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We examine a specific category of eigenfunctions of the lattice Laplacian on fp; qg-tessellations of the
Poincaré disk that bear resemblance to plane waves in the continuum case. Our investigation reveals that the
lattice eigenmodes deviate from the continuum solutions by a factor that depends solely on the local
inclination of the vertex in relation to the wave’s propagation direction. This allows us to compute certain
eigenfunctions by numerical and analytical methods. For various special cases we find explicit exact
eigenfunctions and their eigenvalues on the infinite lattice.
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I. INTRODUCTION

Formulating a consistent theory of quantum gravity
remains one of the greatest challenges in modern physics.
Such a theory is expected to not only describe the curvature
of spacetime but also account for its potentially discrete
nature at the Planck scale. To gain a deeper understanding
of the interaction between curvature and discretization,
quantum systems residing on tessellations of hyperbolic
spaces with constant negative curvature [1] have emerged
as a highly promising testing ground. In this context,
various innovative experimental implementations, in par-
ticular photonic crystals [2–4] and electronic circuits on
hyperbolic lattices [5–10], are currently attracting signifi-
cant attention.
These groundbreaking experiments have rekindled the

interest in the fascinating mathematical properties of
discretized hyperbolic spaces, particularly isometric tilings
of the Poincaré disk. A significant milestone in this realm
has been the development of hyperbolic band theory,
drawing inspiration from solid-state physics [11–21].
This theory combines the concept of Bloch waves [22]
with group-theoretical ideas [23], allowing one to describe
specific categories of wave functions that exist within
hyperbolic crystals.
From a mathematical point of view, the challenge of

describing the band structure is closely intertwined with
understanding the spectral properties of the discretized
Laplace-Beltrami operator [24,25]. However, unlike the
Euclidean case, where the eigenfunctions and eigenvalues
of the lattice Laplacian can be easily computed, the
eigenfunctions on hyperbolic lattices are significantly more
intricate and generally cannot be expressed using closed

formulas. The current band theory partially addresses this
issue by assuming the existence of a translation subgroup
on the lattice, which imposes certain limitations on possible
lattice geometries. Nevertheless, a comprehensive classi-
fication of the eigenfunctions and eigenvalues of the
hyperbolic lattice Laplacian remains elusive. Solving this
problem would not only be valuable in the context of band
theory but also hold profound implications for other fields,
ranging from the AdS/CFT correspondence [26–32] to
applications in quantum information theory [33–36].
As a further advancement in this direction, we inves-

tigate here a specific category of eigenfunctions of the
Laplacian on infinite fp; qg-tilings of the Poincaré disk.
These eigenfunctions on the lattice bear resemblance to
plane waves in the continuum. To accomplish this, we
introduce a novel geometric concept, referred to as the
inclination of a vertex. This concept plays a pivotal role in
enabling us to provide exact solutions for a subset of points
within the parameter space. Additionally, we propose two
complementary numerical methods that facilitate the effi-
cient computation of the eigenfunctions and their corre-
sponding eigenvalues on the infinite lattice.
The article is organized as follows. In the following

section we first summarize relevant aspects of the con-
tinuum theory, discussing the spectral properties of the
Laplace–Beltrami operator on the Poincaré disk. In Sec. III
we review isometric tilings of the Poincaré disk as well as
the question of how to define an appropriate discretized
version of the Laplace–Beltrami operator on such lattices.
We then demonstrate that there are special choices of the
parameters for which the eigenfunctions on the lattice
coincide with those in the continuum.
In order to arrive at a general solution, we then introduce

the concept of inclination in Sec. IV. The central hypothesis
of this work is that the eigenfunctions on the lattice differ
only slightly from the eigenfunctions in the continuum and
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that the corresponding correction function depends exclu-
sively on the inclination. In Sec. V, a linear difference
equation is then derived for this correction function, which
can also be used to calculate the solution numerically
through iteration. Using a Fourier transformation, we then
arrive at an eigenvalue problem for the Fourier coefficients
in Sec. VI. In certain points of the parameter space, we
finally show that the corresponding matrix exhibits a block
structure, allowing us to derive various exact solutions. The
article ends with concluding remarks in Sec. VII. Technical
details are given in the Appendices A–D.

II. CONTINUUM THEORY

A. The Poincaré disk

Before we begin, let us briefly summarize what is known
about the continuum theory. The Poincaré disk serves as a
conformal representation of the hyperbolic plane H2 with
constant negative curvature. It is defined on an open unit
disk D ⊂ C equipped with the conformal metric

ds2 ¼ dzdz̄
ð1 − zz̄Þ2 : ð1Þ

This metric is preserved under the isometries

z ↦ wðzÞ ¼ eiη
a − z
1 − zā

; ð2Þ

where η∈ ½0; 2πÞ and a∈D.
On the Poincaré disk the geodesic lines are represented

as segments of circles. The geodesic distance between two
points is given by

dðz; z0Þ ¼ 1

2
arcosh

�
1þ 2jz − z0j2

ð1 − jzj2Þð1 − jz0j2Þ
�

ð3Þ

and is preserved under the isometries (2).
With the metric (1) the Laplace–Beltrami operator on the

Poincaré disk is given by

Δg ¼
1ffiffiffi
g

p ∂ið
ffiffiffi
g

p
gij∂jÞ ¼ 4ð1 − zz̄Þ2∂z∂z̄: ð4Þ

B. Construction of plane-wave eigenmodes

To comprehend the analogue of plane waves on the
Poincaré disk in the continuum case, let us first recall the
situation in the Euclidean Rn. Here the plane-wave sol-
utions of the eigenvalue problem Δψ ¼ −λψ are given by
ψkðxÞ ¼ eik·x, where k∈Rn denotes the momentum
vector and λ ¼ k2 is the corresponding eigenvalue.
Using the Euclidean distance dðx; yÞ ¼ jjx − yjj, these
eigenfunctions can be expressed in terms of the limit

ψkðxÞ ¼ eik·x ¼ lim
r→∞

e−ikðdðx;rkÞ−dð0;rkÞÞ; ð5Þ

where rk is a point approaching infinity in the direction of
k. This elucidates that a plane wave can be interpreted as a
radial wave originating from a point at infinite distance in a
specific direction.
We can now apply the same rationale to construct the

analogue of plane waves on the Poincaré disk. The only
requirement is to replace the Euclidean distance dðx; yÞ by
the geodesic distance dðz; z0Þ defined in (3). Note that
points at infinity are now residing on the boundary of the
disk ∂D where jzj ¼ 1. This suggests to define the hyper-
bolic equivalent of a plane wave on the Poincaré disk in
analogy to (5) as

ψκ;bðzÞ ≔ lim
r→1

e−iκðdðz;rbÞ−dð0;rbÞÞ: ð6Þ

Here, b ¼ eiβ ∈ ∂D is a point on the boundary of the disk,
which we refer to as the source of the plane wave in our
study. Expanding the argument of the exponential function
in (6) around r ¼ 1 leads to

lim
r→1

ðdðz; rbÞ − dð0; rbÞÞ ¼ 1

2
ln
jz − bj2
1 − jzj2 ð7Þ

and consequently,

ψκ;bðzÞ ¼
�
1 − jzj2
j1 − zb̄j2

�
iκ=2

: ð8Þ

By applying the Laplace–Beltrami operator (4), it can be
verified that this function solves the eigenvalue problem
Δgψκ;b ¼ −λψκ;b. However, the corresponding eigenvalue
λ ¼ κðκ þ 2iÞ turns out to be complex valued. To acquire a
real positive spectrum with normalizable oscillatory eigen-
functions as in the Euclidean case, it is therefore useful to
redefine the parameter κ as k ¼ κ þ i, enabling us to
interpret k as a generalized momentum. This notation leads
to the commonly accepted definition of hyperbolic plane
waves in the literature [24], specifically,

ψk;bðzÞ ¼
�

1 − jzj2
j1 − ze−iβj2

�1
2
ð1þikÞ

; ð9Þ

which corresponds to the eigenvalue

λ ¼ 1þ k2: ð10Þ

Note that these eigenfunctions differ from Euclidean plane
waves in that they exhibit an additional exponential damp-
ing as well as a constant offset in the eigenvalue, which is a
consequence of the constant negative curvature of the
underlying hyperbolic space.
A typical wave function of the form (9) is shown in the

left panel of Fig. 1. As can be seen, the wave emanates from
a point located at the boundary b ¼ eiβ ∈ ∂D and prop-
agates along geodesic lines which are represented as
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circular segments on the Poincaré disk. The wave fronts
perpendicular to the geodesic lines are also circular and are
referred to in the literature as horocycles [37]. Note that we
do not impose any boundary conditions, that is, Eq. (9) is
understood as an eigenfunction on the infinite lattice.

C. Oscillatory and exponential eigenmodes

In many applications, one is primarily interested in
oscillating waves of the form (9), where the momentum
k is real. This applies in particular to experimental
realizations of electronic circuits [5–10].
In the context of the AdS/CFT correspondence, however,

where the Klein-Gordon equation is often studied as a
fundamental toy model, the primary focus lies on expo-
nentially decaying eigenfunctions with imaginary momen-
tum k ¼ �i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þM2

p
, since only then do the eigenmodes

exhibit the required asymptotic behavior

ψðzÞ ∼ Að1 − zz̄Þ1−Δ þ Bð1 − zz̄ÞΔ ð11Þ

for jzj → 1. Here, Δ ¼ 1
2
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þM2

p
Þ denotes the scal-

ing dimension of the boundary operator that is holograph-
ically dual to ψ [28]. Interestingly, these modes are known
to remain stable even for negative squared masses above the
Breitenlohner–Freedman bound [38,39]

M2 ≥ M2
MB ¼ −1: ð12Þ

As our results presented below concern mainly the expo-
nential modes, it will be convenient in the following to
redefine the momentum k by

μ ≔ −
1

2
ð1þ ikÞ: ð13Þ

Using this notation the continuum eigenfunction (9) emit-
ted from the source b ¼ eiβ ∈ ∂D and dimensionΔ ¼ μþ 1
simply reads

ψμ;bðzÞ ¼
�jb − zj2
1 − jzj2

�
μ

ð14Þ

and the corresponding eigenvalue is given by

λ ¼ −4μðμþ 1Þ: ð15Þ

D. Radially symmetric eigenfunctions

Since the eigenvalue λ does not depend on the location
b ¼ eiβ of the source on the boundary, the corresponding
radial eigenfunctions can be obtained by a Fourier trans-
formation in the angle β. Here one obtains

umk ðzÞ ≔
1

2π

Z
2π

0

dβeimβψk;eiβ

∝ eimϕPm
−1
2
ð1þikÞ

�
1þ r2

1 − r2

�
; ð16Þ

where m∈N0 and z ¼ reiϕ, while Pm
l denotes the asso-

ciated Legendre functions. An example of a radial eigen-
function is shown in the right panel of Fig. 1.
In the case of exponential modes, where we use the

notation μ ¼ − 1
2
ð1þ ikÞ defined in (13), the radial eigen-

functions read:

umμ ðzÞ ∝ eimϕPm
μ

�
1þ r2

1 − r2

�
: ð17Þ

III. LATTICE LAPLACIAN

Up to this point we have reviewed the eigenfunctions of
the Laplace–Beltrami operator on the Poincaré disk in the
continuum case. We now turn to a discretization of the
hyperbolic space where we are going to study the analogue
of the Laplace–Beltrami operator on the lattice.

A. Definition of the lattice Laplacian

Before we define the hyperbolic lattice Laplacian, let us
briefly recall the discrete Laplacian in the Euclidean case.
On a one-dimensional line with equidistant vertices at
positions xj ¼ jh, the finite-difference operator

Δ½h�fðxjÞ ¼
1

h2
ðfðxjþ1Þ þ fðxj−1Þ − 2fðxjÞÞ ð18Þ

is known to approximate the second derivative f00ðxjÞ.
More generally, on a regular hypercubic lattice with
vertices at xj ∈Rn and constant lattice spacing h, the
discrete Laplacian Δ½h� is defined as

Δ½h�fðxjÞ ¼
1

h2
X
k

ðAjk − 2nδjkÞfðxkÞ; ð19Þ

FIG. 1. Continuum eigenfunctions on the Poincaré disk. Left:
Plane wave eigenfunction ψk;bðzÞ for b ¼ eiπ=4 and k ¼ 4. The
geodesics and horocycles are depicted as white and black circles,
respectively. Right: The corresponding radial eigenfunction
umk ðzÞ for m ¼ 0.
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where Ajk denotes the adjacency matrix which is 1 if the
nodes j and k are connected by an edge and 0 otherwise.
The lattice Laplacian Δ½h� is known to approximate the
continuum Laplacian as Δ½h�fðxjÞ ¼ ∇2fðxjÞ þOðh2Þ.
Now, let us turn to hyperbolic lattices on the two-

dimensional Poincaré disk in the form of isometric
fp; qg-tilings [1]. Such tilings consist of regular p-gons
and vertices with coordination number q, satisfying the
inequality ðp − 2Þðq − 2Þ > 4, and can easily be generated
using software packages such as [40]. An example of such a
tiling is shown in Fig. 2. Unlike Euclidean lattices, where
the lattice spacing can be chosen freely, hyperbolic lattices
have a fixed geodesic edge length.
Denoting the positions of the vertices on the Poincaré

disk as zj ∈D, the lattice Laplacian Δfp;qg, which approx-
imates the Laplace–Beltrami operator Δg in (4), is defined
in analogy to (19) as

Δfp;qgfðzjÞ ¼
1

N

X
k

ðAjk − qδjkÞfðzkÞ: ð20Þ

Here N is a normalization factor given by [8]

N ¼ 1

4
qh2 ð21Þ

with

h ¼
�
1 −

sin2ðπ=qÞ
cos2ðπ=pÞ

�
1=2

: ð22Þ

The objective of this work is to find eigenvectors Ψμ;bðzjÞ
of the eigenvalue problem

Δfp;qgΨμ;bðzjÞ ¼ −ΛμΨμ;bðzjÞ; ð23Þ

which are analogous to the plane-wave eigenfunctions (14)
in the continuum case.

B. Special cases with trivial solutions

In the Euclidean case, the continuum Laplacian Δ and its
lattice counterpart Δ½h� defined in Eq. (19) are known to
share the same eigenfunctions

ψkðxÞ ¼ e�ik·x ð24Þ

independent of the lattice spacing h. The effect of the
discretization is only reflected in a modification of the
corresponding eigenvalues, namely

ΔψkðxÞ ¼ −k2ψkðxÞ ð25Þ

ΔhψkðxÞ ¼ −
4

h2

�X
j

sin2
hkj
2

�
ψkðxÞ: ð26Þ

As can be seen, (26) tends to (25) in the continuum
limit h → 0.
In the hyperbolic case, this coincidence of the continuum

and lattice wave function is generally absent and the
eigenfunctions on the lattice turn out to be highly non-
trivial. Nonetheless, we have discovered specific excep-
tional values of μ where the coincidence still persists. More
precisely, we have found that (23) is solved by

Ψμ;bðzjÞ ¼ ψμ;bðzjÞ for μ ¼ 0; 1;…; q − 1 ð27Þ

with the eigenvalue

Λ½0�
μ ¼ q

N

�
1 − Pμ

�
1þ h2

1 − h2

��
: ð28Þ

This important result will be explained and proven in the
following sections.
If we formally take h → 0, the eigenvalue (28) tends to

−4μðμþ 1Þ in agreement with Eq. (15). This justifies the
choice of the normalization N in Eq. (21) [8]. However,
one should keep in mind that on a hyperbolic lattice the
radius h has a certain constant value given in (22) that
cannot be taken to zero. Therefore, there seems to be an
element of arbitrariness in the definition of the normaliza-
tion which to our knowledge is not yet fully understood.

IV. CONCEPT OF LOCAL INCLINATION

An extensive numerical study of the eigenvalue problem
for general positive and noninteger values of μ revealed that
the lattice eigenfunctions that are analogous to plane waves
differ only slightly from the continuum eigenfunctions
(14). In particular they seem to exhibit the same type of
exponential characteristics on large scales. This suggests
that the lattice eigenfunctions Ψμ;bðzjÞ differ from the

FIG. 2. f3; 7g tiling of the Poincaré disk. The vertices enu-
merated by j are located at the points zj ∈D. The lattice
Laplacian applied to a function fðzjÞ living on the vertices is
evaluated at a given vertex (hollow circle) and its nearest
neighbors (solid dots) according to Eq. (20).
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continuum eigenfunctions ψμ;bðzjÞ only by some correc-
tion factor χj, which is expected to be close to 1 everywhere
on the infinite lattice:

Ψμ;bðzjÞ ¼ ψμ;bðzjÞχj: ð29Þ

So far, this ansatz does not impose any restrictions.
However, as a central hypothesis of this paper, we propose
that the correction factors χj exhibit a very specific
dependence on the local configuration of the lattice. This
leads us to the inclination hypothesis, as will be explained
in the following.

A. Inclination hypothesis

The numerical observation that the correction factors χj
are close to 1 on the entire lattice suggests that the
asymptotic behavior of the eigenfunction Ψμ;bðzjÞ in
(29) is already correctly captured by the continuous
eigenfunction ψμ;bðzjÞ while the factors χj can be under-
stood as corrections caused by the local configuration of the
lattice around the vertex zj. However, since all vertices are
isometrically equivalent, the only feature in which they can
differ is the direction in which they “see” the source b from
which the plane wave emanates, relative to the vertex itself
and its nearest neighbors.
Therefore, we conjecture that the correction factors χj

can only depend on the angle αj at which a geodesic line
emanating from the source b intersects the vertex in relation
to its nearest neighbors. As demonstrated in Fig. 3, this
angle can be determined as follows. First, an arbitrary
vertex zj is selected, marked by the hollow circle in the
figure. Then the source b and zj are connected by a
geodesic line, represented as a circular segment on the
Poincaré disk. The angle αj is then the intersection angle of
this geodesic line with the first outgoing edge of the vertex
in the counterclockwise direction.
Since both the geodesic line and the edges exhibit a

curvature in their representation on the Poincaré disk, it is

advantageous to apply an isometry to bring b to 1 and the
vertex to the center of the disk, whereby both lines become
straight. Since the conformal isometry preserves angles,
this allows us to easily read off the angle αj, as shown in the
right panel of Fig. 3.
Since αj ∈ ½0; 2π=qÞ, it will be convenient in the follow-

ing to rescale this angle, defining the inclination

τj ≔
q
2π

αj ∈ ½0; 1Þ: ð30Þ

For a given position b of the source, one can calculate the
local inclination τj at every vertex j, as will be explained in
the following.

B. Explicit calculation of the inclination

Let us choose an arbitrary vertex j on the lattice with the
coordinate zj ∈D and let us denote by zj0 ; zj1 ;…; zjq−1, the
coordinates of the neighboring vertices j0; j1;…; jq−1, as
sketched in Fig. 4. Furthermore, let b ¼ eiβ ∈ ∂D be the
coordinate of the source of the plane wave at the boundary.
As outlined above, let us apply the isometry

z ↦ wðzÞ ¼ ð1 − bz̄jÞðz − zjÞ
ðb − zjÞð1 − zz̄jÞ

; ð31Þ

which maps b to 1 and zj to the disk’s center at 0. As shown
in the figure, the new positions of the nearest neighbors
wn ¼ wðzjnÞ are then uniformly distributed along a circle

wn ¼ heiðαjþ2πn=qÞ ðn ¼ 0;…; q − 1Þ ð32Þ

with the radius h given in (22). As can be seen in the right
panel, the q edges are now straight and form a regular star,
which is tilted against the horizontal geodesic line by the
angle αj. Choosing a nearest neighbor with the index
n ¼ 0;…; q − 1, the angle αj is then given by

eiqαj ¼
�
wn

h

�
q
: ð33Þ

FIG. 3. Left: f3; 7g-tiling with a geodesic line (blue) originat-
ing at b∈ ∂D which crosses the vertex marked by the hollow
circle. α is defined as the angle between the geodesic line and the
next edge in counterclockwise direction. Right: Mapping the
vertex conformally to 0 and the source to 1 (see text).

FIG. 4. Mapping the cell with the vertex j to the center in the
example of a f3; 7g-lattice.
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As can be seen, the actual choice of n is irrelevant since it
drops out when taking the qth power. Therefore, we can
select just one arbitrary nearest neighbor j0 ¼ jn of the
vertex j and denote its coordinate as z0j. Since we have
defined the inclination as τj ¼ q

2π αj, we arrive at

e2πiτj ¼
�
1

h

ð1 − bz̄jÞðz0j − zjÞ
ðb − zjÞð1 − z0jz̄jÞ

�
q
; ð34Þ

where the square bracket encapsulates a complex number
on the unit circle. Taking the argument allows us to
disregard the factor 1

h, leading to the final expression for
the local inclination:

τj ¼
1

2π
arg

��ð1 − bz̄jÞðz0j − zjÞ
ðb − zjÞð1 − z0jz̄jÞ

�
q
�
: ð35Þ

Here τj is evaluated modulo 1 in the range [0, 1). In
practice, once we have generated a hyperbolic tiling with
vertex coordinates zj and defined the location of the source
b∈ ∂D, this formula allows us to compute the inclination
parameter τj at every vertex j of the infinite lattice simply
by choosing just one of its nearest neighbors j0 at the
position z0j and evaluating (35).

V. CALCULATION OF THE CORRECTION
FUNCTION χ ðτÞ

As the main hypothesis of this work, we suggest that the
correction factors χj depend only on the local inclination τj,
that is, we suggest that there exists a correction function
χðτÞ∶½0; 1Þ → C such that

χj ¼ χðτjÞ: ð36Þ

If this assumption turns out to be correct and if we succeed
to calculate the function χðτÞ explicitly, this will give us the
exact eigenfunction on the entire lattice.

A. Finite difference equation for χ ðτÞ
We now present a linear difference equation which

determines the correction function χðτÞ. The starting point
is the eigenvalue problem (23)

Δfp;qgΨμ;bðzjÞ ¼ −ΛμΨμ;bðzjÞ; ð37Þ

where Δfp;qg denotes the hyperbolic lattice Laplacian
defined in (20). Using the abbreviation Ψj ≔ Ψμ;bðzjÞ, this
eigenvalue problem can be recast asX

k

AjkΨk ¼ ðq −NΛμÞΨj; ð38Þ

where Ajk is again the adjacency matrix and N is the
normalization factor defined in (21)–(22).
As explained above, we assume that the lattice eigen-

function Ψj can be expressed as

Ψj ¼ ψ jχðτjÞ; ð39Þ

where

ψ j ≔ ψμ;bðzjÞ ¼
�jb − zjj2
1 − jzjj2

�μ

ð40Þ

is the continuum eigenfunction and χðτÞ is the correction
function we aim to determine. As shown in Appendix A,
this ansatz leads directly to a linear difference equation of
the form

Xq−1
n¼0

RnðτÞχðσnðτÞÞ ¼ ðq −NΛμÞχðτÞ; ð41Þ

which is expected to hold for all inclinations τ∈ ½0; 1Þ. Here
the function RnðτÞ is defined as

RnðτÞ ¼
�j1 − hZτþnj2

1 − h2

�
μ

ð42Þ

with Z ¼ e2πi=q while

σnðτÞ ¼
1

2π
arg

��
h − Zτþn

1 − hZτþn

�
q
�
∈ ½0; 1Þ ð43Þ

denotes the inclinations of the nearest neighbors indexed by
n ¼ 0; 1;…; q − 1. Equation (41) provides a linear relation
between the function χ evaluated at the inclination τ and the
same function evaluated at the q different inclinations
σ0ðτÞ;…; σq−1ðτÞ of the nearest neighbors. Thus, it can
be considered as a nonlocal linear difference equation for
the function χðτÞ.

B. Numerical iteration scheme

The difference equation (41) can be used to approximate
the correction function χðτÞ numerically. As detailed in
Appendix B, if we discretize the correction function and if
we start without correction by setting χðτÞ ¼ 1, we can use
the difference equation to iterate χðτÞ in such a way that it
converges towards a stable solution.
Figure 5 shows four examples of these numerical

solutions. Our results confirm that for μ ¼ 0; 1;…; q − 1
no correction is needed, i.e., χðτÞ ¼ 1, in agreement with
our earlier observation in Eq. (27). In all other cases χðτÞ
differs only slightly from 1. For integer values μ ¼ q; qþ
1;…; 2q − 1 we obtain a solution of the form
χðτÞ ¼ 1 − A cosð2πτÞ. For larger integer values of μ more
and more Fourier modes are involved. Generally, we
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observe numerically that for positive integer μ the function
χðτÞ involves bμ=qc Fourier modes.
For positive but noninteger values μ∈R the solutions are

stable but they seem to involve infinitely many Fourier
modes. Nevertheless, as the lower left panel in Fig. 5
suggests, for μ ¼ 1=4 the function χðτÞ is still well defined.
For negative values of μ, however, the situation is

different. Here the iteration scheme still converges, but
the resulting function χðτÞ turns out to be highly nontrivial.
As can be seen in the lower right panel of the figure, the
irregular form reminds one of the Weierstrass function,
which is known in mathematics as an example of a
continuous but nowhere differentiable function.
Figure 6 shows the numerically determined eigenvalue

ð−ΛÞ as a function of μ on two different lattices in
comparison with the continuum case. As can be seen,
the eigenvalue vanishes at μ ¼ 0 and μ ¼ −1 in all cases.

Moreover, we observe on both lattices the important
symmetry Λμ ¼ Λ−1−μ, which will be proven in the
following section. Some explicit numerical eigenvalues
are listed in Table I.

VI. FOURIER ANALYSIS

A. Fourier expansion of the correction function

The numerical observation that for integer μ the function
χðτÞ involves only a finite number of Fourier modes
suggests to expand it as a Fourier series

χðτÞ ¼
Xþ∞

k¼−∞
γke2πiτk; ð44Þ

where γk ∈C are Fourier coefficients with γ0 ≔ 1. As
shown in Appendix C, this converts the difference equa-
tion (41) into an eigenvalue problem for the Fourier
coefficients:

X∞
k¼−∞

Bj;kγk ¼ ðq −NΛμÞγj: ð45Þ

Here, B is an infinite-dimensional matrix defined by

Bj;k ¼
qð−1Þqjhqjj−kj
ð1 − h2Þμ

8>><
>>:
�
μ−qk
μ−qj

�
Fqj;−qk if j ≥ k�

μþqk
μþqj

�
F−qj;qk if j < k

ð46Þ

where we used the abbreviation

Fa;b ¼ 2F1ða − μ; b − μ; 1þ aþ b; h2Þ ð47Þ

and where ðabÞ ¼ Γð1þaÞ
Γð1þbÞΓð1þa−bÞ. Note that the matrix B is

transposed under the substitution μ → −1 − μ, proving the
previously observed symmetry of the eigenvalues:

FIG. 5. Numerically determined correction function χðτÞ on a
f3; 7g-lattice for various values of μ (see text).

TABLE I. Numerically determined eigenvalues Λμ as well as
the parameters h and N for three different fp; qg-lattices. The
numerical precision is �1 in the last digit.

μ f3; 7g f3; 8g f4; 8g
−0.5 1.127627 1.245405 1.548876
−0.25 0.849605 0.942441 1.194023
0.25 −1.468768 −1.686357 −2.402387
0.5 −3.639259 −4.304511 −6.726293
1 −10.62388 −13.65685 −27.31370
7 −7.465861 × 103 −9.207830 × 104 −3.302949 × 107

8 −2.083553 × 104 −3.980441 × 105 −3.583152 × 108

h 0.4969704 0.6435943 0.8408964
N 0.4322143 0.8284271 1.4142136

FIG. 6. Numerically determined eigenvalue −Λμ as a function
of μ on two different lattices and in the continuum case.
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Λμ ¼ Λ−1−μ: ð48Þ

It is remarkable that this symmetry is valid not only in the
continuum but on any fp; qg-lattice.

B. Exact solution for μ∈N

Interestingly, for μ∈N the matrix B possesses a block
structure which allows us to find exact solutions. More
specifically, for given μ∈N, choosing s ¼ bμ=qc∈N such
that qs ≤ μ < qðsþ 1Þ, we find that

8>><
>>:

Bj;k ¼ 0 if j > s and k ≤ s

Bj;k ¼ 0 if j < −s and k ≥ −s
Bj;k ≠ 0 otherwise:

ð49Þ

This gives rise to a block structure of the matrix. This block
structure is visualized in Fig. 7, where the central part of the
matrix is shown for μ ¼ 6 and μ ¼ 7 on a f3; 7g-lattice.
Each square in the figure stands for a matrix element. The
dark blue squares indicate that the respective matrix
elements are zero.
As can be seen, the central block matrix with indices in

the range jjj ≤ s and jkj ≤ s (enclosed by a red square in
the figure) decouples in the corresponding eigenvalue
problem. This enables us to solve the corresponding
eigenvalue problem separately within this block and to
set all remaining Fourier coefficients γk with jkj > s to
zero. Therefore, the resulting Fourier series (44) contains
only 2sþ 1 terms. This observation is one of the main
results of this work.
The block structure enables us to prove various special

cases exactly. For instance, for μ ¼ 0; 1;…q − 1, we can
now easily prove the special case discovered in Eqs. (27) and
(28), where the lattice and continuum eigenfunctions
coincide. In this case we have s ¼ 0, obtaining a one-
dimensional block matrix. This block matrix has the trivial
eigenvector γ0 ¼ 1 and the eigenvalue is given by the matrix
element itself:

Λ½s¼0�
μ ¼ q

N

�
1 −

1

ð1 − h2Þμ 2F1ð−μ;−μ; 1;h2Þ
�
: ð50Þ

For μ ¼ q;…; 2q − 1, where s ¼ 1, we find an explicit exact
solution for the lattice eigenfunction, which can be found in
Appendix D. Selected numerical values of the eigenvalues
and Fourier coefficients can be found in Table II.
Equation (45) is also beneficial for noninteger μ > 0, as

we can approximate the solution numerically by truncating
the matrix B at a large but finite size and diagonalize it
numerically. This gives a very good approximation of a
finite number of Fourier coefficients γk, allowing us to
compute a reliable approximation of the eigenmodes on the
infinite lattice.

C. Radial eigenfunctions on the lattice

Having calculated the plane-wave lattice eigenfunctions
originating from b ¼ eiβ ∈ ∂D, the corresponding radially
symmetric solutions analogous to umμ ðzÞ in Eq. (17) can be
obtained through a simple Fourier transformation in the
angle β:

Um
μ ðzjÞ ¼

1

2π

Z
2π

0

eimβΨμ;eiβðzjÞ: ð51Þ

In this context, a straightforward calculation (not shown
here) leads to the following explicit expression in terms of
the Fourier coefficients γk:

TABLE II. Selected numerical results for the eigenvalue Λ and
the Fourier coefficients fγkg for integer μ on different lattices.

fp; qg μ Λμ fγ0; γ1g
f3; 7g 1 −10.6239 f1; 0g

2 −42.3251 f1; 0g
6 −2.69424 × 103 f1; 0g
7 −7.46586 × 103 f1;−1.16212 × 10−4g
8 −2.08355 × 104 f1;−5.41973 × 10−4g
9 −5.8503 × 104 f1;−1.46462 × 10−3g

f3; 8g 1 −13.6569 f1; 0g
2 −69.9411 f1; 0g
6 −2.15029 × 104 f1; 0g
7 −9.20783 × 104 f1; 0g
8 −3.98044 × 105 f1; 5.15986 × 10−5g
9 −1.73383 × 106 f1; 2.58365 × 10−4g

f4; 8g 1 −27.3137 f1; 0g
2 −279.765 f1; 0g
6 −3.07439 × 106 f1; 0g
7 −3.30295 × 107 f1; 0g
8 −3.58315 × 108 f1; 7.28970 × 10−5g
9 −3.91747 × 109 f1; 3.50096 × 10−4g

FIG. 7. Block structure of the matrix B for μ ¼ 6 and μ ¼ 7 on
a f3; 7g-lattice. The panels show the central section of the matrix
Bj;k where j; k∈ f−4;…; 4g. The dark fields indicate entries
where the matrix is exactly zero. The blocks in the center marked
in red color decouple in the corresponding eigenvalue problem.
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Um
μ ðzjÞ ¼

1

ð1 − jzjj2Þμ
X∞
k¼−∞

γk

�
zj − z0j

hð1 − z0jz̄jÞ
�qk

×

8<
:

zm−qk
j

�
μ−qk
m−qk

�
Fm;−qkðjzjj2Þ if m ≥ qk

z̄qk−mj

�
μþqk
qk−m

�
F−m;qkðjzjj2Þ if m < qk

ð52Þ

where Fa;bðξÞ ¼ 2F1ða − μ; b − μ; 1þ aþ b; ξÞ.

VII. CONCLUSIONS

In the present paper, we have introduced a method for
computing specific eigenfunctions of the hyperbolic lattice
Laplacian on the Poincaré disk. These eigenfunctions are
analogous to plane waves in the continuum case. Our
approach hinges on the assumption that such eigenfunc-
tions deviate from the continuum solutions by a correction
function χðτÞ ≈ 1 which depends solely on what we call the
local inclination τ of the respective vertex relative to the
propagation direction of the wave.
We have provided a numerical iteration scheme along-

side an analytical method that allows us to determine the
correction function χðτÞ for given lattice parameters fp; qg
and the exponent μ. Furthermore, we have demonstrated
that for μ∈N, this correction function incorporates only
finitely many Fourier modes, which allows various special
cases to be solved exactly.
It is noteworthy that our approach works for any fp; qg-

tiling and does not rely on edge pairing or the existence of a
Fuchsian translation subgroup. Moreover, once the correc-
tion function χðτÞ is determined on the interval [0,1), it
promptly allows us to calculate the eigenfunction on the
entire infinite lattice without cutoff.
Despite these advances, many questions remain open. In

the current study, we focused on (unnormalizable) expo-
nential modes with μ > 0, corresponding to imaginary
momenta k ¼ ið1þ 2μÞ. As the numerical results suggest,
for μ < 0 the form of the eigenfunctions is significantly
more irregular, and the interpretation of these findings is
not yet clear. It would also be intriguing to study oscillatory
modes with real momenta. Preliminary tests suggest that
the proposed methods remain partially functional, but this
requires further detailed exploration. Additionally, we
analyzed only the largest eigenvalue of the difference
function which leads to a plane-wave analogue, so far
neglecting many other possible solutions. Finally, the
correlation between our results and hyperbolic band theory
and Fuchsian symmetry is still to be clarified.
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APPENDIX A: LINEAR DIFFERENCE EQUATION
FOR THE CORRECTION FUNCTION

In this appendix we present details for deriving the linear
difference equation (41) for the correction function χðτÞ.
The starting point is the eigenvalue problem (23)X

k

AjkΨk ¼ ðq −NΛμÞΨj; ðA1Þ

where Ψj ≔ Ψμ;bðzjÞ is the lattice eigenmode, Ajk denotes
the adjacency matrix, and N ¼ 1

4
qh2 is the normalization

factor. As explained above, we rewrite the lattice eigen-
mode Ψj as

Ψj ¼ ψ jχj; ðA2Þ

where

ψ j ≔ ψμ;bðzjÞ ¼
�jb − zjj2
1 − jzjj2

�μ

ðA3Þ

is the continuum eigenfunction and where the χj are
correction factors we aim to determine. This ansatz turns
the eigenvalue problem intoX

k

Ajkψkχk ¼ ðq −NΛμÞψ jχj: ðA4Þ

Since ψ j ≠ 0, we can divide by ψ j, yielding an equivalent
eigenvalue problem for the corrections χj:X

k

Ajk
ψk

ψ j
χk ¼ ðq −NΛμÞχj: ðA5Þ

Since the adjacency matrix runs over q nearest neighbors,
we can rewrite this eigenvalue problem as

Xq−1
n¼0

Rj;nχjn ¼ ðq −NΛμÞχj; ðA6Þ

where jn denotes the index of the nth nearest neighbor of
the vertex j and where we defined the ratio of the
continuum eigenmodes

Rj;n ≔
ψ jn

ψ j
: ðA7Þ

It can be shown that this ratio is in fact an isometric
invariant, i.e., it remains unaltered under any isometry of
the form z ↦ wðzÞ ¼ eiη a−z

1−zā:

Rj;n ¼
ψ jn

ψ j
¼ ψμ;bðzjnÞ

ψμ;bðzjÞ
¼ ψμ;wðbÞðwðzjnÞÞ

ψμ;wðbÞðwðzjÞÞ
: ðA8Þ
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We apply this invariance in the case of the isometry (31) in
order to move the source b∈ ∂D to 1 and the vertex at zj to
the center of the disk. This enables us to express the ratio by
the simplified expression

Rj;n ¼
ψμ;1ðwðzjnÞÞ

ψμ;1ð0Þ
¼ ψμ;1ðwnÞ; ðA9Þ

where the complex numbers wn ¼ wðzjnÞ are once again
the positions of the nearest neighbors in the central cell. As
depicted in the right panel of Fig. 4, they are uniformly
distributed on a circle with radius h defined in (22).
Defining the complex phase

Z ¼ e2πi=q ðA10Þ

we can represent them as wn ¼ hZτjþn, implying that

Rj;n ≔ ψμ;1ðhZτjþnÞ ¼
�j1 − hZτjþnj2

1 − h2

�
μ

: ðA11Þ

Assuming that the correction factors χj depend exclusively
on the local inclination, i.e., χj ¼ χðτjÞ, the eigenvalue
problem (A6) turns into the following equation for the
correction function χðτÞ:

Xq−1
n¼0

Rj;nχðτjnÞ ¼ ðq −NΛμÞχðτjÞ: ðA12Þ

This equation is supposed to hold at all vertices j of the
infinite lattice. Given that the corresponding inclinations τj
appear to densely fill the interval [0, 1) across the lattice, we
can therefore consider just an arbitrary value τ∈ ½0; 1Þ of
some vertex as given and then compute the corresponding
inclinations σnðτÞ of its q nearest neighbors, enumerated
by n ¼ 0;…; q − 1.
The neighboring inclinations σnðτÞ can be determined as

follows. As described above, we first use again the isometry
(31) to map the cell to the center. Then, selecting a nearest
neighbor at hZτþn, we map this neighbor in a second step
isometrically to the center while keeping the source at
b ¼ 1 fixed. The corresponding isometry reads

w̃ðzÞ ¼ ðZτþn − hÞðhZτþn − zÞ
ðhZτþn − 1ÞðZτþn − hzÞ : ðA13Þ

The inclination σnðτÞ of the nth neighbor is then deter-
mined by the angular argument of w̃ð0Þ, leading to the
expression

σnðτÞ ¼
1

2π
arg

��
h − Zτþn

1 − hZτþn

�
q
�
∈ ½0; 1Þ: ðA14Þ

This provides q different functions σ0ðτÞ;…; σq−1ðτÞ. For
given inclination τ at a some vertex, these functions allow

us to compute the inclination of the nearest neighbors. An
example of these functions in case of a f3; 7g-lattice is
shown in Fig. 8.
Rewriting (A11) as

RnðτÞ ¼
�j1 − hZτþnj2

1 − h2

�
μ

ðA15Þ

and replacing τj → τ and τjn → σðτÞ in Eq. (A12) we are
led to the final equation

Xq−1
n¼0

RnðτÞχðσnðτÞÞ ¼ ðq −NΛμÞχðτÞ: ðA16Þ

This equation is expected to hold for all τ∈ ½0; 1Þ. It relates
the function χ evaluated at τ linearly with itself evaluated at
q different inclinations σ0ðτÞ;…; σq−1ðτÞ. Thus, it can be
considered as a linear finite-difference equation for the
correction function χðτÞ.

APPENDIX B: NUMERICAL ITERATION
SCHEME FOR THE CORRECTION FUNCTION

The difference equation (A16) can be regarded as an
eigenvalue problem for χðτÞ, and it turns out that for μ ≥ 0
the eigenfunctions with the largest eigenvalue correspond
to the plane-wave solutions we aim to determine. This
suggests a simple numerical iteration scheme. For this, we
first divide the domain of the inclination τ∈ ½0; 1Þ into T
equidistant bins labeled by the index t ¼ 0;…; T − 1,
thereby discretizing the correction function χðτÞ by a
vector x with the components Xt ≃ χðt=TÞ. Setting

Rn;t ≔ Rnðt=TÞ ðB1Þ

sn;t ≔ bTσnðt=TÞc ðB2Þ

and initializing X½0�
t ≔ 1, we iterate X½k� ↦ X½kþ1� via

FIG. 8. Inclination σnðτÞ of the nth neighbor of a vertex with
inclination τ on a f3; 7g lattice.
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Yt ≔
Xq−1
n¼0

Rn;tX
½k�
sn;t ðt ¼ 0…; T − 1Þ ðB3Þ

η ≔
1

T

XT−1
t¼0

jYtj ðB4Þ

X½kþ1� ≔ y=η ðB5Þ

in a loop until the eigenvectorX½k� becomes stationary. The
corresponding eigenvalue can then be estimated by

Λμ ≈
1

N
ðq − ηÞ: ðB6Þ

For μ > 0 this iteration procedure converges quickly, while
for μ < 0 the convergence is much slower. Note that this
procedure determines the largest eigenvalue and that we
implicitly assume that the plane-wave solution we are
interested in just corresponds to the largest eigenvalue.

APPENDIX C: FOURIER EXPANSION

As explained above, our numerical results strongly
suggest that it is advantageous to express the correction
function χðτÞ as a Fourier series:

χðτÞ ¼
Xþ∞

k¼−∞
γkZqτk; ðC1Þ

where Z ¼ e2πi=q and γk ∈C are certain Fourier coefficients
yet to be determined. Since eigenvectors are only deter-
mined up to a factor, we are free to set γ0 ≔ 1. We are now
going to derive an eigenvalue equation that allows us to
determine the coefficients fγkg.
The starting point is the difference equation (A16). To

simplify the notations, let us introduce the abbreviation

Yn ≔ 1 − hZτþn ðC2Þ

and its complex conjugate Ȳn ≔ 1 − hZ−τ−n with h defined
in (22). This enables us to rewrite Eqs. (A14) and (A15) by

ZqσnðτÞ ¼
�
h − Zτþn

1 − hZτþn

�
q
¼ ð−1ÞqZqτȲq

n

Yq
n

; ðC3Þ

RnðτÞ ¼
�j1 − hZτþnj2

1 − h2

�
μ

¼ Yμ
nȲ

μ
n

ð1 − h2Þμ ; ðC4Þ

where we used Znq ¼ 1. Inserting the ansatz (C1), the
difference equation (A16) can then be reformulated as

Xq−1
n¼0

Yμ
nȲ

μ
n

ð1 − h2Þμ
Xþ∞

k¼−∞
γk

ð−1ÞqkZqτkȲqk
n

Yqk
n

¼ ðq −NΛμÞ
Xþ∞

k¼−∞
γkZqτk: ðC5Þ

Organizing the terms yields:

1

ð1 − h2Þμ
Xþ∞

k¼−∞
γkð−1ÞqkZqτk

Xq−1
n¼0

Yμ−qk
n Ȳμþqk

n|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
≕ Sk

¼ ðq −NΛμÞ
Xþ∞

k¼−∞
γkZqτk: ðC6Þ

We first evaluate the part Sk marked by the curly bracket
using the general relation

ð1þ aÞν ¼
X∞
l¼0

�
ν

l

�
al ðC7Þ

where a
b ¼ Γðaþ1Þ

Γðbþ1ÞΓða−bþ1Þ. The resulting expression reads

Sk ¼
Xq−1
n¼0

Yμ−qk
n Ȳμþqk

n

¼
X∞
l¼0

�
μ − qk

l

�X∞
m¼0

�
μþ qk
m

�

× ð−hÞlþmZτðl−mÞXq−1
n¼0

Znðl−mÞ: ðC8Þ

Given that Z ¼ e2πi=q, the last sum yields:

Xq−1
n¼0

Znðl−mÞ ¼


q if ðl −mÞ is a multiple of q

0 otherwise:
ðC9Þ

The expression for Sk therefore decomposes into three
parts, namely, for m ¼ l, for m ¼ lþ qs, and for l ¼
mþ qs with s∈N:

Sk ¼ q
X∞
l¼0

�
μ − qk

l

��
μþ qk

l

�
ð−hÞ2l

þ q
X∞
s¼1

X∞
l¼0

�
μ − qk

l

��
μþ qk
lþ qs

�
ð−hÞ2lþqsZ−τqs

þ q
X∞
s¼1

X∞
m¼0

�
μ − qk
mþ qs

��
μþ qk
m

�
ð−hÞ2mþqsZτqs:

ðC10Þ
It turns out that these sums can be expressed in terms of
generalized hypergeometric functions
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Sk ¼ qF−qk;qk

þ q
X∞
s¼1

�
μþ qk
qs

�
Fqk;qs−qkð−hÞqsZ−τqs

þ q
X∞
s¼1

�
μ − qk
qs

�
F−qk;qsþqkð−hÞqsZτqs ðC11Þ

where we used again the abbreviation

Fa;b ¼ 2F1ða − μ; b − μ; 1þ aþ b; h2Þ: ðC12Þ

Reinserting Sk back into Eq. (C6) and comparing the
coefficients in the powers of Z on both sides, it is
straightforward to show that the Fourier coefficients com-
ply with the eigenvalue problem

X∞
k¼−∞

Bj;kγk ¼ ðq −NΛμÞγj ðC13Þ

for all j∈Z. Here the infinite-dimensional matrix B with
matrix elements Bj;k is defined in terms of generalized
hypergeometric functions as:

Bj;k ¼
qð−1Þqjhqjj−kj
ð1 − h2Þμ

8>><
>>:
�

μ−qk
qj−qk

�
Fqj;−qk if j ≥ k�

μþqk
qk−qj

�
F−qj;qk if j < k:

ðC14Þ

Equivalently, we can rewrite this matrix in terms of
generalized Jacobi functions Pα;β

n ðzÞ as

Bj;k ¼
qð−1Þqjhqjj−kj
ð1 − h2Þμ

8<
:Pqðj−kÞ;−1−2μ

μ−qj ð1 − 2h2Þ if j ≥ k

Pqðk−jÞ;−1−2μ
μþqj ð1 − 2h2Þ if j < k

:

ðC15Þ

Note that this matrix is symmetric under reflections

Bj;k ¼ B−j;−k: ðC16Þ

Thus, the eigenvectors of (C13) are either symmetric or
antisymmetric (γj ¼ �γ−j), corresponding to real-valued or
purely imaginary correction functions. Given our interest in
real-valued symmetric solutions with γj ¼ γ−j, we can
further condense the eigenvalue problem to:

X∞
k¼0

Cj;kγk ¼ ðq −NΛÞγj ðC17Þ

for j ¼ 0; 1; 2;… with

Cj;k ≔

(
Bj;0 if k ¼ 0

Bj;k þ Bj;−k if k > 0
: ðC18Þ

APPENDIX D: EXACT SOLUTION FOR
μ= q; q+ 1; …; 2q− 1

As an example of a nontrivial exact solution, let us study
the second group of integer values in the range

μ ¼ q; qþ 1;…; 2q − 1: ðD1Þ

For these values we have s ¼ 1, meaning that a 3 × 3 block
matrix in the center of B decouples and can be diagonalized
exactly. Here, we find the following explicit exact solution

Ψμ;bðzjÞ ¼ ð1þ 2γ1 cosð2πτjÞÞψμ;bðzjÞ: ðD2Þ

Here the Fourier coefficients are given by γ0 ¼ 1 and

γ1 ¼
2hqðμqÞFq;0

ð−1ÞqðF0;0 þ
ffiffiffiffiffi
W

p Þ − h2q qþμ
2q Fq;q − Fq;−q

: ðD3Þ

The corresponding eigenvalue reads

NΛ½s¼1�
μ ¼ q −

q
2ð1 − h2Þμ

�
ð−1Þqh2q

�
qþ μ

2q

�
Fq;q

þ F0;0 þ ð−1ÞqFq;−q þ
ffiffiffiffiffi
W

p �
; ðD4Þ

where

W ¼
�
ð−1ÞqF0;0 þ F−q;q þ h2q

�
qþ μ

2q

�
Fq;q

�
2

þ 8ð−1Þqh2q
�
μ

q

��
qþ μ

q

�
F2
q;0 − 4ð−1ÞqF0;0

×

�
F−q;q þ h2q

�
qþ μ

2q

�
Fq;q

�
: ðD5Þ

Note that this nontrivial solution is exact across the entire
infinite hyperbolic lattice.
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