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A novel classically integrable model is proposed. It is a deformation of the two-dimensional principal
chiral model, embedded into a heterotic σ model by a particular heterotic gauge field. This is inspired by the
bosonic part of the heterotic σ model and its recent Hamiltonian formulation in terms of Oðd; dþ nÞ-
generalized geometry in Hatsuda et al. [Gauged double field theory, current algebras and heterotic sigma
models, J. High Energy Phys. 05 (2023) 220]. Classical integrability is shown by the construction of a Lax
pair and a classicalR matrix. The latter is almost of the canonical form with a twist function and solves the
classical Yang-Baxter equation.

DOI: 10.1103/PhysRevD.109.106021

I. INTRODUCTION

Oneof themain impacts of the study of integrablemodel in
high energy physics is the connection of quantities of
integrable Green-Schwarz superstring σ models in super-
coset anti–de Sitter (AdS) backgrounds and those of dual
integrable conformal field theories [1,2] in context of the
AdS/CFTduality. In the last years, some effort has been spent
to generalize this to other, less symmetric settings. On the
world sheet side of the duality, new integrable models were
found that are deformations of such (semi)symmetric (super)
cosets, namely Yang-Baxter deformations [3–5], λ-[6] and
Wess-Zumino (WZ)-term [7] deformations and their inter-
play [8], or generalizations to nonsymmetric cosets [9–11].
So far, this survey was focusing on conventional two-
dimensional nonlinear σ models, i.e., the embedding of a
two-dimensional world sheet in some d-dimensional target
space. See Refs. [10,12] for two recent reviews.
This article aims to slightly step out of this fairly well

explored context and suggest that also the heterotic string
[13–16] might have interesting integrable models. In context
of this paper, the bosonic part of a heterotic string σmodel is a
d-dimensional nonlinear σ model, characterized by a metric
and aB field, togetherwithn chiral currents, characterized by
a gauge field A and a given n-dimensional gauge group.

A. A heterotic E model

Recently, progress in understanding the space of two-
dimensional classically integrable σ models was made

using two quite different constructions: in terms of as affine
Gaudin models [17,18], coming from a four-dimensional
Chern-Simons theory [19–24], or as E models [25–31]. The
latter does not directly clarify the origin of the integrable
structure but its data relates directly to the σ-model target
space geometry in the generalized flux formulation.
Concretely, an E model is defined in terms of Oðd; dÞ-
covariant world sheet currents JA with Poisson brackets—
the so-called current algebra—

fJAðσÞ; JBðσ0Þg ¼ ηABδ
0ðσ − σ0Þ−FC

ABðσÞJCðσÞδðσ − σ0Þ;

where A ¼ 1;…; 2d, d is the dimension of the target space,
FABC are the so-called generalized fluxes, which are
constant for an E model, and ηAB is the Oðd; dÞ-invariant
metric, together with a Hamiltonian H ¼ 1

2

R
dσδABJAJB.

Similar to that, Oðd; dÞ generalized geometry appeared
first in the Hamiltonian formulation and the analysis of the
current algebra of the world sheet string [32–35] before it
was considered as a tool for supergravity [36–42].
For the heterotic string the duality group is Oðd; dþ nÞ

[43,44]. Heterotic supergravity was phrased in terms of
Oðd; dþ nÞ generalized geometry [42,45–47]. World sheet
formulations of the heterotic string related to Oðd; dþ nÞ
generalized geometry have been suggested in [48] and
recently [49]. This is the latest addition to the program of
duality covariant formulations of world-volume theories
either via actions [50–55] or via Hamiltonian formulations
[56–63]. Following [49], a heterotic E model is defined in
the Introduction.

B. A new integrable deformation
of the principal chiral model

The new integrable model proposed here is a deforma-
tion of the principal chiral model, embedded into a heterotic
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string σ model. The deformation is characterized by a
heterotic gauge field:

Aα
a ¼ ϵAα

a; with Aα
aA

β
bκαβ ¼ κab; ð1:1Þ

which is constant in flat indices a, b, c. Here ϵ is the
deformation parameter and κab, καβ are the Killing forms on
g (the Lie algebra from the principal model) and a
symmetric nondegenerate bilinear form on uð1Þn (the
Abelian gauge algebra), respectively. The Lax pair and
the classicalRmatrix, to show Hamiltonian integrability in
Maillet’s formalism [64,65], are computed in the second
section. It also shown that this deformation can be
combined with the introduction of a WZ term with arbitrary
coefficient while maintaining classical integrability.

II. THE CLASSICAL BOSONIC HETEROTIC
STRING IN THE HAMILTONIAN FORMALISM

In a slight stretch of the concept, a (classical) bosonic
heterotic string here will be a d-dimensional nonlinear σ
model together with n (Abelian) chiral currents. The d
coordinate fields x, their canonical duals p, and n chiral
currents k can be arranged into an Oðd; dþ nÞ vector:

PM ¼ ðpmðσÞ; kμðσÞ; ∂xmðσÞÞ: ð2:1Þ
Latin indices k; l; m;… ¼ 1;…; d will be reserved for the
d-dimensional coordinates, and greek letters κ; λ; μ;… ¼
1;…; n for the n-dimensional coordinates. The latter can be
raised and lowered using κμν, the Killing metric on uð1Þn.
The canonical Poisson brackets of these fields can (up to
topological terms) also be written in an Oðd; dþ nÞ-
covariant way:

fPMðσÞ;PN ðσ0Þg ¼ ηMN δ0ðσ − σ0Þ ð2:2Þ
with the Oðd; dþ nÞ-invariant metric

ηMN ¼

0
B@

0 0 δnm

0 κμν 0

δmn 0 0

1
CA; ð2:3Þ

which is also used to raise and lower theK;L;N ;… indices.
The action on functions of these currents is fPM; fðxÞg ¼
−∂MfðxÞ ¼ ð−∂mfðxÞ; 0; 0Þ. The derivative ∂M is subject
to the section condition ηMN

∂M�∂N �¼0¼ηMN
∂M∂N �,

which is an Oðd; dþ nÞ-covariant way to express that the
functions only depend on x.
The coupling to the bosonic part of heterotic super-

gravity, namely a d-dimensional metric G and two-form
gauge field B and the heterotic gauge field A can be
encoded in a Hamiltonian that is quadratic in the currents
PM and contains the couplings in the so-called generalized
metric HMN :

H ¼ 1

2

Z
dσHMN ðG;B; AÞPMðσÞPN ðσÞ: ð2:4Þ

The spatial diffeomorphism constraint also takes a simple
form, 0 ¼ PMPN ηMN , but will not play a role in the

further discussion. The explicit generalized metric
HðG;B; AÞ and the connection to a Lagrangian picture,
and also the generalization to non-Abelian currents has
been discussed in detail in [49].
For the purpose of this paper the generalized flux

formulation is better suited. To this end, we diagonalize
the generalized metric HAB ¼ EA

MEB
NHMN with a

generalized vielbein EA
M and some suitable constant

HAB. The coupling to the background is encoded in the
Poisson brackets of the currents JA ¼ EA

MPM:

fJAðσÞ; JBðσ0Þg ¼ ηABδ
0ðσ − σ0Þ−FC

ABðσÞJCðσÞδðσ − σ0Þ
ð2:5Þ

via the so-called generalized fluxes FABC ¼ 3∂½AEB
NEC�N .

In the particular case that these FABC can be chosen to be
constant, we would call this construction heterotic E model,
in analogy to the construction for ordinary 2d σ models and
Oðd; dÞ-generalized geometry. For a generic heterotic
supergravity background these fluxes are not constant.
In the standard (geometric) parametrization of the back-

ground in terms of metric G, two-form gauge field B, and
heterotic gauge field A the generalized vielbein is [45]

EA
M ¼

0
B@

δba Aα
a Bab − 1

2
AαaAα

b

0 δβα −Aαb

0 0 δab

1
CA
0
B@

ebm 0 0

0 δβ
μ 0

0 0 ebm

1
CA

ð2:6Þ
with eamebnGmn ¼ κab, which will be used to raise and
lower a; b;… indices. Then, the nonvanishing components
of FABC are

Habc ¼ Fabc

¼
�
∂aBbc þ fdab

�
Bcd −

1

2
Aα
cAdα

�
þ ð∂½aAα

b�ÞAαc

�

þ cyclic permutations of abc;

fcab ¼ Fc
ab ¼ 2enc∂½aeb�n;

Fγ
ab ¼ 2∂½aA

γ
b� − fcabA

γ
c: ð2:7Þ

In hindsight of what is to come, we write JA ¼
ðJa; Jα; JaÞ ¼ ðj0a; kα; ja1Þ. The subscripts 0,1 refer to the
world sheet coordinates τ, σ. In this decomposition the
current algebra (2.5) is

fj0aðσÞ; j0bðσ0Þg ¼ ð−fcabj0c − Fγ
abkγðσÞ −Habcjc1Þ

× δðσ − σ0Þ;
fj0aðσÞ; jb1ðσ0Þg ¼ δbaδ

0ðσ − σ0Þ − fbcajc1ðσÞδðσ − σ0Þ;
fj0aðσÞ; kβðσ0Þg ¼ −Fβ

cajc1δðσ − σ0Þ;
fkαðσÞ; kβðσ0Þg ¼ καβδ0ðσ − σ0Þ;
fja1ðσÞ; jb1ðσ0Þg ¼ 0 ¼ fja1ðσÞ; kβðσ0Þg: ð2:8Þ
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The resulting equations of motion ∂τO ¼ fO; Hg with the
Hamiltonian (2.4) in the generalized metric frame,

H ¼ 1

2

Z
dσðκabj0aðσÞj0bðσÞ þ κabja1ðσÞjb1ðσÞ

þ καβkαðσÞkβðσÞÞ; ð2:9Þ
are

0 ¼ ∂þj−a þ ∂−jþa − 2Fβ
cakβjc− −Habcjbþjc−;

0 ¼ ∂þja− − ∂−jaþ þ fabcjbþjc−;

0 ¼ 2∂−kα − Fα
bcjbþjc−; ð2:10Þ

in conventions with V� ¼ V0 � V1. The generalization of
these equations of motion to a generic FABC, corresponding
to choices of frame than (2.6), is straightforward as for
Oðd; dÞ, e.g., in [28].

III. THE A DEFORMATION OF THE PRINCIPAL
CHIRAL MODEL

There is a plethora of integrable deformations of the
principal chiral model: λ-, η-homogeneous Yang-Baxter
and WZ-term deformation and combinations of those.
Here, a new deformation of a d-dimensional principal
chiral model by the heterotic gauge field A is proposed.

A. Integrability of the undeformed model

As starting point we take the principal chiral model on a
group G with Lie algebra g, embedded into the bosonic
heterotic σ model. In the language of the previous section,
this will be characterized by the components of the Maurer-
Cartan form on G as vielbein e and B ¼ A ¼ 0 in the
generalized vielbein (2.6). This corresponds to the gener-
alized fluxes (2.7)

fcab; Habc ¼ 0; Fγ
ab ¼ 0; ð3:1Þ

where fcab are structure constants to the Lie algebra g. This
corresponds to the following equations of motion

∂þj−a þ ∂−jþa ¼ 0; ∂þja− − ∂−jaþ þ fabcjbþjc− ¼ 0;

∂−kα ¼ 0: ð3:2Þ
This model is classically integrable, as the currents k and
the d-dimensional principal chiral model with the currents j
decouple. Classical integrability is shown by providing a
Lax representation and a classical R matrix, proving
Hamiltonian integrability, i.e., involution of the charges
produced from the Lax representation.
The Lax representation of this model is

LþðλÞ ¼
1

1 − λ
ðjaþta þ 2kαtαÞ;

L−ðλÞ ¼
1

1þ λ
ja−ta ∈ g̃ ¼ g ⊕ uð1Þn; ð3:3Þ

where λ is the spectral parameter. ðta; tαÞ are generators of
g̃ ¼ g ⊕ uð1Þn, which is defined by

½ta; tb� ¼ fcabtc; ½tα; tβ� ¼ 0 ¼ ½ta; tα�:
A method to show involution of the associated tower of
conserved charges is Maillet’s formalism [64,65]. Central
for this is the Lax matrix

LðλÞ ¼ L1ðλÞ ¼
1

2
ðLþðλÞ − L−ðλÞÞ

¼ λja0 þ ja1
1 − λ2

ta þ
1

1 − λ
kαtα: ð3:4Þ

The aim is to construct a so-called classical R matrix, i.e.,
an object Rðλ; μÞ∈ g̃ ⊗ g̃ such that

fL1ðλ;σÞ;L2ðμ;σ0Þg
¼ ð½R12ðλ;μÞ;L1ðλ;σÞ�− ½R21ðμ; λÞ;L2ðμ;σÞ�Þδðσ − σ0Þ
− ðR12ðλ;μÞ þR21ðμ; λÞÞδ0ðσ − σ0Þ: ð3:5Þ

A bold subscript indicates the place in the tensor product,
e.g., X1 ¼ X ⊗ 1. A sufficient condition for the involution
of the conserved charges constructed from the Lax pair is
the classical Yang-Baxter equation:

½R12ðλ1; λ2Þ;R13ðλ1; λ3Þ� þ ½R12ðλ1; λ2Þ;R23ðλ2; λ3Þ�
þ ½R32ðλ3; λ2Þ;R31ðλ3; λ1Þ� ¼ 0: ð3:6Þ

The classical R matrix for the undeformed model (3.2) is

Rðλ; μÞ ¼ ta ⊗ ta

λ − μ
ϕ−1
PCMðμÞ þ

tα ⊗ tα

λ − μ
ϕ−1
chiralðμÞ; ð3:7Þ

with the so-called twist functions

ϕPCMðλÞ ¼
1 − λ2

λ2
; ϕchiralðλÞ ¼ 1 − λ: ð3:8Þ

This is close to the twist function form Rðλ; μÞ ¼
Rð0Þðλ; μÞϕ−1ðλÞ with a solution of the classical Yang-
Baxter equation Rð0Þ, like Rðλ; μÞ ¼ ta⊗ta

λ−μ and a twist
function ϕðμÞ. This form is a sufficient condition in order
for R to be a solution of the classical Yang-Baxter
equation (3.6) and a typical assumption in the classification
of integrable σ models [66]. From this point of view it is
noteworthy that this simple model has no R matrix of this
form. Nevertheless, it is easy to see that (3.7) solves the
classical Yang-Baxter equation, as tα ⊗ tα is a central
element of g̃ ⊗ g̃, and all its contributions drop out of the
classical Yang-Baxter equation (3.6).

B. Introducing the deformation

The deformation is characterized by a constant (in flat
indices) heterotic gauge field
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Aα
a ¼ ϵAα

a; with Aα
aA

β
bκαβ ¼ κab; ð3:9Þ

so A∈OðdÞ ⊂ Matðn; dÞ. For this one needs that n > d
which would be the case for the bosonic part of the
heterotic string where n ¼ 16.1 We use κab (as the
Killing metric on g) and καβ to raise and lower indices
on A, e.g., to define the object Aa

α. Care needs to be
taken that when contracting As in the n-dimensional
indices one will produce Aα

aAbα¼κab by definition (3.9),
but contractions of the d-dimensional flat indices will
result in a projector on the part of the n-dimensional
currents, that couple to the jþ (see below in the equations of
motions)

Pαβ ¼ Aα
aAaβ: ð3:10Þ

In particular, one has thatPα
γPγβ ¼ Pαβ andPα

βA
β
a ¼ Aα

b.
So contractions like Aaαkα will project out the decoupled
components of k as well. One could, of course, decompose
the uð1Þn currents into coupled and decoupled currents
immediately, by choosing the generators of uð1Þn accord-
ingly. Also, in this sense, there is only one inequivalent A
deformation. All A∈OðdÞ are related by a basis change of
uð1Þn. Keeping in mind possible generalizations, the n-
dimensional covariance by introducing A is kept in the
following.
As a result, any choice of gauge field satisfying (3.9)

should result in the same deformation of the fluxes

Habc ¼
�
h̃ −

3

2
ϵ2
�
fabc ¼ hfabc;

fcab ¼ fcab;

Fγ
ab ¼ −ϵAγ

cfcab; ð3:11Þ
where an WZ term with some free coefficient h̃ was
allowed as well, i.e., a B field such that H ∼ f.
Effectively, this results in a two-parameter deformation
where the WZ part is, of course, well understood but it
interesting to note that one can combine it with the novel A
deformation. The equations of motion are

0 ¼ ∂þja− þ ∂−jaþ þ 2ϵAb
βf

a
bck

β
þjc− − hfabcjbþjc−;

0 ¼ ∂þja− − ∂−jaþ þ fabcjbþjc−;

0 ¼ 2∂−kα þ ϵAα
afabcjbþjc−: ð3:12Þ

It is convenient to decompose the last equation into an
d-dimensional part of k that couples to the j, and the
(n − d)-dimensional part that is still decoupled:

0¼Aa
αð2∂−kαþϵfabcjbþjc−Þ; 0¼ð1−PÞαβ∂−kβ: ð3:13Þ

These decoupled components and the associated generators
will be denoted with a bar in the following:

ð1 − PÞαβkβ ¼ k̄α; ð1 − PÞαβtβ ¼ t̄α:

C. The Lax pair

In order to show the existence of a Lax pair L� ∈ g̃, we
make the ansatz is

L−ðλÞ ¼ aðλÞja−ta;

Lþ ¼ ðbðλÞjaþ þ cðλÞϵAa
αkαÞta þ

2

1 − λ
k̄αt̄α: ð3:14Þ

where the coefficient in front of the decoupled currents k̄ is
taken from the undeformed case (3.3) and λ is the spectral
parameter. The coefficients aðλÞ, bðλÞ, cðλÞ are determined
such that

0 ¼ ∂þL− − ∂−Lþ þ ½Lþ; L−�∈ g̃ ð3:15Þ
is valid by virtue of the equations of motion (3.12). This
results in the under determined system of equations:

0¼ aþb
2

−ab−
1

2
ðϵ2cþhða−bÞÞ; 0¼−ða−bÞþac:

A convenient parametrization of the solution to this is

a¼ 1

1þλ
; b¼1− ½ϵ2ð1þλÞþh�

fϵ;hðλÞ
; c¼−

2λ

fϵ;hðλÞ
; ð3:16Þ

with fϵ;hðλÞ ¼ 1 − λ − ð1þ λÞ½ϵ2ð1þ λÞ þ h�. In that para-
metrization one can recognize a typical parametrization of
the Lax pair of the principal chiral model in the undeformed
limit; i.e., for the g-valued part of LðλÞ

La
�ðλÞ ⟶

ja�
1 ∓ λ

; for ϵ; h → 0: ð3:17Þ

But the full Lax pair L� ∈ g̃ in the limit ϵ → 0 does not
give the full undeformed Lax pair (3.3)—the part of the kα

that is coupled in the deformed models disappears from the
Lax pair and the equations of motion reconstructed from it.

D. Hamiltonian integrability

One should check whether the conserved charges from
the Lax pair are also in Poisson involution for arbitrary
choices of ϵ and h. The relevant quantity for this is the Lax
matrix

L≡L1

¼ 1

ð1þλÞfϵ;hðλÞ
½λja0þðfϵ;hðλÞþλÞÞja1−ϵλð1þλÞAa

αkαþ�ta

þ 1

1−λ
k̄αt̄α: ð3:18Þ1This is due the fact that Uð1Þn is the Cartan subgroup of

E8 × E8 or SO(32).
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A corresponding classical R matrix is

R12ðλ; μÞ ¼
ta ⊗ ta

λ − μ
ϕ−1
ϵ;hðμÞ þ

t̄α ⊗ t̄α
λ − μ

1

1 − μ
; with

ϕϵ;hðμÞ ¼
ð1þ μÞfϵ;hðμÞ

μ2
: ð3:19Þ

Again, R is almost of the form with twist function and
solves the classical Yang-Baxter equation (3.6) by the
same argument as in the undeformed case. This R matrix
could be guessed relatively easily from inspiration from

the form of theRmatrix of the principal chiral model. It is
easy to see that the (g ⊗ g)-valued part is reproduced for
ϵ; h → 0, as then fϵ;hðλÞ → ð1 − λÞ. But, as also for the
Lax pair, the full R matrix (3.19) does not reproduce
the full undeformed R matrix (3.7) in the nondeforma-
tion limit.
One checks that (3.19) and (3.18) fit into Maillet’s

formalism, by showing that for the (g ⊗ g)-valued part
both the left-hand and right-hand sides of Maillet bracket
(3.5) correspond to

ta ⊗ tb

ð1þ λÞfϵ;hðλÞð1þ μÞfϵ;hðμÞ
ðfcabδðσ − σ0Þðð−λμÞj0cðσÞ þ ðλμÞϵAγ

ckγðσÞ

− ½ðλþ μÞ − ϵ2ðλþ μþ 2λμÞ − hðλþ μþ λμÞ�j1cðσÞÞ
þ καβδ

0ðσ − σ0Þððλþ μÞ − ϵ2ðλþ μþ 3μλ − λ2μ2Þ − hðλþ μþ 2μλÞÞÞ: ð3:20Þ

The part valued in uð1Þn ⊗ uð1Þn remains unchanged from
the discussion in the undeformed case.

IV. DISCUSSION

In this article a new integrable deformation of the
principal chiral model inspired by the heterotic string
was proposed. It builds on the recent Hamiltonian formu-
lation of the bosonic part of the heterotic string σ model in
terms of Oðd; dþ nÞ-generalized geometry in [49].
Building on that the analog to the so-called E model in
Oðd; dÞ-generalized geometry was proposed in the
Introduction. The deformation was introduced in the
second section and is characterized by a certain choice
of heterotic gauge field Aα ¼ ϵAα. The concrete choice of
A∈OðdÞ can be absorbed into a change of basis for the
n-dimensional current k. Hence, this deformation of A
really only results in a one-parameter deformation given by
the fluxes (3.11). It is also shown that this deformation can
be extended to a two-parameter deformation together with a
WZ-term-like deformation, while preserving integrability.
Classical integrability was shown by the explicit construc-
tion of a Lax pair (3.18) and a classicalRmatrix (3.19) that
solves the classical Yang-Baxter equation.
To the knowledge of the author this is uncharted

territory. From here several direction should be taken
to further explore this space of novel integrable
σ models:
(1) Generalization to the full (supersymmetric) heterotic

string
(2) Different starting points for the deformation:

(i) symmetric space coset σ models, Yang-Baxter
or λ deformation, instead of the principal chiral
model for a Lie group G

(ii) non-Abelian chiral currents kα, i.e., some non-
trivial gauge algebra h instead of uð1Þn

(3) Dual version of the A deformation.2 The natural
starting point would be the dual vielbein to (2.6)
with dual fields α and β to A and B:

EA
M ¼

0
BB@

δba 0 0

αbα δβα 0

βab − 1
2
αaαα

bα −αaβ δab

1
CCA

×

0
B@

ebm 0 0

0 δβ
μ 0

0 0 ebm

1
CA: ð4:1Þ

(4) The deformed models as reduction of known inte-
grable σ models.
From the point of view of the systematics of

integrable models, the question is this: How new is
this model really? The present Lax representation is
valued in g ⊕ uð1Þn. A natural candidate for a more
conventional integrable σ model that would repro-
duce the same equations of motion (2.10) would be
something like a principal chiral model or a Wess-
Zumino-Witten (WZW) model with target space
G × Tn, together with some constraint that makes
k− (which did not appear in the construction here)
vanish. This is clearly possible for the undeformed
model, but does not seem possible straightforward
for the deformed model. This deserves further
attention.
A related question would be whether these models

can be obtained from 4D Chern-Simons theory
[19–24]. The not quite “twist function” form of

2In generalization of the fact that one can have integrable
deformations based on the Kalb-Ramond field B (WZ term) or
their duals β (η and homogeneous Yang-Baxter deformations),
there could be also a dual version of A deformation.
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the R matrices (3.7) and (3.19) might suggest that
this is not the case.

Besides these questions, two issues should be addressed
and will be briefly discussed below: the questions about the
embedding of these models into string theory and their
incorrect nondeformation limit. Both questions certainly
require more study, in particular if the present approach
can be extended to the above mentioned more nontrivial
examples.

A. Embedding into heterotic supergravity

The usual question for the integrable models and their
deformations in context of string theory is whether they are
also supergravity backgrounds. A detailed discussion is left
for future research when a similar analysis to the one in this
article has been done with the inclusion of fermions.
This question consists of two parts: (1) When is the

undeformed model a solution of heterotic supergravity?
(2) Is the A deformation a solution to heterotic supergravity,
given that the undeformed model is?
The principal chiral model: In comparison to the type II σ

models, the heterotic principal chiral model cannot be
completed a string σ model by simply choosing a super-
group with vanishing Killing form [67].

B. The WZW-type undeformed model

A valid starting point for the deformation in heterotic
supergravity would be the WZW-type model, i.e., target
space geometry corresponding to the fluxes (3.11) with
h ¼ 1, ϵ ¼ 0. This is clearly a solution of heterotic super-
gravity, as it only contains NS-NS (Neveu-Schwarz) fields
and is a conformal model. WZWmodels have been applied
in several circumstances in heterotic string theory, for
example for the heterotic string on AdS3 [68] or compac-
tifications on group manifolds with torsion [69]. Some of
these discussions actually require (chiral) gauged WZW
models [70–72]. For this, the present approach has to be
extended from group to coset manifolds as discussed
above.

C. The deformed model

One can check that an integrable deformation of such a
WZW model will correspond to a solution of heterotic
supergravity, given that the two deformation parameters h
and ϵ in (3.11) are related in a certain way.
For example, one of the equations of motion of heterotic

supergravity [15]—in the frame formalism and for constant
dilaton—is

0 ¼ RðþÞ
ab − 2α0ðtrðFacFb

cÞ − RðþÞ
ac RðþÞ

b
cÞ: ð4:2Þ

Here, RðþÞ is, as usual, the Ricci tensor of the torsionful
connection Γþ 1

2
H, where Γ is the Christoffel connection.

The choice of fluxes (3.11) means that

trðFacFb
cÞ ¼ ϵ2κab; RðþÞ

ab ¼ −χ2κab

with the Killing form κ on g and χ2¼ 1
4
ðh−1Þ2ð2þðh−1Þ2Þ

for simplicity of notation.
So far, we ignored dimensions. Only for the following

analysis, these are briefly reintroduced. In particular, ½χ2� ¼
½ϵ� ¼ ½α0�−1. The heterotic supergravity equation (4.2) at
Oðα0Þ is satisfied, given that deformation parameters are
related:

χ2¼ 1

4α0
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

16α02
þ ϵ2

r
≈2α0ϵ2þðα0Þ−1Oððα0ϵÞ4Þ: ð4:3Þ

The other heterotic supergravity equations hold in a similar
way. Also, by virtue of the Jacobi identity of g, the anomaly
cancellation condition

dH ¼ 0 ¼ trðF ∧ FÞ ð4:4Þ

is automatically fulfilled for fluxes of the deformed
model (3.11).

D. Nondeformation limit

As discussed briefly in the main text, the objects of the
Lax construction, i.e., the Lax pair and the classical R
matrix, do not have the correct nondeformation limit. The
g-valued part of the Lax connection (3.18) correctly
reproduces the one of the principal chiral model, but the
full ðg ⊕ uðnÞnÞ-valued Lax connection does not repro-
duce the full undeformed one (3.3). A similar problem also
arises for the poles and zeros of the twist function. Whereas
ϕϵ;h → ϕPCM and both have double poles at 0 and infinity,
ϕϵ;h ¼ ð1þ λÞfϵ;hðλÞλ−2 has three zeros:

λ1 ¼ −1;

λ2;3 ¼ −
1

2ϵ2

�
2ϵ2 þ ð1þ hÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ϵ2 þ ðhþ 1Þ2

q �
: ð4:5Þ

For an analysis of the h; ϵ → 0 limit, a concrete ϵ
dependence of h ¼ h̃ − 3

2
ϵ2, respectively, also of h̃ needs

to be specified. As an example, let us assume that h ¼ h0
has no ϵ dependence (so h̃ ¼ h0 þ 3

2
ϵ2). Then one of the

λ2;3 has the expected ϵ → 0 limit:

λ2 ¼ −
1þ h0
ϵ2

−
3

1þ h0
þOðϵ2Þ ⟶

ϵ;h0→0
−∞;

λ3 ¼
1

1þ h0
þOðϵ2Þ ⟶

ϵ;h0→0 ¼ 1: ð4:6Þ

The latter gives the expected zero in comparison to the twist
function of the principal chiral model, but the role and
origin of the additional zero at infinity is not clear at this
stage. Let us summarize these issues:
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deformed Lax pair ð2.18Þ ↛ undeformed Lax pair ð2.3Þ
deformed R matrix ð2.19Þ ↛ undeformed R matrix ð2.7Þ

for ϵ; h → 0 ð4:7Þ
3 zeros of ϕϵ;h ↛ 2 zeros of ϕPCM:

This result might seem puzzling, as for the known
integrable deformations the nondeformation limit gives
the expected undeformed Lax pairs, see, e.g., [10]. An
explanation for this might be the following: It is well
known in perturbation theory that deformations (or pertur-
bations) of partial differential equations do not necessarily
correspond to deformations of the solution space. One

might interpret this result in this context, as the Lax pair
corresponds to a solution of the system. Nevertheless, this
question deserves further attention.
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