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Quantum gravitational tunneling effects are expected to give rise to a number of interesting observable
phenomena, including, in particular, the evolution of black holes at the end of their existence or the
emergence of the early universe from a quantum phase. Covariant loop quantum gravity provides a
framework to study these phenomena, yet a precise identification of tunneling processes is still not known.
Motivated by this question, we consider a related, simpler case, that of Ponzano-Regge amplitudes: we find
a detailed analogy of a class of simple transition amplitudes with tunneling processes in nonrelativistic
quantum mechanics.
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I. INTRODUCTION

Predicted corrections to general relativity of first order in
ℏ are generally too small to be observed. An alternative
strategy to find signatures of quantum gravity is to search
for processes forbidden in the classical theory, such as
quantum gravitational tunneling. A concrete realization of
spacetime tunneling, attracting attention recently because
of its phenomenological implications, is the quantum
transition of a black hole to a white hole, which could
happen at the end of the Hawking evaporation [1–12]. This
proposal joins a longstanding interest in the quantum
bounce, which, in loop quantum gravity, is expected to
replace the classical big bang singularity [13–17], poten-
tially with a tunneling phenomenon [18–21].
Covariant loop quantum gravity is a background-

independent, Lorentzian, sum-over-histories quantization
of general relativity perfect for studying these phenomena.

In particular, the recent progress in the computation of the
black-to-white hole tunneling [22–26] has highlighted
some conceptual and technical difficulties, the following
among them: defining what tunneling means in a theory of
spacetime, specifying suitable boundary data, computing
the Lorentzian spinfoam amplitude, finding meaningful
physical quantities to calculate, and interpreting the results.
Spinfoams are the spacetime analogs of Feynman graphs,
and frequently covariant loop quantum gravity is referred to
as spinfoam theory.
This work focuses on the meaning of quantum geometric

tunneling and how this manifests in a spinfoam theory.
We study a specific transition amplitude in the relatively
simple context of the Ponzano-Regge spinfoam model and
how we can interpret this process as the tunneling of
quantum geometry. The Ponzano-Regge model is the most
straightforward example of a spinfoam theory. It describes
Euclidean quantum gravity in three dimensions. This choice
isolates some of the open conceptual questions and avoids
the complications of the full theory. Our synthesis of results
in the literature allows us to detail several analogies with the
tunneling of a point particle through a potential barrier in the
path integral formulation of quantum mechanics.

*pietro.dona@cpt.univ-mrs.fr
†hhaggard@bard.edu
‡crovelli@uwo.ca
§fvidotto@uwo.ca

PHYSICAL REVIEW D 109, 106016 (2024)

2470-0010=2024=109(10)=106016(7) 106016-1 © 2024 American Physical Society

https://orcid.org/0000-0001-7341-0682
https://orcid.org/0000-0003-1724-9737
https://orcid.org/0000-0002-9883-0808
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.109.106016&domain=pdf&date_stamp=2024-05-13
https://doi.org/10.1103/PhysRevD.109.106016
https://doi.org/10.1103/PhysRevD.109.106016
https://doi.org/10.1103/PhysRevD.109.106016
https://doi.org/10.1103/PhysRevD.109.106016


II. THE PONZANO-REGGE
SPINFOAM THEORY

The Ponzano-Regge spinfoam theory is a path integral
quantization of three-dimensional (3D) Euclidean gravity. It
is regularized on a simplicial two-complex and assigns
transition amplitudes to three-valent spin network states
at the boundary. The states of the theory describe two-
dimensional quantum surfaces discretized with Euclidean
triangles dual to the nodes of the boundary spin networks.
The spinfoam amplitude provides the quantum dynamics of
these surfaces and decomposes into local amplitudes
associated with the vertices of the two-complex, which
are dual to tetrahedra. We assume that the reader is familiar
with the basic concepts of this theory.We summarize the few
elements we need here, and refer to the original work [27]
and the literature for more in-depth presentations (e.g., see
Refs. [28–32] and references therein).
At the boundary of a spinfoam vertex, we find the

tetrahedral spin network depicted in Fig. 1. We label the
four nodes (dual to each triangle) with a ¼ 1;…; 4 and
the oriented links with an oriented couple ab and a spin jab.
The spins are eigenvalues of the length squared operator
J2ab and give the length of the tetrahedral edge the spin
network link crosses,

lab ¼ ℏG
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jabðjab þ 1Þ

p
; ð1Þ

with jab a half-integer. For the remainder, we work in units
with the 3D Planck length set to one (lP ¼ ℏG ¼ 1).
The Ponzano-Regge vertex amplitude in the spin net-

work basis is given by the Wigner f6jg symbol [33],

AvðjabÞ ¼
�
j12 j13 j14
j34 j24 j23

�
: ð2Þ

A general transition amplitude provides the dynamics of a
quantum surface. These amplitudes are given by products
of the local amplitudes, Av, summed over the intermediate

quantum numbers, which implements the path integral sum
over histories.

III. THE CLASSICAL EVOLUTION

The path integral of ordinary quantum mechanics is
dominated, in the semiclassical limit, by classical paths.
Classical paths are solutions of the equations of motion of
the underlying classical theory, and the transition amplitude
between an initial and final state (x0 and x1) reduces to

Z
x1

x0

D½x�eiS½x� ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i
2π

∂
2S½xc�
∂x0∂x1

s
eiS½xc�; ð3Þ

where S½xc� is Hamilton’s principal function, i.e., the action
evaluated on a solution of the equations of motion, xcðtÞ,
compatible with the boundary conditions.
A similar scenario is realized in the Ponzano-Regge

spinfoam theory. The underlying classical theory is three-
dimensional Regge calculus, a discrete version of general
relativity in Euclidean spacetime. This section briefly
reviews the key features of Regge calculus we need in
this work.
In the first-order formulation [34,35], the fundamental

variables are the lengths of the edges of the triangulation
and the dihedral angles between two triangles sharing that
length in a tetrahedron. The edge lengths and their dual
angles are symplectically conjugate. The equations of
motion fix the angles as functions of the lengths to be
the dihedral angles of a Euclidean tetrahedron (see the
Appendix). They also require that the dihedral angles
around a bulk length sum to 2π, ensuring the flatness of
3D gravity.
Viewed as a canonical theory, Regge calculus describes

the evolution of two-dimensional surfaces using Hamilton’s
principle function [32,36,37]. Each surface comprises a
collection of triangles glued together along their edges. The
lengths of the edges of all triangles must satisfy triangle
inequalities to ensure they exist. This is a constraint on the
boundary data of the theory. At the quantum level, three-
valent spin networks represent quantum surfaces, and
triangle inequalities are required by SUð2Þ gauge invariance
at the nodes (dual to triangles). The dynamics of classical
three-dimensional canonical gravity can be encapsulated as
a series of local moves gluing Euclidean tetrahedra to a
surface (in all possible ways) [37]. The corresponding
Hamilton function,

SRðlabÞ ¼
X
ab

ψabðlabÞlab; ð4Þ

is the Regge action evaluated on a flat Euclidean tetrahedron
with lengths lab and external dihedral angles ψab, and is
the fundamental building block of all discrete classical
solutions.

FIG. 1. The tetrahedral spin network at the boundary of a
Ponzano-Regge vertex. Each node is dual to a boundary triangle
of the tetrahedron.
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For concreteness, we focus on one specific example: the
evolution of a surface discretized by two triangles sharing
one edge into a surface discretized by two triangles sharing
a different edge (left panel of Fig. 2). The two surfaces
share four boundary lengths that we assume are fixed once
and for all. The remaining two lengths, l12 and l34,
completely characterize the two surfaces. We evolve one
surface into the other by gluing in a Euclidean tetrahedron
(see right panel of Fig. 2).
Not all surfaces characterized by triangle-allowed values

of l12 and l34 are compatible with classical canonical
evolution. Fortunately, an elegant and efficient criterion
uses the tetrahedral volume to distinguish between classi-
cally allowed and classically forbidden evolution.
The squared volume of a Euclidean tetrahedron, V2, can

be computed directly from the lengths of its edges and their
connectivity using the Cayley-Menger determinant. The
formula is detailed in the Appendix. An ordered set of edge
lengths fleg form a Euclidean tetrahedron if and only if
they satisfy the triangle inequalities for each of the faces
and satisfy V2ðleÞ > 0. The corresponding evolution is
classically forbidden if V2ðleÞ < 0.
In Fig. 3, we visualize the evolution of surfaces in the l12

and l34 configuration space, while keeping other lengths
fixed (l13 ¼ l23 ¼ 10 and l14 ¼ l24 ¼ 15). Each value of
l12 represents an initial surface, and each value of l34

represents a final surface. All surfaces satisfying triangle
inequalities fit within a rectangle (pictured here by the
darkened border).
Vertical lines in Fig. 3 represent any possible evolution

of the initial surface, while horizontal lines represent any
possible (backward) evolution of the final surface. In blue,
we highlight the classically allowed evolution region
associated with a Euclidean tetrahedron with V2 > 0.
Conversely, the classically forbidden region, associated
with a tetrahedron with V2 < 0, is depicted in red.
Specific pairs of hypersurfaces, such as those with

l12 ¼ 5 and l34 ¼ 11 (the solid lines of Fig. 3), intersect
within the classically allowed region. This intersection
implies the possibility of classical evolution, enabling one
surface to transition into theother via aEuclidean tetrahedron.

In contrast, pairs of surfaces like those with l12 ¼ 15 and
l34 ¼ 22 (dashed in Fig. 3) intersect in the classically
forbidden region, indicating the absence of classical evo-
lution connecting the latter pair of surfaces.
Does the intersection of surfaces within the classically

forbidden region correspond to another viable but non-
classical geometry? Indeed, it does. Observe that if we use
the same expression for dihedral angles (momenta) as a
function of the lengths, Eq. (A2), it is necessary to
analytically continue these angles to purely imaginary
values [as V2ðlabÞ < 0 in (A2)], see Refs. [28,38].
Also, note the impossibility of embedding the two surfaces

in Euclidean space since V2ðlabÞ < 0. Nonetheless, by
complexifying the dihedral angles, we can successfully
embed the surfaces as a tetrahedral region of Minkowski
space, with signature ð−;þ;þÞ. This complexification arises
from the need to take dot products across the light cone, as
discussed in [39,40].

IV. THE QUANTUM TRANSITION
AMPLITUDE

In the quantum theory, transition amplitudes characterize
the evolution of quantum states. In the example we are
studying, the boundary state is the tetrahedral three-valent
spin network, depicted in Fig. 1. The relationship between
spins jab and lengths is defined by (1). At the lowest order,
the transition amplitude is determined by a Ponzano-Regge
vertex amplitude, as specified in (2). In the semiclassical
regime, characterized by large quantum numbers, the
amplitude (2) has been extensively studied [27,28,41–43].
If the evolution between the boundary surfaces is clas-

sically allowed [the surfaces form a Euclidean tetrahedron
withV2ðlab > 0Þ], the Ponzano-Regge transition amplitude
for large quantum numbers is well approximated by

FIG. 2. Left panel: A simple canonical evolution of a surface
discretized with two triangles (bottom pair, in blue) to a surface
discretized with two triangles (top pair, in red). Right panel: We
evolve the bottom surface into the top surface by gluing them to
form a Euclidean tetrahedron.

FIG. 3. The configuration space of the initial and final surfaces
in terms of l12 and l34 for fixed lengths l13 ¼ l23 ¼ 10 and
l14 ¼ l24 ¼ 15. We color in blue the classically allowed region
[V2ðlabÞ > 0], and in red the classically forbidden region
[V2ðlabÞ < 0]. The green solid lines and dashed black lines are
examples of initial and final surfaces compatible with classically
allowed and classically forbidden evolution, respectively.
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Av ≈
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12πVðlabÞ

p exp

�
iSR½lab� þ i

π

4

�
þ c:c:; ð5Þ

where we interpret the Regge action of the Euclidean
tetrahedron SR½lab� as Hamilton’s principal function com-
puted on a solution of the equation of motion of Euclidean
Regge calculus in three dimensions. This is the spinfoam
equivalent of (3), where the path integral is dominated by
the classical paths compatible with the boundary data.
What if the classical evolution of the boundary data is

forbidden? The spinfoam transition amplitude is still not
vanishing. In the semiclassical regime, we can approximate
the Ponzano-Regge vertex amplitude with the asymptotic
expression [27,42]1

Av ≈
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12πjVðlabÞj

p exp ð−ScR½lab�Þ; ð6Þ

where ScR½lab� ¼ −iSR½lab� is the analytic continuation of
the Regge calculus Hamilton function for a classically
forbidden evolution. The (Euclidean) dihedral angles are
analytically continued to complex values with positive
imaginary parts. Therefore, ReScR½lab� > 0, and the result-
ing amplitude Av is exponentially suppressed, as expected
for a classically forbidden process. The volume is purely
imaginary, and the extra imaginary unit cancels the iπ=4
phase of (5).
This is the perfect example of a tunneling process of

quantum geometries in spinfoam theories. Evolution
between two surfaces (states), which is classically forbid-
den, can be realized quantum mechanically. The process is
rare, as the transition amplitude is exponentially sup-
pressed. The path integral is dominated by the analytic
continuation of a solution of the classical equations of
motion, and the analytic continuation to the classically
forbidden trajectory of Hamilton’s principal function char-
acterizes the suppression. The next section discusses the
various analogies with more familiar tunneling scenarios in
quantum mechanics.
As a concluding remark, we note that both surfaces

involved in a tunneling event are legitimate Euclidean
surface triangulations. The evolution after or before a
tunneling event does not necessarily exhibit anything
unusual and can adhere to entirely classical dynamics. In
this sense, the tunneling event can be viewed as a
completely isolated bubble within an otherwise standard
Euclidean evolution, as artistically illustrated in Fig. 4.

V. DISCUSSION

In conclusion, we analyze the analogies, effectively
serving as a dictionary, between the tunneling of quantum
geometries and the well-understood phenomenon of a point
particle tunneling through a potential barrier in quantum
mechanics.
Consider a point particle of mass m in one dimension

impinging on a potential barrier of width L and height V0

(see Fig. 5). We will assume the particle has fixed
energy E0.
Can the particle traverse the barrier? The kinetic energy

of the particle in the region inside the barrier is

Ekin ¼
p2

2m
¼ E0 − V0: ð7Þ

We encounter two main scenarios. In the first scenario,
where the particle’s energy exceeds the barrier height
(E0 > V0), the particle possesses sufficient energy to go

FIG. 4. Pictorial representation of a local tunneling bubble. We
highlight the initial and final surfaces of the bubble in blue and
red. This illustration was generated with ChatGPT 4.0.

FIG. 5. A one-dimensional potential barrier.

1This formula was discussed in the original paper, and we
report it as is. We plan to rederive it in the future using coherent
states-based asymptotic analysis techniques [44,45].
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over the barrier without unusual phenomena. The transition
amplitude in the semiclassical limit ℏ ≪ 1 is dominated by
the classical trajectory over the barrier. The transition
amplitude is dominated by the classical action evaluated
on the classical equation of motion,

AðEkin > 0Þ ∝ e
i
ℏL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m
2
ðE0−V0Þ

p
: ð8Þ

In contrast, when the particle’s energy is less than the
barrier height (E0 < V0), it lacks the requisite energy to
cross the barrier conventionally. However, quantum
mechanics allows a tiny probability for the particle to
tunnel through the potential barrier. The momentum of the
particle within the barrier is ill defined. However, we can
define it by analytic continuation to purely imaginary
values p ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mjðE0 − V0Þj

p
. The transition is classically

forbidden. There are no classical paths that dominate the
path integral in the semiclassical limit, and the amplitude is
exponentially suppressed,

AðEkin < 0Þ ∝ e−
1
ℏL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m
2
jE0−V0j

p
: ð9Þ

The suppression is regulated by the classical action
evaluated on the analytic continuation of a classical
solution (with imaginary momentum).
The parallelism between a point particle penetrating a

potential barrier and the tunneling of Euclidean three-
dimensional geometries is striking. The volume squared of
the tetrahedron plays the role of the particle’s kinetic
energy. Depending on the volume squared or the kinetic
energy sign, we decide if the evolution—compatible with
the boundary data—is classically allowed or forbidden. The
dihedral angles are symplectically conjugate momenta to
the length variables, making their analogy to the particle
momenta less surprising. Nonetheless, it is remarkable that
the tunneling trajectory is characterized by the analytic
continuation of these momenta to complex values. The
transition amplitude dominated by these tunneling trajec-
tories is exponentially suppressed, and the suppression is
provided by the classical action evaluated on the tunneling
trajectory.
We find one more suggestive analogy following [38]. We

can interpret the imaginary dihedral-angle momenta as a
Wick rotation of the theory, t → iτ, commonly understood
as a signature change. At the same time, we interpret the
classically forbidden evolution of quantum geometries not
as Euclidean tetrahedral dynamics but as gluing in a
Lorentzian tetrahedron with a spacelike boundary, and this
can be understood as a (brief and local) change of
spacetime signature.
We have disentangled the question of tunneling of

quantum geometries from the complication of spinfoam
theories by considering the simplest model available, the
Ponzano-Regge model. In doing so, we have provided the
first concrete analysis of tunneling processes in spinfoam

theory. We leave to future exploration the quantitative study
of the classically forbidden trajectories in Regge calculus
and their connection with gravitational instantons [46].
A similar scenario should also be realized in more physi-
cally appealing spinfoam theories for four-dimensional
Lorentzian gravity. Preliminary studies in this direction
show very promising applications to cosmology [15–19]
and black holes [22–26].
This is a first step in the direction of more fully

understanding and characterizing purely quantum gravita-
tional processes, and there are still many open questions.
Tunneling processes of quantum geometries will soon play
a major role in the search for physical signatures of
covariant loop quantum gravity. A natural next step is to
understand how to compute tunneling probabilities and
physically measurable quantities (e.g., half-lives) in terms
of the spinfoam amplitude.
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APPENDIX: FORMULAS
FOR THE GEOMETRY

This Appendix collects a few useful geometrical for-
mulas for Euclidean tetrahedra. The dynamical variables in
Regge gravity are the lengths of the edges of the Euclidean
tetrahedra.
We can derive all the geometrical quantities of the

tetrahedron as a function of the lengths starting from the
Cayley-Menger matrix,
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C ¼

0
BBBBBBB@

0 1 1 1 1

1 0 l2
12 l2

13 l2
23

1 l2
12 0 l2

14 l2
24

1 l2
13 l2

14 0 l2
34

1 l2
23 l2

24 l2
34 0

1
CCCCCCCA
: ðA1Þ

The squared volume of the tetrahedron is given by
V2ðlabÞ ¼ 1

144
detC. The squared area of any triangle is

given by S2aðlabÞ ¼ − 1
16
detCa, where Ca is the minor of

C, where the row and column with the lengths not
involving a have been eliminated. (For example, to get
the area of the triangle 1 we eliminate the last row and
column.) The formula for S2aðlabÞ is just Heron’s
formula for the area of a Euclidean triangle, and the
formula for V2ðlabÞ was first derived by Piero della
Francesca in the 15th century. The advantage of using
the Cayley-Menger matrix in 3D is marginal, but this
matrix can be readily generalized to arbitrary dimen-
sions, a valuable feature.

The external dihedral angle ψab dual to the length lab
involves the volume of the tetrahedron and the area of the
two triangles that have lab as edge

sinψabðlabÞ ¼
3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2ðlabÞ

p
lab

SaðlabÞSbðlabÞ
: ðA2Þ

(Here, we have left
ffiffiffiffiffiffi
V2

p
unsimplified to emphasize that

V2 < 0 arises in the continuation of this formula to the
Lorentzian case.) This formula expresses the sine of the
dihedral angle as a function of just the lengths.
For a classically forbidden geometry, VðlabÞ is purely

imaginary. Since lab > 0 and SaðlabÞ > 0 necessarily
sinψabðlabÞ is also purely imaginary. We can express
the analytic continuation of the Euclidean dihedral angle in
terms of the (real) Lorentzian boost angles ψL

ab as

ψabðlabÞ ¼ χabðlabÞ þ iψL
abðlabÞ; ðA3Þ

where the factor χabðlabÞ ¼ 0 or π and the sign of ψL
abðlabÞ

must be fixed depending on whether the dihedral angle is
cochronal or antichronal [39,40,45].
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