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Four-dimensional Chern-Simons (4DCS) theory is useful for understanding integrable sigma-models
and constructing new ones. In this paper, we show how to derive the complete pure spinor AdS5 × S5

superstring sigma-model from 4DCS theory with defects. The matter sector of this sigma model was
previously derived by Costello and Yamazaki, and we propose here that the pure spinor ghosts come from
gauge-fixing meromorphic transformations of 4DCS which lead to the usual pure spinor Lax connection
including the ghost contribution.
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I. INTRODUCTION

An important step in fully understanding the anti–de
Sitter/conformal field theory (AdS/CFT) duality in its
original formulation [1] is to study the behavior of super-
strings propagating in the AdS5 × S5 background. In this
context, the pure spinor formalism for the superstring [2]
plays an essential role since it can describe type IIB
backgrounds with Ramond-Ramond flux [3] and its world-
sheet action in an AdS5 × S5 background is quantizable [4].
Sigma models that describe superstrings in this background
are special because they are integrable (at least classically).
This means that the equations of motion for these models
are equivalent to the flatness of a Lax connection LðzÞ:

dLðuÞ þ LðuÞ ∧ LðuÞ ¼ 0 ∀ u∈C ð1Þ

where z is called the spectral parameter. The Green-
Schwarz [5], pure spinor [6,7] and the recently introduced
B-RNS-GSS [8] formalisms have this property. Moreover,
integrable structures also appear in the field theory side of
the duality [9,10].
Discovering that a model has a Lax connection satisfying

(1) usually involves guesswork. However, in a series of
papers [11–13] Costello, Witten and Yamazaki have shown
that one can use a four-dimensional version of Chern-
Simons theory with defects to construct sigma models in

such a way that their integrability is guaranteed, as the
flatness equation is implied by one of the equations of
motion. For our purposes, the theory lives in R2 × CP1 and
the spectral parameter on which L depends is reinterpreted
as a holomorphic coordinate on the Riemann sphere.
Using 4D Chern-Simons theory (4DCS), several inte-

grable field theories have been shown to come from
different defect configurations in the 4D manifold such
as the principal chiral model, the WZW model, the Yang-
Baxter model [13,14], and others [15–20]. Thus, a natural
question is whether one can construct the superstring sigma
model on AdS5 × S5 with this framework. In [13] Costello
and Yamazaki constructed the matter sector (20) of the pure
spinor superstring on AdS5 × S5, and some integrable
deformations [21,22] as well as the Green-Schwarz sigma
model [23] on AdS5 × S5 were also constructed using this
framework. Nevertheless, none of the constructions
included the ghost sector of the worldsheet action, which
plays an essential role in the pure spinor formalism.
The purpose of this work is to show how the 4DCS

framework with gauge supergroup PSUð2; 2j4Þ can be used
to describe the complete AdS5 × S5 pure spinor superstring
including the ghost sector. In the construction of [13], there
is some arbitrariness in the choice of pole structure for the
Lax connection. In particular, one imposes by hand which
components of L have poles at given points, giving rise to
the chiral and antichiral defects. Here, we propose that this
arbitrary choice should be interpreted as a gauge-fixing
condition. We then use a set of PSUð2; 2j4Þ-valued mero-
morphic gauge transformations to restrict the pole structure
of L.
Fixing themeromorphic gauge symmetrywill lead to a set

of 32 bosonic and 10 fermionic ghosts localized in two-
dimensional subspaces of R2 × CP1. This characterizes the
ghost system as a so-called “order defect,” and defects of this
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type were thoroughly analyzed in [13]. Adapting a coho-
mology argument of [24] to AdS5 × S5, we argue that these
ghosts should be equivalent to the usual pair of left and right-
moving pure spinor bosonic ghosts, and the system com-
posed by the 4DCS gauge field coupled to the ghosts yields
the complete pure spinor AdS5 × S5 superstring. Thus,
4DCSnot only gives a complete description of the formalism
but also furnishes a natural origin for the pure spinor ghosts in
terms of gauge-fixing. Note that in [25], the 22 bosonic pure
spinor ghosts in an AdS5 × S5 background were similarly
derived from 32 bosonic and 10 fermionic ghosts by gauge-
fixing PSUð2; 2j4Þ local symmetries.
The paper is organized as follows: In the following

subsection, we review the pure spinor formalism in
AdS5 × S5. In Sec. II we introduce 4D Chern-Simons and
the defects that lead to coset sigma models. In Sec. III we
discuss gauge invariance and argue that for a specific gauge-
fixing, the Faddeev-Popov procedure leads to a ghost system
and Becchi-Rouet-Stora-Tyutin (BRST) charge which are
equivalent to those of the pure spinor formalism. And in
Sec. IV, we show how the 4D setup of the defects and ghosts
leads to the 2D action and Lax connection of the pure spinor
superstring in AdS5 × S5.

A. Review of the pure spinor formalism in AdS5 × S5

We are interested in describing superstrings propagating
in AdS5 × S5. The associated superspace can be described
in terms of the supercoset

PSUð2; 2j4Þ
SOð4; 1Þ × SOð5Þ : ð2Þ

The psuð2; 2j4Þ algebra is given by

fQα; Qβg ¼ γaαβPa; fQ̂α̂; Q̂β̂g ¼ γa
α̂ β̂
Pa; ð3Þ

½Pa; Q̂β̂� ¼ −
1

2
ðηγaÞαβ̂Qα; ð4Þ

½Pa;Qα� ¼
1

2
ðγaηÞβ̂αQ̂β̂; ð5Þ

½Pa; Pb� ¼ −Lab; ð6Þ

fQα; Q̂β̂g ¼ 1

2
ðγabηÞαβ̂Lab: ð7Þ

and the nonvanishing supertraces are

sTrðPaPbÞ ¼ ηab; sTrðQαQ̂β̂Þ ¼ −2ηαβ̂; ð8Þ

sTrðLabLcdÞ ¼ −ηa½cηd�b; ð9Þ

where a ¼ 0;…; 9 are tangent space vector indices and
α=α̂ ¼ 1;…; 16 are ten-dimensional spinor indices.

This supercoset describes a “semisymmetric space”
because the superalgebra psuð2; 2j4Þ has an automorphism
ρ which induces a Z4 grading

g ¼ gð0Þ ⊕ gð1Þ ⊕ gð2Þ ⊕ gð3Þ ð10Þ

such that

ρ · gðkÞ ¼ ikgðkÞ ð11Þ

where

gð0Þ ¼ spanðLabÞ ≅ soð4; 1Þ ⊕ soð5Þ ð12Þ

gð1Þ ¼ spanðQαÞ ð13Þ

gð2Þ ¼ spanðPaÞ ð14Þ

gð3Þ ¼ spanðQ̂α̂Þ: ð15Þ

Therefore, the superstring in this space can be described
by the supergroup-valued degree of freedom

gðw; w̄Þ∈PSUð2; 2j4Þ ð16Þ

with the equivalence relation

gðw;w̄Þ∼gðw;w̄Þhðw;w̄Þ h∈SOð4;1Þ×SOð5Þ ð17Þ

where ðw; w̄Þ are the complex coordinates of the world-
sheet. The matter sector of the action is constructed out of
the psuð2; 2j4Þ-valued left-invariant currents

J ≔ g−1dg ð18Þ

which can be decomposed in terms of the Z4 grading of
psuð2; 2j4Þ as

J ¼ Jð0Þ þ Jð1Þ þ Jð2Þ þ Jð3Þ: ð19Þ

In particular, the matter part is [26]

Sm¼
Z

d2wsTr

�
1

2
Jð2Þw̄ Jð2Þw þ3

4
Jð3Þw Jð1Þw̄ þ1

4
Jð1Þw Jð3Þw̄

�
: ð20Þ

We also have ghosts which play a fundamental role in
canceling the conformal anomaly and constructing physical
vertex operators. As in 10D flat space, they are bosonic
fields with 10DWeyl spinor indices (λα, λ̂α̂) that satisfy the
pure spinor constraints

λαγaαβλ
β ¼ 0 ð21Þ

λ̂α̂γa
α̂ β̂
λ̂β̂ ¼ 0: ð22Þ
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In the AdS5 × S5 model, they can be conveniently written
in terms of g-valued ghosts as

λ ≔ λαQα ∈ gð1Þ ð23Þ

λ̂ ≔ λ̂α̂Q̂α̂ ∈ gð3Þ: ð24Þ

From the structure constants in (3), it is direct to see that the
pure spinor constraints can be rewritten as

fλ; λg ¼ fλ̂; λ̂g ¼ 0: ð25Þ

The model also has antighosts ðy; ŷÞ∈ ðgð3Þ; gð1ÞÞ which
can be used to construct the ghost-number zero objects

N ¼ −fy; λg N̂ ¼ −fŷ; λ̂g∈ gð0Þ ð26Þ

The ghost contribution to the action is then

Sgh ¼
Z

d2w sTrðy∇ð0Þ
w̄ λþ ŷ∇ð0Þ

w λ̂ − NN̂Þ; ð27Þ

where we defined the gð0Þ-covariant derivative

∇ð0Þ ¼ dþ ½Jð0Þ; ·�: ð28Þ

The complete action is just the sum

S ¼ Sm þ Sgh; ð29Þ

This action is invariant under the BRST transformations

Q · g ¼ gðλþ λ̂Þ ð30Þ

Q · y ¼ −Jð3Þw Q · ŷ ¼ −Jð1Þw̄ ð31Þ

Q · λ ¼ Q · λ̂ ¼ 0 ð32Þ

and the Noether procedure yields the BRST charge

Q ¼
I

dw sTrðλJð3Þw̄ Þ −
I

dw̄ sTrðλ̂Jð1Þw Þ: ð33Þ

In this sigma model, the equations of motion are
equivalent to the flatness of the Lax connection

Lw ¼ Jð0Þw þ 1

u
Jð1Þw þ 1

u2
Jð2Þw þ 1

u3
Jð3Þw −

�
1 −

1

u4

�
N ð34Þ

Lw̄ ¼ Jð0Þw̄ þ uJð3Þw̄ þ u2Jð2Þw̄ þ u3Jð1Þw̄ − ð1 − u4ÞN̂; ð35Þ

where u is the spectral parameter defined in (1). Moreover,
one can show [27] that, under BRST transformations, the
Lax connection transforms as

Q · L ¼ dλ̃þ ½L; λ̃� ð36Þ

where

λ̃ ¼ 1

u
λþ uλ̂: ð37Þ

Note that (36) has exactly the form of the gauge trans-
formation inChern-Simons theory. Thus, it seems reasonable
that the ghosts of the formalism can be reinterpreted as
Faddeev-Popov ghosts in a gauge-fixing of 4D Chern-
Simons theory. Moreover, from the form of (37) it is natural
to expect that they are related to meromorphic gauge trans-
formations. This will be shown below by starting with the
4DCS action of [13] for the AdS5 × S5 superstring and
gauge-fixing the local symmetries.

II. 4D CHERN-SIMONS

Our starting point is the 4D Chern-Simons (4DCS)
action given by [11–13]

S ¼ 1

2πi

Z
M

ω ∧ sTr

�
A ∧ dAþ 1

3
A ∧ ½A ∧ A�

�
ð38Þ

with a gauge (super)group G ¼ PSUð2; 2j4Þ and
M ¼ Σ × CP1, where Σ is the two-dimensional world-
sheet and we set Σ ¼ R2 from now on. Throughout the
paper, (z; z̄) are coordinates on CP1 and ðw; w̄Þ are
coordinates on R2. Moreover, ωðzÞ is a meromorphic 1-
form on CP1

ω ≔ ϕðzÞdz: ð39Þ

which can have poles and zeroes at special points. These
special points are called disorder defects [13] and play an
important role in the relation between 4DCS and 2D
integrable field theories. One can construct a plethora of
known integrable models by choosing different functions
ϕðzÞ and gauge groups G.
The equation of motion for A is

ω ∧ FðAÞ ¼ 0 ð40Þ

where the field-strength F is defined as

FðAÞ ≔ dAþ A ∧ A: ð41Þ

A. Coset models and AdS5 × S5

To describe sigma-models with target space AdS5 × S5,
we need to introduce another kind of defect [13] which is a
line with ends at z ¼ 0 and z ¼ 1

4
such that, when the line

defect is crossed, the Z4 automorphism ρ of the super-
algebra is applied on the gauge field, as shown in fig. 1.
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It is easier to understand the implications of this defect in
a 4-fold cover of CP1 defined by the change of coordinates.

z ¼ −
1

4ðu4 − 1Þ : ð42Þ

The holomorphic 1-form dz is then

dz ¼ u3

ðu4 − 1Þ2 du≕ωðuÞ: ð43Þ

The 1-form has zeroes at u ¼ 0 and u ¼ ∞ (the pre-images
of the ends of the line defect) and second-order poles at
fpkg ¼ f1; i;−1;−ig. In addition to understanding the
behavior of the theory at these poles and zeroes, we also
need to deal with the line defect. In particular, we shall
impose that the fields are single-valued on the z-plane. In
the u-plane, this implies that field configurations should be
invariant under the simultaneous permutation of the 4
“slices” of the cover and application of ρ, as can be seen
in the second diagram of Fig. 1. This is true if, and only if,

AðuÞ ¼ ρ · AðiuÞ; ð44Þ

and we shall call (44) the ρ-constraint.
Such a configuration of defects was used to construct the

matter sector of the AdS5 × S5 pure spinor superstring in
[13]. As we will see in the following sections, the equations
of motion imply that the gauge field along Σ can have poles
either at u ¼ 0 or u ¼ ∞. In the construction of [13], one
imposes by hand that Aw only has poles at u ¼ 0 and that
Aw̄ only has poles at u ¼ ∞. However, there is no a priori
reason for the Lax connection to satisfy this property, and
we will argue below that this should be interpreted as a
gauge-fixing condition. We will see in Sec. III that after
appropriately imposing this gauge-fixing, the usual left-
and right-moving pure spinor ghosts emerge as Faddeev-
Popov ghosts.

B. Boundary conditions

In this theory, it is convenient to consider small contours
around the poles pk ¼ f1; i;−1;−ig ofωðuÞ as boundaries.
We shall impose Dirichlet boundary conditions on the
gauge field AΣðpkÞ at these contours so that the boundary
terms in the variation of the action vanish. Note that by
varying the action, we get

δS ¼ 1

2πi

X
k

Z
Σ

I
Ck

ωðuÞ ∧ sTrðδAΣ ∧ AΣÞ

þ 1

πi

Z
Σ×CP1

ω ∧ sTrðδA ∧ FðAÞÞ ð45Þ

where the index k goes over the boundaries. So the
boundary variation vanishes if we impose the Dirichlet
boundary condition

AΣðpkÞ ¼ 0: ð46Þ

III. GAUGE INVARIANCE AND GAUGE FIXING

The action is invariant under the gauge symmetry

A ↦ hAh−1 − dhh−1 h∈PSUð2; 2j4Þ ð47Þ

provided that condition (46) is preserved at u4 ¼ 1. This
means that the ū component of A can be gauged to zero
everywhere except near the points u4 ¼ 1, which leads to
G-valued degrees of freedom at the vicinity of u4 ¼ 1

Aū ¼ −∂ūĝĝ−1 ð48Þ

AΣ ¼ ĝLĝ−1 − dΣĝĝ−1 ð49Þ

where L is a 1-form with components only along Σ≡R2.

FIG. 1. z-plane with line defect and change of coordinates to 4-
fold cover. The line defect correspond to the 4 lines connecting
u ¼ 0 and u ¼ ∞ in the second diagram.
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The Dirichlet boundary conditions on AΣ translate to

LðpkÞ ¼ ĝ−1dĝju¼pk
: ð50Þ

In terms of (L; ĝ) the 4DCS action (38) is

SðL; ĝÞ¼ 1

2πi

Z
M
ω∧ sTrðL∧ ∂LÞ

þ 1

2πi

X
k

I
Ck

ωðuÞ
Z
Σ
sTrðL∧ ĝ−1dĝÞ

þ 1

6πi

Z
M
ω∧ sTrðĝ−1dĝ∧ ĝ−1dĝ∧ ĝ−1dĝÞ: ð51Þ

To get an Aū that satisfies the desired gauge-fixing
conditions, we use (47) to fix ĝ to be archipelago-like [28].
It will then be equal to 1 outside small disks around the
poles fpkg. Inside the disks, there is a smaller disk in which
ĝ ¼ gkðw; w̄Þ (for the disk around pk) and an outer annulus
in which ĝ smoothly interpolates between gk and 1 depend-
ing only on ju − pkj and ðw; w̄Þ. These conditions are
schematically depicted in Fig. 2. Note that the ρ-constraint
fixes gk ¼ ρk · g where we defined g0 ≡ g.

A. Residual gauge transformations and ghosts

In archipelago gauge, the equation of motion (40)
implies

ϕðuÞ∂ūL ¼ 0 ð52Þ

ϕðuÞðdLþ L ∧ LÞ ¼ 0; ð53Þ

where comparing with (43) we see that

ϕðuÞ ≔ u3

ðu4 − 1Þ2 : ð54Þ

The residual gauge transformations should be consistent
with these equations and leave Aū unchanged. Since (52)
implies that L only has poles up to third-order, the residual
transformations are

δL ¼ ∇ΣΛ̃ ð55Þ

where

∇Σ ≔ dΣ þ ½L; ·�; ð56Þ
and Λ̃ should be defined such that δL only has poles up to
third order at u ¼ 0 or u ¼ ∞ and should vanish at u4 ¼ 1
to preserve the boundary condition (50). The precise form
of these parameters will depend on the specific value of L,
but the general structure is

Λ̃ ¼ ð1=u − u3ÞΛ1ðw; w̄Þ þ ð1=u2 − u2ÞΛ2ðw; w̄Þ
þ ðu − 1=u3ÞΛ3ðw; w̄Þ þ higher poles ð57Þ

where Λk ∈ gðkÞ. Here, (Λ1, Λ2, Λ3) are independent
parameters and the higher poles are determined in terms
of (Λ1, Λ2, Λ3) by the requirement that ∇ΣΛ̃ only has poles
up to third order. We therefore have 32 fermionic (Λ1 and
Λ3) and 10 bosonic (Λ2) gauge parameters. Since each
fermionic/bosonic gauge parameter leads to a bosonic/
fermionic ghost, a naive counting indicates that the ghost
system obtained from gauge-fixing this symmetry is
equivalent to 32 − 10 ¼ 22 bosonic ghosts, where the
fermionic ghosts have been interpreted as ghosts-for-ghosts
which cancel 10 of the bosonic ghosts. This is precisely the
number of degrees of freedom of a pair of pure spinors, and
a similar derivation of 22 pure spinor bosonic ghosts from
32 bosonic and 10 fermionic ghosts was used in [25].
To further understand this, let us use ðΛ1;Λ2;Λ3Þ to

impose gauge-fixing conditions on L. Let

L ¼
X
k

ukLk: ð58Þ

We can first use Λ1 and Λ3 to impose

L1
w ¼ L−1

w̄ ¼ 0; ð59Þ
which leads to a pair of ghosts ðZ; ẐÞ∈ ðgð1Þ; gð3ÞÞ. We can
then useΛ2 to gauge away 5 components ofL2

w andL−2
w̄ . To

choose which components are gauged away, we follow the
procedure of [25] by defining the matrices (N , N̄ ) as in the
Appendix and imposing

N ðZÞ · L2
w ¼ N̄ ðẐÞ · L−2

w̄ ¼ 0: ð60ÞFIG. 2. Schematic depiction of archipelago gauge conditions.
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Given these conditions, one can derive further restrictions
from the flatness equation. The vanishing of fourth- and
fifth-order poles at u ¼ 0 of the curvature implies

½L−1
w ;L−3

w̄ � þ ½L−2
w ;L−2

w̄ � ¼ 0 ð61Þ

½L−2
w ;L−3

w̄ � þ ½L−3
w ;L−2

w̄ � ¼ 0 ð62Þ

which in components gives

Lab½ðL−1
w ÞαðL−3

w̄ Þβ̂ðγabηÞαβ̂ þ ðL−2
w ÞaηbcN I

cL̄I� ¼ 0 ð63Þ

Qα½ðL−2
w ÞaðηγaÞαβ̂ðL−3

w̄ Þβ̂ þ ηabN I
bL̄IðηγaÞαβ̂ðL−3

w Þβ̂� ¼ 0

ð64Þ

where we used condition (60) to write

ðL−2
w̄ Þa ¼ ηabN I

bL̄I: ð65Þ

Assuming that L−1
w and half of L−2

w are nonzero and generic
(as restricting their values would correspond to other
gauge-fixing conditions), Eqs. (63) and (64) imply

L−3
w̄ ¼ L̄I ¼ 0: ð66Þ

So we have shown that in this gauge, L−1
w̄ ¼L−2

w̄ ¼L−3
w̄ ¼0,

i.e. Lw̄ has no poles at u ¼ 0. An analogous argument
considering the poles of FðLÞ at u ¼ ∞ implies that Lw has
no poles at u ¼ ∞.
To summarize, we have argued that some of the con-

ditions on the pole structure of L come from a gauge-fixing
choice and the remaining conditions come from consis-
tency with the flatness equation of motion. If one had
instead tried to impose the conditions on the pole structure
of L without a gauge-fixing choice (for example, by
requiring that the action is finite near the zeros of ω),
one would not be able to uniquely fix the desired pole
structure of L.
From the form of the gauge transformation (57), the

ghost system can be conveniently organized in the object

C̃ ¼ ð1=u − u3ÞZðw; w̄Þ þ ð1=u2 − u2Þcðw; w̄Þ
þ ð1=u3 − uÞẐðw; w̄Þ þ higher poles; ð67Þ

where Z ¼ ZαQα and Ẑ ¼ Zα̂Q̂α̂ are the 32 bosonic ghosts,
c ¼ caPa are the 10 fermionic ones, and the higher poles
are complicated functions of (Z, c, Ẑ). Analogously, we
have 32 bosonic antighosts (yα, ŷα̂) associated to the gauge-
fixing conditions (59) and 10 fermionic ones (bI , b̄I)
associated to (60). We also need the Lagrange multipliers
(lα, l̂α̂, fI , f̄I) to impose the gauge-fixing conditions. All
these new fields can be conveniently organized in the
objects

B ¼ yþ ub · N̄ ð68Þ

B̄ ¼ ŷþ 1

u
b̂ ·N ð69Þ

F ¼ lþ uf · N̄ ð70Þ

F̄ ¼ l̂þ 1

u
f̄ ·N : ð71Þ

The Faddeev-Popov action can then succinctly be written as

SFP ¼
Z
Σ
d2w

�I
C0

du sTrðB∇w̄C̃þ FLw̄Þ

þ
I
C∞

du sTrðB̄∇wC̃þ F̄LwÞ
�

ð72Þ

The BRST currents can be easily derived through the
Noether procedure, and the left-moving component is

jBw ¼
I
C0

du sTr

�
F C̃ −

1

2
BfC̃; C̃g

�

¼ lαZα þ fIN I
aca −

1

2
yαfC̃; C̃gα−1

−
1

2
bIN̄

I
afC̃; C̃ga−2 ð73Þ

where fC̃; C̃gk denotes the kth Laurent coefficient of
fC̃; C̃g. Note that

fC̃; C̃g−1 ¼ −fc; Ẑg þ higher pole contrib: ð74Þ

fC̃; C̃g−2 ¼ −
1

2
fZ; Zg − 1

2
fẐ; Ẑg

þ higher pole contrib: ð75Þ

The left-moving BRST current is then

jBw ¼ lαZα þ fIN I
aca þ

1

4
yαðηγaÞαβ̂caẐβ̂

− 1

2
bIN̄

I
aη

abðN J
bΦJðZÞ þ N̄ J

bΦJðẐÞÞ þ… ð76Þ

where we omitted the higher pole contributions. Then using
(A10) for N̄ yields

jBw ¼ lαZα þ fIN I
aca þ

1

4
yαðηγaÞαβ̂caẐβ̂

− 1

2
bIN̄

I
aη

abN J
bΦJðZÞ

þ higher pole contributions: ð77Þ

NATHAN BERKOVITS and RODRIGO S. PITOMBO PHYS. REV. D 109, 106015 (2024)

106015-6



This is the BRST current of [25] plus contributions from
higher-order poles in C̃.
Following [25], this BRST charge is an AdS5 × S5

generalization of the BRST charge in flat space of
Aisaka and Kazama [24]. In [24], Aisaka and Kazama
used homological perturbation theory to show that the
cohomology of the BRST charge

Q ¼
I

dwðdαZα þ PIN I
aca þ � � �Þ ð78Þ

where Zα is unconstrained and ðdα; PIÞ are fermionic and
bosonic operators in flat space, is equivalent to the
cohomology of the BRST charge

Qλ;λ̂ ¼
I

dwdαλα ð79Þ

where λα is a pure spinor. Using similar arguments to those
of [24], it should be possible to show that the cohomology
of Q ¼ H

dwjBw þ H
dw̄ĵBW where jBW is defined in (77) is

equivalent to the cohomology of the charge

Qλ;λ̂ ¼
I

dwlαλα þ
I

dw̄l̂α̂λ̂
α̂; ð80Þ

where the ghost system is now composed of a pair of pure
spinors (λ,λ̂). Although the terms… in (78) are simpler than
the higher pole contributions in (77), it is expected that
homological perturbation theory can similarly be used to
argue that the higher pole contributions do not affect the
cohomology of the BRST charge.
The associated Faddeev-Popov action related to (80) is

Sλ;λ̂ ¼ −2
�I

C0

du
Z
Σ
d2wQ · sTrðBLw̄Þ

þ
I
C∞

du
Z
Σ
d2wQ · sTrðB̄LwÞ

�
; ð81Þ

where the overall normalization was chosen for later
convenience. With this new BRST charge, the BRST
transformation of the Lax connection is

Q · L ¼ ∇Σ

�
1

u
λþ uλ̂

�
; ð82Þ

which can be verified a posteriori through the Noether
procedure. Thus, the action for the pure spinor ghosts is

Sλ;λ̂ ¼ 2

Z
Σ
d2w sTrðy∇0

w̄λþ ŷ∇0
wλ̂ − lL−1

w̄ − l̂L1
wÞ; ð83Þ

where we already used the multipliers (fI ,f̄I) to impose the
conditions (60). Moreover, note that since the BRST
transformation of L no longer vanishes at u4 ¼ 1, we also

need to define Q · g ¼ gðλþ λ̂Þ to respect the boundary
conditions of (46).

IV. THE 2D SIGMA MODEL FROM 4D ACTION

The gauge-fixed action is then obtained by the sum of
(51) with the Faddeev-Popov ghosts and the contributions
from the Lagrangian multipliers

S ¼ 1

2πi

Z
M

ω ∧ sTrðL ∧ ∂LÞ

þ 1

2πi

X
k

I
Ck

ωðuÞ
Z
Σ
sTrðL ∧ ĝ−1dĝÞ

þ 1

6πi

Z
M

ω ∧ sTrðĝ−1dĝ ∧ ĝ−1dĝ ∧ ĝ−1dĝÞ

þ 2

Z
Σ
d2w sTrðy∇0

w̄λþ ŷ∇0
wλ̂ − lL−1

w̄ − l̂L1
wÞ: ð84Þ

We shall now vary the action with respect to L and use
the resulting equations of motion, gauge fixing conditions
and boundary conditions LðpkÞ ¼ ρk · J to solve for L in
terms of J and the ghosts. We then plug L back in (84) to
obtain the action for the associated 2D integrable field
theory. As we will see, the resulting action and Lax
connection describe the pure spinor superstring in
AdS5 × S5. The resulting model is BRST invariant and
we show that the BRST charge (80) coincides with the
usual one in the pure spinor formalism by writing the
Lagrange multipliers (lα; l̂α̂) in terms of physical fields.

A. Equations of motion and Lax connection

First of all, note that the WZ-term in the second line of
(84) vanishes for the 1-form (43) since for archipelagolike ĝZ

M
ω ∧ sTrðĝ−1dĝ ∧ ĝ−1dĝ ∧ ĝ−1dĝÞ ∝
X
k

Resðϕ; pkÞ
Z
Σ×Ak

sTrðJ ∧ J ∧ JÞ ð85Þ

where Ak denotes the small annulus around pk in which ĝ
depends on ju − pkj. As ϕðuÞ only has double poles, all
terms on the right-hand side of (85) are zero. Moreover, the
second term in (84) becomes

1

2πi

X
k

I
Ck

ωðuÞ
Z
Σ
sTrðL ∧ ĝ−1dĝÞ

¼ 1

2πi

X
k

I
Ck

ωðuÞ
Z
Σ
sTrðL ∧ ρk · ðg−1dgÞÞ: ð86Þ

A special feature of (84) is that the ghosts only couple to L
at the points u ¼ f0;∞g, which means that they “source”
higher poles for the Lax connection at these points. To see
this, let us vary the action with respect to L
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δS ¼ 1

2πi

Z
M

ω ∧ sTrfδL ∧ ∂Lþ L ∧ ∂ðδLÞg þ 2

Z
M

d2wd2u sTrðδu;0NδLð0Þ
w̄ þ δu;∞N̂δLð0Þ

w Þ

¼ 1

πi

Z
M

ω ∧ sTrðδL ∧ d̄LÞ þ 1

2πi

X
k

I
Ck

ωðuÞ
Z
Σ
sTrðL ∧ δLÞ

þ 2

Z
M

d2wd2u sTrðδu;0NδLð0Þ
w̄ þ δu;∞N̂δLð0Þ

w Þ

¼ 1

πi

Z
M

ω ∧ sTrðδL ∧ d̄LÞ þ 2

Z
M

d2wd2u sTrðδu;0NδLð0Þ
w̄ þ δu;∞N̂δLð0Þ

w Þ: ð87Þ

The boundary terms cancel due to the boundary con-
dition LðpkÞ ¼ ρk · J and N and N̂ are defined in (26).
Therefore, the equations of motion for L are

1

2πi
ϕðuÞ∂ūLw ¼ −Nδu;0 ð88Þ

1

2πi
ϕðξÞ∂ξ̄Lw̄ ¼ −N̂δξ;0 ð89Þ

where we used the coordinates ξ ¼ 1
u centered at infinity

[29] to write the e.o.m. for Lw̄. Using the identity

∂ū

�
1

un

�
¼ ð−1Þn 2πi

ðn − 1Þ! ∂
ðn−1Þ
u δu;0; ð90Þ

the e.o.m. imply that the fourth-order poles in L have the
coefficients

L−4
w ¼ N ð91Þ

L4
w̄ ¼ N̂ ð92Þ

Now, joining the e.o.m., the boundary conditions, the gauge
fixing conditions and the ρ-constraint, L is

Lw¼Jð0Þw þu−1Jð1Þw þu−2Jð2Þw þu−3Jð3Þw þðu−4−1ÞN ð93Þ

Lw̄ ¼ Jð0Þw̄ þ uJð3Þw̄ þ u2Jð2Þw̄ þ u3Jð1Þw̄ þ ðu4 − 1ÞN̂; ð94Þ

This is, indeed, the Lax connection for the pure spinor
formalism in AdS5 × S5 [30]. Note that after gauge-fixing,
this is the unique solution with poles up to third order in the
Lax connection (not counting the fourth-order pole sourced
by the ghosts).

B. 2D action

Let us now show that, as expected, the 2D action
associated with the solution (93) and (94) is the usual
pure spinor superstring action. To do this, just plug (93) and
(94) in (84). Let us do this term by term. Using (90), the
first term yields

1

2πi

Z
M
ω∧ sTrðL∧ d̄LÞ¼ 1

2πi

�Z
M
d2ξd2wϕðξÞsTr½ðJð0Þw −NÞ∂ξ̄ðξ−4ÞN̂�þ

Z
M
d2ud2wϕðuÞsTr½ðJð0Þw̄ − N̂Þ∂ūðu−4ÞN�

�

¼ 1

2πi

�Z
M
d2ξd2wϕðξÞsTr

�
ðJð0Þw −NÞπi

3
∂
3
ξδξ;0N̂

�
þ
Z
M
d2ud2wϕðuÞsTr

�
ðJð0Þw̄ − N̂Þπi

3
∂
3
uδu;0N

��

¼−
1

6

�Z
M
d2ξd2w∂3ξϕðξÞsTr½ðJð0Þw −NÞδξ;0N̂�þ

Z
M
d2ud2w∂3uϕðuÞsTr½ðJð0Þw̄ − N̂Þδu;0N�

�
: ð95Þ

Integrating along CP1 with the delta functions gives

1

2πi

Z
M

ω ∧ sTrðL ∧ d̄LÞ ¼ −
Z
Σ
d2w sTrðJð0Þw N̂ þ Jð0Þw̄ N − 2NN̂Þ: ð96Þ

The second term can be directly computed to yield

1

2πi

X
k

I
Ck

ωðuÞ
Z
Σ
sTrðL ∧ ρk · JÞ ¼

Z
d2w sTr

�
Jð2Þw̄ Jð2Þw þ 3

2
Jð3Þw Jð1Þw̄ þ 1

2
Jð1Þw Jð3Þw̄ þ N̂Jð0Þw þ NJð0Þw̄

�
: ð97Þ
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The third term only depends on the regular part of the
Lax connection and is

2

Z
d2w sTrðy∂w̄λþ Y½Jð0Þw̄ − N̂λ�

þ ŷ∂wλ̂þ ŷ½Jð0Þw − Nλ̂�Þ ð98Þ

¼
Z

d2w sTrð2y∇ð0Þ
w̄ λþ 2ŷ∇ð0Þ

w λ̂ − 4NN̂Þ; ð99Þ

where

∇ð0Þ ¼ dþ ½Jð0Þ·�: ð100Þ

Summing all contributions, the action is proportional to

Z
d2w sTr

�
1

2
Jð2Þw̄ Jð2Þw þ 3

4
Jð3Þw Jð1Þw̄ þþ 1

4
Jð1Þw Jð3Þw̄

þ y∇ð0Þ
w̄ λþ ŷ∇ð0Þ

w λ̂ − NN̂

�
ð101Þ

which is the action for the AdS5 × S5 pure spinor
superstring.

C. Lagrange multipliers and the BRST charge

The BRST charge obtained in Sec. III is

Qλ;λ̂ ¼
I

dw sTrðlλÞ þ
I

dw̄ sTrðl̂ λ̂Þ: ð102Þ

Since only lα and l̂α̂ appear in (102), we can use the other
multipliers to impose the associated gauge fixing condi-
tions. Then, the relevant terms in (84) for the computation
of (l; l̂) are

1

2πi

Z
M

ω ∧ sTrðL ∧ ∂LÞ

− 2

Z
Σ
d2w sTrðlL−1

w̄ þ l̂L1
wÞ: ð103Þ

Since the multipliers couple to Laurent modes of L, they
are related to other modes through equations of motion. As
L is meromorphic on-shell, let us perform a Laurent
expansion on L in the first term of (103). In particular,
we are interested in the terms for which either L−1

w̄ or L1
w

appear. They are

Z
M

ω ∧ sTrðL ∧ ∂LÞ

¼ −4πi
Z
M

d2ud2w sTrðδu;0L−3
w L−1

w̄ − δu;∞L3
w̄L

1
w þ…Þ

¼ −4πi
Z
Σ
d2w sTrðL−3

w L−1
w̄ − L3

w̄L
1
w þ…Þ; ð104Þ

and so varying with respect to L−1
w̄ and L1

w in (103) gives

l ¼ −L−3
w ð105Þ

l̂ ¼ L3
w̄: ð106Þ

Then, from the solution (93) and (94) L−3
w ¼ Jð3Þw and

L3
w̄ ¼ Jð1Þw̄ . Thus, the BRST charge is

Qλ;λ̂ ¼ −
I

dw sTrðJð3Þw λÞ þ
I

dw̄ sTrðJð1Þw̄ λ̂Þ; ð107Þ

which, up to an irrelevant overall sign, is the correct BRST
charge for the pure spinor superstring in AdS5 × S5 (33).

ACKNOWLEDGMENTS

N. B. would like to thank Kevin Costello and Masahito
Yamazaki for useful discussions, and FAPESP Grants
No. 2021/14335-0, No. 2019/21281-4, No. 2019/24277-
8 and CNPq Grant No. 311434/2020-7 for partial financial
support. R. P. would like to thank João Gomide, Eggon
Viana, and Lucas N. S. Martins for useful discussions, and
FAPESP Grant No. 2022/05236-1 for partial financial
support.

APPENDIX: PURE SPINORS AND THE
MATRICES (N , N̄ )

A ten-dimensional pure spinor λα is defined to satisfy

λαγaαβλ
β ¼ 0 ðA1Þ

Another useful way to write (A1) is by defining the g-
valued object λ ≔ λαQα. Then, from (3), the pure spinor
constraint can also be written as

fλ; λg ¼ 0 ðA2Þ

Although not apparent, there are only 5 independent
constraints in (A1). This can be seen by breaking the
SO(10) chiral spinor in terms of representations of U(5) as

16 → ð1; 10; 5̄Þ ðA3Þ

λα → ðλþ; λ½ab�; λaÞ a ¼ 1;…; 5: ðA4Þ

In this language, the pure spinor constraint reads

λþλa −
1

8
ϵabcdeλbcλde ¼ 0 ðA5Þ

which proves that there are only 5 independent constraints.
Now, decomposing ðZγaZÞ in terms of SOð4; 1Þ × SOð5Þ
yields
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ΦIðZÞ≔ðZγIZÞ ΨĨ≔ðZγ ĨZÞ I¼0;…4 Ĩ¼5…9 ðA6Þ

Since the pure spinor constraint has 5 independent com-
ponents

ΦIðZÞ ¼ 0 ⇔ ΨĨðZÞ ¼ 0 ðA7Þ

and Zα is a pure spinor if ΦIðZÞ ¼ 0. Moreover, (A7)
implies that there exists an invertible matrix MI

J̃
such that

ΨJ̃ðZÞ ¼ MI
J̃
ðZÞΦIðZÞ: ðA8Þ

We can then define the matrix N a
I ðZÞ which satisfies

ZγaZ ¼ N I
aðZÞΦIðZÞ ðA9Þ

where N I
a ¼ δIa for a ¼ 0;…; 4 and N I

a ¼ MI
a for

a ¼ 5;…; 9. Since ðZγaZÞðZγaZÞ ¼ 0, N satisfies

ηabN I
aN J

b ¼ 0: ðA10Þ

This discussion also holds for right-moving spinors Ẑα̂,
which allows us to define N̄ I

aðẐÞ satisfying analogous
identities. Assuming that the 10 × 10 matrix obtained by
joining (N I

a, N̄ J
b) is invertible, we can decompose a generic

SOð1; 9Þ vector va as

va ¼ N I
aυI þ N̄ I

aῡI ðA11Þ

where (υI,ῡI) is a pair of SO(5) vectors. In particular, note
that due to (A10)

N I
ava ¼ 0 ⇒ va ¼ N I

aυI ðA12Þ

N̄ I
ava ¼ 0 ⇒ va ¼ N̄ I

aῡI ðA13Þ
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