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We formulate a model for quantum gravity based on the local Lorentz symmetry and general-coordinate
invariance. A key idea is the irreversible vierbein postulate that a tree-level action for the model at a certain
energy scale does not contain an inverse vierbein. Under this postulate, only the spinor becomes a
dynamical field, and no gravitational background field is introduced in the tree-level action. In this paper,
after explaining the transformation rules of the local Lorentz and general-coordinate transformations in
detail, a tree-level action is defined. We show that fermionic fluctuations can induce a nonvanishing
gravitational background field.
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I. INTRODUCTION

Quantum gravity—how to consistently quantize inter-
acting spacetime fluctuations—is one of the most profound
mysteries that has defied human challenges over the past
century. On the other hand, it has been established
experimentally that there indeed exist spacetime fluctua-
tions that propagate over cosmic distances with the speed
of light, namely, the gravitational waves, consistently
described by Einstein’s general relativity; see, e.g.,
Refs. [1,2] for classic examples. Given the tremendous
success of the Standard Model (SM) of particle physics
based on quantum field theory (see, e.g., Ref. [3] for a
review), it is natural to expect that the gravitational field
governing the observed spacetime fluctuation must be
quantized too. Whether it is really quantized or not will
be experimentally explored within the forthcoming decades
as a form of quantized free spacetime fluctuations, grav-
itons, on a curved classical background during inflation in
observations of the B-mode polarization of the cosmic
microwave background [4–6] and further in direct obser-
vation of the cosmic gravitational-wave background [7];
see also Ref. [8].

Recent advances in cooling, control, and measurement of
mechanical systems in the quantum regime, particularly
using matter-wave and optomechanical systems, have set
the stage for potential first observations of quantum gravi-
tational effects, as predicted by various low-energy quan-
tum-gravity models, though with certain challenges [9].
Concurrently, recent table-top experiments in quantum-
gravity phenomenology reassess classical descriptions
by focusing on gravitational effects from delocalized
quantum sources, aiming to uncover interactions beyond
the Newtonian potential and deepen our understanding of
gravity’s quantum nature [10].
It is well known, however, that the quantization of the

metric based on Einstein’s general relativity is perturba-
tively nonrenormalizable, requiring an infinite number of
counterterms and thus spoiling its predictability at the
quantum level due to the infinite number of free parameters;
see, e.g., Refs. [11–13], and also Ref. [14] for a review.
Furthermore, the truncation of the gravitational action up to
the dimension-two Einstein-Hilbert term with the Ricci
curvature scalar R yields a conformal mode that has a
wrong-sign kinetic term, which makes Euclidean quantum
gravity ill-defined for both directions of Wick rotations
such that either the wrong-sign mode or the other fields
become exponentially growing along the imaginary time
direction; see, e.g., Refs. [15,16] and Appendix A in
Ref. [17] for a simple review.
It is known that a higher-derivative gravity involving the

R2 andR2
μν terms, in addition to the Einstein-Hilbert term,

is perturbatively renormalizable. However, this leads to a
loss of unitarity in the theory [18], though this issue of
nonunitarity is under an attempt to be circumvented by
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recent works in Refs. [19,20] and references therein; see
also Refs. [21,22] for further discussions.
If we allow the theory to discard the Lorentz symmetry, it

could be perturbatively renormalizable [23], though the
speed of light depends on particle species, and hence we
need additional fine-tunings; see also Refs. [24–27]. In any
case, it appears that the realization of a renormalizable
theory of gravity in perturbation theory is difficult if we
retain all the essential symmetries and properties, in
particular, both the Lorentz symmetry and unitarity.
The above perturbative nonrenormalizability argument is

based on quantum theory around a free theory. In the
Wilsonian viewpoint, the perturbative gravity is constructed
around the Gaussian (trivial) fixed point. On the other hand,
the notion of renormalizability in quantum field theory is
generalized to the nonperturbative realm. This scenario is
known as asymptotically safe gravity [28–30]; see also
Refs. [14,31–43] for reviews. There is accumulating
evidence that there exists a nontrivial (interacting) ultra-
violet (UV) fixed point in gravitational systems by means
of the functional renormalization group method. Quantum
gravity is perturbatively nonrenormalizable but might be
nonperturbatively renormalizable. This situation is similar
to theOðNÞ nonlinear sigma model. (This will be discussed
in Sec. II.)
The statements mentioned above are based on an

assumption that the metric field (spin-2 symmetric tensor
field) is the fundamental degree of freedom. The view that
Einstein’s general relativity is a local Lorentz (LL) gauge
theory [44] is found almost at the same time as the (non-
Abelian) gauge theory itself [45] and has been developed in
Refs. [46,47]. To write down the LL symmetry, it is
essential to rewrite the metric degrees of freedom by the
vierbein (tetrad) ones. The vierbein is also indispensable to
writing down a spinor field on a curved space, namely, the
matter field in our Universe.1 In this sense, the vierbein
degrees of freedom are more fundamental than the metric
ones. In this paper, we postulate that the dynamical degrees
of freedom that describe spacetime fluctuation are the
vierbein and the LL-gauge field.2 The simplest gravita-
tional model with the vierbein and the LL-gauge fields is
the Einstein-Cartan gravity; see, e.g., Ref. [51] for a review

on classical Einstein-Cartan gravity and Refs. [52,53] for
its quantization.
In this paper, we consider a model for gravity and matter

based on the LL-gauge symmetry as well as the invariance
under the general-coordinate (GC) transformation [some-
times interchangeably called diffeomorphism (diff)] at a
certain energy scaleΛG [54]. In particular, we postulate that
its tree-level action admits the degenerate limit of the
vierbein [55,56]. This forbids inverse vierbeins in the
action, and therefore we call it the “irreversible vierbein
postulate.”
Under the irreversible vierbein postulate, only spinor

fields can have kinetic terms, while the other fields become
dynamical due to the quantum effects of spinor fields below
ΛG. The main purpose of this work is to demonstrate
possible generation of a spacetime background, i.e., the
emergence of a nonvanishing background vierbein field,
due to quantum fluctuations of the spinor field. This idea
might also be viewed along the direction of pregeometry;
see, e.g., Refs. [54,57–68].
This paper is organized as follows: We start with a brief

overview of degrees of freedom and symmetries in gravi-
tational theories in Sec. II. In Sec. III, we introduce our
notation and explain transformation laws under the LL and
GC transformations in detail. In particular, together with
Appendixes A and B, we intend to highlight differences
between earlier works and ours. Then, we implement the
degenerate limit on the action in Sec. IV, where we refer to
Appendixes C and D for detailed calculations. After briefly
explaining transformation laws for the background fields in
Sec. V, we demonstrate a generation of a nonvanishing flat
background field of vierbein due to quantum effects of
fermionic degrees of freedom in Sec. VI. In Sec. VII, we
summarize this work and discuss future prospects.

II. DEGREES OF FREEDOM
OF GRAVITATIONAL FIELDS

In this section, we first review the ordinary minimal
Einstein gravity in the metric formalism and then in the
vielbein formalism.

A. Minimal Einstein gravity in metric formalism

It is known that the Einstein-Hilbert action as the metric
formalism

SEH ¼
Z

dDx
ffiffiffiffiffiffi
−g
p �

−Λcc þ
M2

P

2
RðgÞ

�
ð1Þ

well describes the classical gravitational interactions in
D ¼ 4. Here, M2

P ¼ 1=ð8πGNÞ is the Planck mass squared
or inverse Newtonian coupling constant and Λcc is the
cosmological constant. The Ricci scalar curvature RðgÞ is
given by the metric field gμν and its inverse gμν. The metric

1One may consider replacing the vierbein degrees of freedom
by promoting the gamma matrices γμðxÞ ¼ eaμðxÞγa as dynami-
cal variables [48,49]. The fluctuation of γμðxÞ can be decomposed
into that of metric and SLð4;CÞ transformation. If this SLð4;CÞ
transformation is not anomalous, the corresponding degrees of
freedom become redundant, unless there is a higher-dimensional
operator that includes derivatives of γμðxÞ in the action. We do not
delve into this issue in this paper, and choose to take the vierbein
as the fundamental degrees of freedom.

2It is worth noting that supergravity also uses the vierbein and
the LL-gauge field as the fundamental (bosonic) degrees of
freedom; contrary to the simplest model presented here, super-
gravity induces torsion in general due to the presence of a
(fermionic) gravitino; see, e.g., Ref. [50] for a review.
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field is a symmetric tensor, so it classically hasDðDþ 1Þ=2
degrees of freedom in D-dimensional spacetimes.
It is known that the quantum theory based on the

action (1) is nonrenormalizable in terms of the perturba-
tive expansion of GN [11]. The simplest explanation
for the perturbative nonrenormalizability is the negative
mass dimensionality of GN . This may however be some-
what naive. Indeed, the Einstein-Hilbert action in three-
dimensional spacetime is renormalizable even though
the Newton coupling has the negative mass dimension-
ality [69]. This is because the Einstein-Hilbert action
in three-dimensional spacetime becomes a topological
theory and thus can be formulated as a Chern-Simons
theory due to the peculiarity of the three-dimensional
spacetime. In other words, this is because there are no
propagating degrees of freedom of a graviton. The simple
dimensional counting of the coupling constant cannot
fully capture the property of renormalizability.
Another viewpoint why the perturbation theory for the

Einstein-Hilbert action becomes nonrenormalizable is the
existence of the inverse metric which is defined by

gμλgλν ¼ δνμ: ð2Þ

This reversibility condition (2) for the metric field induces
an infinite number of interactions: When one considers the
metric fluctuation field hμν around a background field ḡμν,
namely, gμν ¼ ḡμν þ hμν, the inverse metric is expanded so
as to satisfy Eq. (2) and is given by

gμν ¼ ḡμν − hμν þ hμαhαν þ � � � : ð3Þ

This series continues infinitely around a certain background
field. That is, once the inverse metric is defined by Eq. (2),
the Ricci scalar curvature in the action (1) generally
contains an infinite number of vertices of metric fluctua-
tions, whereas all vertices have a common coupling
constant GN . In general, one cannot remove all the UV
divergences arising from quantum loops including an
arbitrary number of vertices by only a single coupling
constant.

B. Nonlinear and linear sigma models

The above situation is quite similar to the OðNÞ non-
linear sigma model which is a low-energy effective model
of pions, πi (i ¼ 1;…; N − 1). Its action is given by

SNLS ¼
f2π
2

Z
dDx

�
−∂μπi∂μπi − ðπi∂2πiÞ2 þ � � �

�
; ð4Þ

where fπ is the pion decay constant. This theory can be
obtained from the spontaneous symmetry breaking in the
OðNÞ linear sigma model whose action reads

SLS ¼
Z

dDx

�
−
1

2
ð∂μϕiÞ2 −m2

2
ðϕiϕiÞ − λ

4
ðϕiϕiÞ2

�
: ð5Þ

Here, ϕi ¼ ðπj; σÞ with i ¼ 1;…; N and j ¼ 1;…; N − 1.
For m2 < 0, a nontrivial vacuum

hϕiϕii ¼ 2jm2j
λ

ð6Þ

is realized and OðNÞ symmetry is broken into OðN − 1Þ.
As a consequence, the σ mode becomes massive and
decouples from the low-energy dynamics, while πi are
massless and remain as effective degrees of freedom in the
low-energy regime. In this case, one has the constraint on
fields (6) with which integrating out the σ mode in Eq. (5)
[with the constraint σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2π − ðπiÞ2

p
] results in the action

of the nonlinear sigma model (4). The decay constant
just corresponds to the vacuum expectation value fπ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jm2j=λ

p
. To summarize, the nonlinear sigma model (4)

is obtained from the expansion of the linear sigma model
(5) around the vacuum (6).
An important fact is that for D > 2, the nonlinear sigma

model is perturbatively nonrenormalizable, while the linear
sigma model is perturbatively renormalizable. The param-
eter fπ, which arises from the consequence of the OðNÞ
symmetry breaking in the linear sigma model, is a free
parameter in the nonlinear sigma model. In particular, the
massless pions are realized only at the vacuum at hσi ¼ fπ
in the linear sigma model as a consequence of the Nambu-
Goldstone theorem. In this viewpoint, one has an incon-
sistency in the nonlinear sigma model between the massless
pion condition and a free choice of fπ , and there is a range
of validity for pion field fluctuations: πi ≲ fπ . This makes
the system nonrenormalizable.3

C. Minimal Einstein gravity in vielbein formalism

In the metric theory describing gravity, Eq. (2) may be
regarded as the constraint analogous to Eq. (6). Following
the argument above, the inconsistency at high energies in
the metric formalism may be between an expansion of the
metric field around a background field, e.g., a flat back-
ground metric hgμνi ¼ ḡμν ¼ ημν, and the existence of
massless metric fields. We expect that there exists an
appropriate high-energy theory of the metric theory, and
the generation of a vacuum hgμνi ¼ ḡμν ≠ 0 may imply the
appearance of the massless metric field. The reversibility
condition (2) for the metric field enforces a finite domain
where quantum fields can fluctuate analogously to πi ≲ fπ

3Note here that the nonlinear sigma model in D ¼ 3 is an
asymptotically safe theory; i.e., there exists a nontrivial UV fixed
point at which a nonperturbatively renormalizable theory is
constructed [70–72]. Quantum gravity as metric theories could
be an asymptotically safe theory as well [28–30].
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in the nonlinear sigma model. Beyond such a domain, we
expect that new degrees of freedom appear and participate
in the dynamics.
We notice at this point that the gravitational theory with

the action (1) is similar to the nonlinear sigma model (5).
Hence, we intend to construct a gravitational theory with
new additional degrees of freedom analogous to the meson
σ in the linear sigma model.
Having this viewpoint in mind, we are motivated to

consider a theory for gravity with more degrees of freedom.
Let us here deal with a formulation for the gravitational
theory with vielbein eaμðxÞ and LL-gauge field ωa

bμðxÞ
known as the Einstein-Cartan gravity based on SOð1; dÞ LL
symmetry. Its minimal form of action is given by

SEC ¼
Z

dDxjeðxÞj
�
−Λcc þ

M2
P

2
eaμðxÞebνðxÞF

ω
ab

μνðxÞ
�
;

ð7Þ

where jeðxÞj ¼ deta;μeaμðxÞ is the determinant of the

vielbein, and F
ω

ab
μνðxÞ is the field strength of LL-gauge

field ωa
bμðxÞ. Note here that LL indices a;b;… are

antisymmetric in ωabμðxÞ and F
ω

abμνðxÞ, namely, ωabμðxÞ ¼
−ωbaμðxÞ and F

ω

abμνðxÞ ¼ −F
ω

baμνðxÞ, due to the SOð1; dÞ
algebra; see Sec. III D below for details. It is worth stressing
that the action (7) does not contain the LL-gauge kinetic

term F
ω

abμνðxÞF
ω

abμνðxÞ, whereas the existence of the term
eaμðxÞebνðxÞF

ω
ab

μνðxÞ is peculiar in the Einstein-Cartan
theory, as compared to an ordinary gauge theory that does
not have such a term.
In this formulation, it seems that there are apparently

Dð3D − 1Þ=2 independent classical degrees of freedom
because eaμðxÞ and ωa

bμðxÞ have D2 and DðD − 1Þ=2
degrees of freedom, respectively. In the action (7), however,
there are no apparent kinetic terms for the vielbein or the
LL-gauge field, so these fields are auxiliary fields at this
stage; i.e., they are not dynamical degrees of freedom yet.
Imposing the equation of motion on ωa

bμðxÞ, i.e.,
δSEC=δωμ ¼ 0, one obtains its solution to ωa

bμðxÞ as a
function of the vielbein, namely, the Levi-Civita spin

connection: ωa
bμðxÞ ¼ Ω

e
a
bμðxÞ; see Eq. (73) below for

its explicit definition. By substituting this into ωa
bμðxÞ in

the field strength, the LL-gauge field disappears from the
action, and the action is written in terms of only the vielbein
with the kinetic term. At this point, the second term on the
right-hand side of Eq. (7) just turns into the Einstein-Hilbert
term written in terms of the vielbein, and the number of
dynamical degrees of freedom is DðDþ 1Þ=2 which is the
same as that of the symmetric metric field, being the
composite of vielbein fields gμνðxÞ ¼ ηabeaμðxÞebνðxÞ.

From the fact above, it turns out that a certain condition
between eaμðxÞ and ωa

bμðxÞ, such as the equation of
motion for ωa

bμðxÞ, reduces the original (tree-level) aux-
iliary degrees of freedom to the “dynamical” ones that have
the kinetic term. A question now is whether such a
condition can be generalized or not.
In this paper, we advocate the irreversible vierbein

postulate [54]: At a certain energy scale ΛG, the action
for gravity must admit the degenerate limit of the vielbein
[55,56,73] in which an arbitrary set of eigenvalues of the
vielbein goes to zero, and hence the inverse vielbein cannot
be defined. In a sense, the action at ΛG corresponds to the
linear sigma model (5). The irreversible vierbein postulate
shares the same assumption that, in the language of the
linear sigma model, we do not take into account inverse
powers of OðNÞ invariant ϕiϕi such as ðϕiϕiÞ−1 and
ðϕiϕiÞ−2. Even though they do not spoil renormalizability
in terms of power counting, they do prevent defining the
symmetric phase hϕiϕii ¼ 0. In this sense, the irreversible
vierbein postulate ensures a well-defined symmetric
phase hgμνi ¼ 0.
Indeed, solving the equation of motion for the auxiliary

field ωa
bμðxÞ requires the inverse vielbein. Thus, at ΛG, we

cannot impose the equation of motion. If one introduced the
inverse vielbein a priori, it could kinematically reduce the
degrees of freedom. By contrast, in our postulate, we claim
that the reduction of degrees of freedom takes place
dynamically below the scale ΛG. Hence, the inverse
vielbein is defined thanks to quantum dynamics.
We consider a gravitational theory which is based

on SOð1; dÞ × GC in the degenerate limit which entails
hgμνi ¼ 0 at the tree level. Its dynamics realizes hgμνi ≠ 0

and the massless metric field as a consequence of
spontaneous symmetry breaking: SOð1; dÞ × GC → GC.
In the following sections, we explain the transformation
laws under the LL and GC transformations and introduce
corresponding gauge fields in detail.

III. LOCAL LORENTZ AND GENERAL-
COORDINATE TRANSFORMATIONS

In this section, we clarify how the fields transform under
the LL and GC symmetries in details. In Sec. III A, we spell
out the field content. In Secs. III B and III C, we present
their transformation laws under the LL and GC symmetries,
respectively. In Sec. III D, we show the field strength for the
LL-gauge field and argue that we do not need an extra GC-
gauge field or its field strength. Through this section, we
work in dþ 1 spacetime dimensions. Later, we will specify
d ¼ 3 when constructing a concrete action.
This section is intended to be mainly a review; see, e.g.,

Refs. [51,74] for further details. Nevertheless, to our best
knowledge, the following are the first to be clearly stated in
our paper comparing with the literature:

MAITINIYAZI, MATSUZAKI, ODA, and YAMADA PHYS. REV. D 109, 106018 (2024)

106018-4



(i) The reduction condition of GLð4Þ to GC in Eq. (45)
(ii) The fact that the antisymmetric part becomes unnec-

essary for GC as shown in Eq. (69)
(iii) The GLð4Þ field strength being a differential oper-

ator as shown in Eq. (82)
(iv) The distinction between our GC and what we call the

LD transformations

A. Field content

We introduce the fields and symmetries to clarify our
notations and to construct an action. Our starting
assumption is that at a certain scale ΛG, the action enjoys
the LL and GC symmetries. In particular, the gravitational
sector consists of the vielbein (vierbein in four-dimensional
spacetime) and the LL-gauge field.
The gravity sector consists of the vielbein field eaμðxÞ

and the LL-gauge field ωa
bμðxÞ, where μ; ν;… (a;b;…)

run for the spacetime (tangent-space) indices 0;…; d
(0;…; d). Here and hereafter, we make the dependence
on a specific coordinate system xμ explicit on each chart,
unless otherwise stated, since it is anyway necessary for
any realistic calculation of a dynamical quantity; this will
make a distinction between a variable and constant more
apparent. From the vielbein, we construct the metric field

gμνðxÞ ¼ ηabeaμðxÞebνðxÞ; ð8Þ

where the tangent-space metric and its inverse are

�
ηab

�
a;b¼0;…;d ¼

�
ηab

�
a;b¼0;…;d ¼ diagð−1; 1;…; 1Þ; ð9Þ

in which “diag” denotes the corresponding diagonal matrix.
We note that the metric field gμνðxÞ can be constructed
without using the inverse vielbein field eaμðxÞ, whereas
construction of an inverse metric field gμνðxÞ does require
the inverse vielbein.
The matter sector of an effective field theory consists of

scalar, spinor, and 1-form fields ϕðxÞ, ψðxÞ, andAμðxÞwith
spin-0, −1=2, and −1, respectively.4 Precisely speaking,
AμðxÞ are the components of the 1-form field AðxÞ ≔
AμðxÞdxμ, but we sloppily call these components a 1-form
field too. Below,ΨðxÞwill denote either ϕðxÞ or ψðxÞ fields
collectively. Also, ΦðxÞ will denote any one of the fields,
including both the gravity and matter sectors.
Here, we take the 1-form field AμðxÞ rather than the

corresponding vector field AμðxÞ ≔ gμνðxÞAνðxÞ as a
fundamental degree of freedom because the former rather

than the latter primarily appears in a gauge covariant
derivative5

D
A

μ ≔ ∂μ þAμðxÞ: ð10Þ

More explicitly, on a field ΨðxÞ in the fundamental
representation of a gauge group,

ΨðxÞ → UðxÞΨðxÞ; ð11Þ

the covariant derivative D
A

μ ¼ ∂μ þAμðxÞ transforms
covariantly,

D
A

μΨðxÞ → UðxÞD
A

μΨðxÞ; ð12Þ

due to the gauge transformation of the gauge field AμðxÞ:

AμðxÞ→ UðxÞAμðxÞU−1ðxÞ − ∂μUðxÞU−1ðxÞ; ð13Þ

or for an infinitesimal transformation UðxÞ ¼ I þ ϑðxÞ,

AμðxÞ → AμðxÞ þ
�
ϑðxÞ;AμðxÞ

�
− ∂μϑðxÞ; ð14Þ

where I is the identity matrix and the commutator
is

�
A;B

�
≔ AB − BA.

In the following sections, for totally symmetric and
antisymmetric tensors denoted here by S and A, respec-
tively, we use the notation

Sμ1���μn ¼ Sðμ1���μnÞ; Aμ1���μn ¼ A½μ1���μn�: ð15Þ

In particular, second-rank tensors are given by6

Sμν¼SðμνÞ ¼
SμνþSνμ

2
; Aμν¼A½μν� ¼

Aμν−Aνμ

2
: ð16Þ

B. Local Lorentz transformation

Here, we review the LL transformations on various fields
to spell out our notation. The LL transformation is a local
rotation of the tangent-space basis; therefore, in particular,
it does not act on a spacetime-scalar field.

4The existence of a nearly massless spin-3=2 field, gravitino,
implies nearly unbroken local supersymmetry, supergravity,
which does not seem to be realized in our Universe at low
energies. It may still be interesting to include it since our scale ΛG
is supposed to be much higher than the electroweak one; see
Appendix C 3.

5For a compact gauge group G with the corresponding Lie
algebra g, one usually writes AμðxÞ ¼ igGAμðxÞ ¼ igGAa

μðxÞTa

where gG is the gauge coupling and Ta (a ¼ 1;…; dim g) are the
Hermitian generators of the gauge symmetry. In particular, the
kinetic terms of AμðxÞ and Aa

μðxÞ have opposite signs.
6Note that in this notation, fSμ;Sνg ¼ 2SðμSνÞ and

½Aμ;Aν� ¼ 2A½μAν�.

IRREVERSIBLE VIERBEIN POSTULATE: EMERGENCE OF … PHYS. REV. D 109, 106018 (2024)

106018-5



1. LL transformation on the gravity sector

Under an LL transformation that satisfies the defining
relation of the SOð1; dÞ symmetry

Λc
aðxÞηcdΛd

bðxÞ ¼ ηab; ð17Þ

the gravitational fields transform as

eaμðxÞ⟶LL Λa
bðxÞebμðxÞ; ð18Þ

ωa
bμðxÞ⟶LL Λa

cðxÞωc
dμðxÞðΛ−1ÞdbðxÞ

− ∂μΛa
cðxÞðΛ−1ÞcbðxÞ; ð19Þ

where ðΛ−1Þab ¼ Λb
a, with their indices being lowered

and raised by the tangent-space metric and its inverse (9).
Here and hereafter, a derivative such as ∂μ ≔ ∂

∂xμ acts only
on its neighbor:

∂μAB ≔ ð∂μAÞB; ∂μðABÞC ≔ ð∂μðABÞÞC; ð20Þ

etc.
We will also use a matrix notation such as

�
ωμðxÞ

�
a
b ≔ ωa

bμðxÞ; ð21Þ

leading to

ΛtðxÞηΛðxÞ ¼ η; ð22Þ

and

eμðxÞ⟶LL ΛðxÞeμðxÞ; ð23Þ

ωμðxÞ⟶LL ΛðxÞωμðxÞΛ−1ðxÞ − ∂μΛðxÞΛ−1ðxÞ; ð24Þ

where the superscript “t” denotes the transpose.
For an infinitesimal transformation ΛðxÞ ¼ I þ θðxÞ

in the matrix notation, or more explicitly, Λa
bðxÞ ¼

δab þ θabðxÞ, we have

ωμðxÞ⟶LL ωμðxÞ þ
�
θðxÞ;ωμðxÞ

�
− ∂μθðxÞ; ð25Þ

or more explicitly,

ωa
bμðxÞ⟶LL ωa

bμðxÞ þ θacðxÞωc
bμðxÞ

− ωa
cμðxÞθcbðxÞ − ∂μθ

a
bðxÞ: ð26Þ

Note that the defining relation for SOð1; dÞ in Eq. (17),
or (22), implies the antisymmetry θbaðxÞ ¼ −θabðxÞ.
To summarize, the vielbein transforms as a fundamental

representation of the LL symmetry, while being a spacetime
1-form. Recall that the Higgs field transforms as a

fundamental representation of gauge symmetry while being
a spacetime scalar. On the other hand, the LL-gauge field
transforms just as an SOð1; dÞ gauge field under the LL
symmetry.
It is the transformation (19), or (24), that makes the

LL-covariant derivative on an LL-vector (spacetime-scalar)
field VaðxÞ,

D
ω

μVaðxÞ ≔ ∂μVaðxÞ þ ωa
bμðxÞVbðxÞ; ð27Þ

to be covariant:

D
ω

μVaðxÞ⟶LL Λa
bðxÞD

ω

μVbðxÞ: ð28Þ
In the matrix notation, the above equations read

D
ω

μVðxÞ ≔
�
∂μ þ ωμðxÞ

�
VðxÞ ð29Þ

and

D
ω

μVðxÞ⟶LL ΛðxÞD
ω

μVðxÞ: ð30Þ

2. LL transformation on the matter sector

Now we turn to the matter fields. The bosonic matter
fields transform as a scalar (namely, do not transform)
under the LL symmetry:

ϕðxÞ⟶LL ϕðxÞ; ð31Þ

AμðxÞ⟶LL AμðxÞ: ð32Þ

We here comment on the relation to the irreversible vierbein
postulate which we will impose on the action. The 1-form
field AμðxÞ can be regarded as a composite field AμðxÞ ¼
AaðxÞeaμðxÞmade of the vielbein eaμðxÞ and an LL-vector7
spacetime scalar AaðxÞ that transforms as

AaðxÞ⟶LL AbðxÞΛb
aðxÞ: ð33Þ

Even when we regard AaðxÞ as a fundamental degree of
freedom, we can always construct AμðxÞ without contra-
dicting the irreversible vierbein postulate. In contrast, if
starting from the 1-form field AμðxÞ, we need the inverse
vielbein field eaμðxÞ to construct the LL-vector spacetime-
scalar field AaðxÞ ¼ eaμðxÞAμðxÞ. That is, we cannot
reconstruct AaðxÞ from AμðxÞ under the irreversible
vierbein postulate at the scale ΛG.
The fermionic matter field, spinor, transforms nontri-

vially under the LL symmetry. In the matrix notation, we
may parametrize an LL transformation as

7For the LL symmetry, we call both the covariant vector Va
and the contravariant vector Va the LL-covariant vectors.
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ΛðxÞ ¼ eθðxÞ; ð34Þ

that is,

Λa
bðxÞ ¼ δab þ θabðxÞ þ

1

2!
θacðxÞθcbðxÞ þ � � � : ð35Þ

Now the spinor field transforms as

ψðxÞ⟶LL SðΛðxÞÞψðxÞ; ð36Þ

where we define

SðeθðxÞÞ ≔ e
1
2
θabðxÞσab ; ð37Þ

in which the LL generators on the spinor representation are

σab ≔
�
γa; γb

�
4

; ð38Þ

with γa being the gamma matrices that obey the Clifford
algebra:

fγa; γbg ¼ 2ηabI: ð39Þ

Here the anticommutator is defined by fA; Bg ≔ ABþ BA.
Among the matter fields, the spinor field is the only

nontrivial representation under the LL symmetry. As
stressed in the Introduction, the LL symmetry is necessary
to define a spinor field at all on a curved spacetime. Note
also that in our treatment, the LL symmetry is no different
from the ordinary gauge symmetry other than it is under a
noncompact group SOð1; dÞ.

C. General coordinate transformation

Next, we discuss the GC transformation xμ → x0μðxÞ,
where, throughout this paper, the prime symbol 0 exclu-
sively denotes a quantity after the GC transformation and
not a derivative. Accordingly, the bases for 1-form and
spacetime vector transform as

dxμ ⟶
GC

dx0μ ¼ ∂x0μ

∂xν
dxν; ð40Þ

∂μ ⟶
GC

∂
0
μ ¼

∂xν

∂x0μ
∂ν: ð41Þ

The GC transformation is generally identified with diff,
while it is often said that the transformation under diff is
given by the Lie-derivative (LD) transformation. One might
regard that these three transformations were equivalent.
Strictly speaking, however, GC=diff and the LD trans-
formation should be distinguished. Indeed, the GC trans-
formation introduced in this section is not given by the LD.

A detailed comparison between the GC transformation and
diff is given in Appendix A. In the main body of this paper,
we use the terminology “GC” rather than diff.
In a matrix notation

Mμ
νðxÞ ≔

∂x0μ

∂xν
; ðM−1ÞνλðxÞ ¼

∂xν

∂x0λ
; ð42Þ

and writing similarly to Eq. (21) such as
�
MðxÞ�μν ≔

Mμ
νðxÞ, the above GC transformations on the bases read

dxμ ⟶
GC

dx0μ ¼ Mμ
νðxÞdxν; ð43Þ

∂μ ⟶
GC

∂
0
μ ¼

�
M−1ðxÞ�νμ∂ν: ð44Þ

It is important that the “matrix”M satisfies the extra dðdþ1Þ2
2

conditions

∂½λMμ
ν�ðxÞ ¼ 0 ð45Þ

for the GC transformation (42). Conversely, it is also true
that any function Mμ

νðxÞ that satisfies the condition (45)
can always be written (locally) in terms of (dþ 1) functions
x0μðxÞ (μ ¼ 0;…; d) as in Eq. (42). The transformation by
Mμ

ν without the condition (45) corresponds to the general
linear (GL) transformation, i.e., GLðdþ 1Þ.
From ∂λðM−1MÞ ¼ 0, we obtain ∂λM−1M ¼ −M−1

∂λM,
or specifying indices, it is given by ∂λðM−1ÞμρMρ

ν ¼
−ðM−1Þμρ∂λMρ

ν. By antisymmetrizing λ and ν, we get

Mρ½ν∂λ�ðM−1Þμρ ¼ 0: ð46Þ

Similarly, the derivative of the inverse function gives

0¼ ∂
2xλ

∂x0½μ∂x0ν�
¼ ∂xα

∂x0½μj
∂

∂xα
∂xλ

∂x0jν�
¼ ∂αðM−1Þλ½νðM−1Þαμ�; ð47Þ

where vertical lines (between the antisymmetrization sym-
bols in indices) denote that the indices between the vertical
lines are not antisymmetrized. For instance, in Eq. (47), the
index α between the vertical lines is not antisymmetrized. In
actual computations such as will be done in Eq. (72), it is
more convenient to use the coordinate notation on the right-
hand sides in Eq. (42) rather than to use these relations (42),
(46), (47), etc., in the matrix notation on the left-hand
sides in Eq. (42). The matrix notation is of use for more
conceptual understanding.

1. GC transformation on fields

Under the GC transformation, the gravitational fields
transform as
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eaμðxÞ⟶GC e0aμðx0Þ ¼ eaνðxÞ
∂xν

∂x0μ
; ð48Þ

ωa
bμðxÞ⟶GC ω0abμðx0Þ ¼ ωa

bνðxÞ
∂xν

∂x0μ
; ð49Þ

and the matter fields as

ϕðxÞ⟶GC ϕ0ðx0Þ ¼ ϕðxÞ; ð50Þ

ψðxÞ⟶GC ψ 0ðx0Þ ¼ ψðxÞ; ð51Þ

AμðxÞ⟶GC A0μðx0Þ ¼ AνðxÞ
∂xν

∂x0μ
: ð52Þ

The transformed scalar field ϕ0ðx0Þ is defined to satisfy
ϕ0ðx0ðxÞÞ ¼ ϕðxÞ such that the pullback of the function
ϕ0ðx0Þ by the function x0ðxÞ becomes ϕðxÞ. Equivalently,
the pullback of the function ϕðxÞ by the inverse function
xðx0Þ is ϕ0ðx0Þ, namely, ϕðxðx0ÞÞ ¼ ϕ0ðx0Þ. Here, the spinor
field also transforms the same as the scalar field (namely, as
the pullback of the function) under the GC transformation;
see Appendix B for another point of view and our opinion
on it. Note that the spinor field transforms as scalar under
the GC transformation because it does not have any
spacetime index, while the “LD transformation” gives
different transformation laws from Eq. (51). They are
discussed in Appendix B.
In the matrix notation, with Eq. (42), the GC trans-

formation is, on the gravitational fields,

eaμðxÞ⟶GC e0aμðx0Þ ¼ eaνðxÞ
�
M−1ðxÞ�νμ; ð53Þ

ωa
bμðxÞ⟶GC ω0abμðx0Þ ¼ ωa

bνðxÞ
�
M−1ðxÞ�νμ; ð54Þ

and, on the matter fields,

ϕðxÞ⟶GC ϕ0ðx0Þ ¼ ϕðxÞ; ð55Þ

ψðxÞ⟶GC ψ 0ðx0Þ ¼ ψðxÞ; ð56Þ

AμðxÞ⟶GC A0μðx0Þ ¼ AνðxÞ
�
M−1ðxÞ�νμ: ð57Þ

In the matrix notation, a spacetime vector Vμ transforms
like a fundamental representation under the GC trans-
formation: Vμ → Mμ

νVν.

2. GC-gauge field

Now we want to define a GC-covariant derivative. To
this end, let us first suppose that there exists a GC-gauge
field that transforms as

ϒμðxÞ⟶GC ϒ0μðx0Þ ¼
�
MðxÞϒνðxÞM−1ðxÞ

− ∂νMðxÞM−1ðxÞ��M−1ðxÞ�νμ; ð58Þ

where we employ the matrix notation
�
ϒμðxÞ

�
α
β ≔

ϒα
βμðxÞ similarly to Eq. (21). More explicitly, the trans-

formation (58) means

ϒα
βμðxÞ⟶GC ϒ0αβμðx0Þ¼

�
Mα

γðxÞϒγ
δνðxÞðM−1ÞδβðxÞ

−∂νMα
γðxÞðM−1ÞγβðxÞ

�
ðM−1ÞνμðxÞ:

ð59Þ
Here, we stress that the difference from the gauge trans-
formations of the ordinary and LL-gauge fields in Eqs. (13)
and (19) [or (24)], respectively, is the last M−1 factor that
rotates the spacetime index too.
Then, one can construct a GC-covariant derivative on a

spacetime-vector field VμðxÞ and a 1-form field WμðxÞ: In
the matrix notation, we write

h
∇ϒ μVðxÞ

i
α
≔

�ð∂μ þϒμðxÞÞVðxÞ
�
α; ð60Þ

h
∇ϒ μWðxÞ

i
α
≔

�
WðxÞð∂μ −ϒμðxÞÞ

�
α; ð61Þ

where the left derivative reads A∂μ
 ≔ ∂μA, with the neigh-

boring notation AB∂μ
 ≔ Að∂μBÞ, AðBCÞ∂μ ≔ Að∂μðBCÞÞ,

etc., similar to Eq. (20). More explicitly, they are
expressed as

∇ϒ μVαðxÞ ≔ ∂μVαðxÞ þϒα
βμðxÞVβðxÞ; ð62Þ

∇ϒ μWαðxÞ ≔ ∂μWαðxÞ −WβðxÞϒβ
αμðxÞ: ð63Þ

It is straightforward to check their covariance under the GC
transformation: In the matrix notation,

∇ϒμVðxÞ⟶GC ∇ϒ 0
μV 0ðx0Þ

¼ ð∂0μ þϒ0μðx0ÞÞV 0ðx0Þ
¼ �ð∂ν þMϒνM−1 − ∂νMM−1ÞðMVÞ�ðM−1Þνμ
¼

h
M∇ϒ νV

i
ðM−1Þνμ; ð64Þ

∇ϒμWðxÞ⟶GC ∇ϒ 0
μW0ðx0Þ

¼ W0ðx0Þð∂0μ
 

−ϒ0μðx0ÞÞ
¼ �ðWM−1Þð∂ν −MϒνM−1 þ ∂νMM−1Þ�ðM−1Þνμ
¼

h
∇ϒ νWM−1

i
ðM−1Þνμ; ð65Þ
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wherewe have suppressed the dependence on x on the right-
hand side and have used the identity ∂μðMM−1Þ ¼
∂μMM−1 þM∂μM−1 ¼ 0. Recall that we are employing
the neighboring notation for derivatives as given in Eq. (20).
More explicitly, the above transformations read

∇ϒμVαðxÞ⟶GC Mα
βðxÞ∇

ϒ

νVβðxÞðM−1ÞνμðxÞ; ð66Þ

∇ϒ μWαðxÞ⟶GC ∇ϒ νWβðxÞðM−1ÞβαðxÞðM−1ÞνμðxÞ: ð67Þ

We may separate the GC-gauge field ϒμ into symmetric
and antisymmetric parts:

ϒα
βμðxÞ ¼ ϒαðβμÞðxÞ þϒα½βμ�ðxÞ; ð68Þ

where the parentheses and square brackets for the indices
are defined in Eq. (16). Note that we have mixed the indices
β and μ that correspond to an internal gauge index and a
spacetime index, respectively, for the case of the ordinary/
LL-gauge field. The symmetric and antisymmetric parts in

the first and second terms of Eq. (68) have ðdþ1Þ
2ðdþ2Þ
2

and
dðdþ1Þ2

2
degrees of freedom, respectively. The number of

degrees of freedom of the antisymmetric part ϒα½βμ� is the
same as that of the GC conditions (45). This fact suggests
that it is redundant for the GC symmetry.
Let us see that this is indeed the case. Under the

GC transformation (59), the antisymmetric part of the
GC-gauge field transforms homogeneously:

ϒα½βμ�ðxÞ⟶GC ϒ0α½βμ�ðx0Þ ¼ Mα
γϒγ

δνðM−1Þδ½βðM−1Þνμ� − ∂νMα
γðM−1Þγ ½βðM−1Þνμ�

¼ Mα
γϒγ ½δν�ðM−1Þ½δβðM−1Þν�μ − ∂½νMα

γ�ðM−1Þ½γβðM−1Þν�μ
¼ Mα

γϒγ ½δν�ðM−1ÞδβðM−1Þνμ; ð69Þ

where we have omitted the dependence on x on the right-
hand side for simplicity and have used the GC condition (45)
in the last step. That is, the GC covariance of the GC-
covariant derivative is maintained even if we do not include
the antisymmetric part ϒα½βμ�ðxÞ. (Though it means that we
do not need the antisymmetric part at all in order to realize
the GC covariance of the GC-covariant derivative, this
argument itself does not prohibit having the antisymmetric
part.)

3. Levi-Civita (spin) connection

Conventionally, the Levi-Civita connection Γ
g
has been

used as the GC-gauge field8

Γ
g
α
βμðxÞ≔

gαγðxÞ
2
ð−∂γgβμðxÞþ∂βgμγðxÞþ∂μgγβðxÞÞ; ð70Þ

which is the solution to the metricity condition on ϒ:

∇ϒαgβμðxÞ ¼ 0: ð71Þ

By construction, it has only the symmetric part Γ
g
α
βμðxÞ ¼

Γ
g
αðβμÞðxÞ; recall the discussion in the paragraphs contain-

ing Eqs. (68) and (69). The transformation of the Levi-
Civita connection can be found, as in any textbook of
general relativity, e.g., Ref. [75], to be the same as Eq. (58),
or (59):

Γ
g
α
βμðxÞ⟶GC

�
MðxÞΓ

g

νðxÞM−1ðxÞ� α
β

�
M−1ðxÞ� ν

μ þ
∂x0α

∂xγ
∂
2xγ

∂x0μ∂x0β

¼ �
MðxÞΓ

g

νðxÞM−1ðxÞ� α
β

�
M−1ðxÞ� ν

μ −
∂xν

∂x0μ
∂
2x0α

∂xν∂xγ
∂xγ

∂x0β

¼ �
MðxÞΓ

g

νðxÞM−1ðxÞ� α
β

�
M−1ðxÞ� ν

μ − ðM−1ÞνμðxÞ∂νMα
γðxÞðM−1ÞγβðxÞ

¼ �
MðxÞΓ

g

νðxÞM−1ðxÞ − ∂νMðxÞM−1ðxÞ� α
βðM−1ÞνμðxÞ: ð72Þ

8This is the case in supergravity too [50]: “One has four choices: ω or ωðeÞ for Lorentz connection, and Γ or ΓðgÞ for the other
connection. The choice appropriate for local supersymmetry is ω and ΓðgÞ. Any other choice would do as well, but one would need extra
complicated terms in the action.”
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We note that the Levi-Civita connection requires an
inverse metric gμν and hence an inverse vielbein eaμ.
Therefore, it cannot be used under the irreversible vierbein
postulate imposed on our action at the scale ΛG. That is, the
GC-gauge field is absent at ΛG since we do not further
introduce it as extra degrees of freedom; see also footnote 8.
We will come back to this point below.

Once the Levi-Civita connection Γ
g

μ is introduced (in our
scenario, it is induced by quantum fluctuations below the
scale ΛG), then another LL-gauge field can also be induced,

namely, the Levi-Civita spin connection Ω
e

μ:

Ω
e

a
bμðxÞ ≔ eaλðxÞ∇

g

μebλðxÞ
≔ eaλðxÞð∂μebλðxÞ þ Γ

g
λ
σμðxÞebσðxÞÞ: ð73Þ

It is straightforward to check that the Levi-Civita

spin connection Ω
e

μðxÞ transforms in the same way as
the LL-gauge field ωμðxÞ under the LL and GC
transformations.

D. Field strengths, Riemann tensor, and GLðd + 1Þ
Now we come back to considering the general gravita-

tional gauge fields ω and ϒ.
The field strengths for the ordinary and LL-gauge fields

are given in the matrix notation, respectively, as9

F
A

μνðxÞ ≔ ∂μAνðxÞ − ∂νAμðxÞ þ
�
AμðxÞ;AνðxÞ

�
; ð74Þ

F
ω

μνðxÞ ≔ ∂μωνðxÞ − ∂νωμðxÞ þ
�
ωμðxÞ;ωνðxÞ

�
: ð75Þ

More explicitly, the LL field strength reads

F
ω

a
bμνðxÞ ¼ ∂μω

a
bνðxÞ − ∂νω

a
bμðxÞ

þ ωa
cμðxÞωc

bνðxÞ − ωa
cνðxÞωc

bμðxÞ: ð76Þ

We can rewrite the field strength as a commutator of the
covariant derivatives (10) and (27), or (29), on the funda-
mental representation:

F
A

μνðxÞ ¼
h
D
A

μ;D
A

ν

i
; ð77Þ

F
ω

μνðxÞ ¼
h
D
ω

μ;D
ω

ν

i
: ð78Þ

It is important that the field strengths reduce to functions
(74) and (75) when deriving their covariance

F
A

μνðxÞ → UðxÞF
A

μνðxÞU−1ðxÞ; ð79Þ

F
ω

μνðxÞ⟶LL ΛðxÞF
ω

μνðxÞΛ−1ðxÞ ð80Þ

from the covariance of the covariant derivatives (12) and
(30), respectively, as follows:

F
A

μνðxÞΨðxÞ ¼
h
D
A

μ;D
A

ν

i
ΨðxÞ → UðxÞ

h
D
A

μ;D
A

ν

i
ΨðxÞ ¼ UðxÞ

h
D
A

μ;D
A

ν

i
ðU−1ðxÞUðxÞΨðxÞÞ

¼
�
UðxÞF

A

μνðxÞU−1ðxÞ
�
UðxÞΨðxÞ;

F
ω

μνðxÞVðxÞ ¼
h
D
ω

μ;D
ω

ν

i
VðxÞ⟶LL ΛðxÞ

h
D
ω

μ;D
ω

ν

i
VðxÞ ¼ ΛðxÞ

h
D
ω

μ;D
ω

ν

i
ðΛ−1ðxÞΛðxÞVðxÞÞ

¼
�
ΛðxÞF

ω

μνðxÞΛ−1ðxÞ
�
ΛðxÞΨðxÞ: ð81Þ

Now let us take the commutator of the GC-covariant
derivative (60), or (62), on a spacetime-vector field VðxÞ ¼
VμðxÞ∂μ that transforms as a fundamental representation
under GC transformation: In the matrix notation,

F
ϒ

μνðxÞVðxÞ ≔
h
∇ϒ μ;∇

ϒ

ν

i
VðxÞ

¼
�
∂μϒνðxÞ − ∂νϒμðxÞ þ

h
ϒμðxÞ;ϒνðxÞ

i

þ 2Iϒρ½νμ�ðxÞ∇
ϒ

ρ

�
VðxÞ; ð82Þ

or more explicitly,

9For a compact gauge group such as that introduced in
footnote 5, it is more common to use FμνðxÞ ¼ ∂μAνðxÞ −
∂νAμðxÞ þ igG½AμðxÞ; AνðxÞ� that follows from F

A

μνðxÞ ¼
igGFa

μνðxÞTa.
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F
ϒ

α
βμνðxÞVβðxÞ ¼ ð∂μϒα

βνðxÞ − ∂νϒα
βμðxÞ

þϒα
γμðxÞϒγ

βνðxÞ −ϒα
γνðxÞϒγ

βμðxÞ

þ 2δαβϒ
ρ½νμ�ðxÞ∇

ϒ

ρÞVβðxÞ: ð83Þ

The last term is peculiar to the GC-field strength: The
antisymmetric part ϒρ½νμ�ðxÞ is not only in vain in cova-
riantizing the GC-covariant derivative, but also, it is an
obstacle to making the GC-field strength a function rather
than a differential operator. This fact disfavors an intro-
duction of the extra GC-gauge field ϒμ with the antisym-
metric part. See also the discussion around Eq. (69) for the
redundancy of the antisymmetric part.
Let us comment on the relation to the Levi-Civita (spin)

connection. It is noteworthy that if the GC-gauge field is
identified with the Levi-Civita connection (70),

ϒα
βμ ≡ Γ

g
α
βμ; ð84Þ

the GC-field strength becomes the Riemann tensor itself:

F
g

α
βμνðxÞ ¼ Rα

βμνðxÞ; ð85Þ

where F
g

μνðxÞ ≔ F
Γ
g

μνðxÞ. This can be shown as follows:

F
g

μνðxÞVðxÞ ≔
h
∇g μ;∇

g

ν

i
VðxÞ

¼ 2
�
∂½μ þ Γ

g

½μðxÞ
��

∂ν� þ Γ
g

ν�ðxÞ
�
VðxÞ

¼
�
∂μΓ

g

νðxÞ − ∂νΓ
g

μðxÞ þ Γ
g

μðxÞΓ
g

νðxÞ

− Γ
g

νðxÞΓ
g

μðxÞ
�
VðxÞ; ð86Þ

or more explicitly,

h
F
g

μνðxÞ
i
α
β ¼

h
∂μΓ

g

νðxÞ − ∂νΓ
g

μðxÞ þ Γ
g

μðxÞΓ
g

νðxÞ

− Γ
g

νðxÞΓ
g

μðxÞ
i
α
β;

F
g

α
βμνðxÞ ¼ ∂μΓ

g
α
βνðxÞ − ∂νΓ

g
α
βμðxÞ

þ Γ
g
α
γμðxÞΓ

g
γ
βνðxÞ − Γ

g
α
γνðxÞΓ

g
γ
βμðxÞ; ð87Þ

the right-hand side is nothing but the Riemann tensor.
Under the assumption (84), the antisymmetric part of the
GC-gauge field ϒα

βμ does not take part and play any role.
In the same manner, we can define the Riemann tensor

from the LL-field strength with the Levi-Civita spin

connection, i.e., ϒα
βμ ≡ Ω

e
α
βμ, together with a vielbein

and its inverse:

eaαðxÞebβðxÞF
e

a
bμνðxÞ ¼ Rα

βμνðxÞ;
F
e

a
bμνðxÞ ¼ eaαðxÞebβðxÞRα

βμνðxÞ; ð88Þ

where F
e

a
bμνðxÞ ≔ F

Ω
e

a
bμνðxÞ, namely, in the matrix

notation,

F
e

μνðxÞ≔
h
D
e

μ;D
e

ν

i
¼2

�
∂½μþΩ

e

½μðxÞ
��

∂ν� þΩ
e

ν�ðxÞ
�

¼∂μΩ
e

νðxÞ−∂νΩ
e

μðxÞþΩ
e

μðxÞΩ
e

νðxÞ−Ω
e

νðxÞΩ
e

μðxÞ;
ð89Þ

in which D
e

μ ≔ ∂μ þΩ
e

μ [see Eq. (73)], or more explicitly,

h
F
e

μνðxÞ
i
a
b ¼

h
∂μΩ

e

νðxÞ− ∂νΩ
e

μðxÞ þΩ
e

μðxÞΩ
e

νðxÞ

−Ω
e

νðxÞΩ
e

μðxÞ
i
a
b;

F
e

a
bμνðxÞ ¼ ∂μΩ

e
a
bνðxÞ− ∂νΩ

e
a
bμðxÞ þΩ

e
a
cμðxÞΩ

e
c
bνðxÞ

−Ω
e
a
cνðxÞΩ

e
c
bμðxÞ: ð90Þ

Under the irreversible-vielbein postulate, we expect that
physically the following scenario takes place: In the action
at ΛG, there is no specific background of the vielbein. The
quantum dynamics induces a nontrivial background viel-
bein ēaμðxÞ that has its inverse ēaμðxÞ everywhere, namely,
a nondegenerate ēaμðxÞ, on which the expectation value of
the LL-gauge field should become the Levi-Civita spin
connection:

hωμðxÞiēðxÞ¼! Ω̄μðxÞ; ð91Þ

where

Ω̄μðxÞ ≔ Ω
e

μðxÞ
			
eðxÞ→ēðxÞ

: ð92Þ

This way, our formulation would reproduce the conven-
tional covariant derivative acting on the spinor field in
the metric formulation. It suffices therefore that only the
LL-field strength exists to construct the Riemann tensor at
lower energies below ΛG if the physical expectation (91) is
met. We do not need to prepare the GC-field strength as a
source for the Riemann tensor from the beginning at ΛG.
We comment on the application order of transformations,

namely, the GC transformation after a gauge transforma-
tion, or the other way around. The GC transformation acts
on all spacetime indices, so that gauge transformations are
affected by it. In other words, one may think that elements
of their transformations do not commute. Fortunately, our
definition of the GC transformations (48)–(52) commute
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with any gauge transformation, while diff defined by the
LD transformation does not. This means that the former is
given by a direct product “GC × gauge,” while the latter is
by the semidirect product “GC ⋉ gauge.” These facts are
discussed in Appendix A 3.
Finally, let us comment on the GLðdþ 1Þ theory. If we

do not impose the GC conditions (45)–(47), etc., and we
regard Mμ

ν as a general ðdþ 1Þ × ðdþ 1Þ matrix, then the
theory becomes a GLðdþ 1Þ gauge theory; see, e.g.,
Refs. [76,77]. This theory might be of interest in itself,
but we do not go in this direction and do not introduce the
extra GC-gauge field ϒμ at ΛG because of the above-
mentioned points: (i) the nonnecessity of its antisymmetric
part for the covariance of the GC-covariant derivative,
(ii) the GC-field strength becoming a differential operator
rather than a function due to the antisymmetric part, and
(iii) the nonnecessity as a source for constructing the
Riemann tensor.

E. Summary on covariant derivatives

For general LL and GC-gauge fields ω and ϒ, respec-
tively, we summarize our notation for the covariant deriv-
atives:

LL only D
ω

μeaνðxÞ ¼ ∂μeaνðxÞ þ ωa
bμðxÞebνðxÞ; ð93Þ

GC only ∇ϒ μeaνðxÞ ¼ ∂μeaνðxÞ − eaλðxÞϒλ
νμðxÞ; ð94Þ

LL andGC D
ω;ϒ

μeaνðxÞ≔∂μeaνðxÞþωa
bμðxÞebνðxÞ

−eaλðxÞϒλ
νμðxÞ

¼D
ω

μeaνðxÞ−eaλðxÞϒλ
νμðxÞ

¼∇ϒμeaνðxÞþωa
bμðxÞebνðxÞ: ð95Þ

IV. ACTION UNDER IRREVERSIBLE
VIERBEIN POSTULATE

In this section, we construct a “tree” action given at a
certain scale ΛG based on the LL and GC symmetries, i.e.,
GC × SOð1; 3Þ. As discussed in the Introduction, a central
assumption at ΛG is the irreversible vierbein postulate that
forbids the action at ΛG to contain an inverse of the
vielbein.
In Sec. IVA, we start with the introduction of the Levi-

Civita tensor which is independent of the vielbein and
inverse vielbein. Then, in Sec. IV B, the definition of the
irreversible vierbein postulate is explained, and the action
respecting this postulate is shown.
This section fully explains, for the first time, the idea

briefly sketched in the preceding Letter [54] to this paper.

A. Levi-Civita tensor

To write down the action, we spell out our notation on
the totally antisymmetric tensor, etc. We first introduce the
Levi-Civita symbol:

ϵ
�
μ0…μd

� ¼
8><
>:

1 when ðμ0;…; μdÞ is even permutation of ð0;…; dÞ;
−1 when ðμ0;…; μdÞ is odd permutation of ð0;…; dÞ;
0 otherwise;

ð96Þ

and similarly,

ϵ
�
a0…ad

� ¼
8><
>:

1 when ða0;…; adÞ is even permutation of ð0;…; dÞ;
−1 when ða0;…; adÞ is odd permutation of ð0;…; dÞ;
0 otherwise:

ð97Þ

We write the determinant of the vielbein and metric as

jeðxÞj ≔ det
a;μ

eaμðxÞ ¼ ϵ
�
a0…ad

�
ea00ðxÞ � � � eaddðxÞ

¼ ϵ
�
μ0…μd

�
e0μ0ðxÞ � � � edμdðxÞ

¼ 1

ðdþ 1Þ! ϵ
�
a0…ad

�
ϵ
�
μ0…μd

�
ea0μ0 � � � eadμd ; ð98Þ
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jgðxÞj ≔ det
μ;ν
ðxÞ ¼ ϵ

�
μ0…μd

�
gμ00ðxÞ � � � gμddðxÞ

¼ ϵ
�
ν0…νd

�
g0ν0ðxÞ � � � gdνdðxÞ

¼ 1

ðdþ 1Þ! ϵ
�
μ0…μd

�
ϵ
�
ν0…νd

�

gμ0ν0ðxÞ � � � gμdνdðxÞ; ð99Þ

where the summation over repeated indices is understood
for the Levi-Civita symbol as well. It follows that

jeðxÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−jgðxÞj

p
; ð100Þ

where jgðxÞj is always negative due to the Lorentzian
signature.
From the Levi-Civita symbol, we define the Levi-Civita

tensor for the LL transformation,

ϵa0…ad ≔ ϵ
�
ao…ad

�
; ð101Þ

ϵa0…ad ≔ ηa0b0 � � � ηadbdϵb0…bd ¼ −ϵ
�
a0…ad

�
; ð102Þ

and for the GC transformation,

εμ0…μdðxÞ ≔ jeðxÞjϵ
�
μ0…μd

�
; ð103Þ

εμ0…μdðxÞ ≔ gμ0ν0ðxÞ � � � gμdνdðxÞεν0…νdðxÞ ¼ −
ϵ
�
μ0…μd

�
jeðxÞj :

ð104Þ

Note that the Lorentzian signature leads to

1

ðdþ 1Þ! ϵa0…adϵ
a0…ad ¼ −1; ð105Þ

1

ðdþ 1Þ! εμ0…μdðxÞεμ0…μdðxÞ ¼ −1; ð106Þ

which follows from the p ¼ d case of more general
identities: for 0 ≤ p ≤ d,

1

ðpþ 1Þ! ϵ
�
μ0…μpμpþ1…μd

�
ϵ
�
μ0…μpμ

0
pþ1…μ0d

�

¼ ðdþ 1 − pÞ!δμ
0
pþ1�
μpþ1
� � � δμ0d

μd

�; ð107Þ

etc.10 Using the Levi-Civita tensor, we can write down the
volume element in terms of the local coordinate system of
each chart:

⋆1 ¼ 1

ðdþ 1Þ! εμ0…μdðxÞdxμ0 ∧ � � � ∧ dxμd

¼ jeðxÞjdx0 ∧ � � � ∧ dxd ¼ jeðxÞjddþ1x; ð108Þ

where ⋆ is the Hodge dual, which is defined for a p-form
αðxÞ ¼ 1

p! αμ0…μp−1ðxÞdxμ0 ∧ � � � ∧ dxμp−1 by11

⋆αðxÞ ≔ 1

ðdþ 1 − pÞ! ð⋆αÞμp…μd
ðxÞdxμp ∧ � � � ∧ dxμd ;

ð109Þ

with

ð⋆αÞμp…μd
ðxÞ ≔ 1

p!
αν0…νp−1ðxÞεν0…νp−1

μp…μdðxÞ: ð110Þ

Note that from the vielbein, the LL-gauge field, and its field
strength, we can construct GC-scalar 1- and 2-form fields
such that

eaðxÞ ≔ eaμðxÞdxμ; ð111Þ

ωa
bðxÞ ≔ ωa

bμðxÞdxμ; ð112Þ

F
ω

a
bðxÞ ≔

1

2
F
ω

a
bμνðxÞdxμ ∧ dxν: ð113Þ

B. Irreversible vierbein and action

Let us now construct an action invariant under GC ×
SOð1; 3Þ symmetry. Hereafter, we work in the d ¼ 3 spatial
dimensions, assuming that it is already settled down to be
so at ΛG. We call the vielbein for the dþ 1 ¼ 4 spacetime
dimensions the vierbein, accordingly.
The formulation of the irreversible vierbein postulate

starts by imposing regularity under the limit of any zero
eigenvalues λa → 0 of the vierbein among four eigenvalues
in four-dimensional spacetime. Obviously, in such a case,
the inverse vierbein cannot be defined. In other words, the
inverse vierbein contains divergences. Then, the irreversible

10See footnote 6 for the normalization.

11Or else, one may first define

⋆ðdxμ0 ∧ � � � dxμp−1Þ ≔ 1

ðdþ 1 − pÞ! ε
μ0…μp−1

νp…νdðxÞdxνp

∧ � � � ∧ dxνd

so that

⋆αðxÞ ≔ 1

p!
αμ0…μp−1ðxÞ⋆ðdxμ0 ∧ � � � dxμp−1Þ:
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vierbein postulate at ΛG states that the action at ΛG does not
diverge even for the (not necessarily simultaneous) zero
eigenvalue limit of vierbein. We call this kind of limit the
degenerate limit [55,56,73].
There are some cases where, even when a term is

apparently written down using the inverse vierbein, the
irreversible vierbein postulate does not forbid such a term

in the degenerate limit. An important observation for this is
that some inverse vierbeins can be absorbed into the
determinant jeðxÞj from the volume element. More spe-
cifically, from the identities (107) and

jeðxÞjϵ�μνρσ� ¼ ϵ
�
abcd

�
eaμðxÞebνðxÞecρðxÞedσðxÞ;

ð114Þ

we obtain

jeðxÞjeaμðxÞ ¼
1

3!
ϵ
�
abcd

�
ϵ
�
μνρσ

�
ebνðxÞecρðxÞedσðxÞ; ð115Þ

jeðxÞje½aμðxÞeb�νðxÞ ¼
1

2
ϵ
�
abcd

�
ϵ
�
μνρσ

�
ecρðxÞedσðxÞ; ð116Þ

jeðxÞje½aμðxÞebνðxÞec�ρðxÞ ¼ ϵ
�
abcd

�
ϵ
�
μνρσ

�
edσðxÞ; ð117Þ

jeðxÞje½aμðxÞebνðxÞecρðxÞed�σðxÞ ¼ ϵ
�
abcd

�
ϵ
�
μνρσ

�
: ð118Þ

Though the left-hand sides of these equations appear to
have the inverse vierbeins, the right-hand sides do not. Only
these combinations of the inverse vierbeins can be used to
write down the action at ΛG without contradicting the
irreversible vierbein postulate.
Let us now write down the action explicitly. First, it turns

out that the kinetic terms for the GC-scalar and vector fields
contain the inverse vierbeins, all of which cannot be
simultaneously absorbed into the volume element via
Eqs. (115)–(118). They contain the inverse metric gμν that
is symmetric for its indices (see Appendix C for more a
explicit discussion)12:

Sboson ¼
Z

d4xjeðxÞj
�
−
1

2
gμνðxÞ∂μϕðxÞ∂νϕðxÞ

þ 1

2g2G
gμρðxÞgνσðxÞtr

�
F
A

μνðxÞF
A

ρσðxÞ
��

: ð119Þ

Therefore, these terms are forbidden, and thus the GC-
scalar and vector fields are not dynamical at ΛG. The
kinetic terms for vierbein eaμ and LL-gauge fields ωa

bμ

cannot be introduced due to the same reason.
On the other hand, the spinor kinetic term is consistent

with the irreversible vierbein postulate because it contains

only a single inverse vierbein, and thus we can use
Eq. (115)13:

Sspinor ¼
Z

d4xjeðxÞj
�
−ψ̄ðxÞeaμðxÞγa

×



∂μ þ

1

2
ωbcμðxÞσbc

�
ψðxÞ

�

¼
Z

d4x

�
−

1

3!
ϵ
�
abcd

�
ϵ
�
μνρσ

�
ebνðxÞecρðxÞedσðxÞ

× ψ̄ðxÞγa


∂μ þ

1

2
ωa0b0μðxÞσa0b0

�
ψðxÞ

�
: ð120Þ

Unlike the ordinary gauge theory, the LL symmetry has a
fundamental representation that is a spacetime vector, the
vierbein. It allows one to write down an LL-invariant term
constructed from a single field strength:

12See footnote 5 for the sign of the gauge kinetic term.

13One may regard the action (120) as ∝
R
ϵ½abcd�eaðxÞ ∧

ebðxÞ ∧ ecðxÞ ∧ ΔdðxÞ, where Δa
μðxÞ ≔ ψ̄ðxÞγaD

ω

μψðxÞ. This is
nothing but a replacement from the action (122), being
∝
R
ϵ½abcd�eaðxÞ ∧ ebðxÞ ∧ ecðxÞ ∧ edðxÞ, of a single vierbein

1-form: edðxÞ → ΔdðxÞ. In principle, one may replace any
vierbein eaμðxÞ by Δa

μðxÞ without contradicting the irreversible
vierbein postulate. When one replaces all of the four vierbeins to
the fermion bilinear in the cosmological constant term (122), one
obtains the action for the spinor gravity ∝

R
ϵ½abcd�ΔaðxÞ ∧

ΔbðxÞ ∧ ΔcðxÞ ∧ ΔdðxÞ [68,78]. In this paper, we restrict our-
selves to the lowest-derivative terms up to single Δa

μðxÞ. Further
generalizations will be presented in a separate publication.
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SLL ¼
Z

d4xjeðxÞj
�
M2

P

2
e�

a
μðxÞe

b
�νðxÞFω ab

μνðxÞ
�

¼
Z

d4x

�
M2

P

4
ϵ
�
abcd

�
ϵ
�
μνρσ

�
ecρðxÞedσðxÞF

ω
ab

μνðxÞ
�
:

ð121Þ

This term has become compatible with the irreversible
vierbein postulate thanks to Eq. (116). Note that as
mentioned in the paragraph containing Eq. (92), it is not
necessary to introduce the term with the field strength

corresponding to the GC transformation F
ϒ
.

Finally, one can also write down the cosmological
constant term:

Scc ¼
Z

d4xjeðxÞjΛcc: ð122Þ

Barring the topological terms (see discussion below) as
well as the higher-derivative terms (see footnote 13), the
terms (120)–(122) are the only combinations that are
consistent with the irreversible vierbein postulate:

SΛG
¼

Z
d4xjeðxÞj

�
−Zψ ψ̄ðxÞeaμðxÞγa

×



∂μ þ

1

2
ωbcμðxÞσbc

�
ψðxÞ

þ Xω
M2

P

2
e�

a
μðxÞe

b
�νðxÞFω ab

μνðxÞ − V

�
; ð123Þ

where Zψ , Xω, and V are arbitrary functions of spacetime
scalars at x constructed by matter fields, say, ϕðxÞ,
ψ̄ðxÞψðxÞ, etc. For example, V includes the mass term
for spinor Mψ ψ̄ðxÞψðxÞ and the cosmological constant Λcc

as well as the ordinary scalar potential. Note that the kinetic
term for the Rarita-Schwinger field, which is a spin-3=2
field, is also compatible with the degenerate limit (see
Appendix C 3). In this work, we do not take this into
account.
Various combinations of fields can be contracted with the

LL metric ηab and the totally antisymmetric LL tensor
ϵ
�
abcd

�
to yield topological terms of the action, which are

summarized in Appendix D. In general, one may multiply,
on these “topological” terms, arbitrary functions of GC
scalars such as Zψ , Xω, and V in Eq. (123) so that they
become dynamical (nontopological). Since all such inter-
actions are higher dimensional, we neglect them in this
paper. The inclusion of these terms might be of interest in
itself, which we leave for future study.
Finally, we stress again the reason why we impose the

irreversible vierbein postulate at the tree level. A typical
criticism may be as follows: The existence of inverse
vierbein in the tree action is harmless since terms with
inverse vierbeins behave as e−Oðe−1Þ → 0 for e → 0 within
the path integral. On the other hand, the Standard Model of

particle physics assumes that the action does not have
inverse power of the fields such as 1=H†H, where H is the
Higgs field, even though such terms can be perfectly
consistent with all the gauge and spacetime symmetries.
The absence of inverse power is particularly noteworthy in
the effective field theory picture because such negative-
power terms are more relevant than the normal ones toward
the IR direction. We can interpret this as the requirement of
the existence of the weak-field limit H → 0 for the action
such that the symmetric phase hHi ¼ 0 is well defined.14

The irreversible vierbein postulate introduces a well-
defined symmetric phase in our quantum-gravity frame-
work. Conventional quantum field theories, like the
Standard Model, also assume the existence of the symmetric
phase. Our framework facilitates the exploration of quantum
spacetime dynamics where the spacetime metric gμν
approaches zero. By excluding inverse vierbeins, which
are undefined in this degenerate limit, the postulate offers a
novel approach to studying quantum gravitational phenom-
ena under extreme conditions. This method extends beyond
mathematical convenience, providing a framework that
enhances our understanding of spacetime in scenarios such
as near singularities or strong gravitational fields, and may
offer valuable insights into phenomena like the early
Universe and black hole interiors.

V. LOCAL LORENTZ AND GENERAL-
COORDINATE TRANSFORMATIONS

FOR BACKGROUND FIELDS

One of thte main purposes in this paper is to demonstrate
the generation of nontrivial background fields due to
quantum effects in four-dimensional spacetimes. This will
be done in Sec. VI. In this section, assuming that back-
ground vielbein and LL-gauge fields are induced in
arbitrary spacetime dimensions, we discuss their trans-
formation laws and covariance. Those are important for
understanding of the low-energy effective theory from the
action (123). After these summary reviews, in Sec. V C, we
fully explain the idea briefly sketched in the preceding
Letter [54].

A. Invertible background vielbein and Levi-Civita
(spin) connection

To begin with, we introduce a certain gravitational
background Φ̄ ¼ ðē; ω̄Þ, while we do not assume a classical
background for the matter fields for simplicity: Ψ̄ ¼
ðϕ̄; ψ̄ ; ĀμÞ ¼ 0.

14The weak-field limit H → 0 here is different from that in the
gravitational literature (see, e.g., Ref. [79]) in the sense that the
latter means the limit of zero fluctuation around a background,
that is, δgμν → 0 for gμν ¼ ḡμν þ δgμν. For the former, the whole
Higgs H ¼ H̄ þ δH goes to zero rather than H → H̄. The
existence of limit H → H̄ ≠ 0 cannot forbid the negative power
such as 1=H†H.

IRREVERSIBLE VIERBEIN POSTULATE: EMERGENCE OF … PHYS. REV. D 109, 106018 (2024)

106018-15



Here, an important assumption is that the background
vielbein field ēaμðxÞ is invertible that allows the inverse
background vielbein ēaμðxÞ and the inverse background
metric

ḡμνðxÞ ≔ ηabēaμðxÞēbνðxÞ; ð124Þ
where the background vielbein is defined to satisfy

ēaμðxÞēaνðxÞ ¼ δμν ; ēaμðxÞēbμðxÞ ¼ δba ;

ḡμνðxÞḡνρðxÞ ¼ δμρ: ð125Þ
In general, the full vielbein and metric fields

eaμðxÞ ¼ eaμðxÞ þ eaμðxÞ; ð126Þ

gμνðxÞ ¼ ḡμνðxÞ þ gμνðxÞ ð127Þ

will also become invertible, where e and g represent their
quantum fluctuations, respectively. However, we hereafter
raise and lower the spacetime indices by the background
vielbein and/or metric. In particular, we can now give

AaðxÞ ≔ ēaμðxÞAμðxÞ; ð128Þ
recall the argument below Eq. (33).
The invertible background vielbein also allows us to

write down the background Levi-Civita (spin) connection:

Γ̄μ
ρσ ≔

ḡμν

2
ð−∂νḡρσ þ ∂ρḡσν þ ∂σ ḡνρÞ; ð129Þ

Ω̄a
bμ ≔ eaλ∇μēbλ ¼ eaλ∂μēbλ þ Γ̄a

bμ; ð130Þ

where

∇μēbλ ≔ ∂μēbλ þ Γ̄λ
σμēbσ; ð131Þ

Γ̄a
bμ ≔ eaλΓ̄λ

σμēbσ; ð132Þ

etc. Note that Γ̄ and Ω̄ are solely made of the vielbein and
its inverse. In the previous language,

Γ̄μ
ρσðxÞ ¼ Γ

ḡ
μ
ρσðxÞ; Ω̄a

bμðxÞ ¼ Ω
ē

a
bμðxÞ: ð133Þ

The background spin connection Ω̄ transforms the same as
the background LL-gauge field ω̄ under the background LL
and GC transformations.

B. Background covariance

For the given background field of the gravitational fields
Φ̄, we define the following LL-background-covariant
(only) derivatives denoted by D̄μ for matter fields

D̄μϕðxÞ ≔ ∂μϕðxÞ; ð134Þ

D̄μψðxÞ ≔ ∂μψðxÞ þ
ω̄abμðxÞ

2
ΣabψðxÞ; ð135Þ

D̄μAaðxÞ ≔ ∂μAaðxÞ þ ω̄a
bμðxÞAbðxÞ; ð136Þ

and for gravitational fields

D̄μeaνðxÞ ≔ ∂μeaνðxÞ þ ω̄a
bμðxÞebνðxÞ; ð137Þ

D̄μω
a
bνðxÞ ≔ ∂μω

a
bνðxÞ þ ω̄a

cμðxÞωc
bνðxÞ

− ωa
cνðxÞω̄c

bμðxÞ: ð138Þ

We also define the LL-and-GC-background-covariant
derivative D̄μ. It acts the same as D̄μ on the matter fields
without the spacetime indices Ψ,

D̄μΨðxÞ ≔ D̄μΨðxÞ; ð139Þ
whereas on the gravitational fields,15

D̄μeaνðxÞ ¼ D̄μeaνðxÞ − eaλðxÞϒ̄λ
νμðxÞ

¼ ∂μeaνðxÞ þ ω̄a
bμðxÞebνðxÞ − eaλðxÞϒ̄λ

νμðxÞ;
D̄μω

a
bνðxÞ ¼ D̄μω

a
bνðxÞ − ωa

bλðxÞϒ̄λ
νμðxÞ

¼ ∂μω
a
bνðxÞ þ ω̄a

cμðxÞωc
bνðxÞ

− ωa
cνðxÞω̄c

bμðxÞ − ωa
bλðxÞϒ̄λ

νμðxÞ:

So far, ω̄ is pretty much unconstrained.16 In this paper,
we assume that the background vielbein should obey the
metricity

15For a given background ē and ω̄, we may always construct a
background GC-gauge field

γ̄λνμðxÞ ≔ ω̄λ
νμðxÞ − ecνðxÞ∂μēcλðxÞ

that is defined to satisfy the metricity:

D
ω̄;γ̄

μeaνðxÞ ¼ 0:

We can explicitly check that γ̄λνμ is invariant under the back-
ground LL transformation.

16We might end up with the following expression:

D̄μω̄
a
bν ¼ ð∂μω̄a

bcÞecν þ ω̄a
cμω̄

c
bν − ω̄a

cνω̄
c
bμ;

see, e.g., Ref. [49]. Using D̄ ē ¼ 0, we may rewrite

D̄μω̄
a
bc ¼ ∂μω̄

a
bc þ ω̄a

dμω̄
d
bc − ω̄a

dcω̄
d
bμ:

In the language of differential forms,

D̄ ≔ dxμD̄μ; ω̄a
bðxÞ ≔ ω̄a

bνðxÞdxν;
d ≔ dxμ∂μ; ēcðxÞ ≔ ecνðxÞdxν:

This can be written as

D̄ ω̄ ¼ dω̄ ∧ ēþ 2ω̄ ∧ ω̄:
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D̄μeaνðxÞ ¼ 0; ð140Þ

the background LL-gauge field ω̄a
bμðxÞ be Eq. (91), and

the background GC connection be the Levi-Civita one

Γ̄λ
νμðxÞ ¼ Γ

g
λ
νμðxÞ

			
g¼ḡ

; ð141Þ

recall Eq. (70).

C. Global background Lorentz invariance after
spontaneous symmetry breaking

For a general background ēaμ, there remains a local
SOð1; 3Þ × GC background symmetry:

ϕ̄ðxÞ ⟶
SOð1;3Þ×GC

ϕ̄0ðx0Þ; ð142Þ

ψ̄ðxÞ ⟶
SOð1;3Þ×GC

ψ̄ 0ðx0Þ ¼ SðΛðx0ÞÞψ̄ðx0Þ; ð143Þ

ĀμðxÞ ⟶
SOð1;3Þ×GC

Ā0μðx0Þ ¼ ĀνðxÞ
∂xν

∂x0μ
; ð144Þ

and

ēaμðxÞ ⟶
SOð1;3Þ×GC

ē0aμðx0Þ ¼ Λa
bðxÞēbνðxÞðM−1ÞνμðxÞ;

ð145Þ

ω̄a
bμðxÞ ⟶

SOð1;3Þ×GC
ω̄a

bμðx0Þ
¼ �

ΛðxÞω̄νðxÞΛ−1ðxÞ − ð∂νΛðxÞÞΛ−1ðxÞ�abðM−1ÞνμðxÞ:
ð146Þ

The Lorentz transformation under the global SOð1; 3Þ is
nothing but an accidental symmetry arising only when we
take the flat background ēaμ ¼ δaμ for which ω̄a

bμ ¼ 0.
That is, the gobal SOð1; 3Þ is the “diagonal subgroup”:
From Eq. (145), one has17

δaμ → Λa
bδ

b
ν ðΛ−1Þνμ ¼ δaμ; ð147Þ

xμ → Λμ
νxν ðthis is mere a reparametrizationÞ; ð148Þ

so to say

SOð1; 3Þ × GC → SOð1; 3Þdiag: ð149Þ

Hence, under this transformation in the diagonal subgroup,
the kinetic term of spinors transforms as usual, even though
we assign them only a trivial representation under GC.

VI. DYNAMICAL GENERATION OF FLAT
SPACETIME FROM A SPINOR LOOP

In this section, we derive the effective potential for a
vierbein background field, assuming it to be a flat space-
time background, and then demonstrate that indeed a
nonvanishing flat vierbein background is induced by
quantum effects of the fermion field.
As emphasized in the preceding Letter [54], both the

vierbein and LL-gauge fields are auxiliary at ΛG, and both
of them are shown to acquire the kinetic terms below ΛG.
This situation is in accordance with the emergence of the
hidden local symmetry applied in QCD; see, e.g., Ref. [80]
for a review. Now we show the effective potential for the
vierbein as a (linearly realized) Higgs field [68,73,81–83].

A. Effective action for conformal mode

We study now the dynamical symmetry breaking of the
LL symmetry in four-dimensional spacetime. A central
object for the observation of such a symmetry breaking is
the effective potential for the vierbein field. To obtain it, we
assume a background field for vierbein ēaμ and investigate
the effective potential. The degenerate limit would enforce
such a minimum to be located at ēaμ ¼ 0. What we want to
see in this section is whether quantum effects generate a
nontrivial expectation value of ēaμ or not. In this section,
we consider the quantum effects of the spinor fields at the
one-loop level on the effective potential for the vierbein,
while we deal with the vierbein and the LL-gauge fields as
classical fields. The one-loop approximation might be
justified by a large number of spinor degrees of freedom
in the SM that is 90 without including the right-handed
neutrinos, whereas we do not exclude the possibility of
large effects from other sectors; we will come back to this
point later.
We start with separating the vierbein field into the

background and fluctuation as in Eq. (126). For simplicity,
we concentrate on a constant background field in this paper.
At the tree level of our action (123), the potential of the
(constant) vierbein field is simply given by

V treeðēÞ ¼ Λccjēj: ð150Þ

Here, we suppose that the kinetic term of the vierbein,
which will be generated dynamically below ΛG, will take a
“correct” (negative) sign so that the action is given by
Seff ¼

R
d4x

�
−ð∂μēaνÞ2 − VeffðēÞ

�
. This assumption will

be discussed at the end of this section. For a negative
cosmological constant Λcc < 0, we have an unbounded
potential, and jēj ¼ 0 is an unstable extremum, while for
Λcc > 0, the potential is bounded and has a minimum at
ē ¼ 0. The former induces the spacetime background
already at the tree level. How about the latter?
We next consider quantum corrections to the effective

potential. At the level of the action (123) at ΛG, only the
17See the discussion around Eq. (B5) in Appendix B for the

reduction of ðM−1ÞνμðxÞ → ðΛ−1Þνμ.
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spinor fields are dynamical and give the leading effects on
the effective potential. Here, we compute the effective
potential for an assumed background vierbein field value
ēaμðxÞ, taking into account the spinor one-loop correction.
In order to evaluate the spinor action concretely, let us here
assume a flat spacetime background, i.e., we parametrize

ēaμ ¼ Cδaμ; ð151Þ

where C is a dimensionless constant. This parametrization
is a special case in that all eigenvalues λa of the vierbein
take the same value, namely, ēaμ ¼ diagðλ0; λ1; λ2; λ3Þ ¼
diagðC;C;C; CÞ. For such a flat background, the equation
of motion may entail ω̄abμ ¼ 0.
Hence, the point C ¼ 0 corresponds to the degenerate

limit for the eigenvalues, and thus is identified with a
“symmetric phase” of GC × SOð1; 3Þ in analogy to the
ordinary Higgs mechanism [81]. Needless to say, the point
C ¼ 0 has no background spacetime at all and is intrac-
table. Our strategy to handle this “symmetric” point to
compare with the broken phase18 C ≠ 0 is first computing
the effective potential for C > 0 and then examining the
limit C↘0.
Let us derive the effective potential forC arising from the

spinor loop. The assumption (151) for the background field
gives jēj ¼ C4 and ēaμ ¼ C−1δμa. In order to obtain the one-
loop effects from a spinor under the background (151), it
suffices to take its quadratic terms:

Skin ¼
Z

d4x
�
−ZψC3ψ̄ðxÞγμ∂μψðxÞ − C4Mψ ψ̄ðxÞψðxÞ

�
;

ð152Þ

where we have included the spinor mass term coming
from V and have written γμ ≔ δμaγa.

19 Now we redefine the
spinor field as ψðxÞ → Z−1=2

ψ C−3=2ψðxÞ:

Skin ¼
Z

d4x
�
−ψ̄ðxÞγμ∂μψðxÞ − Cmψ ψ̄ðxÞψðxÞ

�
; ð153Þ

where mψ ≔ Mψ=Zψ .
Integrating out the spinor field yields the effective action

ΓeffðCÞ ¼ −
Z

d4xC4Λcc − iTr log
�
−γμ∂μ −mψC

�
; ð154Þ

where Tr acts on all internal degrees of freedom involved
in the spinor field, e.g., eigenvalues of the covariant

derivative, spinor space, and so on. The second term in
Eq. (154) may give a nontrivial form of the effective
potential.
One can perform the Fourier transformation to obtain

ΓeffðCÞ¼−
Z

d4xC4

�
Λccþ i

Z
d4p
ð2πÞ4 log

�
−iγμpμ−mψC

��
;

ð155Þ

where we have taken the spacetime volume from the
momentum-space delta function δ4ð0Þ in the trace as
ð2πÞ4δ4ð0Þ ¼ C4

R
d4x, which can be naturally understood

by first performing the heat-kernel expansion and then
taking the limit (151). Thus, the effective potential for C
under the flat background (151) is given by

VeffðCÞ ¼ −
ΓeffðCÞR

d4x
¼ ΛccC4 − C4

×
Z

d4pE

ð2πÞ4 log
�
−iγμpEμ −mψC

�
; ð156Þ

where we have performed the Wick rotation such that p0 ¼
ip0E and pi ¼ piE. If we neglect the second term corre-
sponding to the quantum correction from the spinor field,
the effective potential would be simply VeffðCÞ ¼ ΛccC4

and hence, for Λcc > 0, the effective potential would have
vacuum C ¼ 0, implying ēaμ ¼ heaμi ¼ 0.
Let us now perform the loop momentum integral in

Eq. (156). To this end, we need regularizations. Here, we
attempt to employ the momentum-cutoff and dimensional
regularization. The use of the momentum cutoff such that
0 < pE < ΛG and C2m2

f ≪ Λ2
G gives

VeffðCÞ ¼ ΛccC4þ C4

2ð4πÞ2
Z

Λ2
G

0

dðp2
EÞðp2

EÞ

×

�
−
1

2
logðp2

Eþ ðmfCÞ2Þ
�

¼ ΛccC4þ m4
f

2ð4πÞ2C
4ðlogΛ2

G − logðm2
fC

2ÞÞ

þ C4

2ð4πÞ2
�
−
Λ4
G

8
þΛ4

G

4
logðΛ2

GÞ
�
þ Λ2

G

8ð4πÞ4m
2
fC

2;

ð157Þ

while by dimensional regularization, we obtain

VeffðCÞ ¼ ΛccC4 − C4

Z
d4−ϵpE

ð2πÞ4−ϵ
�
−
1

2
logðp2

E þ ðmfCÞ2Þ
�

¼ ΛccC4 þ m4
f

2ð4πÞ2 C
4



2

ϵ̄
− logðm2

fC
2Þ
�
; ð158Þ

where 2=ϵ̄ ¼ 2=ϵ − γE − log 4π with ϵ ¼ 4 − d.

18This phase is sometimes called the Einstein phase in the
literature [55].

19Once we identify ψ as one of the SM fermions, each Mψ
should be regarded as the one from the electroweak symmetry
breaking, with Mψ ≪ ΛG. Here we treat it as a massive Dirac
spinor for simplicity since the generalization is straightforward.
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The momentum regularization case (157) is more com-
plicated than the dimensional regularization case (158). To
understand Eq. (157), let us consider the chiral limit
(mf → 0) for which

VeffðCÞ ¼ ΛccC4 þ C4

2ð4πÞ2
�
−
Λ4
G

8
þ Λ4

G

4
logðΛ2

GÞ
�
: ð159Þ

The quartically divergent terms ∼Λ4
G can be subtracted by

the additive renormalization for the cosmological constant
Λcc. More specifically, we prepare counterterms for Λcc
such that δΛcc þ Λcc;RδΛcc

where δΛcc additively subtracts
terms proportional to Λ4

G, while the counterterm δΛcc

multiplicatively subtracts divergent terms. Therefore, by
employing an appropriate renormalization condition, we
would obtain

δΛcc ¼ −
1

2ð4πÞ2
�
−
Λ4
G

8
þ Λ4

G

4
logðΛ2

GÞ
�
: ð160Þ

This counterterm does not contribute to the running of the
cosmological constant. Indeed, such a prescription is
analogous to the mass-independent scheme in scalar theo-
ries: For the scalar mass term, we give δm2 þm2

Rδm2 and
subtract quadratic divergences ∼Λ2 by δm2, while loga-
rithmic divergences are removed by m2

Rδm2 and the running
effects of scalar mass originate from m2

Rδm2 , but not from
quadratic divergences. The cancellation between the Λ4

G
terms and δΛcc is nothing but the cosmological constant
problem [84]. We do not intend to solve this problem in
this work.
Next, we consider the last term on the right-hand side of

Eq. (157). It seems that this term cannot be subtracted
because no counterterm proportional to C2 exists in the
original action (123). However, this is not the case. The
momentum-cutoff regularization explicitly breaks the sym-
metries GC × SOð1; 3Þ. In such a case, one has to estimate
symmetry-breaking effects from the corresponding Ward-
Takahashi identity and add counterterms to the action.
Therefore, the last term on the right-hand side of Eq. (157)
should be also removed from the effective action. To
summarize, the effective potential under the momentum-
cutoff regularization reads

VeffðCÞ¼ΛccC4þ m4
f

2ð4πÞ2C
4
�
logΛ2

G− logðm2
fC

2Þ
�
: ð161Þ

This is compatible with the result from dimensional
regularization (158) together with the identification
logΛG ↔ 2=ϵ̄.
After removing the power divergences, which do not

affect the running of theory parameters, the effective
potential for C becomes

VeffðCÞ ¼ ΛccC4 −
m4

f

2ð4πÞ2 C
4 log



m2

fC
2

Λ2
G

�
; ð162Þ

in the sense of bare perturbation theory around the scale
ΛG. In Fig. 1, we plot the effective potential (162) as a
function of C. Here, we set ΛG ¼ mf ¼ 1 and Λcc ¼ 0.01
for displaying the effective potential. It is expected that the
effective potential could yield a nonzero expectation value
of C, i.e., heaμi ≠ 0 due to the quantum tunneling effects.
However, at this level of the approximation, the effective

potential becomes a “runaway” form. Thus, a non-trivial
stable vacuum cannot be determined. So far, there are
mainly two interpretations within the current model:

(i) Inclusion of higher-order effects such as loop effects
of the vierbein and the LL-gauge field stabilize the
effective potential.

(ii) The runaway behavior of C implies the cosmologi-
cal evolution of the scale factor [85].

First we comment on the possibility (i). In the tree-level
action (123), there are no kinetic terms for the vierbein and
the LL-gauge field, so these fields do not contribute to the
effective potential at the leading order. In possibility (i),
after the kinetic terms are induced by the fermionic
quantum effects, the effective potential receives loop effects
from the vierbein and the LL-gauge field and could be
stabilized. As a demonstration, we plot in Fig. 2 the
potential with a possible higher-order correction ∝ jej2,

ṼeffðCÞ ¼ ΛccC4 −
m4

f

2ð4πÞ2 C
4 log



m2

fC
2

Λ2
G

�
þ λ8
ð4πÞ4 C

8;

ð163Þ

with a sample value λ8 ¼ 0.02. For other parameters, we
use the same value as Fig. 1, i.e., ΛG ¼ mf ¼ 1 and

FIG. 1. Plots of the potential as a function of C. The dashed line
shows the tree-level potential (150), V treeðCÞ ¼ ΛccC4, while the
effective potential (162) is depicted by the solid line. We set
ΛG ¼ mf ¼ 1 and Λcc ¼ 0.01 and assume a correct-sign kinetic
term for C.
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Λcc ¼ 0.01. In this case, there is a stable global vacuum at
hCi ¼ 7.04. However, if λ8 is large, the origin becomes the
global minimum, and we do not get the emergence of
spacetime.
Second, we comment on possibility (ii). The field C can

be actually regarded as a conformal factor because the
parametrization (151) with C ¼ eσ gives the Weyl rescaling

ḡμν ¼ ηabēaμēbν ¼ e2σημν: ð164Þ

Here, σ is called the dilaton, the conformal field, or the
scalaron, depending on the situation, and is associated with
the scale symmetry. Indeed, in the potential (162), powers
of C reflect the canonical scaling of dimensionful param-
eters such as Λcc and mf. Another possible interpretation is
therefore that C is regarded as a renormalization scale. The
change of C may give the running of renormalized
couplings. The evolution of C may be reasonable for
realizing the expanding universe in cosmology.20 In this
sense, the runaway potential is not excluded from possible
scenarios. Moreover, the runaway potential may be also
related to the wave function of the Universe [86]. In any
case, an important fact is that the solution hCi ¼ 0 is an
unstable vacuum, and then a nonvanishing vacuum is
realized.
Finally, we comment on the kinetic term of the con-

formal mode C in the vierbein. In the argument above, we
have assumed a “correct-sign” kinetic term of the con-
formal mode and then have obtained a runaway effective
potential. Conversely, if the conformal mode has a wrong-

sign kinetic term, the effective potential is unstabilized by
the cosmological constant term and is bounded by the
fermion loop effect. Consequently, we obtain a stable
vacuum at

hCi ¼ ΛG

mf
exp



16π2Λcc

m4
f

�
: ð165Þ

The sign of the kinetic term for the conformal mode highly
depends on interactions between gravitational fields and
matter fields. Indeed, depending on the interaction between
the scalar curvature R ¼ Rαβ

αβ [see Eq. (85) for the
definition of the Riemann tensor] and scalars, the sign
of the kinetic term for the conformal mode varies; see, e.g.,
Appendix A in Ref. [17]. In our model, it depends on
whether or not the Planck mass in Eq. (121) is regarded as a
function of scalars. Therefore, we do not specify the sign of
the kinetic term for the conformal mode. Nonetheless, we
stress that in any case, background vierbein has a nontrivial
expectation value thanks to the fermion loop effect.

VII. SUMMARY AND DISCUSSION

In this paper, we have proposed a model for quantum
gravity based on the LL gauge and GC symmetries. In
Sec. II, we have explained our viewpoint on constructing a
quantum-gravity model. We have summarized transforma-
tion laws under these symmetries and the corresponding
covariance carefully in Sec. III. Our main claim is to
impose the irreversible vierbein postulate on the tree-level
action at the scale ΛG such that the action does not contain
an inverse vierbein in invariant operators under the LL
gauge and GC symmetries. This postulate also prohibits, at
ΛG, the background field of the gravitational fields,
especially the vierbein. It has been shown in Sec. IV that
with matter fields, only three types of terms are admitted
among operators up to dimension four in the tree-level
action (123): the cosmological constant, the linear term in
the field strength of the LL-gauge field, and the kinetic term
for the spinor, possibly with their couplings being GC- and
LL-invariant functions of matter fields. This means that
only the spinor can behave as the dynamical quantum field
at the lowest level. Transformation laws for background
fields have been summarized in Sec. V. In Sec. VI, we have
argued the generation of a nonvanishing background
vierbein field. There, supposing that a flat background
vierbein field is induced, ēaμ ¼ Cδaμ, we have discussed the
effective action for C. Depending on the signs of the kinetic
term of C and of the cosmological constant, the symmetric
vacuum hCi ¼ 0, which is consistent with the irreversible
vierbein postulate, can be a stable minimum of the potential
at the tree level, and then the fermionic fluctuations can
make it unstable so that a nonvanishing value of hCi is
realized. This implies the generation of the spacetime
background.

FIG. 2. Plots of the sample potential (red line) (163) as a
function of C with λ8 ¼ 0.02 and the same values of other
parameters as in Fig. 1. The black solid and gray dashed lines are
the same as Fig. 1.

20Obtaining a runaway potential for the vierbein has been
discussed in Ref. [85] in a different mechanism: A background
metric is assumed to be a cylinder of topology R ×M3 with an
arbitrary three manifold M3, i.e., ds2 ¼ C2ðtÞð−dt2 þ dx2Þ with
time-dependent factor CðtÞ and the effective potential for C2ðtÞ is
derived. In this scenario, a “wrong-sign” kinetic term of CðtÞ is
crucial to obtain an unbounded potential for CðtÞ.
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With the nontrivial background vierbein generated by the
quantum dynamics, we can discuss an effective theory. In
the low-energy regime, gravitational interactions are well
described by metric theories in which only 2 degrees of
freedom within 10 degrees of freedom of symmetric tensor
are physical, while our model (123) has 42 þ 6 × 4 ¼ 40
degrees of freedom at the tree level since the vierbein and
the LL-gauge fields have 16 and 6 × 4 ¼ 24 degrees of
freedom, respectively. This discrepancy can be understood
by the Higgs mechanism: The vierbein field plays the role
of the Higgs field in generating the background spacetime
as its vacuum expectation value. The LL-gauge field eats
6 degrees of freedom in the vierbein field and becomes
massive [54]. The remaining 10 degrees of freedom of the
vierbein field are the same as those of the symmetric tensor
field. At the quantum level, only 2 degrees of freedom
remain due to the subtraction of 8 degrees of freedom by
the gauge fixing and the ghost field. This picture provides a
similar analogy to the nonlinear sigma model from the
linear sigma model as discussed in Sec. II. Hence, in high
energy, there are heavy modes for describing the gravita-
tional interactions which cannot be observed in low-energy
experiments; see Refs. [73,81,83,87–91] for a similar
mechanism in the GLð4Þ case.
In this paper, we have not explored renormalizability of

the theory because the existence of its further UV theories
is unclear. String theory might be a high-energy theory for
our model. Another possible candidate within the realm of
quantum field theory is spinor gravity [78,92–94], in which
vierbein and LL-gauge fields are composites of spinor
fields. This can be studied by the renormalization group
with the compositeness condition [95].
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APPENDIX A: LIE DERIVATIVE, GENERAL
COORDINATE, AND GAUGE

TRANSFORMATIONS

In this appendix, we summarize the transformation laws
under the GC transformation and the Lie derivative. In
particular, the difference between them is clarified in
Appendixes A 1 and A 2.

1. Infinitesimal general-coordinate transformation

For an infinitesimal GC transformation

x0μðxÞ ¼ xμ þ ξμðxÞ; ðA1Þ

we have

Mμ
νðxÞ ¼ δμν þ Θμ

νðxÞ; ðA2Þ

ðM−1ÞμνðxÞ ¼ δμν − Θμ
νðxÞ; ðA3Þ

where

Θμ
νðxÞ ≔ ∂νξ

μðxÞ: ðA4Þ

This implies

∂½ρΘμ
ν�ðxÞ ¼ 0: ðA5Þ

Conversely, a function Θμ
νðxÞ that satisfies the condition

(A5) can always be written (locally) as Eq. (A4). The
condition (A5) is the infinitesimal version of the GC
condition (45).
For the infinitesimal transformation (A1), the variation of

the bases becomes

δGCdxμ ¼ Θμ
νðxÞdxν ¼ dxν∂νξμðxÞ; ðA6Þ

δGC∂μ ¼ −Θν
μðxÞ∂ν ¼ −∂μξνðxÞ∂ν ðA7Þ

of the gravitational fields

δGCeaμðxÞ ¼ −eaνðxÞΘν
μðxÞ ¼ −∂μξνðxÞeaνðxÞ; ðA8Þ

δGCω
a
bμðxÞ ¼ −ωa

bνðxÞΘν
μðxÞ ¼ −∂μξνðxÞωa

bνðxÞ ðA9Þ

and of the matter fields

δGCϕðxÞ ¼ 0; ðA10Þ

δGCψðxÞ ¼ 0; ðA11Þ

δGCAμðxÞ ¼ −AνðxÞΘν
μðxÞ ¼ −∂μξνðxÞAνðxÞ: ðA12Þ

The 1-forms eaðxÞ ¼ eaμðxÞdxμ, ωa
bðxÞ ¼ ωa

bμðxÞdxμ,
and AðxÞ ¼ AμðxÞdxμ are trivially invariant under the
GC transformation:

δGCeaðxÞ ¼ −∂μξνðxÞeaνðxÞdxμ þ eaμðxÞdxν∂νξμðxÞ ¼ 0;

ðA13Þ
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δGCω
a
bðxÞ ¼ −∂μξνðxÞωa

bνðxÞdxμ
þ ωa

bμðxÞdxν∂νξμðxÞ ¼ 0; ðA14Þ

δGCAðxÞ ¼ −∂μξνðxÞAνðxÞdxμ þAμðxÞdxν∂νξμðxÞ ¼ 0:

ðA15Þ

For the infinitesimal GC-gauge transformation
Mα

βðxÞ ¼ δαβ þ Θα
βðxÞ, the GC-gauge field (as well as

the Levi-Civita spin connection, both if they exist) trans-
forms as

δGCϒα
βμðxÞ ¼ Θα

γðxÞϒγ
βμðxÞ −ϒα

δμðxÞΘδ
βðxÞ

−ϒα
βνðxÞΘν

μðxÞ − ∂μΘα
βðxÞ: ðA16Þ

The next-to-last term comes from the rotation of the
spacetime index and is peculiar to the GC-gauge field,
compared to the ordinary and LL-gauge transformations in
Eqs. (14) and (25) [or (26)], respectively. The last term is
the inhomogeneous transformation that characterizes the
gauge-field transformation.
It is important that the antisymmetric part has a vanishing

inhomogeneous term under the GC transformation:

δGCϒα½βμ�ðxÞ ¼ Θα
γðxÞϒγ ½βμ�ðxÞ −ϒα

δ½μðxÞΘδ
β�ðxÞ

− Θν½μðxÞϒα
β�νðxÞ ðA17Þ

due to the condition (A5) for the GC transformation. That
is, the antisymmetric part is in vain for covariantizing the
GC-covariant derivative. This is the infinitesimal version of
the discussion in the last paragraph in Sec. III C 2.

2. Lie-derivative transformation

Choosing the coordinate system (chart) x for each open
subset U of a manifold M can be regarded as a diffeo-
morphism from U to Rdþ1. The GC transformation
between two different coordinate systems is a map between
two different diffeomorphisms U → Rdþ1 from the same
U; see the upper panel in Fig. 3.

Instead, one may consider two different maps from U to
the same coordinate values in Rdþ1. The transformation
between these two maps can also be regarded as a diffeo-
morphism. We can define a derivative of such a diffeo-
morphism, namely, the Lie derivative, which we will call the
LD transformation below; see the lower panel in Fig. 3. In
the literature [52,53,96,97], the self-diffeomorphism group
onM is called the diffeomorphism, or diff in short, and this
LD transformation can be regarded as its infinitesimal.21

A Lie derivative along an infinitesimal vector field ξμðxÞ
is defined as the difference between fields on two distinct
spacetime points that happen to have the same coordinate
value x0 before and after the infinitesimal GC transforma-
tion (A1):

LξΦðxÞ ≔ Φðx0Þ −Φ0ðx0Þ ¼ Φðxþ ξðxÞÞ −Φ0ðx0Þ
¼ ðΦðxÞ þ ξðxÞΦðxÞÞ −Φ0ðx0Þ
¼ ξðxÞΦðxÞ þ ðΦðxÞ −Φ0ðx0ÞÞ
¼ ξðxÞΦðxÞ − δGCΦðxÞ; ðA18Þ

where ξðxÞ in an argument (of Φ in the first line, in this
case) denotes the ðdþ 1Þ variables ðξ0ðxÞ;…; ξdðxÞÞ,
whereas those in other places denote the differential
operator ξðxÞ ≔ ξμðxÞ∂μ. In other words, the Lie derivative
(A18) is the difference between the original field at the
GC-transformed point and the GC-transformed field. In
terms of the Lie derivative, the GC transformation can be
written as

δGCΦðxÞ ¼ ξðxÞΦðxÞ − LξΦðxÞ: ðA19Þ

By construction, the Lie derivative does not change the
basis, unlike the GC transformation (A6) and (A7).
We spell out the concrete forms using Eqs. (A8)–(A12):

LξeaμðxÞ ¼ ξðxÞeaμðxÞ þ ∂μξ
νðxÞeaνðxÞ; ðA20Þ

Lξω
a
bμðxÞ ¼ ξðxÞωa

bμðxÞ þ ∂μξ
νðxÞωa

bνðxÞ; ðA21Þ

and

LξϕðxÞ ¼ ξðxÞϕðxÞ; ðA22Þ

LξψðxÞ ¼ ξðxÞψðxÞ; ðA23Þ

LξAμðxÞ ¼ ξðxÞAμðxÞ þ ∂μξ
νðxÞAνðxÞ: ðA24Þ

In the language of differential geometry,

FIG. 3. Schematic figure for the GC (upper) and LD (lower)
transformations.

21Such a transformation can be interpreted as either “passive”
or “active,” and it is claimed that they are distinct concepts; see,
e.g., Fig. 10 and Sec. 4 in Ref. [98]. The GC and LD trans-
formations in our language may correspond to the passive and
active interpretations, respectively.
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LξeaðxÞ ¼ ξðxÞeaðxÞ þ heaðxÞ; dξðxÞi; ðA25Þ

Lξω
a
bðxÞ ¼ ξðxÞωa

bðxÞ þ hωa
bðxÞ; dξðxÞi; ðA26Þ

LξAðxÞ ¼ ξðxÞAðxÞ þ hAðxÞ; dξðxÞi; ðA27Þ

where the exterior derivative on the vector field ξðxÞ ¼
ξμðxÞ∂μ is given by dξðxÞ ≔ ð∂μξνðxÞdxμÞ∂ν and the inner
product defined through that of the bases hdxλ; ∂νi ¼ δλν,
reads

hAðxÞ; dξðxÞi ¼ hAλðxÞdxλ; ð∂μξνðxÞdxμÞ∂νi
¼ AλðxÞð∂μξνðxÞdxμÞhdxλ; ∂νi
¼ ∂μξ

νðxÞAνðxÞdxμ; ðA28Þ

etc.
One might find it uneasy to transform the coordinate

bases as in Eqs. (A6) and (A7). Then it might be tempting
to define another transformation, which we call the LD
transformation:

δLDΦðxÞ ≔ δGCΦðxÞ − ξðxÞΦðxÞ ¼ −LξΦðxÞ: ðA29Þ

An advantage of the GC transformation over the LD one
is that the former commutes with gauge symmetries,
whereas the latter does not [52,53,96,97] because the latter
is the difference between two distinct spacetime points,
which are gauge transformed differently.

3. (Semi)direct product of general-coordinate
and gauge transformations

Since the GC transformation acts on spacetime indices, it
acts on those of the gauge field. Therefore, when we apply
both GC and gauge transformations for a system, one may
worry about the order of transformations, that is, a GC
transformation after a gauge transformation or the other
way around. To clarify this, we show explicit computations.
We first perform a gauge transformation and then a GC

transformation:

ΨðxÞ⟶gauge Ψ̌ðxÞ ¼ UðxÞΨðxÞ
⟶
GC Ψ̌0ðx0Þ ¼ U0ðx0ÞΨ0ðx0Þ ¼ UðxÞΨðxÞ; ðA30Þ

AμðxÞ⟶
gauge

ǍμðxÞ ¼ UðxÞAμðxÞU−1ðxÞ − ∂μUðxÞU−1ðxÞ
⟶
GC

Ǎ0μðx0Þ ¼ U0ðx0ÞA0μðx0ÞU0−1ðx0Þ − ∂
0
μU0ðx0ÞU0−1ðx0Þ

¼ �
UðxÞAνðxÞU−1ðxÞ − ∂νUðxÞU−1ðxÞ��M−1ðxÞ�νμ; ðA31Þ

where U0ðx0Þ is the pullback defined by U0ðx0ðxÞÞ ¼ UðxÞ. In the opposite order, we obtain

ΨðxÞ⟶GC Ψ0ðx0Þ ¼ ΨðxÞ
⟶
gauge

Ψ̌0ðx0Þ ¼ UðxÞΨðxÞ; ðA32Þ

AμðxÞ⟶GC A0μðx0Þ ¼ AνðxÞ
�
M−1ðxÞ�νμ

⟶
gauge

Ǎ0μðx0Þ ¼
�
UðxÞAνðxÞU−1ðxÞ − ∂μUðxÞU−1ðxÞ��M−1ðxÞ�νμ: ðA33Þ

Obviously, the GC and gauge groups commute each other:
The generators of the gauge and GC transformations δgaugeθ

and δLDξ satisfy

�
δgaugeθ ; δLDξ

�
ΨðxÞ ¼ 0; ðA34Þ

�
δgaugeθ ; δLDξ

�
AμðxÞ ¼ 0; ðA35Þ

where θðxÞ and ξμðxÞ are their transformation parameters,
respectively. Thus, they form a direct product:

GC × gauge: ðA36Þ

For instance, our action is invariant under GC × SOð1; dÞ.
Indeed, the commutativity between the GC and gauge
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groups is because of the definition of the GC transforma-
tions (48)–(52).
In the literature (see, e.g., Refs. [52,53,96,97]), instead of

GC, one has imposed the symmetry (A29) that acts only on
path-integrated quantum fields. We write it diffLD. In diffLD,
the first term in Eq. (A19) is absent, which results in the
nonvanishing commutator of diffLD and elements of a
gauge transformation g. In particular, their commutator
becomes the generator of the gauge transformation g with

gauge parameters −ξνðxÞ∂νθðxÞ. In this case, the group
becomes a semidirect product:

diffLD ⋉ gauge: ðA37Þ

This can be seen explicitly. To this end, let us deal with
infinitesimal transformations. First, diffLD and subsequent
gauge transformations yield

ΨðxÞ⟶diff
LD

ΨðxÞ − ξμðxÞ∂μΨðxÞ
⟶
gauge

ΨðxÞ þ θðxÞΨðxÞ − ξμðxÞ∂μθðxÞΨðxÞ − ξμðxÞ∂μΨðxÞ − ξμðxÞθðxÞ∂μΨðxÞ; ðA38Þ

AμðxÞ⟶diff
LD

AμðxÞ − ξνðxÞ∂νAμðxÞ −AνðxÞ∂μξνðxÞ ðA39Þ

⟶
gauge

AμðxÞ þ θðxÞAμðxÞ −AμðxÞθðxÞ − ∂μθðxÞ
− ξνðxÞ∂νðAμðxÞ þ θðxÞAμðxÞ −AμðxÞθðxÞ − ∂μθðxÞÞ
− ðAνðxÞ þ θðxÞAνðxÞ −AνðxÞθðxÞ − ∂νθðxÞÞ∂μξνðxÞ
¼ Aμ þ θAμ −Aμθ − ∂μθ − ξAμ − ξθAμ − θξAμ þ ξAμθ þAμξθ þ ξ∂μθ

− ðAν þ θAν −Aνθ − ∂νθÞ∂μξν: ðA40Þ

Note that Aμ ¼ Aa
μTa and θ ¼ θaTa do not commute here. On the other hand, a gauge transformation and a subsequent

diffLD yield

ΨðxÞ⟶gauge ΨðxÞ þ θðxÞΨðxÞ
⟶
diffLD

ΨðxÞ − ξμðxÞ∂μΨðxÞ þ θðxÞΨðxÞ − θðxÞξμðxÞ∂μΨðxÞ; ðA41Þ

AμðxÞ⟶
gauge

AμðxÞ þ θðxÞAμðxÞ −AμðxÞθðxÞ − ∂μθðxÞ
⟶
diffLD

AμðxÞ − ξνðxÞ∂νAμðxÞ −AνðxÞ∂μξνðxÞ þ θðxÞðAμðxÞ − ξνðxÞ∂νAμðxÞ −AνðxÞ∂μξνðxÞÞ
− ðAμðxÞ − ξνðxÞ∂νAμðxÞ −AνðxÞ∂μξνðxÞÞθðxÞ − ∂μθðxÞ

¼ Aμ − ξAμ −Aν∂μξ
ν þ θðAμ − ξAμ −Aν∂μξ

νÞ − ðAμ − ξAμ −Aν∂μξ
νÞθ − ∂μθ: ðA42Þ

Subtracting these two, we obtain

�
δgaugeθ ; δLDξ

�
ΨðxÞ ¼ −ξμðxÞ∂μθðxÞΨðxÞ; ðA43Þ

�
δgaugeθ ; δLDξ

�
AμðxÞ ¼ −ξνðxÞ∂νθðxÞAμðxÞ þAμðxÞξνðxÞ∂νθðxÞ þ ξνðxÞ∂ν∂μθðxÞ þ ∂νθðxÞ∂μξνðxÞ: ðA44Þ

The commutator becomes the extra gauge transformation with the gauge parameterLξθðxÞ ¼ −ξθ ¼ −ξνðxÞ∂νθðxÞ. For this
noncommutativity, it is important that diffLD does not transform θðxÞ by assumption. To avoid noncommutativity of LD and
diff, one may further introduce a modified diffLD denoted by δ̃LDξ to make it commute with g [52,53,96,97].
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We comment on the global Poincaré transformation
ISOð1; dÞ in the Minkowski space M1;d. The global
Poincaré transformation ISOð1; dÞ contains the translation
in M1;d as a normal subgroup in the sense that x → Λx →
Λxþ a → Λ−1ðΛxþ aÞ ¼ xþ Λ−1a. Since SOð1; dÞ≃
ISOð1; dÞ=Tð1; dÞ, we write22

ISOð1; dÞ ¼ Tð1; dÞ⋊SOð1; dÞ: ðA47Þ

The local version of Tð1; dÞ⋊SOð1; dÞ is given by

diff⋊SOð1; dÞ; ðA48Þ

which is opposite Eq. (A37). In a gravitational theory based
on the global Poincaré transformation, we infer to realize
the symmetry breaking

ISOð1; dÞ ¼ Tð1; dÞ⋊SOð1; dÞ → diff: ðA49Þ

APPENDIX B: COMMENT ON THE LIE
DERIVATIVE ON THE SPINOR

In this appendix, several definitions of the Lie derivative
acting on the spinor are argued.
Once the background-covariant derivative D is defined

for the matter field Ψ, we may consider a parallel transport
with respect to D̄ :

Ψ0ðxþ ξÞ ¼ ΨðxÞ − ξμD̄μΨðxÞ: ðB1Þ

Here, we stress that this parallel transport differs from the
GC transformation in Eqs. (50)–(52) in the sense that the
transport (B1) compares fields on physically distinct points
that happen to have the same coordinate values before and
after the GC transformation.
The parallel transport (B1) induces another Lie deriva-

tive of Ψ:

LξΨðxÞ ¼ ξμðxÞD̄μΨðxÞ: ðB2Þ

On spinors, this is nothing but the Lie derivative introduced
by Weyl [99],

LξψðxÞ ¼ ξμðxÞ


∂μψðxÞ þ

ω̄abμðxÞ
2

ΣabψðxÞ
�
; ðB3Þ

if ω̄a
bμ is identified to the Levi-Civita spin connec-

tion (130).23

One may further extend the above definition to the
following form [100] (see also Ref. [101]24)

LξψðxÞ≔ ξμðxÞD̄μψðxÞþ
D̄ ½μξν�ðxÞ

4
ēμaðxÞēνbðxÞΣabψðxÞ:

ðB4Þ

This extension is motivated by the fact that on the flat
Minkowski background ēaμ ¼ δaμ and ω̄a

bμ ¼ 0, there
remains the global SOð1; dÞ invariance under

xμ → x0μ ¼ Λμ
νxν ¼ ðδμν þ θμν þ � � �Þxν ¼ xμ þ ξμ; ðB5Þ

namely, ξμðxÞ ¼ θμνxν þ � � �. This is the same as Eq. (A2)
with Eq. (A4). Hence, Eq. (B4) becomes equivalent to the
Lie derivative obtained when the background GC trans-
formation reduces to the global SOð1; dÞ on the flat
background, namely, when Mμ

νðxÞ→ Λμ
ν:

ψðxÞ→ ψ 0ðx0Þ ¼


1þ θμν

2
Σμν þ � � �

�
ψðxÞ: ðB6Þ

The transformation (B6) corresponds just to the global
SOð1; dÞ transformation for the spinor. The definition (B4)
may however be a detour notation in our case. As discussed
in Sec. V C, in our formulation, the global Lorentz
SOð1; dÞ transformation is accidentally realized as a
diagonal subgroup of SOð1; dÞ × GC, so that the detour
notation is not necessary.

APPENDIX C: DEGENERATE LIMIT
OF THE VIERBEIN

In this appendix, we explain the detailed definition of the
degenerate limit and show its application for explicit
several examples.

1. General definition of degenerate limit

As discussed in the Introduction, we assume that the
action at ΛG admits the weak-field limit eaμðxÞ→ 0 just as
the SM action does for the limit HðxÞ → 0, etc. In
particular, we postulate that the action admits the degen-
erate limit for any combination of the ðdþ 1Þ2 ¼ 16
components of the vierbein [54]. This requirement puts
a more severe constraint on the action than just requiring
a simultaneous limit for all the components, as we will

22In the case of SUð2Þ → Uð1Þ breaking, i.e., T ≃ SUð2Þ=
Uð1Þ, we write

SUð2Þ ¼ T ⋉ Uð1Þ: ðA45Þ
For the SM SUð2Þ × Uð1ÞY → Uð1ÞQ, we have T ≃ ðSUð2Þ×
Uð1ÞYÞ=Uð1ÞQ and then write

SUð2Þ ×Uð1ÞY ¼ T ⋉ Uð1ÞQ: ðA46Þ

23As said above, whether or not ω̄a
bμ coincides with Ω̄a

bμ is to
be determined dynamically in our formalism.

24In Ref. [101], the original Lie derivative by Weyl is said to be
LUψ ¼ Uμ

∂μψ without the background LL connection, corre-
sponding to the transformation (51).
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see. The degenerate configuration of the vierbein appears
in the topology change of the background spacetime
and is expected to play an important role in quantum
gravity [55,56].
In general, a vierbein eaμ has four eigenvalues in four-

dimensional spacetime. In the degenerate limit, at least one
eigenvalue goes to zero, resulting in the determinant of the
vierbein to be zero: jej → 0. Note that the degenerate limit
does not necessarily mean the null limit eaμ → 0 for all 16
components. Let us see this fact using a specific example.
By a rescaling eaμ ↦ Ceaμ, we obtain jej↦ C4jej and
gμν ↦ C−2gμν, and hence the term

jejgμν∂μϕ∂νϕ ↦ C2jejgμν∂μϕ∂νϕ ðC1Þ

does not diverge in the null limitC → 0. However, this term
is in general divergent in a degenerate limit as we will
see below.
Now, we define the degenerate limit. The power for the

degenerate limit can be counted by jej rather than by the
overall normalization factor C: The inverse of the vielbein
and metric, eaμ and gμν, contains one and two factors of
jej−1, respectively,

eaμ ¼
Ca

μ

jej ; gμν ¼ ηabCa
μCb

ν

jej2 ; ðC2Þ

where the transpose of the cofactor matrix of eaμ is denoted
by Ca

μ, which remains finite in the degenerate limit.
Hereafter, we write the power of jej as

beaμc ¼ −1; bgμνc ¼ −2; etc: ðC3Þ

Each upper greek index of the vielbein or metric serves an
extra −1 power of jej, and its power −1 cancels the power
þ1 from a lower index of the metric or vielbein.
This can be explicitly seen as follows. The D2 ¼
ðdþ 1Þ2 degrees of freedom of the vielbein can be para-
metrized as

�
eaμ

�
a;μ¼0;…;d ¼ Λdiagðλ0;…; λdÞMt; ðC4Þ

where ðλ0;…; λdÞ∈RD with λ0 < 0 and λi > 0

(i ¼ 1;…; d) and each of Λ;M∈ SOþð1; dÞ has DðD−1Þ
2

degrees of freedom.25 In the degenerate limit, an eigenvalue
λa goes to zero: λa → 0. The determinant reads

jej ¼ λ0 � � � λd; ðC5Þ

while the metric and its inverse are

�
gμν

�
μ;ν¼0;…;d ¼ ðΛdiagðλ0;…; λdÞMtÞtη

× ðΛdiagðλ0;…; λdÞMtÞ
¼ Mdiagð−λ20; λ21;…; λ2dÞMt; ðC6Þ

�
gμν

�
μ;ν¼0;…;d ¼ Mdiagð−λ−20 ; λ−21 ;…; λ−2d ÞMt: ðC7Þ

We see that a contraction cancels a power: For example,

�
eaμgμν

�
a;ν¼0;…;d ¼ Λdiagð−λ−10 ; λ−11 ;…; λ−1d ÞMt ðC8Þ

gives the power beaμgμνc ¼ −1. In one more example, for
∇μeaν ¼ ∂μeaν − eaλΓλ

νμ with the Levi-Civita connection
(70), we have

eaλΓλ
νμ ¼ eaλ

gλλ
0

2
ð−∂λ0gνμ þ ∂νgμλ0 þ ∂μgλ0νÞ; ðC9Þ

which gives beaλΓλ
νμc ¼ −1 because the first term does not

contain a vierbein whose λ0 leg is to be contracted.
Other examples are in order: The Levi-Civita connection

Γλ
νμ contains two extra inverse powers of jej coming from

gμν, bΓμ
ρσc ¼ −2, while the Levi-Civita spin connection

has bΩa
bμc ¼ −2 because of beaλgλρc ¼ −1 and hence,

beaλΓλ
σμc ¼ −1 (contraction of ebσ with Γλ

σμ does give the
additional power −1 because the latter contains the index
from ∂σ, which does not come from the vielbein or from
metric). Note that the contraction of Γλ

νμ with eaν does
raise the power by 1 because the former contains the second
term in the parentheses in Eq. (70), ∂νgμλ, whose lower ρ
index comes from the derivative.

2. Concrete examples

Here, we more explicitly show the degenerate limit on
various terms and list the terms prohibited by having a
negative power of eigenvalues of eaμ.

(i) The kinetic term of a scalar

Sϕ ¼
Z

d4xjej
�
−
1

2
gμνð∂μϕÞð∂νϕÞ

�
ðC10Þ

is prohibited because from Eqs. (C5) and (C7)

jejgμν ∝ ðλ0 � � � λ3Þdiagð−λ−20 ; λ−21 ; λ−22 ; λ−23 Þ

¼ diag



−
λ1λ2λ3
λ0

;
λ0λ2λ3
λ1

;
λ0λ1λ3
λ2

;
λ0λ1λ2
λ3

�
:

ðC11Þ

When some eigenvalues become zero λa → 0, the
matrix contains a divergent component ∝ λ−1a . We
note that Eq. (116) cannot be used in Eq. (C11) since

25Percacci has generalized M to be M∈GLðDÞ having D2

degrees of freedom.
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jejgμν ¼ jejeðaμebÞνηab which is different from
jeje½aμeb�ν to be vanishing for the contraction
with ηab.

(ii) The symmetric kinetic term for the vierbein

Se ¼
Z

d4xjej
�
−
Ze

2
gμμ

0
gνν

0
ηabð∇μeaνÞð∇μ0ebν0 Þ

�

ðC12Þ

(with a factor Ze being mass dimension 2) is
prohibited because

jejgνν0ηabeaνebν0
∝ ðλ0 � � � λ3Þdiagð−λ−20 ; λ−21 ; λ−22 ; λ−23 Þ
× diagð−λ0; λ1; λ2; λ3Þdiagð−λ0; λ1; λ2; λ3Þ

¼ diag



−
λ1λ2λ3
λ0

;
λ0λ2λ3
λ1

;
λ0λ1λ3
λ2

;
λ0λ1λ2
λ3

�
: ðC13Þ

The ath diagonal element of this matrix has λ−1a
which diverges for λa → 0.

(iii) The antisymmetrized kinetic term

Se;anti-sym ¼
Z

dDxjej
�
−
1

2
gμμ

0
gνν

0 ð∂½μeν�Þð∂½μ0eν0�Þ
�

ðC14Þ

is prohibited. Note that this term is GC invariant
because ∇½μeaν� ¼ ∂½μeaν� due to the torsion-free
identity of the Levi-Civita connection Γμ½ρσ� ¼ 0.
Even though the power b∇μeaνc ¼ −1 is raised to
b∂½μeaν�c ¼ 0, we still have the total power −1.

(iv) The gauge kinetic term

SA ¼
Z

d4xjej
�
þ 1

2
gμμ

0
gνν

0
Fa

bμνFb
aμ0ν0

�
ðC15Þ

is proportional to λ−3a because

jejgμμ0gνν0 ∝ ðλ0 � � � λ3Þdiagð−λ−20 ; λ−21 ; λ−22 ; λ−23 Þ
× diagð−λ−20 ; λ−21 ; λ−22 ; λ−23 Þ

¼ diag



−
λ1λ2λ3
λ30

;
λ0λ2λ3
λ31

;
λ0λ1λ3
λ32

;
λ0λ1λ2
λ33

�

ðC16Þ

and thus diverges for λa → 0. Therefore, the gauge
kinetic term is not compatible with the degener-
ate limit.

(v) The Einstein-Hilbert action solely made of e,

SEH ¼
Z

dDxjejR: ðC17Þ

The Riemann and Ricci tensors that are solely made
of e are Rμ

νρσ ¼ ∂ρΓμ
νσ − ∂σΓμ

νρ þ Γμ
λρΓλ

νσ −
Γμ

λσΓλ
νρ and Rνσ ¼ ∂μΓμ

νσ − ∂σΓμ
νμ þ Γμ

λμΓλ
νσ−

Γμ
λσΓλ

νμ. Both give the power −4. The Ricci scalar
R ¼ gνσð∂μΓμ

νσ − ∂σΓμ
νμ þ Γμ

λμΓλ
νσ − Γμ

λσΓλ
νμÞ,

which is solely made of e, gives the same power
−4.26 Therefore, it has the power −3.

These terms are forbidden in the action consistent with the
degenerate limit.
In contrast, the following operators can admit the

degenerate limit:
(i) The cosmological constant term

Z
dDxjej ðC18Þ

is obviously not divergent for λa → 0 thanks
to Eq. (C5).

(ii) The linear term in Fab
μν, namely,

S ¼
Z

dDxjeje½aμeb�νFab
μν ðC19Þ

does not diverge because the use of Eq. (116) yields

jeje½aμeb�ν ¼
1

2
ϵ
�
abcd

�
ecρedσϵ

�
μνρσ

�
∝ ðdiagð−λ0; λ1; λ2; λ3ÞÞ2
¼ diagðλ20; λ21; λ22; λ23Þ: ðC20Þ

(iii) The kinetic term of the spinor field

S ¼
Z

dDxjejψ̄eaμγaDaψ ðC21Þ

has

jejeaμ ¼
1

3!
ϵ
�
abcd

�
ebνecρedσϵ

�
μνρσ

�
∝ ðdiagð−λ0; λ1; λ2; λ3ÞÞ3
¼ diagð−λ30; λ31; λ32; λ33Þ: ðC22Þ

This term does not contain any inverse of eigenval-
ues of the vierbein field, so that it is free from

26In Γμ
λσΓλ

νμ, the power −4 term is one in which both the
lower indices μ and λ come from derivatives. In that case, the
lower indices ν and σ are from metrics, and hence erase the power
from gνσ .
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divergences for λa → 0. Note that the mass term of
the spinor field is also accepted.

Hence, imposing the degenerate limit on the action accepts
only these three terms. In particular, only spinor fields have
their kinetic terms, i.e., become dynamical.

3. Rarita-Schwinger field

Here we examine if the spin-3=2 Rarita-Schwinger field
is compatible with the irreversible vierbein postulate.
When we regard the lower-indexed ψμ as the funda-

mental field, its free action is

S ¼
Z

d4xjeðxÞj�−iεμνρσðxÞψ̄μðxÞγ5γνðxÞ∂ρψσðxÞ
�

¼
Z

d4x
�
iϵ
�
μνρσ

�
ψ̄μðxÞγ5γνðxÞ∂ρψσðxÞ

�
: ðC23Þ

When we regard the upper-indexed one ψμ fundamental, its
free action is

S ¼
Z

d4xjeðxÞj�−iεμνρσðxÞψ̄μðxÞγ5γνðxÞ∂ρψσðxÞ�

¼
Z

d4xjeðxÞj2�iϵ�μνρσ�ψ̄μðxÞγ5eaνðxÞγaðxÞgρρ0

ðxÞ∂ρ0ψσðxÞ�: ðC24Þ

The former action is consistent with the irreversible
vierbein postulate, whereas the latter is not. The compat-
ibility of the Rarita-Schwinger field with the irreversible
vierbein postulate is contingent upon whether we consider
the field with upper or lower indices as the fundamental
entity.

APPENDIX D: TOPOLOGICAL TERMS

There are four topological terms: (i) the Immirzi term, (ii) the Nieh-Yan invariant, (iii) the Pontryagin index, and (iv) the
Euler number; see, e.g., Ref. [102] for others.27 More specifically, they are given in the language of differential forms by

SImmirzi ¼
1

2

Z
F
ω

ab ∧ ea ∧ eb ¼
Z

d4xϵ
�
μνρσ

� 1
4
F
ω

ab
μνðxÞeaρðxÞebσðxÞ; ðD1Þ

SNieh-Yan ¼
1

2

Z
dðea ∧ TaÞ ¼

1

2

Z
ðTa ∧ Ta − F

ω

ab ∧ ea ∧ ebÞ

¼
Z

d4xϵ
�
μνρσ

�
1
8
Ta

μνðxÞTaρσðxÞ −
1

4
F
ω

abμνðxÞeaρðxÞebσðxÞ
�
; ðD2Þ

SPontryagin ¼
1

2

Z
F
ω

ab ∧ F
ω

ab ¼
Z

d4xϵ
�
μνρσ

� 1
8
Fab

μνðxÞFabρσðxÞ; ðD3Þ

SEuler ¼
1

8

Z
ϵabcdF

ω
ab ∧ F

ω
cd ¼ 1

32

Z
d4xϵ

�
μνρσ

�
ϵabcdF

ω
ab

μνðxÞF
ω

cd
ρσðxÞ; ðD4Þ

where we have omitted the coupling constants. We define

Ta ≔ dea þ ωa
b ∧ eb ¼ 1

2
ð∂μeaνðxÞ þ ωa

bμðxÞebνðxÞÞdxμ ∧ dxν; ðD5Þ

namely,

Ta
μνðxÞ ¼ ∂½μeaν�ðxÞ þ ωa

b½μðxÞebν�ðxÞ; ðD6Þ

and we have used dxμ ∧ dxν ∧ dxρ ∧ dxσ ¼ ϵ
�
μνρσ

�
d4x. More specifically, the Nieh-Yan terms are computed as

27Recently, another topological term
R
dðea ∧ ⋆TaÞ is proposed [103]. This term would be interesting to study on its own, though it is

incompatible with the irreversible vierbein postulate because it contains the Hodge dual of the 2-form and hence two inverse metrics.
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dðea ∧ TaÞ ¼ dea ∧ Ta − ea ∧ dTa ¼ ðTa − ωa
b ∧ ebÞ ∧ Ta − ea ∧ ðdωab ∧ eb − ωab ∧ debÞ

¼ Ta ∧ Ta − ωa
b ∧ eb ∧ Ta − ea ∧ ððFω ab − ω½ajcj ∧ ωc

b�Þ ∧ eb − ωab ∧ ðTb − ωb
c ∧ ecÞÞ

¼ Ta ∧ Ta − ωa
b ∧ eb ∧ Ta − ea ∧ eb ∧ F

ω

ab þ ea ∧ eb ∧ ω½ajcj ∧ ωc
b� þ ea ∧ ωab ∧ Tb

− ea ∧ ωab ∧ ωb
c ∧ ec

¼ Ta ∧ Ta − ea ∧ eb ∧ F
ω

ab: ðD7Þ

These terms are compatible with the degenerate limit.
However, barring the field-dependent couplings as dis-
cussed in the second-to-last paragraph in Sec. IV, they do

not affect the quantum dynamics of the vierbein and LL-
gauge fields since these topological terms give the propa-
gators of neither the vierbein nor the LL-gauge fields.
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