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In earlier papers it was shown that the correct kinetic term for scalar, vector gauge field and the spin two
field in AdSp,; space is obtained starting from the exact renormalization group (ERG) equation for a
CFT), perturbed by scalar composite, conserved vector current, and conserved traceless energy momentum
tensor respectively. In this paper interactions are studied, and it is shown that a flipped version of the
Polchinski ERG equation that evolves toward the UV can be written down and is useful for making contact
with the usual AdS/CFT prescriptions for correlation function calculations. The scalar-scalar-spin-2
interaction in the bulk is derived from the ERG equation in the large N semiclassical approximation. It is
also shown that after mapping to AdS the interaction is local on a scale of the bare cutoff rather than the
moving cutoff (which would have corresponded to the anti—de Sitter scale). The map to AdSp,; plays a
crucial role in this locality. The local nature of the coupling ensures that this interaction term in the bulk
action is obtained by gauge fixing a general coordinate invariant scalar kinetic term in the bulk action. A
wave function renormalization of the scalar field is found to be required for a mutually consistent map of

the two fields to AdSp ;.
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I. INTRODUCTION AND OUTLINE

A precise realization of holography [1,2] is the AdS/CFT
correspondence [3—7]. One of the most interesting ideas
that have come out of the AdS/CFT correspondence is that
of holographic RG [8-22]. It has been shown in a series of
papers by one of the authors of this paper [23—26] that the
bulk anti—de Sitter (AdS) dual can be derived from first
principles starting from a Polchinski exact renormalization
group (ERG) equation [27-36] of the boundary conformal
field theory (CFT)."

In this paper we build on the work done in [23-26]. Our
goal is to construct, from “first principles” the bulk AdS
dual of the O(N) vector model in D = 3. The O(N) vector
model has two fixed points—the Gaussian point and the
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"To avoid confusion, one should emphasize that a CFT is a
field theory at a fixed point of the RG and as such has no RG flow.
The RG flow is for the CFT perturbed by the addition of some
terms, for instance of the form f A0 where O is some operator in
the CFT.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

2470-0010,/2024/109(10)/106017(28)

106017-1

Wilson-Fisher fixed point. Both these fixed point theories
are conjectured to have as bulk AdS dual some variant of
the higher spin theory [37] of the type studied by
Vasiliev [38].

By the phrase “from first principles” we mean the
following:

We start with the boundary field theory with D = 3. We
then write down an ERG for the evolution of single trace
perturbations. These are functional differential equations.
We then write down an evolution operator for this ERG
equation in the form of a functional integral over a field
theory in one higher dimension, i.e., D 4+ 1 dimensions.
This field theory is nonlocal and has nonlocal kinetic and
interaction terms. Because this bulk action implements an
RG evolution they are guaranteed to reproduce the correct
correlators of the boundary theory. We map this nonlocal
action by a field redefinition to an action in AdS space
where the kinetic term has the standard local form. This
bulk action is by construction the AdS dual one is
looking for.

We also get a well-defined mathematical expression for
the interaction terms. This was done for the three scalar
interactions in [25]. In this paper we obtain the graviton-
scalar-scalar interaction. There is no guesswork involved in
this procedure: One does not have to start with a general
ansatz and fix the coefficients so that the boundary
correlators are reproduced using the standard AdS/CFT

Published by the American Physical Society
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framework. It is in this sense that we use the phrase “from
first principles.”

The result of the calculation is that the interaction terms
are almost local. It turns out that with some minor
modifications they can be made exactly local. This is
one of the important results of this paper. It is not clear
whether this procedure can be consistently extended for
quartic and higher interactions or indeed for all other cubic
interactions.

We give an outline of the paper below.

A. Outline

To start with, the fixed point theory is a conformal field
theory. We consider the Gaussian fixed point of the O(N)
model, free field theory with the action

dp

¢’( -p), (L)

where A, is the regulated propagator.

The free O(N) model has an infinite number of conserved
currents that are O(N) singlets, one for each even spin. They
could be scalars or in the form of higher spin currents. These
currents are the objects that have bulk duals. Hence their
correlators are of interest. In this paper we consider two—
the scalar composite o(x) = (¢'¢")(x) and the energy
momentum tensor composite o, (x) = T,,[¢'(x)]. For
obtaining their correlators, one adds perturbations of the
form [ jo or [ h,o0" to the free action. The theory then
flows away from the fixed point and undergoes a nontrivial
RG evolution. The correlators of these objects, even in the
free theory, are nonzero, and further, require renormaliza-
tion. Thus, they have a nontrivial RG evolution. This
evolution is captured by the ERG equation. The AdS bulk
action can be determined once the form of this ERG
equation is obtained.

Polchinski’s ERG equation that describes this flow is

52
=), S 0
where ¥ = ¢=511¢']. Here S ; 1s the perturbation; 7 is the RG
parameter, and dot denotes derivative in ¢. Note that the
form of the equation does not depend on S;. It does depend
on the free theory kinetic term through A,.

Since we are interested in perturbations involving o
rather than ¢, it is convenient to rewrite the fixed point
theory in terms of . Thus one integrates out ¢/ keeping &
fixed, and one obtains an action for ¢ to be of the form

Solo] = K G—I—Z/gn Xy eees Xy Ha
(1.3)

A2
Ph) < > Pk) = olk) ———— (k)
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FIG. 1. The vertices of S[o] should reproduce the correlators

of ¢?.

The g, ¥ O(N~3"!') come from diagrams of the form Fig. 1.
The diagrams for the connected correlators of ¢* are shown
in the lhs of the equations in Fig. 1. These have to be
reproduced by the vertices of Sy[o] as shown. Thus we see
that Sy [o] contains interactions of all orders even though the
starting theory is a free field theory for ¢’

Note that we are merely rewriting the theory at the fixed
point in terms of 6. We have not moved away from the
fixed point. To reiterate, Sy[o] is a nontrivial interacting
fixed point action for o, even though it comes from the free
theory for ¢'.

Having done this we rewrite Polchinski’s equation in
terms of the field o. It turns out that the equation is of the
form

o 8 i
L [/,, A 5omiaiyy VN[ ¥ (1)

where ¥ = ¢~/ Note that S[o] is the full action for 6. This
results in a nontrivial flow for perturbations of the fixed
point action Sy[o]. Thus if we add [ j¢* to the free field
theory for ¢/, this becomes the perturbation [ jo in S[o].
Thus we can take S[o] = Sy[o] + [ jo.

The potential term V[, A] depends on the coefficients g,
above. Once again the form of the equation depends on the
fixed point action. This is expected because in AdS/CFT
duality the bulk action is tied to the CFT at the boundary.

One we have this ERG equation the evolution operator is
easy to write down:
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&(p,t)6(=p,1)

/Da(t, p) eXP{_%[ /p (Alz')2

—l—V[O'(p,t),t}}. (1.5)

Thus, the crux of the calculation is to obtain V/[o].

A field redefinition of the form ¢ = fy, along with
interpreting the RG parameter ¢ as the radial coordinate,
z = €', then gives us the final AdS action and thus also the
interaction vertices for the AdS field y.2 Similar steps are
performed with 6, and the AdS field y,,. The main result
is that (after some massaging) the cubic vertices y* and
yzy,w are local. Since y,, is the metric tensor perturbation
this is crucial for general coordinate invariance of the bulk
theory.

In the (semiclassical) bulk calculation of the boundary
correlation function one finds that the final result for the
correlation function is independent of the details of
dependence of the Green function on the moving cutoff.
This is true for any field redefinition. However for the
particular field redefinition that gives AdS space it turns
out that this freedom can be fruitfully used to make the
interaction vertex local. This is intimately tied to the
conformal nature of the correlation functions. In particular
we calculate the cubic scalar-scalar-spin 2 coupling and
find that it can be made local in this manner. Thus, just as
with the kinetic term, the map that gives AdS space is
picked out as special by the requirement of locality of the
cubic coupling as well. Locality requires incorporating the
correct falloff conditions for the bulk fields, i.e.,
the leading term in powers of z for the scalar should be
the boundary operator vacuum expectation value (VEV)
and for the graviton it should be the source for the
operator.

The locality of the coupling of the massless spin-2 field
has implications for general coordinate invariance of the
theory. If one starts with a general coordinate invariant
scalar kinetic term and expands about an AdS background,
the linear coupling of the metric perturbation in an
appropriate gauge reduces to precisely this local coupling.
Hence one can conclude that this term is consistent with
general coordinate invariance of the theory [39—43]. It also
implies that if one performs a coordinate transformation,
the modification of the AdS background metric can be
absorbed by the dynamical graviton as a gauge trans-
formation—equivalently it changes the fixed gauge to some
other gauge.

*This is natural, because, in Polchinski’s ERG, the parameter ¢
that appears is the logarithm of RG cutoff A, defined in units of
the bare cutoff A, i.e., = log A/A,. Thus, since the bulk radial
cutoff ¢ is dual to the bare UV cutoff of the boundary theory,
z/e = Ao/ = €.

A few technical comments are in order:

(1) A large N expansion is essential in obtaining V|o].
The ERG equation otherwise would involve higher
order functional derivatives.

(2) A conceptual issue in relating Wilsonian ERG to
AdS/CFT is that the AdS/CFT prescription involves
integration of the bulk moving outward to large
radius—toward the UV [16]. Wilsonian RG natu-
rally starts with a UV region and moves inward. We
show in this paper that a flipped ERG equation that
evolves to the UV can easily be written down simply
by interchanging the low and high energy propa-
gators. They lead to the same results. This equation
is unnatural physically from the point of view of RG,
but is mathematically valid and corresponds more
naturally to the usual AdS/CFT holographic RG
calculations. In holographic RG one places the
boundary at z = ¢ and imposes boundary conditions
on this surface and (in pure AdS which is what we
consider in this paper), at z = co one requires the
fields to vanish. € is taken to zero at the end. In the
field theory this corresponds to taking the UV cutoff
A — o0. We evaluate the cubic interaction using the
flipped UV version of the ERG equation. While we
have incorporated the cutoff € in the calculations for
obtaining the expressions, these must be renormal-
ized as prescribed in [44] to get finite expressions.

(3) To see explcitly that Sy[o] is a fixed point theory
it is easier to work with the generating functional
Z[J]. This is easily shown to satisfy a fixed point
equation provided we assign to J a correct scaling
dimension [45].

(4) One of the technical issues one faces in calculating
the graviton-scalar-scalar coupling is that of con-
sistently mapping the kinetic terms of both the
composite scalar and spin-2 composite energy
momentum tensor (which becomes a graviton in
the bulk) to the correct AdS form. As was pointed
out in [26], since both kinetic terms are made up of
the fundamental scalar kinetic term with a specific
cutoff function, it is not possible to map them both
simultaneously. The way out of this problem is to
perform an additional wave function renormaliza-
tion of the composite scalar field. This gives some
freedom to modify the cutoff dependence of the
composite scalar kinetic term at high energies. It
becomes possible then to map both kinetic terms to
the AdS form simultaneously.

This work, along with [23-26], has similar goals as [46],
and earlier work using ERG for building the AdS higher
spin theory from the O(N) vector model [47-50]. See
also [51,52]. We hope to extend our formalism to all the
higher spins and their cubic, quartic interactions in the
future, and to understand the connection of our work with
the above mentioned works.
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This paper is organized as follows: In Sec. I1I, we discuss
the general coordinate invariance of the theory and the issue
of gauge (coordinate) transformations. In Sec. IV, the
flipped ERG equation is worked out, and the connection
with the usual formulations of the AdS/CFT correspondence
is explained. In Sec. V the locality of the cubic scalar
coupling is explained. The map to AdS space is also given,
and it is shown that it leads to a local interaction term in the
bulk. Section VI discusses this issue for the graviton-scalar-
scalar coupling, and Sec. VII has the mapping of this term to
AdS. Section VIII contains a summary, conclusions, and
some open questions. The Appendices contain supplemen-
tary calculations, viz., the mapping to AdS for the tensor in
Appendix A, the issue of consistency of simultaneously
mapping the scalar and the tensor by our procedure in
Appendix B, and the computation of the scalar-scalar-tensor
vertex integral in Appendix C.

II. A NOTE ON NOTATION

In several places below we omit the measure in integrals
to make the equations more readable. Instead we indicate
the parameter to be integrated over with a subscript, like so:
J.- More specifically, when a momentum is being inte-

p ( ) ’

where D is the number of dimensions of the boundary
manifold.

(2.1)

III. GENERAL COORDINATE INVARIANCE

A. Gauge fixing a general coordinate invariant action

1. Free theory

In [26] it was shown that starting from the ERG
equation for a free O(N) scalar field theory perturbed
by the term #**T,,, (where T,, is the improved energy
momentum tensor), in the boundary of AdS, one can
construct a bulk dual action for a free massless spin-2 field
in the AdS bulk. In the boundary theory this spin-2 tensor
is an auxiliary field standing for the traceless conserved
energy momentum tensor composite field. In the bulk a
massless spin-2 field must be a graviton. This is confirmed
by comparing this action with a bulk calculation. To be
more precise, one starts with the Einstein action and takes
the metric in the form (gags)yy + un. Where (gaqs)un
(M=1,...,.D+1) is the background AdSp,; metric
given by

_dZ? +§,,dxtdx

ds® 5 ;

Z

and h,,y is a small deviation. Let us extract the quadratic
action for hy;y from the Einstein action. One can set
(xM = (z,x")) (in the gauge h_y = 0)
h,,=0=h,, =dh,, = h,. (3.1)
This is a transverse-traceless gauge. The quadratic action

so obtained, i.e., by gauge fixing a general coordinate
invariant action is [39-42]

s—1 / - oP 2P0k, FH + O,y O H
) (zﬂ)D 2w p!tuw

+ 423 h,, 0, h* + 422, h*]. (3.2)

Indices are raised in the above action using s¥V. Setting
2 _
h';wz - y/w’

1
S = E/dD“xz‘D“[azywazyﬂ” +0,y,0y"].  (3.3)

This is compared with what is obtained from ERG, and
one finds that there is agreement [26]. Thus one can say that
at the free level, a dynamical gravity consistent with general
coordinate invariance is obtained starting from the ERG
equation of a boundary CFT in flat space. That dynamical
gravity emerges from ERG is conceptually remarkable.

2. Interactions

One can further test general coordinate invariance at the
interacting level as follows. The ERG procedure applied to
a scalar composite of the boundary theory generates an
action [25]:

1
S=3 [ Visdlioubond.  (4)

Here [ = [dP*'x.
Let us analyze this from the bulk viewpoint. Our bulk
starting point is a general coordinate invariant action:

1
S= EL NN (35)

If we expand about AdS background gyy = (gads)yny +
hyv one expects a graviton-scalar-scalar coupling of the
form

1
S — E/ VIds 950 POnd + hMN oy poyg).  (3.6)

(The /g does not contribute a linear term in A if it is
traceless.) In the gauge (3.1) the interaction term becomes
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1
S = El VGaas" 0, 0,¢. (3.7)

In this paper we will verify that such a coupling does indeed
exist. This shows that the action obtained from ERG is
general coordinate invariant to this order.

Since the action obtained in the bulk using the ERG
procedure can be obtained by gauge fixing a general
coordinate invariant theory, one concludes that the bulk
theory obtained by the ERG procedure is indeed a general
coordinate invariant theory of gravity. One can then ask
whether it is possible to change the gauge from (3.1) to

GMN()C) — GMN(X' + €<xl)) — GMN( /)
op(x) 0e?
oM (51% oxM )
VGGM™ (x)0yp (x)0h(x)

d/M a/N

some other gauge. This should be equivalent to a coordinate
transformation. Thus we are interested in studying the
change in form due to a coordinate transformation (change
of variables).

We start with

1
=3 [ VGGMN oy done.

Here G,y has the functional form of an AdS metric but is
not a dynamical field. Thus let us begin with Gy =
(gads)yn- Under a change of coordinates

P(xl)a GMN(X,),
9p(x' +¢)

ox'e

9 x/M b xlN

:\/EGMNad)( )045( )+ R0R<\/5GMN0¢( ) ¢(xl)>

_ \/5(_ Gov | 9% GMP> og(x') ogp (' )_

0x2

Similarly,

/dD+lx:/dD+1x/(1+aR€R)‘

This modified action is physically equivalent to the original
action because all we have done is a change of variables. But
it is not manifestly invariant because the metric is not a
dynamical variable. If we drop the boundary term, (assum-
ing that € vanishes at the boundary—small gauge trans-
formations), then we are left with a change (x derivative has
been changed to x’ to this order in ¢):

(i g )

b x/M 9 x/N

If we find a coupling to a dynamical spin two field of the
form

1
=2 / N (3.8)

then this change can be absorbed into a change of field
variable,

deM GOV _ de" GMP

MN __
h ax/Q ox 3./P

— h/MN

(3.9)

Since h is an integration variable this does not affect
anything, and our action is now manifestly general

ox? ox'M  gx'N

coordinate transformation invariant—to this order in 4. At
higher orders /G has to become /G + h. This is the
linearized gauge transformation of the spin-2 graviton field.

Below we show that we do obtain a coupling given
in (3.8), but in a specific gauge where h** = W** = 9,h*"" =
h*, = 0. The gauge transformation (3.9) then takes us out of
this gauge. Thus the spin-2 field in the new gauge is

dez
D2
‘ 0z’

W = pv — Z2oWe).

W = Wi = —Z2(0e* + ek,

(3.10)

IV. UV-IR INTERCHANGE IN POLCHINSKI ERG
EQUATION AND AdS/CFT

A. Polchinski ERG equation and UV-IR interchange

Let us start with the O(N) vector field theory (see
[53,54] for reviews):

710 = /D(pe—%ﬁf,,qs'(pm'¢'<—p>—sg,1[¢]+ff'¢'. 1)

Sps contains interaction terms in the bare action. The
index I runs over the first N positive integers. The
unmarked integrals are D-dimensional momentum integrals,
[dPp/2n)P.

We define ¢, ¢, by

A:A1+Ah,

d=a¢+ ¢ (4.2)
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with corresponding propagators A; and A,,. [, i stand for “low” and “high.” A;, A, will be chosen to propagate only low/
high momentum modes. We leave the propagators unspecified for the moment.
Up to some field independent factors Z[J] can be written as [27-30]

/D¢1/D¢ e 2\/_f¢lA i \/_fqb hl¢lh_sB.1[¢/+¢h]+fj(¢1+¢h)'

(4.3)

The derivation of Polchinski’s ERG equation proceeds as follows: The high energy mode ¢, is integrated out, and what
remains is the Wilson action for ¢;. Separating out the kinetic term for ¢; defines the interacting part of an action:

lPl[d’le] = =Sl = /Dqﬁhe_%\/ﬁf(/);’Ah1(/)2_58"[(/)’+¢h]+fj((/)’+(/)h). (44)
Let us evaluate
0P, / Depye VN[04 O Suslbrsls [ Kt
5¢1 5¢1
— /nghe—f\/ﬁflf’iA;] iie_sk.l[¢l+¢h]+fj(¢l+¢h>
o}
O (N [ B89 ~Snildital+ [ 1)
_’D¢ 2 hSn Pn) e P BIPITPh 1T Ph
| P4zt !
_ \/ﬁ/ 'nghA;lq%( \/_fl/’h hll/’,, SBJ[¢I+¢!1]+L/‘J(¢I+¢II)'
Then, ignoring a field independent term,
52‘{11 __\/' gyl _g
—N | D -2 I f¢ &, B,I[¢I+¢h]+fj(¢l+¢h)'
5¢{( )5¢] / ¢h ¢h( )¢ e
Now find that, (using oA, _ —&)
> ot Az
1 1y
D Sl (—p)A,A b [ 0185 0] y=Snalbetdnl+ [ (k)
\/7/ ¢h</pz¢ VA, A2 (p ) ¢
/ FY,
"2 \/_ 5¢’ )8 (=p)
This gives Polchinski’s ERG equation:
Ap <A o (4.6)
v, 11 Ay(p) Y,
LA p -
o 2YNJ, " hl(p)odl(—p)
11 . S, 1. Flipped Polchinski ERG equation
= _Ex/—ﬁ g Al(p)—g(p{(p)éqbf(—p) . (45) Thus let us repeat all the steps above, but this time we

As A is lowered the ¢; modes get integrated over.

Notice that mathematically there is complete symmetry
between ¢;, A; and ¢, A, in the way they appear in the
starting action, i.e., there is a symmetry:

integrate out ¢, first and obtain a Wilson action for ¢,. We
can then derive an equation describing the evolution of the
Wilson action as A is increased and the ¢, modes are
integrated out. The resulting equation can be obtained
simply by interchanging [/, & in the previous Eq. (4.5) to
obtain
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o, 11 5Y,
o 2N / 6¢’ )8}, (=)
1 82,
— 4.7
2 / 5¢h 8¢l (p)odl(—p)’ .7

where

¥, = e=Sialdnd] — /D¢Ze_5\/ﬁf‘/’{Al_l‘M_SB.I[‘/’I+¢h]+f](¢I+¢h)'

(4.8)

This is an action obtained by integrating out ¢; rather
than ¢;,. We will refer to (4.7) as the flipped ERG equation.

We hasten to add that this exchange given in (4.6) does
not imply any physical symmetry between the low energy
dynamics and the high energy dynamics. All that is being
done is that the order of integration has been reversed—qq;
is integrated out first and then ¢,,.

So far, since A;, A;, have not been specified the physical
significance of these equations has not become apparent.
Let us now make a choice of propagators:

e PN e~ P IN — gmP? /N
Al - 2 5 Ah - B . (49)
p p

Here A (with A < A) refers to a bare cutoff, and for the
continuum theory one can take Ay — oo. So for our
purposes

e_pZ/AZ 1 _e_pZ/AZ

1= 2 Ay = 2

(4.10)
p p

Now it becomes clear that in ¥, the high energy modes
¢, have been integrated out and thus S;,[¢;,J] is the
Wilson action and (4.5) is Polchinski’s ERG equation.
Equation (4.7) is a mirror image of Polchinski’s equation
where the low energy modes have been integrated out. In
(4.7), when A — oo the full functional integral has been
done, and we have the final answer for Z[J].

Integrating ¢; may seem unphysical from a Wilsonian
point of view, because one obtains nonlocal terms, but in
fact this is what a standard perturbative Feynman diagram
calculation does. Consider the typical loop integral in a
field theory:

/A& 1
o Q2n)*p*(p+k)?*

It is clear here that the low energy modes with 0 < |p| < A
are the ones being integrated. Eventually A is taken to
infinity to get continuum results. Thus while the interpre-
tation of a “low energy” effective action is lost, mathemati-
cally this is a valid procedure.

In practice the low energy theory may be complicated,
and one may not know how to do the integral over the low
energy fields due to infrared problems for instance. One
may also imagine that the low energy integral is done using
the bulk theory. In any case the evolution equation con-
tinues to be valid.

B. Holographic RG and AdS/CFT

The above discussion has relevance to AdS/CFT
calculations.

The usual AdS/CFT prescription for evaluating Z[J] is
depicted in Fig. 2. The bulk functional integral over the
region z > ¢ is done with some boundary conditions at
z = €, and this gives ¥}, .. This is equivalent to integrating
out low energy modes of the dual boundary CFT. We thus
set € = % The continuum limit is obtained by taking the
limit ¢ — 0. The evolution of ¥, to the outer boundary is
described by (4.7). Usual bulk holographic RG calculations
also follow the situation in Fig. 1. Equations of motion are
solved with boundary conditions that set the fields to zero at
z = o0, and boundary conditions are specified at z = €. The
limit € — O is taken after counterterms are added to make
the action finite.

The Wilsonian picture on the other hand is (4.5) and
describes the situation in Fig. 3. The blue region has high
momentum modes which are integrated over. This gives
¥, , and is the standard Wilsonian picture. Taking a — oo
gives Z[J]. Both pictures are valid. For actual bulk
calculations ¥, is more useful.

We turn now to an actual calculation.

C. Correlation of scalar composite using ¥,

1. ERG equation for composite scalar

We will use the Polchinski ERG equation in the conven-
tional Wilsonian form involving ¥, first. In the next
section, we repeat using ¥,.

FIG.2. Integration over the red region gives ¥, .. Taking ¢ — 0
gives Z[J]. Outer boundary is at z = 0.
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z=0

FIG. 3. Integration over the blue region gives ¥; . Taking a — oo gives Z[J].

Thus, let us start with a free O(N) vector model like before:
zlJ) = / Dpe V[ #7008 (4.11)

where ¢? stands for ¢/ ¢!. We have perturbed the (free) CFT by adding a source term for the composite operator ¢2.3 Our
strategy will be to introduce an auxiliary field o to represent ¢*> and determine an action S|o] that can be used to calculate &
correlators using

(6(x1)...0(x,)) = /Daa(xl)...a(x,,)e_s["]. (4.12)
The action S[o] can be extracted from

zl) = / D¢ / Dob(o — g?)e VN 9879 [ e,
— /Doe—s[a]JrifJa_ (4.13)

We will next obtain an ERG equation for determining S[o]. To this end we integrate out the modes of ¢(p) with
A < p < o as was done in Sec. III 1 while deriving the Polchinski ERG equation. This will enable us to define S; 4 [0, ¢;]
and an ERG equation for it.

Thus we have, after introducing ¢;, ¢, as before,

20 = [ Do T4 [ 04, [Doctt 2 [ Dgess{i [ xta= i a0 -3V [ 1ol

One can do the ¢, integral:

*In Minkowski space there would be an i, and it implements an invertible functional Fourier transform. We continue with an i even in
Euclidean space—it is unconventional but legitimate. It makes it invertible just as in Minkowski space. Physics is not altered by this
device.
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Z[J] :/Dﬁble—%\/ﬁfﬂAlld){/Daeifja/D)(eif”/Dﬁbh

xexp{—lﬁquz(Azl +2i%x>¢§,+2i/x¢§¢2+i/x¢?}

:/DqSe WA [4ia ﬂ‘h/Dae f]"D)(e f”exp{—aTr ln<A 1+21\/—_ > /tﬁlﬁfﬁ[}

Polchinski’s ERG equation is (note that A, = —A))
M, 11
or 2N/,

Let us also define P[¢h;, 6] and P[¢h;. x| as follows:

/ Dae””e_s’ﬁ[‘/”"’} ,

S,

) ST Yo =p)

(4.15)

¥ J] /Dae FET A

(4.16)
so that
Uidy.o /D;(e f?ﬂ’ =¥Tr In(142idc8u) 4 [ 4] Hzf’f AM
RAI®Y
(4.17)
Thus,

Wit = [ Do I [ Dpe 1oz,

Now we can insert this in (4.15). Thus, we can write
|

(—z | [ uto)nser petior-1 +

p

i
eSLA =y [, ]
(4.14)
o, 11 [ 5
A=t (4.18)
o 2N J, " spl(p)sdl(—p)

Following [25], we will evaluate this equation at ¢; = 0.
This simplifies things dramatically. By setting ¢»; = O in the
equation after taking the derivative, we no longer track the
RG flow of any interactions involving the low energy
fundamental fields. If we are only interested in the RG flow
of the interactions of composite operators, we can safely
throw away the ¢; terms. The disadvantage is that we
cannot integrate out any more ¢; modes. This means A is a
physical IR cutoff in the problem. Thus to recover the
physics, one has to set A =0. Once we have a general
solution valid for arbitrary A this is not difficult to do.
This is

11, ikl
ST Ah(P)W(p{(_) $1=0
_ __\/—/ Ah p) {m} (P)‘i’z.

Let us expand this in powers of y—ignoring the linear

term, which comes from a tadpole diagram and can be

gotten rid of by shifting the field o [26]. The quadratic and
cubic terms are, acting on ‘i’l,

4i 1

T Ok + ky + k
3 \/N b ko ko ( 1 2 3)

) / %(A”(pmh(kl +p) Ak + ko + P)))((h))((kz)x(kz))q’z.

We can write the quadratic term more suggestively as

- [ 4@k,

We get

(4.19)
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d = 401
- k)y(=k)— (A2 (k))¥; + ——= (ki +ky +k
[t L@@ [ sk k)
d -
[ SO+ AP+ b+ k)b (k)P o (4.20)
P
This pattern generalizes to higher orders. The nth terms are of the form [a factor |, b o, (k1 + -+ k,) is understood in

each term]

l/ Ap(p)AR(p + K1) An(p + Ky + ok (). ()

2n—1

n

W [ AP+ ) Ayt k).

We have used symmetry of the integrand to introduce a factor 1/n in the second expression. We thus see that the term
multiplying the n external y’s is a total derivative. This will be important.
Let us proceed now with our analysis of the quadratic and cubic terms. It will be convenient to work with ¥[¢,, o]

[defined in (4.17)] in which we can replace y by —z . Converting y — —i 5‘1 we get

ali’z [}, 0]
ot

o :%l%(ZA%(k))mq‘l[@»U”@:o

4

d 8V [¢,. o]
3N e S(ky + ky + k3>5 </ Ay(p)An(p +k)A(p + K + kz)) 50 (k)30 (ky)50(k5) 4o

P
(4.21)
We see that the propagator for the composite ¢ is 2A7 as expected.
Let us pause and check whether the leading order term in P satisfies this equation. From (4.16), we have
. _1 [ 2ke(=k)
Wilg—0 = /D)(e'f”efk%(k”‘(_km%(k) =e 2. w00 (4.22)
We have dropped field independent terms. This clearly satisfies the Eq. (4.21) to leading order.
Acting on the leading order ¥, we can write the second term as a cubic monomial in o:
41/ Sk, + Ky + ky) 2 /A()A(+k)A(+k+k) il |
3VN Sk, 1 2 3) s p n\P)R2n\P 1)BrP 1 2 S0(k,)50 (k)60 (k3) =0
41 d 1 o(ki) o(ky) o(ks) g
=-— Olky + ky + k3) — A A ki)A ki +k) | < _
e T R R T e e e rera kT
= — 5<k1 + k2 + k3)g(k1, kz, k3, A)G(kl)d(kz)d(k3). (423)
\/N ky.ka ks

Thus, the ERG equation becomes to this order

0¥, 1 [ . & 1 i}

— == Glk)————+— O(ky + ky + k3)glky, ko, ks, No(ky)o(ky)o(ks) ||, _o, (4.24

0 P (ZK ol )56(k)5o'(—k)+\/ﬁ ks (ky + ko + k3)g(ky, ko, k3, A)a(ky)o(ks)o( 3)) 1|¢,_o ( )
where

106017-10



HOLOGRAPHIC RG FROM AN EXACT RG: LOCALITY AND ... PHYS. REV. D 109, 106017 (2024)

_4d
- 3dr

1
G, (ki 1)Gy(ky, )Gy (k3. 1)

gk Ky ky, A) ( / Au(P)Bu(p + k) AP + Ky +k2>>

We have set 2A7 = G,. This determines V|5 _o = e~54[%7|. The leading order expression for S, ,[0, o] is given in (4.22).

2. Evolution operator

The evolution operator for the ERG equation (4.24) can be written as a functional integral:

o(ty)=oy 1 [ 6(k,t)o(—k,t)

Klos, tr; 0.t :/ Do ex {——/ dt[/.—
[f ! ] o(t;)=0; P 2 t k Gs(k’t)

1

+— 5(](1 +k2+k3)g(k1,k2,k3,/\)0'(kl,t)O'(kz,t)G(k3,t):| } (425)
VN Ji ks

The cubic potential term has been added to the action in the path integral, with the ¢ fields becoming functions of .
Let us evaluate it semiclassically, order by order. The leading equation of motion (EOM) is

d 6(—k, 1)

AT 0 = &6(=k, 1) = J(k)G,(k, ).

Thus,

olk.t) =J(K)G,(k.1). (o(k.z=0)=G,(k.z=0)=0).
(4.26)

The boundary condition is required—(4.22) is ill-defined at z = 0 unless o(k, z = 0) vanishes.
)

gf( = (k), which is ¢ independent, and the

cubic term becomes a total derivative. At one boundary ¢ = oo, where it is nonzero, we get

If we plug this solution into (4.24), one obtains a product of three factors of

\/iﬁ / AP)AG + k)A(p + ks + ko) (k) (ka) T (ks).

(4.27)
This is clearly the correct answer for the one loop contribution of the cubic vertex to the amplitude.

D. Correlation of scalar composite using ¥,

Given the symmetry [ <> h described in (4.6), all the results of the last section can be taken over with /, & interchanged.
Thus, the ¢, fields are integrated over, and we get

a@hl/d(zAz(k)) i P, | - 5(k+k+k)d /A()A( +k)A(p + ki + k)

o 2 ) dt TN a(k)do(=k) MO T3 YN Joan, O TR gJ, SAPIRAP T RSP TR R
8 i}
Filp,—o- 428
" S0k, )80 (ky )30 (ks) o (4.28)
Equation (4.22) becomes
_1 [ olka(=k)
lilh|¢h:0 _ /,Dxeif)(aeﬁ}((k))((—k)A,z(k) — e Z.ﬁ 202(k) ) (429)
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The flipped ERG equation is

0¥,
o

where

4d

ki, ky,ky, A) = =——
9(1 2, K3 ) 3dt

2
o G st L o+ kot ks etk ) 9

( [ paito k-4 + k2>)

. (430

¢,=0

1
Gs(kl s t)GS(k27 I)Gs(k3’ t) ‘

We have set 2A7 = G,. This determines W5 _o = e~*141#:=0]_The leading order expression for S; ,[¢, = 0. 0] is given

in (4.29).
The evolution operator is the same as in (4.25):

rf(tf):rrf
K[Gf, tf;o-i’ ti] = /
o(t;)=0;

1
+ R
VN Ji koks

Solving semiclassically as before one obtains the same
equations, but with the boundary condition that ¢ vanishes
at oo rather than zero, because A% vanishes at A = 0:

d 6(—k,1)
dt G(k, 1)

= 0= 6(=k,t) = J(k)G,(k, 1).

Thus,

o(k,t)=J(k)G,(k,1),

This is the boundary condition used in AdS/CFT correla-
tion function calculations.

The calculation of the correlation function proceeds as
before by plugging in this solution into the action. As
S
again a total derivative, and we pick up the contribution this
time, at the t = —co (z = 0) boundary where A? = A?, and
the same final answer is obtained:

before, since = J(k;) is t independent, one obtains

ﬁ/ﬁ A(P)A(p + k) A(p + ky + k)T (ky)J (ko) J (k3).

(4.33)

V. LOCALITY OF INTERACTION TERM
AND MAPPING TO AdS

In the following, we work with the action resulting from
the flipped ERG equation. The D + 1 dimensional action in
(4.31) has a nonstandard kinetic term, and following
[23,25] we will perform a field redefinition that maps it

S(ky + ko + k3)g(ky, ko, k3, N)o(ky, t)o(ky, t)o(ks, t)} }

(4.31)

to an action in AdSp_; with the usual scalar kinetic term
in AdS D41~
The redefinition” is

o(p,t) = f(p,t)y(p,1), (5.1)

with

(A(p)K,(pz) = B(p)1,(pz)), (5.2)

where v = |A — D/2|, A = D — 2 being the dimension of
the boundary operator o(x, 0). Near the boundary z = ¢, the
leading z behavior of y is

y(p.2) ~z0(p.e). (53)
Near the boundary z — €, f — z®. Then
Alp) = L21‘”p’“. (5.4)
I'(v)
Then we get
1 1

—v v B _l v— v2
fzm% p'z22K,(pz) 7/2 T@w)p*z21,(pz). (5.5)

The Green function Gy in turn is given by

“Both these fields are essentially “generalized free fields” as
described in [55].
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P K, (pz)
yK,(pz) = 2*7°T(v)*1,(pz)

It vanishes as z — oo, and

Gy(p.2) = (5.6)

Gy—yp™,  pz—0
with y a normalization factor.

The combination f/G; occurs in some calculations
below and is given by

f -1 _D pb
— =T ()2 " . 5.7
G, ) vK,(pz) 57)
A. Kinetic term
The kinetic term in (4.31) is

Making the field redefinition (5.1) with f given by (5.2)
converts it to

So I%/dZ/pz_D“ {@y(p,Z)azy(—p,Z)
+ (o ’j—f)y(p, (-p.2)| (59)

with m? =12 -2 =4 -2D.
Now we proceed to the interaction term.

B. Interaction term

1
S;=—= [ dt
! \/IV/

lk . O(ky +ky+ks)g(ky.ky.ks3)o(ky.t)o(ky.t)o(ks,t),
25R3

(5.10)

with

(k19k2’k3’ p+k)

(/pm

< Ap + Ky +k2>>

1
G, (k1. 0G, (ks )G, (k3. 1)

We can now substitute (5.1) into (5.10). We will also
perform one simplification. Consider the integral

(5.11)

I(ky ko, A) = / A(P)Ap +k)A(p + Ky + k).
)4

We have seen that when the on shell action is used to
evaluate the correlation function, only the boundary value
of I, namely when A = Ay — oo, enters the final answer.
Thus we have the freedom to choose any regularization
procedure for evaluating I as long as it gives the correct
answer when A = Ay — 0. So we use this freedom and
modify the regulator in g(k, k,, k3, A). Thus let us choose
a regulator and define

lowitea = | [ AP)AG+R)A b k)|
P regulated, A

In this particular case, (near D = 3), one can take
A — Ay — o0, and the result is finite. It is clear that this

differs from the ERG prescription by 0( 0, i.e.,

ki
Lnoditiea =1+ O (K)

Since only the value of 7 at A = Ay — o enters the final

result, the error in the correlation function is <+ and goes to

A
zero as Ay — oo. Thus we are free to use any /I, gified-
Now the interaction term becomes

4 1 / /
——— [ dt Olky + ko + k
3\/N ko ks ( 1 2 3)

<a(fpmeresprnan] )

b Ay b D0l
(5.12)

The integral has been evaluated in Appendix C for a
convenient and commonly used form of the regulator, and
one finds

dl podifi d
Hmodified _ % [/ A(p)A(p+ki)A(p+ky +ky)
dt dt p regulated, A
:NKy(k1Z>Ku(k2Z) K, (k3z) Z2(D=3)+3v

A

where N is some numerical constant. The value of /G, is
given in (5.7). Plugging all this into (5.12), one finds that
there is an exact cancellation of all momentum dependence!
The interaction is local,
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$i= N [an [ o+ k(D3R (),
ky ko ks
(5.13)

with possible cutoff dependence of order Alo where Ay — o

is the bare cutoff which is to be taken to infinity. The
precise form of f/G, in (5.7) was required for this to
happen. Thus the nonlocal factor coming from the con-
formal momentum integrals is exactly compensated for by
the function f/G, only when the map is to AdS space.

This concludes our discussion of the cubic scalar vertex.
The same logic and techniques will be used for the scalar-
scalar-spin 2 vertex. There is a subtlety that needs to be
considered before we can do field redefinitions for both
scalar and the tensor simultaneously. This is discussed in
detail in Appendix B.

VI. GRAVITON COUPLING

In this section we calculate the cubic correction, involving
one spin-2 composite and two scalars, to the ERG equation
for the scalar composites in the O(N) model. We will repeat
the procedure described in [25] mutatis mutandis.

A. Scalar and tensor auxiliary fields in the bare action

We work around the Gaussian fixed point as in [56] for
simplicity. The free massless spin-2 kinetic term in AdS
background was obtained there, starting from the ERG
equation for the action for the auxiliary field that stood for
the energy momentum tensor composite operator. An
auxiliary field standing for the scalar composite will also
be introduced. This, in turn, is very similar to the calcu-
lation in [25] except that the Wilson-Fisher fixed point
action was used there.

Our starting point is thus a generating function:

Z[ ) = / Dt [ VA =Swle (6 )

A is a UV regulated propagator of the bare theory with a
cutoff Ay. J is a source for the composite ¢, and #* is a

background metric that can be used to define the energy
momentum tensor T,. For the free theory we take’

Spr=—i / Jp* —i / hT,, (9.

T,,|¢] is the traceless and conserved energy momentum
tensor of the free theory. It is given by

(6.2)

1
T/ll/[¢] = aﬂ¢lay¢1 - Ea;tua(z¢la(l¢1
D-2

) (0,0, = 6,0, (6.3)
and satisfies
T[] = T, (4] = 0. (6.4)
We can then restrict ## by the “gauge” choice:
o =h*, =0. (6.5)

Once these constraints are imposed on A*¥ it follows that
only the first term in the expression (6.3) for the energy
momentum tensor participates in all further computations.

Introduce auxiliary fields o, 0, via delta functions

0
/DU/Ddﬂyé(G — ¢2)5<6ﬂy + lﬁ) =1,
v

and y, ¥y, Lagrange multiplier fields to implement the
delta functions. Because of (6.4)

6"%,, =o', = 0,

(6.6)
and because of (6.5) y*¥ can also be chosen to satisfy

o =y, =0. (6.7)

Then

Z[ ] = / Dy / Do / Dye' J Ao~ / Do, / Dypvel |7 Owtisin) =N [ ¢ 87155190
:/ Dpe /N [ #5710 / Do / Dy / Do, / Dypvel [ 1061 [0 g1 [0 i [0 Tl

Redefining y —J — y, y** — " — y*, we get

The factor i is unusual. For real sources it is a Fourier transform and thus invertible.
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Z[J, h;w] — /Dgeifla/paﬂyeifhﬂba,,p
/ Dy / Dy / Depe VN [ 987 i [0 i [ 140 g=i [x0=i [ 2" Toulo] (6.8)

e_s["~";w]

S[o, 6,,] is the action for the auxiliary fields obtained after integrating out ¢. It can be used to evaluate correlation functions
of the composite operators. For instance,

/ Do / D6, (X)0,0(¥)e57%) = (T, (B ()T [#13))- (6.9)

B. Wilson action

We now proceed to integrate out just the high energy modes of ¢(p), Ag > p > A (with Ay — oo0) and thus obtain the
Wilson action. Thus using standard methods [29] we write

b= ¢+ dp; A=A+ A

The low energy propagator, A; propagates modes with 0 < p < A, and the high energy propagator A, propagates modes
with A < p < .

Z[J.h,) = / Doe' /77 / Do, e /" on / Dy / Dy

/D(/,l/D¢he—%ﬁf¢§A1‘¢f—%\/ﬁf¢2Ah‘ hol S0 i [ 270 =i [2bredn)=i [Tl ] (6.10)
The Wilson action is a functional of ¢, (and also J, i, ), and is obtained by integrating out ¢;,. Thus, let us write
e~ Saldrd ] — e_%\/ﬁf#y]{/’; /Daeif]ﬂ / Dﬂ,weifhwﬂf‘” / D){/D)(”D
/ Depye NN 48719} i [ 101 [0 =i [ 10071 [ Tulorshl
— N[O s T ] (6.11)
Thus,

e~ Sialend W] — /DG/,Do_’weiflodrifh#brfwe—S,_A[z[),,a,aW]' (6.12)

S; Al J, ] as well as its Fourier transform S; z[¢;, 0, 6,,] obey the Polchinski ERG equation, which describes their
evolution as A taken to zero. Thus So,0,,] used in (6.9) is defined as

Sle.0,,] = /l\iir(l)S,ﬁA[gb, =0,0,0,).
Let us focus on the ¢, integration first, treating the other fields as background fields. Define
e=Sialtrx ™l — /Dd,he_%\/ﬁf‘p%h]‘15;:6—5'1./\[(151,(15}1«)(%”]

_ / Depye VN [ 487t g1 [0t~ [Tl ]
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Then
e~SiAlproo,] — /D){/D)(;weif}(a+if}("“v;w—gl./\[¢l-)(=)(‘“]_ (613)

C. Doing the ¢, integral

Let us isolate the various types of terms in S A [¢;, dp. v, 1]
(1) Quadratic in ¢,

Sian = [ [ [3VNLINT! 500+ 005300 + 5 (0,85 -0 )] (6.14)

where ©,, is defined as the differential operator contained in 7, cf. (6.3):
T (x) = ¢'(x)0,, (x)¢ (x). (6.15)
We write this as
- 1
Sain =5 [ [ #0007 ). (6.16)
x Jy

with

07! (x,y) = VNAG! (x,y) + 2ix(x)5(x — y) + 27" (x)0,,6(x — y).

A B

() Quadratic in ¢,
S =1 [ 10 +1 [ 2 di0.9!
=i /X /y L) (x)8(x = ¥) + 1 (x)©,,8(x — y)]L(y)
=5 [ [ s+ (6.17)
(3) Linear in ¢, ¢y,
S =2 [l +i [ 2010w+ H0ud)
=2i /y / () [ (x)5(x = y) + "©,,8(x — y)|PL(»)
:K[#m+mm
sjﬂmmoy (6.18)

We have integrated by parts and used d,** = 0.
Now we can do the ¢, integral in
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/D¢he ff‘/’ )y ff
:e%TranJrifhf;J x)

Thus we obtain

SI,A[¢lv a = //4’1 x=y)

+20(x)0,,8(x = )] (v)
—ﬁTr InO

A [roonss

D. ERG equation

If we let ¥ = e Saldx2”] then Polchinski’s ERG
equation is

(6.19)

Define ¥ = ¢=Sial¢roc®] —

SY

AP) ST pYed =p)

11
- 6.20
o 2N/, (6.20)

Following [25] we will evaluate this equation at ¢p; = 0.
This simplifies the equation considerably. As mentioned in
Sec. IV C 1, by setting ¢; = 0 in the equation after taking
the derivative, we no longer track the RG flow of any
interactions involving the low energy fundamental fields. If
we are only interested in the RG flow of the interactions of
composite operators, we can safely throw away the ¢,
terms. The disadvantage is that we cannot integrate out any
more ¢»; modes. This means A is a physical IR cutoff in the
problem. Thus to recover the physics, one has to set A = 0.
Once we have a general solution valid for arbitrary A this is
not difficult to do.

This procedure gives us an equation for S; [0, y, v**]
and after integrating over y, y** as in (6.13), an equation
for S].A[O, o, Gpw]‘

| Dy [ Dye! i [+ ["ouy a5 in (6.13). Then (6.20), on setting ¢; = 0, immediately

leads to
¥ 11 / . g
— =57 AP | - (6.21)
Ot |40 2VN Jp 5¢1(p)od;(—p) =0
Since A; = —A, we can write an equivalent equation:
oY 11 . R
— =57 M) s (6.22)
Otlyo 2VN Sy " ()3 (=P) o

This is a more useful form since the propagator that appears in W is A, [see (6.14)].

Let us evaluate the rhs of this equation:

\/_A +A+B= \/NA;1<1
h
0- ! A
== h
N (1 + < ApA + < A,B)
_ L
N VN
1 11 1
—jlojl =-—=¢!(A+B {1——

We have to add 1 ¢!(A + B)¢! from (6.17):

1 Au(p) >y
2N, S ST (p)odi (—p)

1
p=0 2

2|*—‘~\s\

(A, A+ AyB)

(A,A+ ALB)? +

AA +

)

1
(ApA + AyB) + N (ApA + A,B)* + - } Ay,

1

Ah{\/IV(A +B)+ (A+B) {1 —L(AhAJr A,B)

VN
} Ah(A+B)}‘P.
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X

1
:
. 1
XW’ ANANNANNNNANK : Ah
1
1
1

FIG. 4. Scalar-scalar-tensor diagram.

We are interested in the terms involving two y’s and one
;(””.6 This will generate the required cubic term as will
become clear below. This comes from

L
VN

A, {A[-A,B]A,A + B[-A,A]A,A + A[-A,A]A,B}.
This can be written compactly in position space:

l\/__E / . X(X)AL(x = y)x (D) ALy = 2" (2)

02

—— A, (z —x).
Xaz"az” n(E=)

Acting on ¥ = ¢S54l -4=0] this term becomes

- 4_
ky ko k3
53

% e~ Sialo.0" . =0]
6o (ky)é0(k2)60,, (k3)

S VY sy
\/_ xvz AT YISy T 07#07 o
e~ Siale.6" =0
. 6.23
¥ 50005030, 2) (629

The Feynman diagram corresponding to this term is given
below in Fig. 4.

We now need to address a problem pointed out in [26].
The scalar propagator A7 was fixed in (5.6) in terms of
modified Bessel functions with the parameter v = —%Jr
2= %, so that the kinetic term for the scalar becomes a local
AdS kinetic term. This implicitly fixes the propagator A, for
the fundamental field ¢//. Similarly, for the kinetic term of
the graviton to be the standard AdS kinetic term, the graviton
propagator, which is proportional to (9%)?AZ, has to be fixed
to a similar combination of modified Bessel functions with
the parameter v = % = 3/2, as derived in [26]. This would
force a different constraint on Aj:

Gy(x=y.2)=8,(x—y)A(x—y) (6.24)

= Gl/2(x_y7z)

Gi(x —y.2) =8, (x = y)(03)*A(x = y) = G3o(x — y.2),
(6.25)

where
G.(p.2) = rp K, (p2) (6.26)

Ku(pz) - %Ib(pz) '

These conditions are mutually incompatible. A resolution
was suggested in [26]. This is to redefine one of the fields
(say, the scalar) by a function g selected so that the
propagator for the scalar is modified. This is worked out
in Appendix B. Thus we let 6(p) = g(p)¢*(p). Then the
scalar propagator becomes g>A2. Then one can choose g
such that this is made up of modified Bessel functions with
the parameter v = —%—l— 2." With this modification (6.23)
changes to (in momentum space now)

k1+k2+k3)—< / AP+ b+ ) Ay(p + k)P P An(p)g (kl)g(kz)))

(6.27)

°AB gives term with yy,, and a loop 1ntegral over A2 #p" p*. This results in a & that kills y,, because it is traceless. ABB gives
a term with yy,,x,. and a loop integral over A3 »P"p’ p’ p*. This results in a 2 gravitons + scalar term which we do not investigate

in this work.

"Note that in [26] the expression defining g is slightly different. That expression is correct only when g(p) is independent of ¢. In our
case g(p) has to depend on t. For t — —oo, at the boundary, g — 1. Thus, at boundary, ¢ accurately represents our current ¢>.
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In the previous sections we had introduced the auxiliary field ¢ standing for g¢* and o, standing for the energy
momentum tensor. The ERG equation for the effective action involving ¢ and 6, is

oY 1 [d 5 1 [d 5
e {5 [ G 0rsio g+ [ ) 5 s
3
‘3‘} - t(gucl / An(p)An(p + k) An(p + ki +k2>) T
\/— ok dt( (Ap(p + ki +ko)Ap(p + ki) p" p* Ay(p)g(ky)g (’Q))) 50(}(1)56((;)50 (kB)}li'zL/),o’

(6.28)

where a momentum conserving 8(k; + k, + k3) is implicit in the cubic terms.
The leading order solution is

oo 2550 )

where as before G, = ¢?A7 and G, = (k*A;,)?. Acting on this, the cubic derivatives give

o(ki) o(ky) o(ks)
Gs(kl) GS(kZ’ t) Gs(kS’ t) 7

and

_ 5(k1> J(kz) Ulw(k3)
Gs(k] ) [) Gs(kZ’ t) Gt(k3’ t) '

These terms add potential terms to the ERG equation.

F. Flipped ERG equation

As explained in Secs. II and III the flipped ERG equation (4.7) is more suited for mapping to AdS. Flipping is easily
done—interhange [ <> h.
Thus, the flipped ERG equation is

0¥,
ot

1 [d & 1 [d &
= {5 l 2R A ) s o / ISR Oy oy
3
i | (sktidstes) [ 800+ k) ) s

\/1~ ks 1 (/(A (P + ki + ko) Ai(p + k)" p*Ar(p)g (kl)g(k2)>>

5 -
Wl _,, 6.29
Xéo(koéa(kz)aaﬂy(ko} bli=o (6:29)

$p=0

with a momentum conserving &(k; + k, + k3) in the cubic terms.
The leading order solution is

- B 1 [o(k)o(—=k) 1 [o,(k)c"(-k)
Ha ool [ 76507 [ "ew (630
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where now G, = ¢?A? and G, = (k*A;)%. Acting on this
the cubic derivative terms give

_olk) o(k) o(ks)
Gs(kl) Gs(k27 t) Gs(k3’ t) 7

and

o(ky) o(k) Uyu(kS)
G(ki, 1) Gy(ksy 1) G, (ks 1)

These contribute potential terms to the flipped ERG
equation.

V(U, Gﬂy) = 5(](1 +k2 +k3)

1
VN Ji by ks

VII. MAPPING EVOLUTION OPERATOR TO AdS

The evolution operator for the flipped ERG equation can
be written as

166 16,,6"
/DaDo}wexp{—/dt/p [§a+§ /‘Gt +V(6,6ﬂu)]}

where

{3 (sath)ath) [ M)A+ k) (p + ko + k) ) (et ot ot )

P
d

Gs(kl ’ [) Gs(kZ’ t) Gs(k3’ t)

(7.1)

- 4@ (/p(Al(P + ki + k) A(p + k1)P”P”A1(P)9(k1)9(k2))> < otk 1) olknt) onlks, t)> }

Gy(ky. 1) Gy(ky, t) G,(ks, 1)

The scalar part of this was done in Sec. III, (without the factor g). As shown in Sec. III 1, substituting the leading order

solution, one sees that the factors & F(]‘,;IE) are all time independent. Then the integrand becomes a total derivative, and we

recover the expected amplitudes. The important point is that the final amplitude thus depends only on the value of gA,; at the
limits of the ¢ integration—where it is zero at one end (z = o0), and A at the other (z = 0). As explained in Sec. III we can
modify the regularization procedure in each of the loop integrals. The errors in the final answer, viz., correlation function, is

of 0(£—0) In the limit Ay — oo there is no error. We use this freedom exactly as it was done in Sec. III. Thus V becomes

V(O’, le) 5(](1 + k2 + k3>

1
VN Ji ok,

{44 oki.1) olky.1) olks.1)
{ |:/17 A(p)A(p " kl)A(p " kl " k2):| regulated, A (Gs(kl’ t) Gs<k2’ t) Gs(k3v t))

42 [ / (A(p+ k1 + k)A(p + m)pﬂpwp»] s ((‘;’fé‘,;’fﬁ) gf("]jz’ff) ‘Z;j{,’ji’jf) } (72)

We now map the action to AdS space by the substitution 6 = fy and 6, = f7,,. Thus the coefficient of y(k;)y(k,)y(k3)
becomes

4d flki 1) flky,t) flks, 1)
_1d [ [ 50180+ k)ap kzﬂ (G‘Y(,jh | L) S t))-

As mentioned in Sec. III, the time derivative of the loop momentum integral with a convenient regularization procedure is
20k A)K, (ki /A) X 2(kaA) 2K, (ko /A) X 2(k3A) K, (ks /A)

up to a normalizing factor. The factor Gi was given in [25] and is the inverse of the above expression. Thus there is an exact

cancellation, exactly as described in Sec. III for the scalar case, since (5.7)

flks) _ PRy

Gy(k.z) K (k/A)
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So they cancel exactly for the three scalar case, and we get a
local term up to some normalization:

N o 6(ky + ka + k3)y(ki, A)y(ka, A)y(ks, A). (7.3)
1,R2,R3

For the second loop integral, the computation is done in
Appendix C, resulting in

7?P2 <h> _DKu(klz) (%) _DKU(]QZ) (%) U,Kv’ (ks2),

Z
(7.4)

where v and ¢/ correspond to the scalar and the tensor
respectively. For the tensor, (see Appendix A),

Z—D/Zk—l/
= . 7.5
K, (kz) (7:3)

fi(k,z)
G,(k,z)

For the other term also we have cancellation resulting in

1 D=2
N'z

< [l ke ks Ay (s A k5. A).
1-12,R3

(7.6)

(We have used transversality of y,, to replace one of the
ky’s by k,.) Above we have identified the scale 1/A with the
radial coordinate z, with which the mapping is complete.
The above term is precisely the coupling of the metric
perturbation to the scalar kinetic term given in (3.7).

As explained in Sec. II the presence of this coupling
verifies general coordinate invariance of the holographic
action obtained from ERG.

VIII. SUMMARY AND CONCLUSIONS

The most interesting aspect of the AdS-CFT correspon-
dence is that the bulk dual of a field theory in flat space is a
theory with dynamical gravity. The approach outlined in this
and earlier papers demonstrates that the functional integral
describing an evolution operator of the exact RG equation of
a flat space field theory involves a field theory in a
background AdS space and further that the metric fluctua-
tions about this background are also dynamical. That
dynamical gravity comes out of ERG is quite remarkable.
This demonstration did not assume the AdS-CFT conjecture.

The calculation described in this paper also explains why
AdS is special. While the functional integral description of
the ERG evolution operator started off with a nonstandard
action, a very special field redefinition was required to map
this to a field theory in AdS space. What we see is that
when this is done the action is local on a much smaller scale
than the AdS scale. The scale of locality is set by the bare

cutoff of the field theory rather than the moving cutoff. In
the bulk this should correspond to the Planck scale or the
string scale. This was already shown for the kinetic terms in
earlier papers [23,26]. In this paper this was demonstrated
for the scalar-scalar-spin 2 coupling (7.6). This also
happens for the cubic scalar coupling (7.3).

The locality of the scalar gravity coupling also ensures
that this interaction term can be obtained by gauge fixing a
general coordinate invariant scalar kinetic term. The spin-2
kinetic term is also obtainable by gauge fixing the kinetic
term for a metric perturbation obtained from the Einstein
action in an AdS background [26]. Thus both these
calculations provide evidence for a general coordinate
invariant theory in the bulk. If this persists to higher orders,
that would provide some further insight into the AdS-CFT
correspondence.

In deriving this cubic interaction it turned out to be useful
to work with a flipped ERG equation (4.7), that evolved
the theory toward the UV rather than toward the IR as in the
usual Wilsonian RG. It remains to be seen whether this
equation has other applications.

Another ingredient in making all this work is the
necessity of performing a wave function renormalization
of the scalar field standing for the composite scalar. One
expects that extending the ERG approach to higher spins
will involve similar wave function renormalizations for all
the fields.

Extending all this to higher spins is certainly an
interesting open problem. Some aspects of RG for higher
spins have been discussed in [48—50]. It would be interest-
ing to apply our techniques to understand the higher spin
action and symmetries along those lines. That would
supplement holographic reconstruction of the bulk higher
spin interactions from the boundary O(N) model [57]. A
consistent application of the prescription in this paper could
be applied to obtain bulk higher spin interactions and
strengthen the higher spin-O(N) model duality [58].

All our calculations have been done for Euclidean field
theories. The issue of analytical continuation to Minkowski
space also needs to be investigated.

These are pressing questions, and we hope to address
these soon.

APPENDIX A: EM TENSOR MAPPING TO AdS

The mapping for the tensor is similar to the mapping for
the scalar. The holographic action for the tensor is to
leading order:

| o
S:——/dt/ﬂ. (A1)
2 » G
We redefine
Gﬂl/(p7 t) :y;w(p’t)f(p’t)7 (AQ’)
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with f2 = -G,z7P/2, z=e' and

(A(p)K,(pz) + B(p)1,(p2)). (A3)

Here v = |A — D/2|, where the dimension A = D for the
tensor. Thus, v = D/2 = 3/2. With this redefinition, we
get an action for a set of scalars y,,, in AdS of mass squared

m?> = 1? — D?/4 = 0. We get the action

d’p 5[0y, (P)0y,6(—P)
Sads :/dz(z,z)Dzl D|: H p

0z 0z

+ pzy,w(p)ypa(—p)] &8, (A4)
Following the same arguments in [23] Sec. 2.4.3,
C(p)K,(pz) +D(p)l,(pz
6(p.z) - COK(pD) + DOIL(PD) o

A(p)(K,(pz) + B(p)1,(pz))’

and that the two linear combinations must be linearly
independent gives the condition, due to the Wronskian,

A(p)D(p) = B(p)C(p) = 1. (A6)

Say the boundary is at z =€ = 1/Ay. Then near the
boundary the leading behavior of the bulk field is

y;w(xv Z) ~ ZD_Ah/w(x)’ (A7)

where £, is the source for the boundary EM tensor 7,.
At this stage, a small digression is necessary to figure out
what the behavior of f should be near the boundary. The
equation of motion in the bulk is analogous to the scalar

case given in (4.26).
0,u(p.2) = Gi(p.2)J,u(p). (A8)

for some J,,(p). The Wilson action at the boundary is
given by (6.30),

so== [P0 [ ) p). (89)

The equation of motion here is

Gﬂu(pve) = Gt(p’e)h/w(p)' (AIO)

Thus we have
O-/w(pvz) = Gt(p7z)h/w(p)' (All)

At boundary, G,(p,z) = p*, so

lime,, (p,2)  p* Iy (p)- (A12)
Then from (A2) and (A7), it must be that
f(p.e)=p™. (A13)

And since near z — 0,

K =T@R7 ™ L= s (00 (A1
1-v
f(p.2) ~ Wz‘g(pz)”. (A15)
Therefore, we get
A(p) = %U)T‘”p‘”- (A16)

G, is the low energy propagator. For z — oo, G, must
vanish. But for x — oo

1 b2
Iv(x)N\/%ex, Kb(x)fv,/ﬂe_x.

So, D(p) = 0, and hence B(p)C(p) = —1. At the boun-
dary G, must be equal to the full propagator G = yp%, i.e.,
for z > 0, G,(p,z) = yp*.

(A17)

jgg - (A18)
Cp) = 5720 (A19)
Since BC = —1,
=y o
Then
1 — Lzl—vp—vzgl(y(pz) - l2”‘11“(1/)17‘%%1”(172),
f L) %
(A21)
and
Gip.z) = r*p*K,(pz) (A22)

vK,(pz) = 22T (v)*1,(pz)’
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Finally,

f Z—D/Z Z_D/ZZU_IF(U)
G CoK ) - Ky - AP

APPENDIX B: FIELD REDEFINITIONS
FOR SCALAR COMPOSITE

Obtaining (3.8) involves simultaneous mapping to AdS
of the scalar and tensor fields. As mentioned in [26] this
requires a field redefinition of the composites. In this
section we elaborate on this field redefinition.

_N -1 i——yq)—L 29
z- / Dy #1874 / Do / Dyet Jrng T M

The scalar composite was introduced in [25] by impos-
ing the constraint ¢ = ¢>. We would like to understand the
freedom of a wave function renormalization of the form
o(p) = g(p,A)o(p) where g depends on the moving
cutoff A.

We proceed as in IV C 1, by integrating out the high
energy modes and obtaining ERG equation for o, except
now we insert ¢ = g(p, A)¢*. Thus we modify (4.13),

zZ= / D / Dos(o — gg?)e MV 9 By

Proceeding as before, separating high and low energy
modes and propagators, we obtain

Let us also define ¥ by

(B2)
e~SIAl =y
11 . 52
a E—N/,,A”(p)aqsﬂpw{(—m (B3)
g / Do (B4)

so that

-1 L g
¥ /D)(gifl"/ . INTr In(1+2i—=Axg) zfqbz(m[ﬁ%mlﬁz

Thus

o
¥

g = /Da/D)geifN‘i’[fﬁl,)(g]-

Now we can insert this in (B3). But the time derivative gets a contribution not only from A, which is captured by the rhs
of the Polchinski ERG equation, but it has an additional dependence due to g. This quantity obeys the following equation:

5P
5i(p)oi(—p)

s 11 [1d

) 8¢i(p)ddi(—p) 2N pé&m’“")

o 11 ( 1 (85)

o [ (Au(p) + - B
ot 2\/]_\]' ) h(p) g ndg

We can evaluate this at ¢; = 0, and the discussion follows exactly like in Sec. IV C 1, with A, g replacing A, everywhere.
The ERG equation becomes to cubic order

¥
ot

. & 1 .
= (oWt 7 L o et ) bk Aetiolkoths) Pl 0. (B9

where
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fky ky ks, A) = —%% <9(k1)9(k2)9(k3) / Ap(p)An(p + k)Ay(p + ki + kz)) G.(k)G (lkz)G (ks)

We have set 2¢°A7 = G,. This determines W[, _, = =54 The leading order expression for §; [0, 0] is

1 [ olk)e(=k)

yo = [ Dy Fvelatuctmraiy _ A )

Evaluating the evolution operator for this equation semiclassically as before, one obtains the same correlator:

%ﬁ / APIAG + kA + ks + ko) (k) (ka)J (ks). (B8)

APPENDIX C: ONE LOOP SCALAR-SCALAR-GRAVITON GRAPH

1. Three point function
The Feynman diagram is (k; + k, + k3 = 0).

d’p p*p*
" (ki ky, ks, ) = , Cl1
(ko ko) = [ 55, (ks + PP (ke + ks + PP (P (€

with some regulator A. The regularization scheme we leave unspecified for now. We will use the tracelessness and
transversality of y,, (y*, = 0 = kiy,,(k3)) to simplify results. So effective action at the cubic order is

AS, = / / / 20k (ko) (ks (ke ey K A) (2)P8P (ky + Ky + ).
1 2 3

Thus we need

aj—1 _a,—1 az;—1
= /ds]dszds3 Sll S22 S3 de p”pye_(k]+p)2s3e_(k'+k2+p)2sle_(p)zsz, (CZ)
I(a))T(a)T(a3) ) (2m)P

Simplify the exponent. Use k; + ko, = —ks.

—(ky + p)?s3 = (ky + ko + p)sy = (p)2sa = =[p*(s1 + 52+ 53) + 2k ps3 — 2ky.psy + kisy + k3sy]
k1S3 —k3S1 )2 _ <k1S3 —k3S1 >2 i k%s_?, -ﬁ-k%sl}

=—(s1+sy+s +
(1452 S)KP S1+ 82+ 853 S1+ 8+ 853 §) 482+ 53

[ kis3—kss,
Let p' =p+ S syiay

Simplify the exponent further using 2k;.k3 = (k| + k3)?> — k3 — k3 = k3 — k3 — k2.

kis3 4 k3st — (k3 — k3 — k3)s183 — k3ss3(s1 4 55 4 53) — k31 (51 + 52 + 53)
(S] + A\ + S3)
_ k25553 + k35155 + k3s183
(514 52+ 53)

The exponent is

3 K2sys3 + k%slsz + k35153

—(s1 + 52+ s3)p”
(51 2 3)P (51 + 55 + 53)
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So we can do the momentum integral (removing the prime
on p):

[ ey
e
(2m)?
kis3 —k v
x(p- 153 — K35 .
S|+ 82+ 83
The p#pY term gives 6 which vanishes due to trace-

lessness of y,,. Similarly terms involving K5 or k4 vanish
due to transversality of y,,. We are left with

(s1+sp+s3)

K25y 53+k2s] 59 +k2s ] s
_(SI+S2H3>I,2_W< _ kisy —k3s, )ﬂ

S]+S2+S3

K kv 2 K2s5p53-+k2s1 59 +k25] 53
151 53 2

(4,,)% (s1+ 5+ Ss)g+2

e Gr+s2t53)

So the integral is

_ Kk
(4ﬂ)gr(‘11)r(02)r(‘13)

Ksys3 +k§ 5152 +2s) 53
N (s1+s2+s3)

(C3)
There is a change of variables:
S = o t,

Sy = apl, §3 = asl,

S; 48§+ 853 =1, o +o+oy=1

We have

/dsldS2dS3 = /dtl2da1da2da35(l —Qy —Qay — a3).

ajopt = fi3, ajazt = f, aapt = pi. (C5)
Then
Bibapy = (mamas)*r = %2;63)2 = a3t%.
Thus
YRR
(B1B2P3) <ﬂ1 +ﬂ2 +ﬁ3> 4
= (BoBs + P13 + Pab1)? — J? _;
(B1B2h3) Bibafs
We have defined
J = (B3 + P13 + Par)- (Co)
Also
Y
3 Jﬂ3 ) 2
So

a=1 -1 _as—1 _ (P1fofi) et

1—a; pl—a, pl—ay
B T R DA By By s

The change of variables is

aat = fs, ai (1 —ay —ay)t = ps,
So (1 —ay —ay)art = py,
— _ ! Jacobian
(4m)2T'(a))l(ay)T (az)
X/dttzdaldazda36(1—al—az—a3) % 3(_/2 aé_};
B WP 9
% (051 t)al_l(azl‘)aZ_l(a3t)a3+1l‘_%_ze_k%a2a3t_k§ala3t_k§a2alt. J = det ?[Z Tﬁlz % > (C7)
B B P
(C4) oa w0
There is a further change of variables:
|
02[ alt [0412%)
J=det| (1 =20 —a)t at a(l —a; —a) (C8)
—azt (1 — —2(12>t a2(1 —ap —az)
J = a1(12053t2. (C9)
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Putting all this together,

I = 1 / dp,dp,dp; tal+a2+a3—%—la‘111—1agz—1ag3+l e—kfaz(z3t—k§(z]agt—kgazaﬂ
)T(a3)

(47)2T(a;)(a, J
- ! / dpdp,dps Jz(“'*“ﬁ“-“%‘”ﬂi‘ﬁ%ﬁ?”w?'m_i KB,
(47)°T(a;)l(ay)T(a3) J Jutatatlo (g g prymtata-l=;

1 @ tayta—2—D gatl-a 2Jrl a l—ay _
~ (4)0(a) ) (ay)T(a >/ Ay oo GEI T g ki ki (C10)
1 2 3

Now rewrite

(B1Pofp3) 1Tt as=27D,

1 18 dbd J ay+ar+a;—2—D
 (4n)°T(a;)T(ay)T(a3) / Frdps ﬁ3<ﬁ1ﬂ2ﬁ3>

a2+a3—1——ﬂa1+a3—1——ﬂa1+az 3——

aj+ar+az;—2-D
Ja1+a2+a3—2—D — < J >

PrP2p3

Now use

( J )a1+az+“3—2—D _ 1 /°° dxe_x(W)XD_ﬂ_al_az_m_l
BB I(D+2-a;—a,—as) )y

S
_ 1 / dxe"‘(ﬁ"'%"‘%)xD-&-Z—al —ay—az—1
F(D—|—2—a1—a2—a3) 0

In the interest of getting the appropriate result from the formula (C12) below, we rescale x.

a;+ay+az—2-D —2(D+2-a;—a,—az) 0 .
( J > = 2 / dxe_Z(/jL]+i+%>xD+2—a| —ay—az—1 )
P1Paps I'(D+2-a;—a,—a3) Jo

Here # — oo is the IR region and is cut off by k2.  — 0 is the UV end, and we can cut it off by cutting off the lower end of
the x integral by 4. Thus

2—2(D+2—a]—a2—a3) 1
I = - / d)C)CD+2 ay—a—az—1
(D +2—ay —a; = az) (4z)7T(a,)T(ax)T(a3) Jo
vy vy -3
D D D
612—’—613—5—1 a1+a3—§—1 a1+a2—2—5—1
[ aniapudpp, s, A
e—RBI=Rp=Rps =i ) (C11)
Now use [59]
/ T appteFIH = 21 ( ‘ >_”Ky<kﬁ>- (C12)
0 Vx

Therefore
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2—2(D+2—a1 —ar—a3)

1

D+2—-a,—ar—az;—1

I = O(D+2—ay —a, —a3) (47)7T(a,)T(a,)T(a3) /Al2 dxx

iy K1\ TV ky \ 7 ks \ ¥
X 23 1 2 3 <ﬁ> KVI (kl \/_;) (ﬁ) KVZ (kz\/.;) (W) KI./3 (k3 \/.;), (C13)
where
D D
1/1:(12—‘-(13—5, Uzzal+a3—3, _U3:a1+a2_§_2-
For the case at hand a; = a, = a3 = 1. So
D D D
1/1:2—5, 1/2:2—5, l/3:3. (C14)
Thus we see that
d/ d/ 1 — k; . ko ) ks
a = Ad—A = \/EW (klA) lKul (X) (kzl\) 21(1,2 <X> (k3A) 3Ky3 <K> . (ClS)
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