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We consider the frequency-domain leading order and next-to-leading order post-Minkowskian wave-
forms obtained from the tree-level and one-loop amplitudes describing the scattering of two massive scalar
objects and the emission of one graviton. We explicitly calculate their post-Newtonian (PN) limit obtaining
an expansion up to the third subleading PN order in all ingredients: the tree-level amplitude, the odd and
even parts of the real one-loop kernel, and the Compton or “rescattering” cuts, thus reaching 3PN precision
for the latter. We provide explicit expressions for the multipole decomposition of these results in the center-
of-mass frame and compare them with the results obtained from the classical multipolar post-Minkowskian
method. We find perfect agreement between the two, once the Bondi-Metzner-Sachs supertranslation frame
is properly adjusted and the infrared divergences due to rescattering are suitably subtracted in dimensional
regularization. This shows that the approach proposed in Georgoudis et al. [An eikonal-inspired approach
to the gravitational scattering waveform, J. High Energy Phys. 03 (2024) 089] can be applied beyond the
soft-regime ensuring the agreement between amplitude-based and multipolar post-Minkowskian results for
generic frequencies.
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I. INTRODUCTION

Amplitude-based methods have been instrumental in
recent years in improving the state of the art of post-
Minkowskian (PM) calculations, leading in particular to
new results for the deflection angle characterizing hyperbolic
gravitational encounters at large impact parameters [1–4].
These achievements were based on multiloop calculations
of the elastic 2 → 2 amplitude for the scattering of two
minimally coupled massive scalars, which model colliding
Schwarzschild black holes. While initially the focus was on
the so-called conservative sector of the interactions [5–8], it
was soon realized that the physical result for the deflection
must also include dissipative effects, such as radiation-
reaction and recoil, which can be captured by taking into
account suitable cuts involving also on-shell gravitons
[9–19]. Outstanding achievements were also obtained

by means of quantum-field-theory inspired worldline tech-
niques [20–27] and closely related methods were developed
to calculate various kinds of integrated radiative observables
as well [28–35]. Many results have been analytically
continued from hyperbolic to elliptic trajectories [36–39],
showing that it is possible to use amplitude-based methods to
extract information about bound systems as well.
The success of this program, which is mainly motivated

by the dawn of a high-precision era of gravitational-wave
observations [40–43], sparked renewed interest in another
observable associated to hyperbolic encounters: the gravi-
tational scattering waveform. The leading PM result for this
quantity dates back to the seminal works of Kovacs and
Thorne [44,45], which were recently revisited and stream-
lined using worldline methods in [46,47] and amplitude
methods in [12,48–50]. In the latter approach, the leading
PM waveform arises as the Fourier transform of the tree-
level 2 → 3 amplitude with one graviton emission [51],
whose explicit expression is given in [52,53]. The dynami-
cal information needed to calculate the first subleading
correction to this result is instead encoded in the one-
loop 2 → 3 amplitude that was calculated in [54–57]. This
subleading PM object contains several interesting new
features.
First, it involves “superclassical” or iteration terms, which

are expected from the eikonal exponentiation [16,58,59] but
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cannot appear in the final result for a physical observable,
and were thus simply dropped in the original series of works.
It was later pointed out in [60], upon closer inspection of
the Kosower-Maybee-O’Connell (KMOC) prescription for
calculating observables from amplitudes [61], that the
cancellation of such superclassical terms actually leaves
behind a classical contribution arising from the difference
between two-massive-particle cuts, which we shall denote by
i
2
ðs − s0Þ. However, we showed in [62] that the omission of

this term is simply compensated by rotating the particles’
velocities and impact parameter from the initial to the
“eikonal” ones (up to a shift in the retarded time). This is
equivalent to switching from the reference frame anchored to
the initial velocities to the “eikonal” frame, which are rotated
by Θ=2 with respect to each other, Θ denoting the PM
deflection angle. Working directly with the latter, one can
thus omit i

2
ðs − s0Þ and focus on the classical part of the

amplitude in [54,55,57]. This mechanism had already been
observed in [63] in the post-Newtonian (PN) limit and
in [50] in the soft limit. The contribution i

2
ðs − s0Þ was also

calculated in momentum space and included in the revised
versions of [54,55] and in [64,65].
Second, the subleading waveform kernel involves an

infrared divergent part that arises due to tail or rescattering
effects [66–68], which can be however exponentiated into a
(divergent) phase factor [69]. While this can be reabsorbed
into a shift or “renormalization” of the observer’s retarded
time [70,71], an open issue remained as to whether this
exponentiation also leaves behind a correction in the finite
piece. We shall see that this is indeed the case as such
contributions arise from ϵ=ϵ corrections that must be taken
into account when taking the ϵ → 0 limit in dimensional
regularization, D ¼ 4 − 2ϵ.
The main motivation for the present work is to clarify the

comparison between the amplitude-based result for the
waveform up to subleading PM order and the predictions
obtained from more conventional methods for waveform
calculations employed in classical general relativity. These
are based on the PN solution of the Einstein equations in
the near zone, followed by a matching with the multipole
expansion of the gravitational field in the exterior zone and
its propagation to the far zone, where it determines the
radiative multipoles [72–75] (see [76] for a comprehensive
review). The comparison in the PN limit between the
amplitude waveform and the multipolar post-Minkowskian
(MPM) one was initiated in [63]. There, the authors found
agreement up to 1PN for the real part of the one-loop kernel
B and 1.5PN for the imaginary part i

2
ðc1 þ c2Þ, but found a

mismatch at 2.5PN order in the latter. When reexpanded for
small frequencies ω → 0, this discrepancy would start to
appear at order ω logω.
We later reassessed this disagreement in [62], focusing

on the soft limit ω → 0. There, after checking the agree-
ment between the amplitude result and predictions coming
from soft theorems [77,78] for the universal terms, we also

calculated the first nonuniversal order, ω logω, at one loop
and showed that all “mismatches” up to and including
2.5PN could be in fact reabsorbed by adjusting the origin of
retarded time and the choice of Bondi-Metzner-Sachs
(BMS) frame. This highlighted once again [79] the impor-
tant role played by BMS supertranslations when comparing
amplitude-based results, which, for ω > 0, are more nat-
urally expressed in the “canonical” frame where the
asymptotic shear vanishes in the far past, and MPM
formulas, which only hold in the “intrinsic” frame as they
crucially rely on the OðGÞ time-independent part of the
shear due to free motion.
In this work, we extend and complement the analysis of

[62,63] by calculating the amplitude waveform in the PN
limit without resorting to the soft approximation. We per-
form the expansion for small velocity in momentum-space,
the Fourier transforms and the multipolar decomposition
up to the third subleading order [next-to-next-to-next-to
leading order (NNNLO)] in the PN expansion for all the
basic ingredients of the waveform kernel. These are the
tree-level amplitude, the odd and even part of the real kernel
B, and the Compton cuts i

2
ðc1 þ c2Þ. We collect our results

in the Supplemental Material [80] in a computer-friendly
format. We then briefly recall the MPM techniques and use
them to provide independent predictions up to the desired
order in the velocity. Finally, we compare the two sets of
results, finding perfect agreement once two aspects are
appropriately taken into account.
The first one is the BMS supertranslation already high-

lighted in [62,79], which maps from the amplitude (canoni-
cal) to the MPM (intrinsic) supertranslation frame. The
second one is the subtraction of finite ϵ=ϵ terms that is
determined by the exponentiation of infrared divergences.
In particular, the NNLO PN calculation of the Compton
cuts beyond the soft limit is the simplest nontrivial
comparison that is able to nail down this subtraction,
because up to soft order ω logω such terms could be also
reabsorbed by adjusting the origin of retarded time, while
this is no longer true for generic ω. This mechanism was
already noted in [62] when discussing the i

2
ðs − s0Þ con-

tribution for generic frequency and velocity. It was instead
immaterial for the analysis of the Compton cuts performed
there, which was restricted to the nonanalytic terms in the
soft limit.
The paper is organized as follows. In Sec. II, we

summarize the current understanding of the subleading
waveform kernel derived from amplitudes and describe its
main building blocks. In Sec. III, we discuss the expo-
nentiation of infrared divergences, taking into account
the resulting subtraction of finite ϵ=ϵ terms. Section IV
then deals with the PN expansion of the amplitude-based
waveform, for which we describe the main steps. For
simplicity, we provide the explicit expressions only of
various contributions to the quadrupole in the text, while
collecting the entire set of multipoles in the ancillary file.
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In Sec. V, we discuss instead the MPM method, reviewing
how time-reversal even and odd effects arise in that frame-
work, and illustrating in particular tail, nonlinear, and
radiation-reaction effects. We conclude in Sec. VI by
comparing the two methods, explaining how agreement
is achieved and highlighting along the way the strengths
and drawbacks of either approach. In the Appendix, we
provide for completeness a self-contained illustration of the
multipole expansion and collect some useful properties of
symmetric trace-free (STF) tensors.

II. REMINDER ON THE WAVEFORM KERNEL
UP TO ONE LOOP

We begin by recalling that the metric fluctuation hμνðxÞ,
defined by

gμνðxÞ − ημν ¼ hμνðxÞ; ð1Þ

can be expressed as follows in terms of the wave
shape W̃μν,

hμνðxÞ ¼ 2κ

Z
k

�
eik·xW̃μνðkÞ þ e−ik·xW̃�

μνðkÞ
�
; ð2Þ

with κ ¼ ffiffiffiffiffiffiffiffiffi
8πG

p
and

R
k ¼

R
d4k
ð2πÞ4 2πθðk0Þδðk2Þ the on-shell

phase-space graviton measure. In the asymptotic limit
r → ∞ for a fixed retarded time U and a given null vector
nμ, one obtains the following formal expression for the
D ¼ 4 asymptotic waveform [51,81],

hμνðxÞ ∼
4G
κr

Z
∞

0

e−iωUW̃μνðωnÞ
dω
2π

þ ðc:c:Þ ð3Þ

up to corrections that are further suppressed for large r
(“c.c.” stands for “complex conjugate”). The expression (3)
is formal indeed, since at one loop one cannot take the
D ¼ 4 limit in a straightforward way owing to the presence
of infrared divergences. We shall see below how their
exponentiation allows one to arrive at a precise and
concrete prescription for the D ¼ 4 observable.
As discussed in Refs. [54–57,60], in the KMOC

approach [61], the wave shape W̃μν can be expressed as
the Fourier transform of a momentum-space “waveform
kernel” Wμν,

W̃μνðkÞ ¼
Z

dDq1
ð2πÞD

dDq2
ð2πÞD 2πδð2p1 · q1Þ2πδð2p2 · q2Þ

× eiq1·b1þiq2·b2Wμνðq1; q2Þð2πÞDδðDÞ

× ðq1 þ q2 þ kÞ: ð4Þ

Here we adopted the following notation for the momenta of
the incoming and outgoing states entering the amplitude,
summarized in the picture below,

ð5Þ

where all external momenta are treated as formally out-
going. Up to subleading order in the PM expansion, the
KMOC kernel is given by Wμν ¼ Wμν

0 þWμν
1 þ � � � with

Wμν
0 ¼ Aμν

0 ;

Wμν
1 ¼ Bμν

1 þ i
2
ðsμν − s0μνÞ þ i

2

�
cμν1 þ cμν2

�
: ð6Þ

Here, A0 is the tree-level 2 → 3 amplitude in the classical
limit and B1 is the real part of the one-loop 2 → 3
amplitude (the N-matrix element). Instead, s, s0, c1, and
c2 denote the one-loop unitarity cuts, which can be depicted
schematically as follows:

ð7Þ

and

ð8Þ

In [62], we showed that the two-massive-particle-cut
contributions [60] appearing on the right-hand side of (6)
can be interpreted as a simple rotation of the particles’
velocities and impact parameter, plus a (divergent but
immaterial) time shift associated to the Shapiro time delay.
Instead of adopting as basis vectors the initial velocities,

pμ
1 ¼ −m1v

μ
1; pμ

2 ¼ −m2v
μ
2 ð9Þ

and the initial impact parameter

bμJ ¼ bμ1 − bμ2; bJ · v1 ¼ bJ · v2 ¼ 0; ð10Þ

it is therefore convenient to describe the two-body system
in terms of rotated, “eikonal” classical variables

p̃μ
1 ¼ m̃1ũ

μ
1 ¼ −pμ

1 þ
1

2
Qμ;

p̃μ
2 ¼ m̃2ũ

μ
2 ¼ −pμ

2 −
1

2
Qμ; ð11Þ

with Qμ the (PM expanded) impulse and denoting by Q, b
the magnitudes of Qμ, bμe (or bμJ),

1

1Since b2e and b2J would differ by OðG2Þ terms, up to the order
of interest here we can set b2J ≃ b2e ¼ b2.
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bμe ¼ bμJ −
�

v̌μ1
2m1

−
v̌μ2
2m2

�
bQ ð12Þ

after Fourier transform. In (12), we also introduced

v̌μ1 ¼
σvμ2 − vμ1
σ2 − 1

; v̌μ2 ¼
σvμ1 − vμ2
σ2 − 1

; ð13Þ

where σ ¼ −v1 · v2 as in (16) below. Note that, by
definition, the rotated variables also obey

be · ũ1 ¼ be · ũ2 ¼ 0: ð14Þ

This choice amounts to simply dropping the i
2
ðs − s0Þ

contribution to the kernel, working with

WeikðkÞ ¼ A0 þ B1 þ
i
2
ðc1 þ c2Þ: ð15Þ

Here and in the following, we adopt a shorthand notation
for gauge-invariant amplitudes contracted with physical
polarization tensors A ¼ εμνAμν ¼ εμAμνεν, with εμ as
the usual D ¼ 4 polarization vectors such that ε · k ¼ 0,
ε · ε ¼ 0, ε · ε� ¼ 1.
Let us turn to the description of the ingredients

entering (15). For the tree-level amplitude A0 in the
classical limit, first derived in [52,53], we employ in
particular the explicit expression given in [12,81]. We shall
denote the kinematic invariants as follows:

σ ¼ −v1 · v2; ω1 ¼ −v1 · k; ω2 ¼ −v2 · k: ð16Þ
In the real part of the one-loop kernel, B1, one can isolate
an odd and an even part, B1 ¼ B1O þ B1E, under
ω1;2 ↦ −ω1;2. The former being fixed in terms of the

tree-level amplitude by the simple formula B1O ¼ BðiÞ
1O þ

BðhÞ
1O with [54–57]

BðiÞ
1O ¼ −

σðσ2 − 3
2
Þ

ðσ2 − 1Þ3=2 πGEωA0; ð17aÞ

BðhÞ
1O ¼ πGEωA0; ð17bÞ

where E and ω are the total incoming energy and the
outgoing graviton’s frequency in the center-of-mass frame.
Instead, the structure of the even part is more intricate and
takes the following form (see e.g. the ancillary files of [55])

B1E ¼
	

AR
ω1

ω2
1ðq22 þ ω2

1Þ7=2
þ AR

q1

ω2
2

ffiffiffiffiffi
q21

p 

m3

1m
2
2

q22Q
4
1

þ ð1 ↔ 2Þ:

ð18Þ
In Eq. (18), we are displaying explicitly only the structure
involving m3

1m
2
2, while the other one is obtained by

interchanging the labels 1 and 2 everywhere. The functions
AR
X, with X∈ fω1; q1g, denote polynomial functions of the

kinematic invariants σ, ω1, ω2, q21, q
2
2, quadratic in ε · u1,

ε · u2, and ε · q2 (we recall that ε · k ¼ 0 and hence
ε · q1 ¼ −ε · q2). Moreover,

Q1 ¼ ðq21 − q22Þ2 − 4q21ω
2
1 ð19Þ

represents an apparent or “spurious” pole in the expression,
which does not correspond to any actual singularity as one
can explicitly check by taking the limit Q1 → 0 and using
the vanishing of the Gram determinant,

det ½Gramðv1; v2; q1; q2; εÞ� ¼ 0: ð20Þ

This encodes the fact that εμ can be always expressed
in D ¼ 4 as a linear combination of v1, v2, q1, q2.
Analogously, in the 1 ↔ 2 contribution we will have

Q2 ¼ ðq21 − q22Þ2 − 4q22ω
2
2: ð21Þ

Finally, say, the c1 cut is given as follows, again letting AI
X,

with X∈ fω1; q1;ω1ω2; q1q2g, denote polynomials in the
invariants quadratic in the polarization vectors (see e.g. the
ancillary files of [55] for the explicit expressions):

i
2
c1 ¼ iGm1ω1

�
−
1

ϵ
þ log

ω2
1

μ2IR

�
½A0�D¼4 þ im3

1m
2
2M

m3
1
m2

2 ;

ð22Þ

Mm3
1
m2

2 ¼ AI
rat

q21q
2
2ðσ2 − 1Þω1ω

2
2ðq22 þ ω2

1Þ3Q3
1PQ

þ AI
ω1

q22ω
2
1ðq22 þ ω2

1Þ3PQ4
1

arcsinh
ω1ffiffiffiffiffi
q22

p
þ AI

q1

q22ω1ðσ2 − 1ÞP2Q2

arccoshσffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 1

p

þ AI
ω1ω2

ω1ω
2
2P

2Q2
log

ω2
1

ω2
2

þ AI
q1q2

q21q
2
2Q

4
1PQ

2
log

q21
q22

ð23Þ

with

P ¼ −ω2
1 þ 2ω1ω2σ − ω2

2;

Q ¼ ðq21Þ2ω2
1 − 2q21q

2
2ω1ω2σ þ ðq22Þ2ω2

2 ð24Þ

marking the appearance of additional spurious poles. The
other cut, c2, is again obtained by interchanging the labels 1
and 2 everywhere. Note that, considering c1 þ c2 directly
would lead to the appearance of both 1=Q4

1 and 1=Q
4
2 in the

rational prefactor in front of logðq21=q22Þ.
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Let us recall that, in terms of the graviton frequency ω
defined in the center-of-mass frame (see Sec. IVA for more
details), the following identity holds:

m1ω1 þm2ω2 ¼ Eω; ð25Þ

where E is the total energy of the incoming state in that
frame. It is also natural and convenient to define the
following dimensionless variable, proportional to the fre-
quency, that does not scale in the PN limit (not to be
confused with the retarded time, which we denote by U),

u ¼ ωbffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 1

p : ð26Þ

III. INFRARED DIVERGENCES REVISITED

The standard way of treating the IR divergent piece
appearing in the Compton cuts [see (22)] is to exponentiate
it according to [69]

Weik ¼ e−
i
ϵGEω

	
A0 þ B1 þ

i
2
ðc1 þ c2Þreg



;

¼ e−
i
ϵGEωWreg; ð27Þ

where

i
2
creg1 ¼ i

2
c1 þ

i
ϵ
Gm1ω1A0 ð28Þ

and similarly for c2. Note that the c
reg
1 defined in this way is

not only IR finite, thanks to the cancellation of the pole
− i

ϵGm1ω1½A0�D¼4 appearing in the first term on the right-
hand side of (22), but it also has a slightly different finite
part compared to the one defined by (22) and (23). This is
because A0 in (28) is the D-dimensional tree-level ampli-
tude, which also containsOðϵÞ terms.2 The resulting (finite)
ϵ=ϵ terms thus must be added to i

2
c1 (in particular, they

modify AI
rat),

3 leading to

i
2
creg1 ¼ 2iGm1ω1 log

ω1

μIR
A0 þ im3

1m
2
2M

m3
1
m2

2
;reg: ð29Þ

This is reminiscent of analogous ϵ=ϵ contributions featur-
ing in higher-order PN contributions to the MPM-PN
approach [82–84]. After this step, the divergence in (27)
can be renormalized by redefining the origin of retarded
time [70,71],

U ↦ U −
1

ϵ
GE; ð30Þ

arriving at the following well-defined expression

hμνðxÞ ∼
4G
κr

Z
∞

0

e−iωUW̃reg
μν ðωnÞ dω

2π
þ ðc:c:Þ; ð31Þ

which provides the properly subtracted version of (3).
Note that performing further OðGÞ finite shifts of the
retarded time in (30) is equivalent to adjusting the arbitrary
scale μIR. In the following, we will be concerned with the
expansion of the spectral waveform 1

κ W̃
reg in the PN limit.

As we shall see, taking into account the further finite
difference in (28) will be crucial in order to obtain agree-
ment with MPM prediction. On the contrary, one should
not worry about additional factors of ϵ introduced by the
2 − 2ϵ dimensional measure in the impact-parameter
Fourier transform (4), which should be applied after the
momentum-space exponentiation [i.e., on the square
bracket in (27)].
For later convenience, let us use the identity

m1ω1 log
ω1

μIR
þm2ω2 log

ω2

μIR

¼ Eω log
ω

μIR
þ ωðm1α1 log α1 þm2α2 log α2Þ; ð32Þ

with ω1 ¼ ωα1, ω2 ¼ ωα2, to isolate the running logarithm
appearing in the (regulated) Compton cuts,

i
2
ðc1 þ c2Þreg ¼ 2iGEω log

ω

μIR
A0 þ Creg ð33Þ

with

Creg ¼ 2iGωm1α1 log α1A0 þ im3
1m

2
2M

m3
1
m2

2
;reg

þ ð1 ↔ 2Þ: ð34Þ

IV. POST-NEWTONIAN EXPANSION
OF THE AMPLITUDE-BASED WAVEFORM

In this section, we discuss the expansion of the waveform
obtained from the regulated amplitude kernel Wreg in (27)
in the PN limit. We start from the real part of the waveform
kernel and then turn to its imaginary part. We will proceed
by taking the PN limit already from the outset, in momen-
tum space, discussing below the challenges that arise in this
step. Once the expansion is performed, all q-dependent
spurious poles manifestly cancel out. The remaining one,
arising from the expansion of P, can then be easily
removed by taking the polynomial remainder with respect
to the Gram determinant, which implements the four-
dimensional identity (20).

2These arise from the subtraction of the trace, i.e. of dilaton
exchanges. Thus, this subtlety is absent in N ¼ 8 supergravity.

3By the same logic, we expect that the appropriate subtraction
of the two-loop kernel will require the knowledge of the OðϵÞ
accurate one-loop one, which also involves the full pentagon
topology.
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A. Kinematic conventions

We will consider the PN limit in the center-of-mass
frame. We thus introduce the four-velocity tμ of the center-
of-mass frame and the unit vector eμ aligned with the
“eikonal” particles’ momenta in the center-of-mass frame,

tμ ¼ ð1; 0; 0; 0Þ; eμ ¼ ð0; 0; 1; 0Þ; ð35Þ

so that

ũμ1 ¼
E1

m1

tμ þ p
m1

eμ ¼ 1

m1

ðE1; 0;þp; 0Þ; ð36aÞ

ũμ2 ¼
E2

m2

tμ −
p
m2

eμ ¼ 1

m2

ðE2; 0;−p; 0Þ; ð36bÞ

where E1;2 denote the particles’ energies,

E1 ¼
m1ðm1 þm2σÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
1 þ 2m1m2σ þm2

2

p ;

E2 ¼
m2ðm2 þm1σÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
1 þ 2m1m2σ þm2

2

p ð37Þ

and

E ¼ E1 þ E2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ 2m1m2σ þm2
2

q
;

p ¼ m1m2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ 2m1m2σ þm2
2

p : ð38Þ

In terms of the “eikonal” impact parameter, we define

bμe ¼ ð0; b; 0; 0Þ: ð39Þ

Moreover, we fix the translation frame by letting

bμ1 ¼ þE2

E
bμe ¼ þE2

E
ð0; b; 0; 0Þ;

bμ2 ¼ −
E1

E
bμe ¼ −

E1

E
ð0; b; 0; 0Þ; ð40Þ

so that E1b
μ
1 þ E2b

μ
2 ¼ 0. Working in this frame, we solve

the delta functions in (4) as follows

W̃μνðkÞ ¼
1

4m1m2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 1

p e−ib2·k

×
Z

d2q⊥
ð2πÞ2 Wðq1;−k − q1Þeib·q⊥ ð41Þ

and by letting

qμ1 ¼ qμ⊥ − ω2

σũμ1 − ũμ2
σ2 − 1

: ð42Þ

As a result, in the PN limit, thanks to the cancellation of the
spurious poles discussed above, all Fourier transforms can
be easily evaluated with the help of the general formula

Z
d2q⊥
ð2πÞ2

�
1þ p2

∞q2⊥
ω2

�
ν

eibe·q⊥ ¼ 2ν

πb2
K1þνðuÞ
Γð−νÞuν−1 ; ð43Þ

where KαðxÞ denotes the modified Bessel function of the
second kind. We let

kμ ¼ ωnμ; ð44Þ

with nμ a null vector such that −n · t ¼ 1, so that ω is the
frequency as measured in the center-of-mass frame. It is
also useful to introduce the total massm and the symmetric
mass ratio ν by

m ¼ m1 þm2; ν ¼ m1m2

m2
: ð45Þ

Using this notation, we define the PN expansion by the
scaling limit

p∞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 1

p
¼ OðλÞ; ω ¼ OðλÞ ð46Þ

as λ → 0. In the conventional PN counting, each instance of
the Newton constant G increases the PN order by one unit,
while each power of λ increases it by half a unit. Hence, odd
powers of λ multiplying a given power of G can lead to the
appearance of fractional PN orders.
Let us also record the explicit expressions

ω1 ¼
ω

E

�
m1 þm2ðσ − p∞n · eÞ�; ð47Þ

ω2 ¼
ω

E

�
m2 þm1ðσ þ p∞n · eÞ� ð48Þ

and remark that, in the expansion, there is an important
difference between powers of λ that appear accompanied by
an extra n and “bare” ones. The latter change the scaling of
a given multipole, while the former produce contributions
to different multipoles. Using this property, it is easy to see
from the outset that, for instance, B1E only contributes to
integer PN corrections to a given multipole, while Creg only
gives rise to half-odd corrections, that is, time-reversal odd
terms for each multipole. We refer to [62] for further details
on this counting.
In order to simplify the PN expansion, it is convenient

to first perform it for (say) the m3
1m

2
2 mass structure, and

then exploit 1 ↔ 2 symmetry to obtain the expansion of
the other structure. Note that the action of the interchange
1 ↔ 2 symmetry is not trivial on all variables after the PN
expansion, owing to the choice (41) which privileges q1
over q2.
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B. The real part of the kernel

It is straightforward to expand the tree-level amplitude
A0 up to high orders in the PN limit (46). A particularly
convenient way to approach this expansion is to first
compute the power series of the elementary variables σ,
ω1, ω2, q21, q

2
2, ε · u1, ε · u2, ε · q2 and then substitute them

into the full expression.
After this step, we explicitly performed the Fourier

transform to impact-parameter space (41) and the multi-
polar decomposition, which in general takes the form

HTT
ij ¼ PijabðnÞ

X∞
l¼2

1

l!

	
nL−2UabL−2ðuÞ

−
2l

lþ 1
ncL−2ϵcdðaVbÞdL−2ðuÞ



ð49Þ

as summarized in the Appendix, for the first three orders,
λ−1, λ0, λ1, and λ2. Following the standard nomenclature,
these contribute to the Newtonian (0PN), 0.5PN, 1PN, and
1.5PN orders in the asymptotic waveform. We collect in the
ancillary file all the associated multipoles, which are the
leading (Newtonian) order contributions to U2;3;4;5 and

V2;3;4, as well as the first subleading (relative 1PN)
contribution to U2;3 and V2. As already remarked, by
counting the “dressed” and “bare” powers of λ, it is easy to
see that the tree-level contribution to UL (respectively, VL)
starts at order λl−3 (respectively, λl−2) and only receives
corrections weighted by even powers of λ. Here, we present
as an example the LO (Newtonian) quadrupole

ULO
11 ¼ −

4Gm2ν

3p∞
ðK0ðuÞ þ 3uK1ðuÞÞ; ð50aÞ

ULO
12 ¼ −

4iGm2ν

p∞
ðuK0ðuÞ þ K1ðuÞÞ; ð50bÞ

ULO
22 ¼ 4Gm2ν

3p∞
ð2K0ðuÞ þ 3uK1ðuÞÞ; ð50cÞ

ULO
33 ¼ −

4Gm2νK0ðuÞ
3p∞

: ð50dÞ

and its first subleading, 1PN, correction,

UNLO
11 ¼ 2

21
Gνm2p∞

�ð−8νþ ð19 − 36νÞu2 þ 26ÞK0ðuÞ − 7ð4νþ 3ÞuK1ðuÞ
�
; ð51aÞ

UNLO
12 ¼ −

2

21
iGνm2p∞

�ð24νþ ð36ν − 19Þu2 þ 69ÞK1ðuÞ þ ð18νuþ uÞK0ðuÞ
�
; ð51bÞ

UNLO
22 ¼ 2

21
Gνm2p∞

�ð16νþ ð36ν − 19Þu2 − 52ÞK0ðuÞ þ 2ð22ν − 19ÞuK1ðuÞ
�
; ð51cÞ

UNLO
33 ¼ 2

21
Gνm2p∞

�ð26 − 8νÞK0ðuÞ þ ð59 − 16νÞuK1ðuÞ
�
: ð51dÞ

As expected, these quantities are exponentially suppressed
for u ≫ 1, i.e. for wavelengths much shorter than the
characteristic length b=p∞ of the binary.
Let us now turn to the real part of the one-loop kernel,

Bμν
1 , starting from its “odd” part Bμν

1O given by (17). Since

Ã0 scales like λ−1 to leading PN order, clearly B̃ðiÞ
1O scales

like λ−3 and B̃ðhÞ
1O like λ0. In view of the overall power ofG2,

the PN expansion of B1O thus starts at Newtonian order.
Moreover, given that the prefactors in (17) are angle
independent, the expansion of B1O and the associated
multipoles UOL, VOL are trivially related to those of the
tree-level waveform. For instance, the LO contribution of

each one-loop multipole comes from BðiÞ
1O in (17a) and is

fixed by the corresponding tree-level ones by the simple
relation [63]

ULO
OL ¼ πGmu

2bp2
∞
ULO

L ; VLO
OL ¼ πGmu

2bp2
∞
VLO

L : ð52Þ

Indeed, the overall power of Gm
bp2

∞
is dimensionless and small

in the PM limit, but, in view of the power counting rule
detailed below (46), it does not increase the PN order. The
subleading corrections are instead given by linear combi-
nations of the leading and subleading tree-level multipoles
as dictated by (17). For instance, the 1PN correction to the
quadrupole reads
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UNLO
O11 ¼ πG2νm3uðð−15νþ ð19 − 36νÞu2 þ 47ÞK0ðuÞ þ 7ð6 − 7νÞuK1ðuÞÞ

21bp∞
; ð53aÞ

UNLO
O12 ¼ −

iπG2νm3uðð45νþ ð36ν − 19Þu2 þ 6ÞK1ðuÞ þ ð39ν − 62ÞuK0ðuÞÞ
21bp∞

; ð53bÞ

UNLO
O22 ¼ πG2νm3uðð30νþ ð36ν − 19Þu2 − 94ÞK0ðuÞ þ ð65ν − 101ÞuK1ðuÞÞ

21bp∞
; ð53cÞ

UNLO
O33 ¼ πG2νm3uðð47 − 15νÞK0ðuÞ þ ð59 − 16νÞuK1ðuÞÞ

21bp∞
; ð53dÞ

which is given by the expansion of the prefactor in (17a),

UNLO
Oij ¼ πGmu

2bp2
∞
UNLO

ij þGmπu
4b

ðν − 3ÞULO
ij : ð54Þ

The fact that the structure above generalizes, via the simple
formula (17a), to all PN orders is rather remarkable from
the MPM perspective. The amplitude result implies that the
integer PN contributions involving K0ðuÞ and K1ðuÞ in the

OðG2Þ multipoles are captured by BðiÞ
1O. Instead, the PN

expansion of BðhÞ
1O in (17b) only involves relative half-odd

PN corrections, and, as we shall see in Sec. V, its origin in
the MPM formalism can be traced back to the tail formula.
The leading-order contribution to Bμν

1E in (18) arises at
order λ−1, that is 1PN, and is captured by a correction UEij

to the quadrupole whose nonvanishing components we find

to be given by

ULO
E11 ¼ −UE22 ¼ −

6πG2m3ν

bp∞
ð1þ uÞe−u; ð55aÞ

ULO
E12 ¼ −

6iπG2m3ν

bp∞

�
1

u
þ 1þ u

�
e−u; ð55bÞ

in agreement with [63]. We extended this result by
including three more orders in λ and extracted the multi-
poles that determine the PN expansion of Bμν

1E up to
NNNLO, reaching absolute 2.5PN order, and we collect
them in the ancillary files. For instance, the 2PN contri-
bution to the quadrupole [that is, the relative 1PN correc-
tion to (55)] is given by

UNLO
E11 ¼ −

πG2m3νp∞

14b
ð52νþ uð52νþ ð78ν − 61Þuþ 27Þ þ 27Þe−u; ð56aÞ

UNLO
E12 ¼ −

iπG2m3νp∞

14bu
ð48νþ uð48νþ uð66νþ ð78ν − 61Þu − 8Þ þ 75Þ þ 75Þe−u; ð56bÞ

UNLO
E22 ¼ πG2m3νp∞

14b
ð80νþ uð80νþ ð78ν − 61Þu − 43Þ − 43Þe−u; ð56cÞ

UNLO
E33 ¼ −

πG2m3νp∞

b
ð2ν − 5Þðuþ 1Þe−u: ð56dÞ

As a cross-check, we independently derived UE33 from
MPM methods finding perfect agreement with (56d) (see
Sec. V below).
Corrections of this type arise from several contributions

due to the PN deformation of the quasi-Keplerian repre-
sentation of the trajectories in the MPM formalism. On
the other hand, they all arise from the Taylor expansion as
λ → 0 of a single object, B1E in the amplitude-based
formalism. The main difficulty in performing this series

expansion to high orders is the presence of spurious poles
in the PM expression (18). Such apparent singularities in λ
eventually cancel out only thanks to cross-cancellations
between the two square roots. This however requires
expanding the numerators up to high powers of λ in order
to obtain a reliable result. For the expansion of B1E, we
found that Mathematica is nevertheless able to produce the
desired expansion and to analytically simplify the result up
to NNLO. To extract the NNNLO, we employed instead the
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method of analytic reconstruction discussed below for the Compton cuts i
2
ðc1 þ c2Þ, in which as we shall see this problem is

even more acute.
Let us now perform a first check of the results obtained so far. Starting from the multipoles extracted from

A0, B1O and B1E, substituting them into the energy-flux formula (A11) and integrating over ω, we obtain the following
expression for the total emitted energy Erad,

Erad=ðmν2Þ ¼ G3m3

b3
πp∞

	
37

15
þ
�
1357

840
−
37ν

30

�
p2
∞ þOðp4

∞Þ


þ G4m4

b4p∞

	
1568

45
þ
�
18608

525
−
1136

45
ν

�
p2
∞ þOðp4

∞Þ



þG4m4

b4
p2
∞

	
3136

45
þ
�
1216

105
−
2272

45
ν

�
p2
∞ þOðp4

∞Þ


þOðG5Þ: ð57Þ

The first two lines on the right-hand side of (57) arise
from A0, B

ðiÞ
1O, B1E and reproduce the known OðG3Þ and

OðG4Þ of the total emitted energy for the scattering to
leading and subleading order in the velocity expansion
[[85], Eqs. (C11) and (C12)] (we recall that, setting
G ¼ m ¼ 1, the parameter j employed there reads j ¼
bp∞=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2νðσ − 1Þp

in our notation). The third line on

the right-hand side of (57) arises instead from A0, B
ðhÞ
1O and

matches the 1.5PN and 2.5PN terms in the OðG4Þ emitted
energy [26,86]. The multipoles arising from Creg discussed
in the next section give a vanishing contribution to the
energy flux when inserted in (A11), due to the different
powers of “i” compared to the tree level ones.

C. The C-channel cuts

The portion of the one-loop kernel that multiplies the
running logarithm in (33) associated to the tail effect is
trivially related to the tree-level waveform, up to the angle-
independent prefactor

2iGEω ¼ 2iup∞
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2νðσ − 1Þ

p Gm
b

: ð58Þ

Hence, the corresponding multipoles are easily determined
by the tree-level ones. All leading-order multipoles multi-
plying the logðω=μIRÞ are given by

ULO
IRL ¼ 2iup∞

Gm
b

ULO
L ; VLO

IRL ¼ 2iup∞
Gm
b

VLO
L ;

ð59Þ

while for instance

UNLO
IRij ¼ ð2iup∞UNLO

L þ iuνp3
∞ULO

L ÞGm
b

: ð60Þ

The PN expansion of the remaining part Creg of the
Compton cuts in (33) is instead less straightforward, and

we devote the rest of this section to its discussion. It starts at
1.5PN order compared with the one-loop Newtonian terms,
that is, Oðλ0Þ. We have extracted its multipole decom-
position up to and including Oðλ3Þ, thus reaching 3PN
precision. We find perfect agreement with the MPM predic-
tions upon taking into account the effect of the BMS super-
translation that maps the canonical frame to the intrinsic
frame, which amounts to transforming (34) as follows:

Creg ↦Cregþ2iGωðm1α1 logα1þm2α2 logα2ÞA0: ð61Þ

The complete action of the supertranslation [see e.g. [62],
Eq. (5.24)] would also contain a static term in time domain,
i.e. a contribution localized at ω ¼ 0 in frequency domain,
which we disregard because we focus on the ω > 0
portion of the spectrum. The transformation (61) simply
amounts to multiplying the first term on the right-hand side
of (34) by 2.
We highlight this in the ancillary file by the parameter

tail (which should be set to 2 in order to take (61) into
account). We also highlight nontrivial ϵ=ϵ terms arising
from the subtraction of infrared divergences (28) by
flagging them with a parameter extraeps (which should
be set to 1).
In this way, for instance, for the quadrupole we find

UC11 ¼
22iG2m3νuðK0ðuÞ þ 3uK1ðuÞÞ

9b
; ð62aÞ

UC12 ¼ −
22G2m3νuðuK0ðuÞ þ K1ðuÞÞ

3b
; ð62bÞ

UC22 ¼ −
22iG2m3νuð2K0ðuÞ þ 3uK1ðuÞÞ

9b
; ð62cÞ

UC33 ¼
22iG2m3νuK0ðuÞ

9b
ð62dÞ

to leading order, and
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UNLO
C11 ¼ iG2m3νup2

∞ð5ð141νþ ð984ν − 209Þu2 − 286ÞK0ðuÞ þ 7ð373νþ 165ÞuK1ðuÞÞ
315b

; ð63aÞ

UNLO
C12 ¼ −

G2m3νup2
∞ðð2043νþ 5ð984ν − 209Þu2 þ 3795ÞK1ðuÞ þ ð1461νþ 55ÞuK0ðuÞÞ

315b
; ð63bÞ

UNLO
C22 ¼ −

iG2m3νup2
∞ð5ð282νþ ð984ν − 209Þu2 − 572ÞK0ðuÞ þ ð5231ν − 2090ÞuK1ðuÞÞ

315b
; ð63cÞ

UNLO
C33 ¼ iG2m3νup2

∞ðð141ν − 286ÞK0ðuÞ þ ð524ν − 649ÞuK1ðuÞÞ
63b

ð63dÞ

for the relative 1 PN/absolute 2.5PN correction. We list the
remaining multipoles in the ancillary files.
For the Compton cuts, the high degree of the spurious

singularities and their intricate cross-cancellations among
logarithms (þ rational part) made it impractical for us to
simply expand their expression to the desired order in λ and
analytically simplify the result. However, when focusing
on (say) c1, we found it very quick to evaluate its series
expansion on numerical points. We exploited this, together
with the knowledge of the possible poles dictated by the
PM expression (22), to obtain the desired expansion in the
following way. In momentum space, the expressions are
all rational functions after the PN expansion. Therefore,
making a sufficiently general polynomial ansatz for the
numerators, it is then possible to fix it by sampling enough
numerical points, which we can efficiently do. We need 180

points to fix the coefficient of ðε · eÞ2 in c1 at 3PN for a
given mass ratio.
As we shall see, the Compton cuts are sensitive to

various kinds of physical effects. First, the OðνÞ part of the
associated multipoles is entirely fixed in the MPM
approach by the tail formula. Second, the Oðν2Þ terms
receive several contributions from nonlinear relations
between lower order multipoles, dictated by the nonlinear-
ities of gravity, by the matching of the near-zone and far-
zone multipoles and by radiation-reaction effects.
We conclude this section by reproducing some of the

results of [85,86] for the radiated spatial momentum. By
integrating over ω the expression of the linear momentum
flux (A12) in terms of the multipoles, we obtain

Pμ
rad=ðmν2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ν

p
Þ ¼ G3m3

b3
π

	
−
37

30
p2
∞ þ

�
37

60
ν −

839

1680

�
p4
∞ þO

�
p6
∞
�

eμ

þG4m4

b4

	
−
64

3
þ
�
32

3
ν −

1664

175

�
p2
∞ þO

�
p4
∞
�

eμ þ G4m4

b4
p3
∞

	�
1491

400
−
26757

5600
p2
∞

�
π
bμe
b

þ
�
−
128

3
þ
�
64

3
ν −

192

75

�
p2
∞

�
eμ þO

�
p4
∞
�
þOðG5Þ: ð64Þ

The first two lines on the right-hand side of (64) arise from

A0, B
ðiÞ
1O, B1E, and reproduce the known OðG3Þ andOðG4Þ

of the total emitted spatial momentum for the scattering to
leading and subleading order in the velocity expansion
[[85], Eqs. (G7) and (G8)]. The third and fourth lines on the

right-hand side of (64) arise instead fromA0, B
ðhÞ
1O, C

reg and
match the OðG4Þ total emitted spatial momentum up to
2.5PN [85,86]. More precisely, the component of (64)
along bμe arises entirely from the interference terms between
A0 and Creg, providing interesting cross-checks on the
latter. The term proportional to 1491

400
follows entirely from

the interference with the tail contribution to the multipoles,
while the next order in the same line is also sensitive to

nonlinear and radiation-reaction contributions to Creg, as
well as to the ϵ=ϵ terms induced by (28). We recall that
be · Prad=b is instrumental in deriving the so-called
ðradiation-reactionÞ2 contributions to the OðG4Þ impulse
[26] as shown in [86].

V. MULTIPOLAR POST-MINKOWSKIAN
WAVEFORM

In this section, we briefly summarize the ingredients
needed to derive the post-Newtonian expansion of the NLO
PM scattering waveform following the classical general
relativity literature [76]. The idea is to relate the MPM
expansion to the dynamics of the source (i.e. the binary in
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our case) by matching the far-zone result with the near-zone
gravitational field.4 The latter is parametrized in terms of
STF tensors IL, JL, whose role is reminiscent5 of UL and
VL, and by some auxiliary moments, WL, XL, YL, and ZL,
which encode a linearized gauge transformation. Explicit
expressions for the near-zone moments are obtained by
solving iteratively Einstein’s equations using the stress
tensor of the binary. In summary, thanks to the matching
procedure mentioned above, one can write (perturbatively)
UL, VL in terms the near zone moments and the latter in
terms of the binary trajectory thus obtaining an explicit PN
solution for the waveform. In this approach, it is convenient
to work in the time domain, so, in order to compare with the
radiative multipoles ULðuÞ, VLðuÞ obtained from scattering
amplitudes, we will need to take the Fourier transform [let
us recall that u is the rescaled frequency defined in (26)]

ULðuÞ ¼
Z þ∞

−∞
ULðtÞeiωtdt; ð65Þ

and similarly for VL. In our case, it was always possible to
perform this step by using

Z þ∞

−∞

eiωtdt
½1þ ðp∞t=bÞ2�α

¼ 2
3
2
−α ffiffiffi

π
p
ω

Kα−1
2
ðuÞ

u−α−
1
2ΓðαÞ ð66Þ

and its derivatives. In the equation above,KaðbÞ is the usual
modified Bessel function and we recall that u ¼ ωb

p∞

as in (26).
In this work we will consider a further truncation in G

of the PN expansion, in order to compare with the PM
results. However, at low PN orders, it is also possible to
take a different approach and perform the Fourier trans-
form to frequency domain by keeping the dependence on
Gm=ðbp2

∞Þ exact. In that case, one obtains Bessel func-
tions KaðbÞ, where the order a deviates from an integer
value by a shift proportional to Gmω=p3

∞ [87].
It is convenient to separate three types of contributions

to the MPM multipoles: a first part, which is local in time
and depends on the conservative dynamics of the binary, a
hereditary part, which at time U depends on the whole past
history of the binary, and a radiation-reaction part, which
takes into account the dissipative effects on the binary
trajectory. According to this splitting, we write for instance

UL ¼ Uloc
L þ Uhered

L þ URR
L : ð67Þ

A. Binary trajectory and near zone multipoles

It is convenient to describe the relative distance between
the two components of the binary in terms of polar co-
ordinates on the scattering plane x ¼ r cosϕ, y ¼ r sinϕ
and then use the following quasi-Keplerian parametrization
of the trajectory (see [87,88] and references therein),

r ¼ Gmarðer cosh v − 1Þ; ð68aÞ

ϕ̃ ¼ 2 arctan

 ffiffiffiffiffiffiffiffiffiffiffiffiffi
eϕ þ 1

eϕ − 1

s
tanh

v
2

!
; ð68bÞ

nt¼Gm
�
et sinhv− vþ ftϕ̃þ gt sin ϕ̃

�þOðc−6Þ; ð68cÞ

ϕ ¼ K
�
ϕ̃þ fϕ sinð2ϕ̃Þ þ gϕ sinð3ϕ̃Þ þOðc−6Þ�: ð68dÞ

At leading PN order, the eccentricities are all equal, eϕ ≈
et ≈ er ≈ bp2

∞=ðGmÞ, and we have K ≈ 1, ar ≈ p−2
∞ ,

n ≈ p−3
∞ , while ft;ϕ and gt;ϕ start at Oðc−4Þ. We refer to

[87,88] for the explicit expressions up to 3PN of all
parameters defining above, but here let us just quote ft ≈
3ð5 − 2νÞGmp2

∞=b which will be useful later. We follow
here the conventional notation according to which higher
PN orders are highlighted by inverse powers of c, the speed
of light. Notice that, in the leading PM trajectory, one can
easily solve the relation between t and v, obtaining the
straight-line motion x ¼ b, y ¼ p∞t.
The near zone field is then written in terms of the binary

trajectory and, since this is a gauge-dependent quantity,
some care is needed. It is convenient to use the so-called
modified-harmonic coordinates where the instantaneous
part of the quadrupole moment I2 is given by [89]

Iinstij ¼ mν

	
A1xhixji þ A2

rṙ
c2

xhiẋji þ A3

r2

c2
ẋhiẋji



; ð69Þ

where we use the dot to indicate the time derivative, for
instance ṙ ¼ dr

dt. The Ais are themselves functions of the
mass ratio and the trajectories known in a PN expansion
starting at order c0, for instance A1 ¼ 1þOðc−2Þ [see
Eq. (3.20) of [89] for the expressions up to 3PN]. While the
PN expansion of (69) contains only even powers of 1=c,
thus leading to integer relative PN corrections, starting at
order 1=c5 there are new contributions related to use of
retarded propagators, as discussed in [90]. For the near
zone quadrupole they are captured by the following result
at Oðc−5Þ precision

Iretij ¼ G2ν2

r2c5
m3

	
−
24

7
ṙxhixji þ

48

7
rxhiẋji



: ð70Þ

All expressions needed to reach a 3PN accurate waveform
are known for both the binary trajectory and the other SFT

4In practice the matching is done in two steps, between a far
and an intermediate zone, and then between this intermediate and
the near zone [76]. The formulas we use in this section combine
these two steps.

5We use italic symbols to indicate the time-domain multipoles
and roman symbols for their Fourier transform in frequency
domain as in (65).
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tensors IL;…; ZL [86,88,89]. Notice that, to leading PM
order, the near zone multipoles include a G-independent
contribution that is obtained by substituting the free motion
in the trajectory. This means that contributions with an
explicit factor ofG2, such as the one in (70), are relevant for
the comparison with the NLO PM waveform thus provid-
ing a nontrivial check with several nonlinear effects that
appear already in the near zone analysis.
The contributions coming from the instantaneous part

[see (69) for the quadrupole] give integer PN corrections
relative to the leading term, while (70) yields half-integer
PN corrections that combine with those discussed in the
subsections below. So for the time being we focus on the
first type of contribution and would like to highlight an
interesting pattern. At the Newtonian level, which should
be compared with (50) and (52), we can use K ≈ 1 and
so the near zone multiples depend on ϕ̃ in (68) only
through trigonometric functions. Instead at the 1PN level,
one needs to use the more accurate expression K ≈ 1þ
3G2m2=ðb2p2

∞Þ and keep track of the contributions coming
from expansions such as sinϕ ≈ sin ϕ̃þ ðK − 1Þϕ̃ cos ϕ̃.
Since the correction term is of order G2, for our purposes
one can then use the free trajectory in all the other objects
appearing in this calculation. The Fourier transform of the
terms proportional to (K − 1) can be recast in terms of
(derivatives of) (66) with integer values of α. Thus these
contributions can be written in terms of elementary func-
tions and so have a different structure from all the other
1PN corrections in (69). Then it is possible to make a finer
comparison between the MPM and the amplitudes results:
the radiative multipoles obtained from (17a) reproduce all
the 1PN terms that involve Bessel function of integer order,
while the contributions we have just discussed match those
obtained from B1E on the amplitudes side.
A similar pattern seems to hold at 2PN as well. It is non-

trivial to check for instance the contribution to Iinst33 that can
be written in terms of elementary functions and starts at 2PN
order Iinst33 ≈ −G2m3πνð5 − 2νÞb=p∞e−uð1 þ uÞ=u þ � � �
(where the dots stand for the terms with Bessel functions
of integer order). On the MPM side, this result is obtained
with a mechanism similar to the one discussed at 1PN level,
the only difference being that now the origin of the poly-
nomial dependence on ϕ̃ is via the correction parametrized
by ft in (68c). Again one can use the free trajectory in
evaluating this correction and the Fourier transform to the
frequency domain is done by using (66) with integer values
of α. The MPM result matches (56d) derived in the
amplitudes framework.

B. Nonlinear effects outside the near zone

Other nonlinear contributions arise from the matching
between the near zone and the far-zone multipoles follow-
ing the approach schematically discussed at the beginning
of this section. We collect here the formulas determining

them [90,91] and provide their explicit expressions in the
ancillary file (see [76,89] for more details).
To the order of interest here, Uijkl only receives the

nonlinear contribution

UQQ
ijkl ¼ −

G
c3

	
21

5
IhijI

ð5Þ
kli þ

63

5
Ið1Þhij I

ð4Þ
kli þ

102

5
Ið2Þhij I

ð3Þ
kli



: ð71Þ

Here and in the following, fðnÞðtÞ ¼ dnfðtÞ=dtn. Note that,
since we restrict to OðG2Þ corrections to the multipoles,
Eq. (71) only receives contributions from interference
terms between the G-independent term in the source quad-
rupole Iij, which involves terms up to t2, and the dynamical
OðGÞ quadrupole. A similar pattern holds for most of the
contributions below as well.
Turing to Vijk, it receives both a contribution due to

nonlinearities

VQQ
ijk ¼ G

c3

	
1

10
ϵabhiI

ð5Þa
j Ikib −

1

2
ϵabhiI

ð4Þa
j Ið1Þkib



ð72Þ

and one due to angular momentum,

VLQ
ijk ¼ −

2G
c3

Ið4Þhij Lki ð73Þ

with

Lk ¼ δkzpb: ð74Þ

The quadrupole receives a correction due to non-
linearities,

UQQ
ij ¼ G

c5

	
1

7
Ið5ÞahiIjia −

5

7
Ið4ÞahiI

ð1Þ
jia −

2

7
Ið3ÞahiI

ð2Þ
jia



; ð75Þ

one due to the gauge multipole moments [90],

UWQ
ij ¼ 4G

c5

h
Wð2ÞIij −Wð1ÞIð2Þij

ið2Þ
; ð76Þ

with

W ¼ 1

3
mνrṙ; ð77Þ

and an angular-momentum dependent contribution,

ULQ
ij ¼ 1

3

G
c5

ϵabhiI
ð4Þ
jiaLb: ð78Þ

Note that we need to retain its the first correction, OðGÞ,
to the trajectory when evaluating the square parenthesis of
(76), since the leading term is time independent and thus it
drops out from the final result. Additional sources ofOðν2Þ
fractional PN effects come from the already discussed
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retardation effect (69) and from the radiation-reaction
contribution in (88) below.

C. Tail formula and radiation reaction effects

Time antisymmetric contributions also arise from tail and
radiation reaction effects. Tail terms capture the rescattering
of the emitted radiation on the Coulombic field produced
by the source, and take into account the fact that the near-
zone light cones do not coincide with the flat ones in the
wave zone. They are specific to the nonlinear nature of
gravity, and for instance they would be absent in electro-
magnetism. The tail formula that incorporates these effects
reads

Utail
L ¼ 2GE

c3
iωUtree

L

�
logð2b0ωÞ − κl þ γ −

iπ
2

�
; ð79aÞ

Vtail
L ¼ 2GE

c3
iωVtree

L

�
logð2b0ωÞ − πl þ γ −

iπ
2

�
; ð79bÞ

where the shift involving the Euler-Mascheroni constant γ
and the iπ

2
comes from the Fourier transform to frequency

domain. We immediately see that the terms with iπ
2
in (79)

match BðhÞ
1O in (17b) to all orders.

To facilitate the matching with amplitude-based results
for the terms without the extra power of π, we find it
convenient to trade the cutoff b0 for μIR as follows:

logð2b0μIRÞ ¼ −γ; ð80Þ

thereby absorbing the γ. Note that accounting for the
exponentiation of infrared divergences according to (27)
makes the matching of scheme choices (80) simpler
compared to [62]. In (79), the “harmonic numbers” κl
and πl are given by

κl ¼ 2l2 þ 5lþ 4

lðlþ 1Þðlþ 2Þ þ
Xl−2
k¼1

1

k
; ð81Þ

πl ¼ l − 1

lðlþ 1Þ þ
Xl−1
k¼1

1

k
: ð82Þ

In particular, since we consider multipole moments up to
U4, we are going to need

κ2 ¼
11

12
; κ3 ¼

97

60
; κ4 ¼

59

30
ð83Þ

and

π2 ¼
7

6
; π3 ¼

5

3
: ð84Þ

In the probe limit, i.e. at leading order in the small ν limit,
the tail contributions (79) yield all the corrections of

relative half-integer PN order for each multipole. This is
a rather nontrivial statement on the amplitude side, where
such corrections come from the (challenging) expansion of
the Compton cuts.
Finally, we consider a contribution due to the radiation-

reacted trajectory. This is due to the leading-order
radiation-reaction force (see e.g. [29,85])

fμRR ¼ 8G2m3p3
∞ν

2

5r5
�
p∞tð3bμe þ 2p∞teμÞ − b2eμ

�
; ð85Þ

where we can restrict to the straight-line motion, so that in
particular r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ p2

∞t2
p

, and translates into a correction
to the trajectories,

xμRR ¼ 8G2m2p∞ν

5b2r

�
b2eμ − ðrþ p∞tÞbμe

�
: ð86Þ

Note that xμRRðt ¼ −∞Þ ¼ 0, while

xμRRðt ¼ þ∞Þ ¼ −
16G2m2p∞ν

5b2
bμe ¼ ðΔbÞ b

μ
e

b
; ð87Þ

so that this correction shrinks the impact parameter,Δb < 0.
This leads to theOðG2Þ loss of mechanical angular momen-
tumΔL ¼ pΔb ≃mp∞νΔb, which matches the leading PN
limit of the results obtained in [10,29,30]. The sought-for
correction to the quadrupole then reads as follows:

URR
ij ¼ 2mν

�
xhixRRji

�ð2Þ; ð88Þ

where xRRi is given by (86) and xi can be approximated with
the free trajectory, xi ≃ ðb; p∞t; 0Þ.
An interesting check is to calculate on the MPM side the

2.5PN correction to the radiative quadrupole, where one
needs to combine the contributions of (70), (75), (76), (78),
and (88) together with the (PN expansion of the) tail
term (79a). The result matches precisely (63) providing a
nontrivial test of both the MPM and the amplitude-based
calculations.

VI. COMPARISON BETWEEN AMPLITUDE
AND MPM RESULTS

Let us now compare the results obtained by expanding
the amplitude-based waveform in Sec. IV with those
calculated using the MPM-PN approach in Sec. V.
For A0, B1O, and B1E, for which Ref. [63] had already

found agreement between the two methods, we obtained
the complete multipole decomposition up to NNNLO PN
order on the amplitude side, while we only calculated a few
instructive multipole components on the MPM side as
cross-checks. We find perfect agreement both for sample
components involving Bessel functions K0ðuÞ, K1ðuÞ and
for those involving e−u, such as UNLO

33 in (56d).
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The tail logarithm (33) is of course exactly the same on
both sides. Finally, for the quantity Creg, we performed
several checks, comparing all multipoles up to NNLO, i.e.
2.5PN order, between the two approaches. While this
quantity appears “in one block” as the sum of Compton
cuts in the amplitude framework, in MPM it is given
by the sum of tail terms as well as nonlinear, gauge, and
radiation-reaction contributions, which we summarized
in the subsections of Sec. V and are also collected in the
Supplemental Material [80]. The sum of all of these
contributions matches exactly the prediction obtained for
Creg from the amplitude side, but this check requires paying
special attention to two important points.
The first point is that the MPM results hold in the BMS

supertranslation frame where the asymptotic shear has a
nontrivial OðGÞ dictated by the free trajectories [10]. On
the other hand, ω > 0 amplitudes do not give rise to this
term, and lead to a different BMS frame. One thus needs to
move from the latter to the former, via (61) [62,79]. The
second point is that the subtraction of infrared divergences
also induces a modification of the finite term via (28),
where nontrivial ϵ=ϵ terms appear by consistency with
dimensional regularization.
Interestingly, all one-loop integer PN corrections involv-

ing K0ðuÞ, K1ðuÞ are actually fixed in terms of tree-level
multipoles via (17a). This simple relation, which originates
from the full PM amplitude calculation, is rather surprising
from the MPM-PN perspective. Vice versa, the tail formula
that emerges naturally in the MPM framework guarantees
that the OðνÞ part of the time-reversal odd corrections to
each one-loop multipole is in fact proportional to the
corresponding tree-level one, the relative factor being
simply fixed by the corresponding “harmonic number.”
Naively, one would not expect such a dramatic simplifi-
cation by simply looking at the Compton cuts of the ampli-
tude. Finally, the agreement obtained here for the 2.5PN
correction to the quadrupole is an extremely nontrivial test
of both formalisms, as it involves a rather technically
complicated, albeit conceptually straightforward, expan-
sion of Creg on one side, and the calculation of several
physically distinct contributions on the other [89].
It will be interesting to test the agreement between these

nicely complementary methods also beyond the case of
scalar pointlike objects, including also tidal effects and spin
corrections [65], to see whether the supertranslation frame
plays an analogous role, as we expect. Another important
direction consists of course in increasing the precision, both
in the velocity expansion and in the PM order. Obtaining
high orders in λ of the tree level kernel is not difficult,
of course, and several additional multipoles could be
obtained by more efficiently automatizing their extraction
and the Fourier transforms. Moreover, we expect the
method developed here, based on fitting a polynomial
ansatz of the PN limit achieved by a numerical sampling
of the expansion, to be easily applicable to obtain a few

additional orders in the λ expansion at one loop. Further
mileage could be gained by implementing more advanced
rational reconstruction methods (see e.g. [92]). The next
order in G, instead, represents a nontrivial future challenge,
as it requires the classical 2 → 3 amplitude at two loops.
On the other side, the latest achievement of the MPM-PN
formalism consists in the derivation of the gravitational-
wave phase and frequency to 4.5PN order beyond the
leading quadrupole formula [83,84]. Finally it would of
course be very interesting to study the connection between
the scattering and the bound waveforms at the subleading
PM order, building on the recent results of [93].

Note added. At the final stages of this work, we became
aware of a parallel work by Donato Bini, Thibault Damour,
Stefano De Angelis, Andrea Geralico, Aidan Herderschee,
Radu Roiban, and Fei Teng, which partly overlaps with
ours. We thank them for communication and for coordi-
nating the submissions.
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APPENDIX: MULTIPOLE EXPANSION

Here, we summarize the multipole expansion of the wave-
form which is commonly employed in the PN literature (see
e.g. [72,76]) To this end, let us first define the traceless
projection of its spatial part in the center-of-mass frame,

HijðωnÞ ¼
1

κ

	
W̃reg

ij ðωnÞ −
1

3
δijW̃

reg
kk ðωnÞ



ðA1Þ

and further consider its transverse-traceless (TT) projection,

HTT
ij ¼ PijabðnÞHij ðA2Þ

wherePijabðnÞ is the TT projector defined with respect to ni,
that is,
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PijðnÞ ¼ δij − ninj;

PijabðnÞ ¼ PiðaðnÞPbÞjðnÞ −
1

2
PijðnÞPabðnÞ: ðA3Þ

Owing to the TT projection in (A2), HTT
ij descends to a

symmetric traceless tensor on the two-sphere described
by ni. Letting xA with A ¼ 1, 2 denote coordinates thereon,
and eiA ¼ ∂Ani a basis of tangent vectors, this tensor is

HAB ¼ eiAe
j
BHij þ

1

2
γABninjHij; ðA4Þ

where γAB ¼ eA · eB is the metric on the two-sphere.
One can then decompose HAB in terms of a basis of

symmetric traceless tensors with definite eigenvalue under
the action of the Laplacian on the sphere, Δ ¼ DADA, with
DA the covariant derivative associated to γAB. These can
be obtained by taking derivatives of irreducible scalar KðlÞ

and vector harmonics KðlÞ
A , with DAKðlÞ

A ¼ 0, which are
such that

ΔKðlÞ ¼ −lðlþ 1ÞKðlÞ; ðA5aÞ

ΔKðlÞ
A ¼ −½lðlþ 1Þ − 1�KðlÞ

A : ðA5bÞ

Indeed, UðlÞ
AB ¼ ð2DADB − γABΔÞKðlÞ and VðlÞ

AB ¼ DðAK
ðlÞ
BÞ

obey

ΔUðlÞ
AB ¼ −½lðlþ 1Þ − 4�UðlÞ

AB; ðA6aÞ

ΔVðlÞ
AB ¼ −½lðlþ 1Þ − 4�VðlÞ

AB: ðA6bÞ

These provide an orthogonal basis of symmetric traceless

rank-two on the two-sphere, e.g.
H
UðlÞ

ABU
ðl0ÞABdΩ ¼ 0 if

l ≠ l0 and
H
UðlÞ

ABV
ðl0ÞABdΩ ¼ 0 for any l, l0, where dΩ ¼ffiffiffi

γ
p

d2x and indices are raised using γAB.

Explicit representations for UðlÞ
AB and VðlÞ

AB thus follow

from those of KðlÞ, KðlÞ
A , which can be constructed as

follows:

KðlÞ ¼ CLnL; KðlÞ
A ¼ eaAϵabcCbL−1ncL−1; ðA7Þ

where CL are (n-independent) STF tensors and a capital
letter L stands for a multi-index with l entries, for instance

CL ¼ Ci1i2���il ; ncL−1 ¼ ncni1 � � � nil−1 : ðA8Þ

A convenient orthogonal basis for the tensors CL is
given by the STF projection of the 2lþ 1 monomials
ðex � ieyÞi1 � � � ðex � ieyÞimeimþ1

z � � � eilz for m ≤ l. When

taking derivatives of (A7) to obtain UðlÞ
AB and VðlÞ

AB , it is
convenient to recall the property

DADBni ¼ −γABni: ðA9Þ

Let us also remark that, while KðlÞ, KðlÞ
A satisfying (A5a)

and (A5b) exist for l ≥ 0 and l ≥ 1, respectively, the

resulting UðlÞ
AB and VðlÞ

AB satisfying (A6a) and (A6b) are only
nonzero for l ≥ 2.
Using the identity (A9), in view of the above discussion,

we thus see that the spectral waveform admits the following
unique decomposition in terms of STF tensors ULðuÞ,
VLðuÞ [[76], Eq. (66)]

HTT
ij ¼ PijabðnÞ

X∞
l¼2

1

l!

	
nL−2UabL−2ðuÞ

−
2l

lþ 1
ncL−2ϵcdðaVbÞdL−2ðuÞ



: ðA10Þ

Note that we include the symmetry factor in the sym-
metrization of spatial (lowercase Latin) indices AðiBjÞ ¼
1
2
AiBj þ 1

2
AjBi. Importantly, the multipole moments ULðuÞ

and VLðuÞ only depend on the (dimensionless) frequency u
in (26) and not on the angles. A key simplification is that,
order by order in the PN expansion, only the first few terms
in the sum appearing in Eq. (A10) actually show up. In
practice, once a basis is written down explicitly following
the above steps, one can simply contract (A10) with the
desired harmonic and perform the integral to extract it from
the expression.
In the text, we perform the decomposition (A10) both for

the tree-level amplitude and for the building blocks of the
one-loop “eikonal” waveform kernel (15). For the latter we
employ the notation UXL, VXL, where X ↦ O for B1O in
(17) and X ↦ E for B1E in (18), X ↦ IR for the coefficient
of the IR-running logarithm in (33) and X ↦ C for Creg

also in (33). In the ancillary files, we further distinguish

between BðiÞ
1O and BðhÞ

1O in (17a) and (17b).
We conclude this appendix by recalling the formula for

the energy flux in terms of the MPM expansion [76], which
in the frequency-domain is

dErad

dω
¼ G

π

Xþ∞

l¼2

� ðlþ 1Þðlþ 2Þω2

ðl − 1Þll!ð2lþ 1Þ!!U
�
LUL

þ 4lðlþ 2Þω2

ðl − 1Þðlþ 1Þ!ð2lþ 1Þ!!V
�
LVL

�
; ðA11Þ

and the formula for the flux of the radiated linear
momentum
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dPirad

dω
¼ G

π

X∞
l¼2

Re
	
2ðlþ 2Þðlþ 3Þω2

lðlþ 1Þ!ð2lþ 3Þ!!U
�
iLUL þ 8ðlþ 3Þω2

ðlþ 1Þ!ð2lþ 3Þ!!V
�
iLVL þ 8ðlþ 2Þω2ϵiabU�

aL−1VbL−1

ðl − 1Þðlþ 1Þ!ð2lþ 1Þ!!


: ðA12Þ
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