then decreases, which stands in sharp contrast to the results of
mean-field theory described by the Gross-Pitaevskii equation and is confirmed by using the linear analyses
on top of the stationary configuration. We uncover that the critical velocity associated with the maximum
corresponds to the case when the mean separation of vortices generated by interface instabilities becomes
comparable to the vortex size, which could be a universal physical mechanism at strongly interacting
superfluids and is directly testable in laboratory experiments.
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I. INTRODUCTION

Interface instabilities are ubiquitous and are of funda-
mental interest in fluid dynamics, biological systems, and
engineering applications. A well-known one in classical
fluid mechanics is Kelvin-Helmholtz instability (KHI) that
occurs when there is relative velocity in a single continuous
fluid or a velocity difference across the interface between
two fluids. This instability, in turn, produces waves, which
typically leads to roll-up patterns in the nonlinear stage.
Typical examples include the cloud formations on Earth and
the Red Spot on Jupiter. There have been growing interests
in KHI in quantum fluids. The quantum KHI could play
crucial roles in many important phenomena, ranging from
the laboratory to astronomical scales, e.g., the pulsar
glitches of rotating neutron stars and the vortex formation
in atomic Bose-Einstein condensates (BECs). Owing to the

quantum characteristics of quantum fluids (e.g., vortex
quantization), quantum KHI yields novel nonlinear dynam-
ics that have not been well understood. An ideal testing
ground for quantum KHI is superfluids characterized by the
vanishing small viscosity. The first experimental observa-
tion of quantum KHI was made in [1,2]. It was found that in
the presence of shear flow between the A and B phases of
superfluid 3He in a rotating cryostat, vortices penetrate from
the A phase into the B phase due to KHI. Another natural
candidate to study the quantum KHI is the two components
BEC which now can be produced in laboratory [3–6].
Various studies related to the quantum KHI have

appeared in the literature both experimentally and theoreti-
cally [1,2,7–12]. Dynamical instabilities at the interface
between two BECs moving relative to each other were
investigated using effective theories in the absence of
dissipation [11]. The wave number of the most unstable
mode k0 ∼ v2 for small velocity difference v, which is
reminiscent of classical KHI, while k0 ∼ v for large v, where
counterflow instability dominates. After adding dissipation
phenomenologically, Landau instability caused by excita-
tion of negative energies occurs in addition [8]. Besides,
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by controlling the relative velocity and the coupling
strength between the two components, various patterns
can develop [12].
Nevertheless, most of these efforts rely on the Gross-

Pitaevskii equation (GPE) which is a model equation for
the ground-state single-particle wave function in a weakly
interacting BEC. In reality, intraspecies of the superfluids
might be strongly coupled, and finite temperature effects
and dissipation should also be accounted for. Holography
offers us a natural tool to include all those ingredients. The
strongly coupled quantum many-body systems at finite
temperature and dissipation are encoded to gravitational
systems of black holes with one higher dimension.
Holographic superfluids have been widely studied in
the literature, such as superfluid turbulence [13,14], dark
solitons [15], and the Kibble-Zurek mechanism [16–18].
The comparison between holographic superfluids and
GPE [19–21] was made as efforts to connect holographic
predictions with experiments. Moreover, thus far there are
few investigations on the interface dynamics for holo-
graphic superfluids.
In this work, we study the interface dynamics of binary

strongly coupled superfluids using holography. The sta-
tionary patterns obtained from our holographic model share
some similarities with GPE. Nevertheless, we focus on the
temperature effect on the interface dynamical instabilities
far from equilibrium and uncover distinct behavior from
GPE [11]. Our investigation unveils a remarkable phenome-
non: the most unstable mode k0 is nonmonotonic as the
velocity difference v increases, irrespective of temperature.
It first increases, arrives at a maximum, and then decreases
as v is increased. Interestingly, we find that the peak
location corresponds to the critical case when the average
distance of quantized vortices generated along the interface
is comparable to the characteristic vortex size. This not only
provides a smoking gun for the difference between holog-
raphy and GPE, but also uncovers a novel underlying
mechanism responsible for interface dynamics in strong
coupling regime. We now discuss in more detail how we
arrive at these results.

II. HOLOGRAPHIC MODEL

We consider a (3þ 1)-dimension bulk theory that
holographically describes the interface dynamics of two-
component strongly coupled superfluids in two spatial
dimensions:

L ¼ 1

2κ2N

�
Rþ 6

L2

�
þ
X2
i¼1

−ðDμΨiÞ�DμΨi −m2
i jΨ1j2

−
ν

2
jΨij2jΨ2j2 −

1

4
FμνFμν; ð1Þ

with R the Ricci scalar, L the anti–de Sitter (AdS) radius,
and DμΨi ¼ ð∇μ − ieiAμÞΨi (i ¼ 1, 2). It involves two

complex scalar field Ψi charged under the Uð1Þ gauge field
Aμ with its strength Fμν; see [22,23] for early studies. There
is a direct interaction between the two scalar, mimicking the
interaction between two components of superfluid.
Working in the probe limit where the backreaction of

the matter fields is neglected, we fix the bulk geometry as
the Schwarzschild AdS black hole

ds2 ¼ L2

z2
ð−fðzÞdt2 − 2dtdzþ dx2 þ dy2Þ; ð2Þ

where fðzÞ ¼ 1 − ðz=zhÞ3 with zh the location of the event
horizon. It corresponds to a heat bath with temperature
T ¼ 3=ð4πzhÞ on the boundary system. Without loss of
generality, we set L ¼ 1 and adopt the radial gauge Az ¼ 0.
For simplicity, below we choose m2

1 ¼ m2
2 ¼ −2, e1 ¼

e2 ¼ 1. Then, near the AdS boundary z ¼ 0, asymptotic
expansions for matter fields read as

Aμ ¼ aμ þ bμzþ � � � ; Ψi ¼ΨðsÞ
i zþΨðvÞ

i z2 þ � � � : ð3Þ

From the holographic dictionary, we turn off the leading

source term, i.e., ΨðsÞ
i ¼ 0, and thus ΨðvÞ

i corresponds to
the superfluid condensate Oi. Moreover, at ¼ μ is the
chemical potential and a ¼ ðax; ayÞ are related to the
superfluid velocity vi ≡ ðvx; vyÞi ¼ ∇θi − a, where θi is
the phase of the condensation Oi We have used bold-face
letters to denote vectors in boundary spatial directions. In
practice, we choose ax ¼ ay ¼ 0, such that the superfluid
velocity is given by vi ¼ ∇θi for each component.
Throughout the paper we will keep the chemical potential
of the system fixed. The system enters a superfluid phase
below some critical temperature Tc when the order
parameter spontaneously develops a nonzero expectation
value, which in the gravitational description corresponds
to the scalarization of Ψ.

III. STATIONARY CONFIGURATION

We begin with the stationary state describing an immis-
cible binary superfluid. Without loss of generality, we
suppose that the two superfluid components undergo phase
separation and form a straight interface at x ¼ 0 together
with a relative velocity vy along the y axis. The corre-
sponding bulk configuration is given by

Ψi ¼ zϕiðz; xÞeiΘiðz;x;yÞ; At ¼ Atðz; xÞ; ð4Þ

together with the gauge choice

∂zΘi ¼ −
At

f
; Viyðz; xÞ≡ ∂yΘi − Ay: ð5Þ

We have Vix ≡ ∂xΘi − Ax ¼ 0 for the stationary state. The
phase θi of the condensation Oi is given by Θijz¼0 of (4).
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Note that the phases θi depend on the y coordinate because
we will consider a relative velocity between the two
superfluid components along the y axis. According to the
holographic dictionary, one has V1yjz¼0 ¼ −V2yjz¼0 ¼
vy=2, where vy is the relative velocity between the two
components. This results in a system of equations of motion
involving 5 partial differential equations for ðϕi; At; ViyÞ
that all depend on the variables z and x. We employ the
Newton-Raphson method to solve the system. In the z
direction, we use the Chebyshev pseudospectral method,
and in the x direction, we adopt the fourth-order finite
difference scheme and the Neumann boundary condition.
The normalized profiles of jO1j2 for different μ and ν

with vy ¼ 0 are shown in Figs. 1(a) and 1(b). Profiles of
jO2j2 are the mirror image of those of jO1j2 about x ¼ 0.
We see generally that the larger μ and ν are, the narrower
the interface is. This feature is qualitatively similar to the
results from GPE (see [24] for an early study on the effect
of ν in holographic superfluid with v ¼ 0). The profiles can
be fitted by

jO1j2 ¼
jO0j2
2

ð1 − tanhðx=δÞÞ; ð6Þ

with δ the width of the interface and O0 the value of the
condensation far from the interface. In GPE, when the
coupling strengthΔ between the two components is small, δ
is given by δ ¼ ξ=Δ1=2 [7], where ξ ¼ ℏ=

ffiffiffiffiffiffiffiffiffi
2mμ

p
is the

healing length. We have verified numerically that δ ∼ ðμ −
μcÞ−1=2 and δ ∼ ν−1=2 when the coupling strength ν is small,
which is reminiscent of the result from GPE. In contrast,
when the relative velocity is turned on, different behaviors
from those of GPE appear, although the shape of condensate
can still be fitted by (6). As visible from Fig. 1(c), δ first
decreases and then increases with vy. Such behavior does
not show in GPE. Besides, jO0j2 versus vy can be fitted by

jO0j2 ¼ ð139.63 − 4.50v2yÞ0.755, which also significantly
deviates from the quadratic speed dependence from GPE.
Nevertheless, the value of the power depends on the
temperature, but is insensitive to the coupling ν.

IV. DYNAMICAL INTERFACE INSTABILITY

We now provide the numerical simulations of the real-
time dynamics. To initiate the dynamical instability, we
give a small random noise to the initial stationary con-
densates. The system size ðLx; LyÞ is prepared properly for
each parameter set such that the influence of numerical
boundaries can be omitted. Please refer to Appendix A for
numerical details.
A representative example for the interface dynamics is

shown in Fig. 2. Far-from-equilibrium dynamics that are
reminiscent of quantum KHI are manifest, just like what
happens to the two-component superfluid interface under
perturbations from solving GPE [8,11,12]. The amplitude
of the sinusoidal interface wave is monotonically increased
due to the exponential growth of initial perturbations. The
subsequent nonlinear evolution exhibits a quite different
behavior from that of the classical fluid. In particular, the
interface eventually disintegrates into bubblelike domains
of the condensates. As visible from the phase profile θ1 of
the first component, each bubblelike domain contains a
quantized vortex (see the bottom panel at t ¼ 400). Similar
dynamics can be found for different temperatures and
relative velocities.
To gain the quantitative feature of the system, we

consider the wave number of the most unstable modes k0
versus the relative velocity vy. This can be measured directly
from experiments. To obtain the mode k0 that blows up most
rapidly, we extract a Fourier spectrum of the shape of
interface at each time before the vortices develop. For each
vy, we find a stable peak in Fourier spectrum at k0 during
nonlinear evolution. In practice, for each velocity we run 60
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FIG. 1. Stationary configuration for immiscible binary superfluid. The normalized order parameter of the first superfluid component
O1 for different (a) chemical potential μ and (b) coupling ν, with O0 the value of the order parameter far from the interface. (c) The
interface width δ (blue line) and jO0j2 (red circles) for different relative velocity vy. Profiles of jO2j2 are mirror image of those of jO1j2
about x ¼ 0. Black line in (c) is the fitting result. Relavant parameters are (a) ν ¼ 1 and vy ¼ 0, (b) μ ¼ 6 and vy ¼ 0, and (c) μ ¼ 6

and ν ¼ 1.
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simulations with different perturbations and compute the
mean value of k0. The results are denoted by the red circles
with error bar in Fig. 3(a). Surprisingly, one finds that there
is a turning point (denoted as star) for the k0 − vy curve.
The onset of the instability can be uncovered from linear

response analysis around the stationary state with an

interface layer (see Fig. 1) by calculating the quasinormal
modes (QNMs); see Appendix B for more details. Since the
stationary solution possesses the time translation symmetry
and translation symmetry along the y direction, one decom-
poses small perturbations in terms of Fourier modes
e−iðωt−kyÞ where ω and k represent the frequency and wave
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FIG. 2. Interface dynamics for vy ¼ 1.2566 at T=Tc ¼ 0.677. Snaps of condensation difference ΔO ¼ ðjO1j2 − jO2j2Þ=jO0j2 (upper
panel) and the profile of the phase of the first component θ1 (bottom panel) for different time are presented. Small initial perturbations on
the interface destabilize and grow into larger amplitude structures leading to vortex formation and quantum turbulence. θ1 is only plotted
for jO1j2 − jO2j2 > 0 since otherwise jO1j is small and θ1 would be pure noise. We choose ν ¼ 1 and fix μ ¼ 6.
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FIG. 3. (a) The wave number of the fastest growing mode k0 versus the interfacial relative velocity for T=Tc ¼ 0.677. The circles with
error bar denote k0 extracted from real time evolution and the solid line from perturbation analysis around the stationary state. The
density plot gives the dominant QNMs for each wave number and velocity. Insert illustrates the highest point (star) at which the average
distance of vortices 4π=vy is equal to the vortex diameter 2R. (b) k0 − v relation of GPE at zero temperature. (c) The relation from our
holographic theory (1) at different temperatures. Dash vertical lines show the critical velocities by equating the average distance of
vortices generated along the interface and the vortex size. We choose ν ¼ 1.
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number of the interface wave, respectively. The quasinormal
frequencies generically take a complex value due to dis-
sipations into the normal component. Once the imaginary
part ImðωÞ > 0, the background becomes dynamically
unstable. The wave number of the fastest growing mode
corresponds a positive ImðωÞ that takes a maximum at
k ¼ k0. As shown by the density plot of ImðωÞ in Fig. 3(a),
for a given vy, the imaginary part rises with the increase of k
and peaks at a certain wave number that corresponds to the
fastest growing mode (see also Fig. 4 in Appendix B). The
velocity dependence of the wave number from such
dominant QNMs is denoted by the solid blue curve in
Fig. 3(a). One can see that the linear analysis agrees
quantitatively with the one extracted from fully dynamical
evolution. The slight deviation may be due to the relative
wide instability spectrum and late-time nonlinear effects.
To compare, we do the same analysis by solving GPE

(see Appendix C for more details). The results are shown in
Fig. 3(b), from which k0 ∼ v2 for small v and k0 ∼ v for
large v. This behavior is in sharp contrast to our holographic
results of Fig. 3(a). Another difference is that holographic
simulation yields quite small k0 in the small velocity regime.
A possible reason might be that no dissipation and temper-
ature effect are considered in GPE.
A heuristic picture for the nonmonotonic behavior in

Fig. 3(a) is given as follows. Thanks to the quantum nature
of superfluids, in particular the vortex quantization, the
number of vortex formation along the interface is approx-
imately given by N ¼ Δθ

2π ¼ vyLy

4π for our present system.
Therefore, the average distance of vortices along the inter-
face is estimated statistically as L0 ¼ Ly=N ¼ 4π=vy.
Meanwhile, it is anticipated to create more vortices for a
large wave number of the interface instability [25]. On the
other hand, the vortex size can be obtained from the
static vortex configuration which is axisymmetric, and the
condensation depends only on the radial coordinate (see,
e.g., [26]). As vy is increased, the average distance of
vortices L0 will decrease. At a critical velocity vc ¼ 2π=R
for whichL0 ¼ 2Rwith R the radius of a vortex, the vortices
near the interface become so dense that they make imme-
diate contact with each other; see insert of Fig. 3(a) for an
illustration. The nonlinear vortex dynamics becomes impor-
tant and prevents the increase of more vortices from the
interface instability. Therefore, the corresponding value of
the fastest growing mode k0 at vc is the maximal wave
number among all unstable modes. The above heuristic
analysis agrees quantitatively with our numerical computa-
tions. Defining the radius of a single vortex R at which
jOðRÞj2=jO0j2 ¼ 0.98, we get vc=Tc ¼ 2π=ðRTcÞ ¼ 7.06
for T=Tc ¼ 0.677, matching exactly with the turning point
in Fig. 3(a). This is also confirmed for other temperatures;
see Fig. 3(c). Notice that the value of vy associated with the
turning point does not correspond to the one for δ depicted
e.g. in Fig. 1(c). We highlight that the velocity range shown

in Fig. 3 is below the critical velocity given by the Landau
criterion, and thus our interface dynamics is not due to the
Landau instability [27–30]. To have a better understanding
of the interface instabilities, it will be helpful to work out
the thermodynamics of a binary superfluid. Exploring the
thermodynamics of inhomogenous binary superfluids and
the thermodynamic instabilities is challenging and lies
beyond the scope of our present investigation.

V. DISCUSSION

In this work, we study the interface dynamics of two-
component superfluids at strong coupling. The interface
separating the two phases of superfluid becomes unstable
as the relative velocity is increased. The pattern observed
from fully nonlinear simulation is reminiscent of quantum
KHI. From both the far-from-equilibrium evolution and
the linear QNMs analysis, we find that the wave number of
the most unstable modes depends nonmonotonically on the
superfluid velocity, in sharp contrast to the results of GPE.
We have uncovered that the turning point occurs when the
mean separation of vortices generated by interface insta-
bilities becomes comparable to the size of vortices,
suggesting that the nonmonotonicity is due to the direct
interaction between neighbor vortices. Moreover, as vis-
ible from Figs. 3(a) and 3(c), the instability develops
noticeably only above a threshold value, which might be
due to the dissipation and viscous effect away from the
ground state. These findings are directly testable in plat-
form, like strongly coupled ultracold Bose gases or thin
helium films at low temperatures.
Our study broadens the application of holography to

nonequilibrium phenomena with finite temperature and
dissipation. In particular, it initiates the investigation of
interface instabilities in the holography laboratory, provid-
ing an intriguing platform to explore the interplay of
instabilities and the emergence of complex flow phenom-
ena. There are several lines of research in which our study
can be extended, shedding light on the complicated behav-
iors of interface dynamics. For example, owing to the
relative velocity between superfluid component and normal
component, one anticipates that the interface of binary
superfluids that move with the same velocity relative to the
normal component can be unstable at finite temperature [1].
Since GPE is at zero temperature, this phenomenon cannot
be presented from GPE. In contrast, the temperature effect is
naturally incorporated in our holographic model, and,
indeed, this is the case and will be reported elsewhere.
Moreover, quantized vortices with a higher winding number
can develop [31], which could complicate the interface
dynamics. The turbulent dynamical behavior is anticipated
following closely the initial emission of vortex-antivortex
pairs. Moreover, the introduction of external magnetic field
and rotation is of interest.
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APPENDIX A: NUMERICAL SCHEME
OF THE FULLY NONLINEAR SIMULATIONS

Here we provide additional technical details on the
derivation of the main results reported in the main text.

The general equations of motion for our matter fields
read as

DμDμΨi−m2
iΨi−

ν

2
jΨjj2Ψi¼0; ði;j¼1;2 i≠ jÞ; ðA1Þ

∇μFμν ¼ −2Im
�X

i

Ψ�
iD

νΨi

�
; ðA2Þ

where Im represents imaginary part. The bulk equations of
motion on top of the background (2) are explicitly given by

2∂t∂zΦi −
�
2iAt∂zΦi þ i∂zAtΦi þ ∂zðf∂zΦiÞ − zΦi þ ∂

2
xΦi þ ∂

2
yΦi − ið∂xAx þ ∂yAyÞΦi

− ðA2
x þ A2

yÞΦi − 2iðAx∂xΦi þ Ay∂yΦiÞ −
ν

2
jΦjj2Φi

�
¼ 0; ði; j ¼ 1; 2 i ≠ jÞ ðA3Þ

∂t∂zAt −
�
∂
2
xAt þ ∂

2
yAt þ f∂zð∂xAx þ ∂yAyÞ − ∂tð∂xAx þ ∂yAyÞ − 2At

X
i

jΦij2

− 2fIm

�X
i

Φ�
i ∂zΦi

�
þ 2Im

�X
i

Φ�
i ∂tΦi

��
¼ 0; ðA4Þ

2∂t∂zAx −
�
∂zð∂xAt þ f∂zAxÞ þ ∂yð∂yAx − ∂xAyÞ − 2Ax

X
i

jΦij2 þ 2Im

�X
i

Φ�
i ∂xΦi

��
¼ 0; ðA5Þ

2∂t∂zAy −
�
∂zð∂yAt þ f∂zAyÞ þ ∂xð∂xAy − ∂yAxÞ − 2Ay

X
i

jΦij2 þ 2Im

�X
i

Φ�
i ∂yΦi

��
¼ 0; ðA6Þ

∂zð∂xAx þ ∂yAy − ∂zAtÞ − 2Im

�X
i

Φ�
i ∂zΦi

�
¼ 0; ðA7Þ

whereΦi ¼ Ψi=z. For simplicity, we have chosenm2
1 ¼ m2

2 ¼ −2=L3, e1 ¼ e2 ¼ L ¼ 1 and have adopted the radial gauge
Az ¼ 0. Notice the last equation is a constraint with no time derivative. These equations are not independent. They obey the
following constraint equation:

− ∂tEq: ðConstraintÞ − ∂zEq: ðAtÞ þ ∂xEq: ðAxÞ þ ∂yEq: ðAyÞ

¼ 2Im

�X
i

Eq: ðΦiÞ ×Φ�
0i

�
: ðA8Þ

where Eq. ðΦiÞ; Eq.ðAtÞ; Eq.ðAxÞ; Eq.ðAyÞ; Eq.ðConstraintÞ correspond to Eq. (A3)–(A7).
The expansions of the fields near the AdS boundary z ¼ 0 can be obtained as

Aμ ¼ aμþbμzþ�� � ; Φi ¼ ðΦiÞsþðΦiÞvzþ� � � : ðA9Þ
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From the holographic duality, the coefficients at, ai
(i ¼ x, y) and ðΦiÞ0 are interpreted as the chemical
potential μ, vector potential, and scalar operator source
of the boundary theory, respectively. To describe super-
fluid where the U(1) symmetry is broken spontaneously,
we should turn off the scalar source, i.e., ðΦiÞs ¼ 0. Then
the superfluid condensation is given as Oi ¼ ðΨiÞv in the
standard quantization.
Note that T and μ are not independent quantities because

of scaling symmetry of the system. After fixing zh ¼ 1, μ is
the only free parameter. Then, there is a second order phase
transition for our present setup when μ ≥ μc ≃ 4.064. This
also fixes the ratio T=Tc ¼ μc=μ. In practice, we fix
T ¼ 3=4π, so Tc ¼ μT=μc should depend on μ.
The fully nonlinear simulation starts with the initial data

Φ ¼ Φi0 þ δΦi; Aμ ¼ Aμ0 þ δAμ; ðA10Þ

where Φi0 and Aμ0 denote the corresponding profile for
the stationary interface configuration (see, e.g., Fig. 1 in
the main text). For simplicity but without loss of general-
ity, we use a sum of evenly distributed modes as the initial
condition:

δΦi ¼ ð−1Þi−1
X
k

z expð−x2Þ expðikyþ iθkÞ expðiðviÞyÞ;

δAμ ¼ 0; ðA11Þ

where θk is a random phase for each wave number k.
Our evolution scheme is implemented numerically by the

fourth order Runge-Kutta method along the time direction.
Moreover, we use the Chebyshev pseudospectral method
along the z direction and Fourier pseudospectral method
along the y coordinate. To capture the dynamics near the
interface, we adopt the fourth order finite difference scheme
in the x direction. Previous holographic investigations deal
exclusively with the periodic boundary condition along the
x direction and therefore cannot properly accommodate the
interface dynamics.
First, we use (A3), (A5), and (A6) to evolve Φ, Ax, and

Ay subject to the source free boundary condition at the AdS
boundary:

Φðz ¼ 0Þ ¼ Axðz ¼ 0Þ ¼ Ayðz ¼ 0Þ ¼ 0; ðA12Þ

together with the Neumann boundary condition

∂xΦ ¼ ∂xAμ ¼ 0; ðA13Þ

at x ¼ �Lx=2, where the system size Lx is prepared
properly for each parameter set such that the influence
of numerical boundaries can be omitted. Note that the
boundary condition has been implicitly adopted in our
numerical computation.
Then we use (A4) to evolve ∂zAt on the AdS boundary.

Since we set the chemical potential μ as a constant,
−∂zAtðz ¼ 0Þ is just the charge density ρ of the dual
boundary system. Finally, At can be solved by the con-
straint equation (A7) subject to the boundary condition

∂zAtðz ¼ 0Þ ¼ −ρ; Atðz ¼ 0Þ ¼ μ: ðA14Þ

The later time configuration can be obtained in the same
way as described before.

APPENDIX B: LINEAR INSTABILITY AROUND
A STATIONARY CONFIGURATION

The onset of the instability of such stationary solutions
can be analyzed by the linear response theory. To be more
specific, we turn to the linear perturbations on the sta-
tionary background,

Φi ¼ Φi0 þ δΦi; At ¼ At0 þ δAt;

Ax ¼ Ax0 þ δAx; Ay ¼ Ay0 þ δAy; ðB1Þ

where Φ0i, At0, Ax0, and Ay0 are stationary solutions as
shown in Fig. 1 in the main text. Taking into account the
translation invariance of our background along the time and
y directions, as well as the velocity difference across the
interface between two superfluids, one takes the bulk
perturbation fields as the form of

δΦi ¼ uiðz; xÞe−iðωt−kyÞeiðviÞyy; δΦ�
i ¼ viðz; xÞe−iðωt−kyÞe−iðviÞyy;

δAt ¼ atðz; xÞe−iðωt−kyÞ; δAx ¼ axðz; xÞe−iðωt−kyÞ; δAy ¼ ayðz; xÞe−iðωt−kyÞ; ðB2Þ

where ðv1Þy ¼ −ðv2Þy ¼ vy=2 with vy the relative velocity between the two superfluid components. The resulting linear
perturbation equations are given explicitly as
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2iAt0∂zui þ 2iat∂zΦ0i þ i∂zAt0ui þ i∂zatΦ0i þ ∂zðf∂zuiÞ − zui þ ∂
2
xui − ðkþ ðviÞyÞ2ui − i∂xAx0ui

− iΦ0ið∂xax þ ikayÞ − ðA2
x0 þ A2

y0Þui − 2Ax0Φ0iax − 2Ay0Φ0iay − 2iðAx0∂xui þ iðkþ ðviÞyÞAy0uiÞ
− 2iðax∂xΦ0i þ iayðviÞyΦ0iÞ −

ν

2
jΦ0jj2ui −

ν

2
Φ�

0jΦ0iuj −
ν

2
Φ0jΦ0ivj

¼ −2iω∂zui; ði; j ¼ 1; 2 i ≠ jÞ;
− 2iAt0∂zvi − 2iat∂zΦ�

0i − i∂zAt0vi − i∂zatΦ�
0i þ ∂zðf∂zviÞ − zvi þ ∂

2
xvi − ðk − ðviÞyÞ2vi þ i∂xAx0vi

þ iΦ�
0ið∂xax þ ikayÞ − ðA2

x0 þ A2
y0Þvi − 2Ax0Φ�

0iax − 2Ay0Φ�
0iay þ 2iðAx0∂xvi þ iðk − ðviÞyÞAy0viÞ

þ 2iðax∂xΦ�
0i − iayðviÞyΦ�

0iÞ −
ν

2
jΦ0jj2vi −

ν

2
Φ0jΦ�

0ivj −
ν

2
Φ�

0jΦ�
0iuj

¼ −2iω∂zvi; ði; j ¼ 1; 2 i ≠ jÞ;
∂
2
xat − k2at þ f∂z∂xax þ ikf∂zay − 2at

X
i

jΦ0ij2 − 2At0

X
i

ðΦ�
0iui þΦ0iviÞ þ if

X
i

ðΦ�
0i∂zui

−Φ0i∂zvi þ vi∂zΦ0i − ui∂zΦ�
0iÞ ¼ −iωð∂zat þ ∂xax þ ikayÞ þ ω

X
i

ðΦ�
0iui −Φ0iviÞ;

∂zð∂xat þ f∂zaxÞ − ðk2ax þ ik∂xayÞ − 2ax
X
i

jΦ0ij2 − 2Ax0

X
i

ðΦ�
0iui þΦ0iviÞ

− i
X
i

ðΦ�
0i∂xui −Φ0i∂xvi þ vi∂xΦ0i − ui∂xΦ�

0iÞ ¼ −2iω∂zax;

ik∂zat þ ∂zðf∂zayÞ þ ∂
2
xay − ik∂xax − 2ay

X
i

jΦ0ij2 − 2Ay0

X
i

ðΦ�
0iui þΦ0iviÞ

þ
X
i

ððkþ ðviÞyÞΦ�
0iui − ðk − ðviÞyÞΦ0ivi þ ðviÞyviΦ0i þ ðviÞyuiΦ�

0iÞ ¼ −2iω∂zay: ðB3Þ

For more stable numerical performance, we use the
following equation for at:

∂zð∂xax þ ikay − ∂zatÞ þ i
X
i

ðΦ�
i ∂zui þ vi∂zΦi

− ui∂zΦ�
i −Φi∂zviÞ ¼ 0; ðB4Þ

which comes from the constraint equation (A7). Moreover,
we require the last perturbation equation of (B3) to be
satisfied at the AdS boundary z ¼ 0, yielding

ð∂z∂xax þ ik∂zay ¼ −iω∂zazÞjz¼0: ðB5Þ

Then, by considering (A8), the last perturbation equation is
also satisfied in the whole bulk. Regarding other perturbed
fields, we impose the source free boundary condition at the
AdS boundary. We further consider the Neumann boundary
condition at x ¼ �Lx=2.
The corresponding quasinormal modes are extracted by

solving the above generalized eigenvalue problem. Then we
can numerically obtain ω for each k and velocity difference
vy. Owing to dissipations into the normal component, the
quasinormal frequencies generically take a complex value.
Since δΦi ∼ e−iωt, the stationary configuration will become
dynamically unstable whenever ImðωÞ > 0. The larger the
positive imaginary part is, the more unstable the system

becomes. In Fig. 4, we demonstrate the spectrum of QMNs
versus k for vy ¼ 3.5132 at T=Tc ¼ 0.677 and ν ¼ 1. The
imaginary part rises with the increase of k and peaks at a
certain wave number that corresponds to the fastest growing
mode. The case for the linear perturbation analysis of GPE
is exactly the same, but much simpler.

0 10 20 30 40 50 60 70 80
0

0.02
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0.06

0.08

0.1

0.12

FIG. 4. The imaginary low lying spectrum of QNMs of
stationary configurations with T=Tc ¼ 0.677 and vy ¼ 2.5132.
The peak of ImðωÞ determines the wave number of the fastest
growing mode. We fix ν ¼ 1 and μ ¼ 6.
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APPENDIX C: INTERFACE INSTABILITY
FROM GPE

Two-component superfluids can be described by follow-
ing coupled GPEs [32]:

i∂tΨi ¼
�
−

1

2mi
∇2 − μi þ gijΨij2 þ gijjΨjj2 þ Vi

�
Ψi;

ði; j ¼ 1; 2; i ≠ jÞ: ðC1Þ

Here we focus on g12 >
ffiffiffiffiffiffiffiffiffi
g1g2

p
, which gives immiscible

BECs, and we also set Vi ¼ 0. To study two-component
superfluids with interface and relative velocity, we use
the ansatz

ΨiðrÞ ¼ ψ iðxÞeimiviy; ðC2Þ

with v1 ¼ −v2 ¼ v. Substituting (C2) into (C1), we get the
following time-independent GPE for ψ iðxÞ∶
�
−

1

2mi
∂
2
x − μi þ

miv2

2
þ gijψ ij2 þ gijjψ jj2

�
ψ i ¼ 0;

ði; j ¼ 1; 2; i ≠ jÞ: ðC3Þ

Far from the interface, we have ∂yψ i ¼ 0, ψ j ¼ 0, and
therefore ψ i ¼ ðμi −miv2=2Þ=gi ¼ ffiffiffiffi

ni
p

. Profiles for ψ i

solved from these equations are similar to those shown
in Fig. 1.
Next let us study the interface instability using linear

perturbation analysis. Adding perturbations on the sta-
tionary background ψ0

i

Ψi¼
h
ψ0
i ðxÞþuiðxÞeiky−iωt−w�

i ðxÞe−ikyþiω�t
i
eimiviy; ðC4Þ

and linearizing GPEs, we obtain the Bogoliubov-de Gennes
(BdG) equation

HU ¼ ωU; ðC5Þ

H ¼

8>>>><
>>>>:

hþ1 −g1ðψ0
1Þ2 g12ψ0

1ψ
0
2 −g12ψ0

1ψ
0
2

g1ðψ0
1Þ2 −h−1 g12ψ0

1ψ
0
2 −g12ψ0

1ψ
0
2

g12ψ0
1ψ

0
2 −g12ψ0

1ψ
0
2 hþ2 −g2ðψ0

2Þ2
g12ψ0

1ψ
0
2 −g12ψ0

1ψ
0
2 g2ðψ0

2Þ2 −h−2

9>>>>=
>>>>;
;

ðC6Þ

with U ¼ ðu1; w1; u2; w2ÞT and

h�i ¼ −
1

2mi
½∂2x − ðk�miviÞ2� − μi þ 2gijψ0

i j2 þ gijjψ0
j j2:

ðC7Þ

By numerically diagonalizing this discretized BdG equa-
tion Hamiltonian H, we can get the eigenfrequency ω.
Since this Hamiltonian H is real, we also have
HU� ¼ ω�U�, i.e., ω� is also an eigenvalue whenever ω
is an eigenvalue. Therefore, whenever ImðωÞ ≠ 0, the
system is dynamically unstable. For convenience, we set
g12 ¼ 2, g1 ¼ g2 ¼ 1, m1 ¼ m2 ¼ 1, and μ1−m1v21=2¼
μ2−m2v22=2¼μ¼0.5 when doing numerical calculations.
By calculating ImðωÞ for different v and k, we can

extract the wave number k0 of the most unstable mode for
each v, which can be compared with the results from our
holographic model. We have also done the fully nonlinear
time evolution to extract k0 with the same procedure as in
the holographic case. The results are shown in Fig. 5. We
see the values of k0 extracted from both linear analysis and
dynamical evolution agree well with each other. From
Fig. 5, we also find that k0 ∼ v2 for small v and k0 ∼ v for
large v, corresponding to the Kelvin-Helmholtz instability
and the countersuperflow instability, respectively, as shown
in [11]. This result is qualitatively different from the one
from our holographic model (see Fig. 3).

0 0.5 1 1.5 2 2.5 3
0
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FIG. 5. The wave number of the fastest growing mode versus
the superflow velocity v1 ¼ −v2 ¼ v obtained from GPEs.
The red solid line is from perturbation analysis of (C5), and the
black circles with error bars are extracted from dynamical
evolution. The density plot shows the dominant jImðωÞj for each
wave number and velocity. We have chosen g ¼ m ¼ 1, g12 ¼ 2,
and μ ¼ 0.5.
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