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Causal set theory is an approach to quantum gravity in which spacetime is fundamentally discrete at the
Planck scale and takes the form of an irregular Lorentzian lattice, or “causal set,” from which continuum
spacetime emerges in a large-scale (low-energy) approximation. In this work, we present new develop-
ments in the framework of interacting quantum field theory on causal sets. We derive a diagrammatic
expansion for in-in correlators in local scalar field theories with finite polynomial interactions. We outline
how these same correlators can be computed using the double-path integral, which acts as a generating
functional for the in-in correlators. We modify the in-in generating functional to obtain a generating
functional for in-out correlators. We define a notion of scattering amplitudes on causal sets with
noninteracting past and future regions and verify that they are given by S-matrix elements (matrix elements
of the time-evolution operator). We describe how these formal developments can be implemented to
compute early Universe observables under the assumption that spacetime is fundamentally discrete.
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I. INTRODUCTION

The challenge of quantum gravity is bridging the
mathematical and conceptual disparities between quantum
mechanics and general relativity [1–4]. These disparities
can also be credited for the proliferation of potential
resolutions, since the resolution that we will reach will
depend on the building blocks we used to construct it (a
canonical or path integral formalism, a continuum or a
discretuum etc.). But ultimately, this division between
opposing principles should be reconciled as they all emerge
from a unified theory of quantum gravity.
Causal set theory (CST) is an approach to quantum

gravity in which spacetime is fundamentally discrete at the
Planck scale [1,5–9]. Taking its cue from theorems in
Lorentzian geometry that state that in past- and future-
distinguishing spacetimes (of which globally hyperbolic
spacetimes are a subclass) the causal structure determines
the metric uniquely up to the conformal factor [10,11], CST
elevates the causal structure of spacetime to be its principal
feature [5,12–14]. The missing ingredient—the conformal
factor or volume measure—is accounted for by the dis-
creteness that replaces spacetime points with spacetime
“atoms,” which need only be counted in order to compute

spacetime volumes. Concretely, in CST, spacetime takes the
form of a Lorentzian lattice or causal set, a collection of
elements arranged in a partial order ≺, which encodes the
causal relations between them, where x ≺ y reads as “x
precedes y” or “x lies in the causal past of y.” The
continuum geometries of general relativity must emerge
from this discrete structure via some large-scale approxi-
mation and coarse graining [5,15]. Much progress has been
made in recent years in extracting continuum quantities,
such as dimension and curvature, directly from the causal
set (see, for example, [16–21]).
One of the important achievements of this line of work

has been the formulation of quantum field theory on a causal
set [22–28]. Acting as a bridge between the discrete and the
continuum, this work was able to reproduce the Green
functions of continuum geometries from underlying causal
sets through combinatorial means [22,29]. It also estab-
lished a distinguished vacuum state on a causal set [24].
This last achievement is revealing of the fact that a causal set
is more akin to a curved geometry than to a flat one, sharing
the challenges posed by curvature—there may be no
distinguished vacuum state or no natural way to define
asymptotic states or an S matrix. Indeed, the construction of
a distinguished vacuum on a causal set prompted the
Sorkin-Johnston proposal for a distinguished vacuum state
in continuum spacetimes [30–34], which coincides with the
ground state of the Hamiltonian in the case of static
spacetimes. It also offered new insight into the computation
of entanglement entropy [35–37].
In this work, we build on [26–28] in extending the

formalism of quantum field theory on causal sets to include
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interactions. We develop a systematic diagrammatic
method for computing in-in correlators and define a notion
of scattering on a causal set.

A. In-in formalism

The in-in formalism is conceptually and mathematically
well-suited to CST: It is well-known to be manifestly
causal [38–40]; it requires only the notions of a state and of
local operators, both of which are readily available on a
causal set; and it can be phrased in terms of the Keldysh-
Schwinger double path integral, a close relative of the
decoherence functional that describes spacetime dynamics
in CST [41,42]. These aspects come into play in our work
and make the adaptation from the continuum to the discrete
possible. In particular, we see direct analogs between our
manifestly causal diagrammatic framework for computing
in-in correlators on a causal set with the work of [38,39] in
the continuum. We also find one major difference: The
fundamental discreteness of the causal set acts as a natural
cutoff, eliminating the UV divergences that characterize
the continuum (although IR divergences are present when
the interacting region is infinite). This is because each
diagram in our expansion is a subcausal set of the
interaction region. Since a finite interaction region con-
tains only finitely many subcausal sets, the associated
expansion contains only finitely many diagrams and
terminates at a finite order in the interaction coupling.
In recent years, the in-in formalism has become increas-

ingly important as the modern sky surveys whose data it
describes continue to make our cosmological observations
increasingly precise (e.g., [43,44]), enabling us for the first
time to glimpse into the early Universe and probe regimes
in which quantum gravity effects become important—the
regimes in which CST predicts we will detect the
Planckian discreteness of spacetime. To make the most
of these observational advances, we must develop robust
and predictive theoretical frameworks through which the
observations can be interpreted. This is one of the main
motivations behind this work, and our intention is for the
construction that we present here to be applied in comput-
ing cosmological predictions for sky surveys (e.g., pri-
mordial non-Gaussianities [45,46]).

B. Discrete/continuum correspondence

Our formalism enables the computation of in-in corre-
lators on any causal set, but not every causal set is a
physically sensible background. We are interested in
those causal sets that can give rise to cosmological
geometries through the so-called discrete/continuum cor-
respondence [5,47,48]. We say that a causal set ðC;≺Þ is
well approximated by a continuum geometry ðM; gÞ of
dimension d if there exists a faithful embedding of C inM,
that is a map f∶ C → M such that

(i) q ≺ p ⇔ fðqÞ∈ J−ðfðpÞÞ, where J−ðxÞ denotes the
causal past of x∈M,

(ii) The points fðCÞ are distributed in M according to
the Poisson distribution at some fixed density ρ, and

(iii) The discreteness length l ¼ ρ−
1
d is small compared to

any curvature length scale in M.
Condition (i) requires that f preserves the causal order, and
condition (ii) requires that the number of elements mapped
by f into an interval of volume V in M is approximately
equal to ρV. There are other ways in which one could
imagine evenly distributing the points in M, for example,
in a regular square grid, but in flat space, such a grid picks
a preferred frame: Once the grid is embedded in the
continuum, a Lorentz boost will render it no longer a
regular grid. The Poisson process has the advantage of
Lorentz invariance: A Lorentz transformation merely
changes a Poisson distribution of points into another
Poisson distribution with the same density [47,49,50].
“Sprinkling” is a method for numerical implementation

of the discrete/continuum correspondence: Given a geom-
etry ðM; gÞ, one generates causal sets that faithfully embed
into it by sampling points fromM according to the Poisson
distribution (i.e., by “sprinkling” into M) [47,51]. This
process is particularly suited to a cosmological setting
where the observable spacetime volume is finite.
Given some combinatorial quantity Q (such as a causal

set in-in correlator), its average EρðQÞ over a sample of
causal sets produced via sprinkling into M at fixed ρ is a
quantity that we can associate with the continuum ðM; gÞ.
The result will depend on ρ, and the phenomenological
effects of spacetime discreteness will be encoded in the high
(but finite) ρ corrections. In some cases, one can compute
the ensemble average analytically and show that its ρ → ∞
limit is exactly equal to an invariant of the continuum (e.g.,
this is the case for curvature invariants [52]), suggesting that
our framework may prove a useful computational tool
independently of whether or not spacetime is fundamentally
discrete. In particular, our framework may offer a novel
regularization of the UV divergences of the continuum.

C. Scattering amplitudes

Scattering between asymptotic states is what we measure
in particle accelerator experiments, and the associated S
matrix has been an invaluable tool for studying quantum
field theories on flat space [53]. Its definition on de Sitter
has also received some attention, where the lack of a
conserved positive energylike quantity poses an obstruction
to the definition of asymptotic particle states [54–57].
Therefore, it is natural to ask how one might define the
S matrix on a causal set. There are many continuum
concepts and structures that are lacking on a causal set,
and in particular, rather than continuum hypersurfaces
labeled by t, we simply have a discrete label (taking its
values in the positive integers) for each causal set site. These
labels play the role of coordinates and their permutation (the
analog of a coordinate transformation) should leave the S
matrix invariant. This complicates the question of how
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analogs of asymptotic states should be defined. Should
these states be associated with a specific site, and if so,
which particular site would be appropriate? We suggest an
answer to this question in the setup where the interaction
region is confined to an area between noninteracting “past”
and “future” regions.

D. Main results

Our results are restricted to interacting scalar field
theories on a causal set background, under the assumption
that all interaction terms are local polynomials of a finite
order. With this caveat, the main results of this work are as
follows:

(i) A diagrammatic expansion for the Heisenberg field.
Our derivation of the expansion relies on the com-
mutator representation of time evolution (attributed
to Weinberg [40]), which in the continuum, is
equivalent to solving the full equation of motion
for the Heisenberg field. We show that when the
interaction region is finite, the expansion terminates
at a finite order. Hence, in this scenario, the Heisen-
berg field is a finite-order polynomial in the inter-
action picture fields and vice versa.

(ii) A diagrammatic expansion for in-in correlators on a
causal set. Our expansion makes use of Wick’s
theorem and is therefore limited to the case when the
in-state is a Gaussian state. Aside from this caveat,
our expansion is generic and can be used to compute
“nonequal time” in-in correlators of composite
operators (as there are no issues with coincident
operators in the discrete). Our diagrams have two
kinds of legs corresponding to the Feynman and the
retarded propagator. Each interaction vertex must be
connected to an external vertex via a path of retarded
propagators; thus, causality is manifest. When the
interaction region is finite, the expansion terminates
at a finite order.

(iii) A generating functional for in-out correlators. We
review the generating functional for in-in correlators
and modify it to obtain a generating functional for
in-out correlators. These correlators have an infinite
expansion even on a finite causal set.

(iv) The S matrix on a causal set.We define the analog of
asymptotic states in the case where the interaction
region is bounded between noninteracting past and
future regions. We use this to define the Smatrix and
give its diagrammatic expansion. The expansion
contains the same diagrams as in the continuum
(and hence does not terminate).

E. Outline

In Sec. II, we summarize some useful causal set termi-
nology and review the formalism for a free quantum field
theory on a causal set. In Sec. III, we define the Heisenberg
field in interacting theories in terms of the causal set time

evolution operator and give its diagrammatic expansion. In
Sec. IV, we give our diagrammatic rules for in-in correlators
on a causal set (leaving the detailed derivation to the
Appendix). In Sec. V, we outline how the in-in correlators
of the previous section can be computed using a double-path
integral whose measure is given by a decoherence func-
tional. We modify this generating functional to give a
generating functional for in-out correlators. In Sec. VI,
we define the S matrix on a causal set. We conclude with
discussion of future directions in Sec. VII.

II. BACKGROUND

In this section, we introduce the causal set terminology,
which we will need and review the operator formalism for a
free scalar quantum field theory on a causal set. For a
review of causal set theory and related terminology, see [5]
and references therein.

A. Causal sets

A partially ordered set or poset is a set (called the
underlying set) together with an irreflexive, antisymmetric
and transitive relation, denoted by ≺, on it. Given a poset
and a pair of elements x and y in it, which satisfy x ≺ y, the
associated interval, intðx; yÞ, is

intðx; yÞ ¼ fzjx ≺ z ≺ yg:

A poset is locally finite if every interval of the poset is
finite. A causal set or causet is a locally finite poset. By the
standard abuse of notation, we will use C to denote both the
causal set and its underlying set. Given a causet C and
x; y∈ C such that x ≺ y, we say that y covers x and write
x ≺ ·y if the interval intðx; yÞ is empty (i.e., if there is no
element z, which lies between x and y in the partial order).
If x and y are unordered by ≺, we write x♮y.
A Hasse diagram of a causet C is a graph whose vertices

represent the elements of C and whose edges represent the
covering relations in C, where there is an upward-going
edge from x to y if and only if x ≺ ·y (the other relations are
implied by transitivity). A Hasse diagram is the transitive
reduction of a directed acyclic graph.
Using a Hasse diagram, we can think of a causal set as a

Lorentzian lattice. The lattice sites play the role of
spacetime points, while the causal structure is given by
the direction of the edges: The past (future) of a lattice site x
are all the sites y such that there exists an upward-going
(downward-going) path from y to x, and if a pair of sites x
and y are such that there is no directed path from one to the
other, then x and y are spacelike to each other. This is the
interpretation of the causal set in CST: The partial order is
the causal order, the past of an element y are all elements x
such that x ≺ y, the interval intðx; yÞ plays the role of the
Alexandrov set (the intersection of the past of a point with
the future of another) etc. It is in this sense the causal set
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encodes a causal structure and furnishes a discrete
spacetime.
A tenet of CST is that the points (or “atoms”) of the

causal set spacetime are indistinguishable from one another,
except through the partial order in which they are arranged.
Mathematically, this idea is captured by order-isomorphism
classes of causal sets, defined as follows. Two causets C and
C0 are order isomorphic if there exists a bijection f∶ C → C0
that preserves the order relation; i.e., fðxÞ ≺ fðyÞ ⇔ x ≺ y
for all x; y∈ C (where by standard abuse of notation, we
write≺ to denote both the partial order in C and in C0). Order
isomorphism is an equivalence relation and an unlabeled
causet is an order-isomorphism equivalence class. An
unlabeled causet is represented by an unlabeled Hasse
diagram, and a causet representative of it can be constructed
simply by labeling the vertices. In practice, working with
labeled objects is simpler than working with unlabeled
objects. Therefore, we will work with causets directly (not
with their equivalence classes), bearing in mind that the
choice of the underlying sets or of any labeling attached to
the causet elements is pure gauge (just like coordinates are
gauge in the continuum). For concreteness, we now specify
the causets that we will work with. A causal set is finite if its
underlying set is finite; i.e., jCj < ∞. A finite causal set C is
naturally labeled if its underlying set is f1; 2;…; jCjg and
x ≺ y ⇒ x < y ∀ x; y∈ C. From here on, we will work
with finite naturally labeled causal sets. If C and C0 are
naturally labeled causets that are order isomorphic to each
other, we will say that C is a relabeling of C0 (and vice
versa), since the Hasse diagram of one can be obtained from
the Hasse diagram of the other simply by relabeling the
vertices. What we mean by saying that the labeling is pure
gauge is that the physics remains unchanged under relabel-
ing, i.e., under the interchange of C with C0.
We will have use for the following causal set terminol-

ogy. A subcauset S ⊆ C is called a stem if x∈ S ⇒ y∈ S for
all y ≺ x in C. A causet C is a chain if it is totally ordered
(i.e., x ≺ y or y ≺ x for all pairs x; y∈ C). A subcauset
S ⊆ C is called a path if it is a chain and y ≺ ·x in S ⇒
y ≺ ·x in C. An element x∈ C is minimal (maximal) if there
exists no y∈ C such that y ≺ x (y≻x). We say that an
element x∈ C is in level l if the longest chain of which x is
the maximal element has cardinality l. Thus, level 1 of C
comprises the minimal elements, level 2 comprises the
minimal elements of what remains of C after the elements in
level 1 are deleted, etc.

B. Free quantum field theory on a causal set

We give a brief review of the Sorkin-Johnston construc-
tion for a free scalar field on a causal set [22–24,26,29]. This
construction takes the retarded propagator as its starting
point and uses it to write down covariant commutation
relations for the field operators from which a distinguished
vacuum state and its associated Fock representation can be
derived. This approach is a covariant alternative to the

canonical approach and is therefore suitable for our discrete
setting. This is also the reason it is appropriate for curved
(continuum) spacetimes to which it has been adapted in
[31,32]. When applied to spacetimes with a timelike Killing
vector, the Sorkin-Johnston ground state coincides with the
ground state of the Hamiltonian [31].
A propagator is a real function of two spacetime points.

On a (finite, naturally labeled) causet C, we can represent a
propagator as a matrix indexed by the elements of C. The
retarded propagator, denoted by ΔR

xy, is defined by the
requirement that ΔR

xy ¼ 0 whenever x⊁y. Since C is
naturally labeled, this constraint implies that ΔR

xy is lower
triangular. Various prescriptions can be found in the
literature for fixing its nonvanishing entries. These pre-
scriptions can be roughly split into two camps: those in
which ΔR

xy is defined as the inverse of a suitably discretised
d’Alembertian [25,58] and those in which ΔR

xy is defined in
a way that guarantees that it approaches the continuum
retarded propagator in an appropriate limit [22,29].
Depending on the exact prescription, ΔR

xy may depend
on parameters such as the dimension of the continuum
spacetime that approximates C, but once these parameters
are fixed, we may regard ΔR

xy as purely combinatorial in the
sense that it can be obtained directly from C (e.g., via its
adjacency matrix). What follows is independent of the
choice of ΔR

xy.
Given the retarded propagators, we define the advanced

propagator and the Pauli-Jordan (also known as the causal
propagator), respectively, as

ΔA
xy ¼ ΔR

yx;

Δxy ¼ ΔR
xy − ΔA

xy: ð2:1Þ

Next, associate a field operator ϕðxÞ to each x∈ C and
impose the Peierls bracket,

½ϕðxÞ;ϕðyÞ� ¼ iΔxy: ð2:2Þ

Note that Peierls brackets guarantees that ϕðxÞ and ϕðyÞ
commute if x and y are spacelike separated (i.e., if x♮y).
Following from its definition, the matrix iΔxy is Hermitian
and can be decomposed via the spectral theorem as

iΔxy ¼
X
λ

λvðλÞx v̄ðλÞy

¼
X
λ>0

λvðλÞx v̄ðλÞy −
X
λ>0

λvðλÞx v̄ðλÞy ; ð2:3Þ

where the bars denote complex conjugation, and the vðλÞx

and the λ are the eigenvectors and eigenvalues of iΔxy,
respectively,

iΔxyv
ðλÞ
x ¼ λvðλÞx : ð2:4Þ
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In the first line of (2.3), the sum is over all the eigenvalues
λ. The second line (where the sums are restricted to the
positive λ) is obtained by using the fact that the λ’s are real
and that if λ > 0 is an eigenvalue with eigenvector vðλÞ, then
−λ is an eigenvalue with eigenvector vð−λÞ ¼ v̄ðλÞ. The first
term on the second line is called the positive part of iΔ,

PosðiΔÞ ¼
X
λ>0

λvðλÞx v̄ðλÞy ; ð2:5Þ

while the second term is its complex conjugate. Another
way to express iΔ as a difference between a c number and
its complex conjugate is to consider the expectation value
of the Peierls bracket in some state of choice to obtain

h½ϕðxÞ;ϕðyÞ�i ¼ Wxy − W̄xy ¼ iΔxy; ð2:6Þ

where Wxy ¼ hϕðxÞϕðyÞi is the Wightman function in the
chosen state. The insight of the Sorkin-Johnston formalism
is that the eigenvectors of iΔ form a distinguished basis,
which can be used to define a distinguished Gaussian
vacuum state j0i by requiring that

h0jϕðxÞϕðyÞj0i ¼ PosðiΔxyÞ: ð2:7Þ

We call j0i the Sorkin-Johnston (SJ) vacuum.
The SJ vacuum has a Fock representation where the

positive eigenvalues and their associated eigenvectors play
the role of positive frequencies and mode functions,
respectively. For each λ > 0, introduce a pair of conjugate
ladder operators aλ and a†λ and impose the commutation
relations,

½aλ; a†λ0 � ¼ δλ;λ0 : ð2:8Þ

The SJ vacuum is the state annihilated by the aλ, and the
Fock representation is built by acting on it with the a†λ .
Expanding the fields as

ϕðxÞ ¼
X
λ>0

ffiffiffi
λ

p
ðvλxaλ þ v̄λxa

†
λÞ; ð2:9Þ

one can verify that the Wightman function of the SJ state is
given by (2.7).

C. Causal ordering and the Feynman propagator

To complete our discussion of the free theory, we
introduce the notion of causal ordering. Given some
x; y∈ C, we say that the product ϕðxÞϕðyÞ is causally
ordered if x⊀y. We write C to denote the causal ordering
operator whose action on a product of two fields is

C½ϕðxÞϕðyÞ� ¼
�
ϕðxÞϕðyÞ if x≻ y

ϕðyÞϕðxÞ if x ≺ y;
ð2:10Þ

where for a spacelike pair of points x♮y, the associated
field operators commute and the C ordering is trivial:
C½ϕðxÞϕðyÞ� ¼ ϕðxÞϕðyÞ ¼ ϕðyÞϕðxÞ. More generally, a
product of field operators is causally ordered if no field
operator is to the right of an operator that lives in its past. In
a labeled causal set, ordering a product of operators by
decreasing label from left to right always results in a causal
ordering, e.g., ϕð4Þϕð4Þϕð2Þϕð1Þ.
The anticausal ordering operator C̄ orders a product of

field operators so that no field operator is to the left of an
operator that lives in its past. In a labeled causal set,
ordering a product of operators by increasing label from
left to right always results in an anticausal ordering,
e.g., ϕð1Þϕð2Þϕð4Þϕð4Þ.
Causal ordering is the causal set analog of the time

ordering of the continuum, and we use it to define the
Feynman propagator,

ΔF
xy ¼ hC½ϕðxÞϕðyÞ�i: ð2:11Þ

III. INTERACTING FIELDS

In the interacting theory, the interaction picture fields
carry the free evolution. In the causal set context, this
means that the interaction picture fields satisfy the Peierls
bracket (2.2) and have the mode expansion (2.9). We will
denote the interaction picture fields simply by ϕðxÞ. We
write H to denote the interacting Hamiltonian (density) in
the interaction picture, and we restrict ourselves to local
Hamiltonians, which are finite polynomials in the field,
e.g., HðxÞ ¼ g

n!ϕ
nðxÞ.

The Heisenberg picture is defined by analogy with the
continuum, where the Heisenberg field ϕHðt;xÞ is related
to the interaction picture field ϕðt;xÞ via

ϕHðt;xÞ ¼ U†ðt; t0Þϕðt;xÞUðt; t0Þ; ð3:1Þ

where

Uðt; t0Þ ¼ T

�
e
−i
R

t

t0
HðtÞdt

�
ðt ≥ t0Þ ð3:2Þ

is the time-evolution operator and where H is the interact-
ing Hamiltonian in the interaction picture. The analogy
suggests that we replace the time integral by a sum over
causal set points and the time-ordering T with the causal
ordering C (defined in Sec. II C). Under the action of C, all
field commutators vanish, and we can express the expo-
nential of a sum as a product of exponentials. This is the
motivation for the following definitions.
Given a causet C and some x; y∈ C, we define the

following family of evolution operators,

Vx ¼ C

�Y
z≺x

e−iHðzÞ
�
; ð3:3Þ
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Ux;y ¼ C

� Y
y≤z<x

e−iHðzÞ
�

for x > y; ð3:4Þ

Ux ¼
8<
:

1 if x ¼ 1;

Ux;1 ¼ C

�Q
z<x

e−iHðzÞ
�

if x > 1;
ð3:5Þ

and note that they satisfy the following relations:

V†
xVx ¼ U†

xUx ¼ 1; ð3:6Þ

Ux;yUy;z ¼ Ux;z; ð3:7Þ

Ux;zU
†
y;z ¼

8>><
>>:

1 if x ¼ y

Ux;y if x > y

U†
y;x if x < y;

ð3:8Þ

V†
xOðxÞVx ¼U†

xOðxÞUx for any local operatorOðxÞ: ð3:9Þ

We say that Vx is a covariant operator because it relies only
the partial order ≺, while Ux;y and Ux are label-dependent
operators because they rely on the total order < of the
labeling. In other words, Vx is a physical operator, and Ux;y

and Ux are gauge-dependent operators.

We use the covariant operator Vx to define the
Heisenberg picture on a causal set: Given a local operator
OðxÞ in the interaction picture, the Heisenberg picture
operator OHðxÞ is given by

OHðxÞ ¼ V†
xOðxÞVx: ð3:10Þ

In practice, working with gauge-dependent operators is
simpler, and thanks to relation (3.9), we can express the
Heisenberg operator in terms of Ux as

OHðxÞ ¼ U†
xOðxÞUx: ð3:11Þ

(Note that our convention for the causal set evolution
operators differs from that of [27,28], but the resulting
Heisenberg operators are independent of convention.)

A. Expanding the Heisenberg field

In the continuum, one solves the full equation of motion
order by order in the interaction coupling to obtain a
perturbative expansion for the Heisenberg field in terms of
interaction picture fields. Alternatively, the same expansion
can be extracted from the nested commutator expression for
the Heisenberg field [40] (see also [38,39]),

ϕHðt;xÞ ¼
X∞
n¼0

ð−iÞn
Z

t

−∞
dt1

Z
t1

−∞
dt2…

Z
tn−1

−∞
dtn½…½½ϕðt;xÞ; Hðt1Þ�; Hðt2Þ�…; HðtnÞ�;

¼
X∞
n¼0

ð−iÞn
Z

t

−∞
dt1…

Z
t

−∞
dtn½…½½ϕðt;xÞ; Hðt1Þ�; Hðt2Þ�…; HðtnÞ�Θðt1;…; tnÞ; ð3:12Þ

where in the second line, the time integrals all share the
same domain ð−∞; tÞ thanks to the introduction of the
generalized step function Θðt1;…; tnÞ defined as

Θðt1;…; tnÞ ¼
�
1 t1 ≥ t2 ≥ � � � ≥ tn
0 otherwise:

ð3:13Þ

Equivalently, Θðt1;…; tnÞ can be expressed as a product of
step functions,

Θðt1;…; tnÞ¼Θðt1− t2ÞΘðt2− t3Þ � � �Θðtn−1− tnÞ; ð3:14Þ

where

Θðx − aÞ ¼
�
1 x ≥ a

0 x < a:
ð3:15Þ

(This latter form makes explicit the similarities with the
retarded product of [59].)
The above formalism can be adapted to the causal set

setting where it provides a route for expanding the
Heisenberg field in the absence of an equation of motion.
As we show in the Appendix, starting from expression
(3.11) for the causal set Heisenberg field, one obtains the
following expansion:

ϕHðxÞ ¼
X∞
n¼0

ð−iÞn
Xx−1
z1¼1

� � �
Xx−1
zn¼1

½…½½ϕðxÞ;Hðz1Þ�;Hðz2Þ�…;HðznÞ�ϒðz1;…; znÞ; ð3:16Þ
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where ϕðxÞ is the interaction picture field, HðzÞ is the
interacting Hamiltonian in the interaction picture and
ϒðz1;…; znÞ is a modification of Θðz1;…; znÞ, which is
sensitive the saturation of the inequality z1 ≥ z2 ≥ … ≥ zn,

ϒðz1;…; znÞ ¼
� 1

l1!…lk!
z1 ≥ z2 ≥ … ≥ zn

0 otherwise;
ð3:17Þ

where k denotes the number of strings of equal
signs in z1 ≥ z2 ≥ … ≥ zn, and li is the length of the ith

string of equal signs (i.e., the number of z variables
equated by the string). For example, ϒð8; 7; 5; 2; 1Þ ¼
1;ϒð7; 7; 5; 4; 4; 4Þ ¼ 1

2!1!3!
and ϒð7; 5; 7; 4; 4; 4Þ ¼ 0.

[Note that one could replace Θ with ϒ in (3.12) since Θ
and ϒ differ only on sets of measure zero. On the other
hand, in the discrete, there are no nonempty sets of measure
zero, in particular, the cases when a number of variables
take the same value contribute nonvanishingly to the sum
and the definition of ϒ ensures that these contributions are
weighted correctly.]
To evaluate (3.16), we apply the result of [60] that

expresses the commutator of functions of noncommuting
operators as an expansion in powers of the commutators of
these operators with each other. In our case, the operators
are the fields ϕð1Þ;…;ϕðx − 1Þ that satisfy the commuta-
tion relations (2.2). Following [38] we define

F nðϕðxÞ;ϕðz1Þ;…;ϕðznÞÞ
¼ ½…½½ϕðxÞ;Hðz1Þ�;Hðz2Þ�…;HðznÞ�; ð3:18Þ

and note that F n ¼ ½F n−1;HðznÞ�. This enables us to apply
the result of [60] as

F n ¼ −
X
k1

� � �
X
kn−1

X
kx|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

k≡P ki≠0

�ð−iΔx;znÞkx
kx!

Yn−1
i¼1

ð−iΔzi;znÞki
ki!

�

× ∂
k1
ϕðz1Þ � � � ∂

kn−1
ϕðzn−1Þ∂

kx
ϕðxÞF n−1∂

k
ϕðznÞHðznÞ; ð3:19Þ

where the sums are over all non-negative integers with the
restriction that at least one of the ki is nonzero. This
expansion has a useful diagrammatic representation that we
give below.
The diagrammatic expansion for the nested commuta-

tor. Associate a vertex with each of the points x; z1…; zn.
We call x the external vertex and zi the internal vertices.
The number of half-legs meeting at each vertex is equal to
the number of fields at the associated point. To form the
diagrams, connect the half-legs in all possible ways to
form directed edges with the following properties: (i)
every internal vertex is connected to the external vertex
by at least one directed path, and (ii) every directed edge
is of the form zi → x or zi → zj with i > j. Property (i)
corresponds to the restriction that at least one of the ki
is nonzero. Property (ii) reflects the factors of Δx;zn and
Δzi;zn in (3.19), in particular, the fact that zn is always
the second argument. Connecting the legs corresponds
to the taking of derivatives, and each possible diagram
corresponds to a different set of values for k1;…; kn−1; kx.
The nested commutator in (3.16) is equal to the sum of
these diagrams when each diagram is interpreted as
follows:

(i) Each directed edge a → b gives a factor of −iΔba.
(ii) Each internal vertex contributes a factor of the

coupling and any other constants appearing in H.
(iii) Each uncontracted half-leg at a vertex contributes a

field operator at the associated point; the product of
these factors is ordered with ϕðxÞ on the left and then
factors of ϕðziÞ with i increasing from left to right.

(iv) Multiply by an overall factor coming from the
different ways of connecting the half-legs to form
the diagram.

(v) Multiply by an overall factor of ð−1Þn.
For example, when H ¼ g

3!
ϕ3, the Heisenberg field is

given by

where in the second line we used the relation,

Δzizjϒðz1;…; znÞ ¼ ΔR
zizjϒðz1;…; znÞ ð3:20Þ
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to replace the Pauli-Jordan Δ by the retarded propagator
ΔR. In this work, nested commutators always appear
together with the ordering function ϒ, and therefore, we
always interpret the directed edges as retarded propagators.
The field expansion (3.16) terminates at a finite order in

the interaction coupling. This order increases with the order
of the interaction Hamiltonian and with the level of x (the
length of longest chain x is a maximal element of, see
Sec. II A). This becomes particularly transparent when
considering the diagrammatic representation for ϕHðxÞ.
Suppose x is at level 3 with x≻x1≻x2, and let H ¼ g

4!
ϕ4.

The diagram that contains the largest number of interaction
vertices is

ð3:21Þ

where z1 ¼ x1 and z2 ¼ z3 ¼ z4 ¼ x2. Since x2 is a
minimal element, there is no way to add another internal
vertex to produce a nonvanishing diagram. This illustrates
the general pattern: When H ∼ ϕr, the diagrams with the
highest number of interaction vertices are those in which
the directed edges form a tree with 1 interaction vertex
as the root, r − 1 interaction vertices directly below it,
ðr − 1Þ2 interaction vertices below them, etc., with the
last layer containing ðr − 1Þl−2 vertices, where l denotes
the level of x. Hence, the expansion terminates at orderP

l−2
k¼0 ðr − 1Þk ¼ ðr−1Þl−1−1

r−2 in the coupling constant [which

is of order ðr − 1Þl−1 in the field, i.e. ϕðr−1Þl−1].

B. Properties of the field algebras

Here we list some properties of the Heisenberg and
interaction picture fields on a causal set.

1. Causality

Heisenberg fields at spacelike separated points commute,

½ϕHðxÞ;ϕHðyÞ� ¼ 0 for all x; y∈C with x♮y: ð3:22Þ

This follows from the definition (3.11) of the Heisenberg
field and the Peierls brackets (2.2).

2. Polynomial property

As we saw in Sec. III A, the Heisenberg field ϕHðxÞ can
be written as

ϕHðxÞ ¼ ϕðxÞ þQxðϕðyÞ; y ≺ xÞ; ð3:23Þ

where Qx is a finite order polynomial in the interaction
picture fields in the past of x. We can also invert this
relationship and write

ϕðxÞ ¼ ϕHðxÞ þ PxðϕHðyÞ; y ≺ xÞ; ð3:24Þ

where Px is a finite order polynomial in the Heisenberg
fields in the past of x. To see this, suppose (3.24) is true for
all x in levels 0; 1;…; l and consider x at level lþ 1. Then
Qx is a polynomial in fields ϕðyÞ with y at level l or below.
By the inductive assumption, these ϕðyÞ can be written
as a finite order polynomial in Heisenberg picture
fields. Defining PxðϕHðyÞ; y ≺ xÞ ¼ −QxðϕðyÞ; y ≺ xÞ
and rearranging (3.23) for ϕx gives the result.

3. Observable algebras

Given a causet C and a subcauset R ⊆ C, we write AH
R

and AR denote the algebras generated by fϕHðxÞgx∈R and
fϕðxÞgx∈R, respectively. Then it is a corollary of the
polynomial property that AH

R ¼ AR if and only if R is a
stem in C.

IV. THE IN-IN FORMALISM

Here we build on the results of Sec. III A to obtain a
diagrammatic expansion for in-in correlators on a causal
set. Throughout, we assume that the in-state is a Gaussian
state so Wick’s theorem applies.

A. The expectation value of the field

We begin with the simplest in-in correlator: the expect-
ation value of the field, hϕHðxÞi. Having expanded ϕHðxÞ
in Sec. III A as a causally ordered polynomial in the
interaction picture fields, we can apply Wick’s theorem
to obtain hϕHðxÞi. Diagrammatically, this corresponds to
taking each diagram in the expansion of ϕHðxÞ and joining
its half-legs to create undirected edges in all possible ways.
Each undirected edge is a Feynman propagator, and each
diagram is weighted by an additional Wick factor.
Assuming hϕðxÞi ¼ 0, only the diagrams in which all
half-legs are contracted contribute to the expectation value
hϕHðxÞi. For example, when H ¼ g

3!
ϕ3, we apply Wick’s

theorem to (3.20) and obtain
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ð4:1Þ

Note that thus far, all our diagrams are labeled—this was
necessary in the expansion of the Heisenberg field because
the vertex labels kept track of the order of the field
operators in the expansion. However, in computing the
scalar quantity hϕHðxÞi, this is no longer necessary, and we
now proceed to obtain an expansion in terms of unlabeled
diagrams akin to the Feynman diagrams of the continuum.
Consider some labeled diagram Gn with n internal

vertices that appears in the expansion of hϕHðxÞi and
permute the labels of its internal vertices to produce another
diagram G0

n. If G0
n does not appear in the expansion of

hϕHðxÞi, then it must contain a directed edge zi → zj
(which we interpret as −iΔR

zj;zi) for some i < j. We
conclude that the product G0

nϒðz1;…; znÞ vanishes, since
ϒðz1;…; znÞ vanishes when zi < zj and ΔR

zjzi vanishes
when zi ≥ zj. Using this insight, we may write hϕHðxÞi as

hϕHðxÞi ¼
X∞
n¼0

X
Gn

ð−iÞn
Xx1−1

z1���zn¼1

Gnϒðz1 � � � znÞ; ð4:2Þ

where nowGn denotes either an allowed labeled diagram or
a diagram obtained from one via a permutation of the
internal vertex labels. Now, note that the internal vertices
are simply dummy indices, all of which are summed over
the same domain. Therefore, for each isomorphism class
½Gn�, choose some representative Gn, and for each diagram
G0

n ∈ ½Gn�, apply the necessary coordinate transformation
ðz1…znÞ⟶G0

nðz1…znÞ to bringG0
n into the labeling of Gn.

Collecting the identical diagrams and taking into account
the action of each coordinate transformation on ϒ, we
obtain

hϕHðxÞi ¼
X∞
n¼0

X
½Gn�

ð−iÞn
Xx1−1

z1���zn¼1

Gn

jAutðGnÞj
X
π

ϒðπÞ; ð4:3Þ

where ½Gn� denotes an unlabeled diagram, Gn denotes a
labeled diagram representative of ½Gn�, AutðGnÞ is the
group of automorphisms of Gn, which keep the x vertex
fixed, π ¼ zi1 ;…; zin is a permutation of z1;…; zn and

ϒðzi1 ;…; zinÞ ¼
� 1

l1!…lk!
zi1 ≥ zi2 ≥ … ≥ zin

0 otherwise;
ð4:4Þ

where k denotes the number of strings of equal signs in
zi1 ≥ zi2 ≥ … ≥ zin , and li is the length of the ith string of
equal signs. Noting that for any set of values for z1;…; zn,
we have

P
π ϒðπÞ ¼ 1, expansion (4.3) simplifies to a sum

over unlabeled diagrams ½Gn�,

hϕHðxÞi ¼
X∞
n¼0

X
½Gn�

½Gn�; ð4:5Þ

where each ½Gn� is assigned a value according to the
diagrammatic rules summarized below.
The diagrammatic expansion for hϕHðxÞi. The diagrams

that contribute to the expansion at order n contain a single
external vertex labeled x and n unlabeled internal vertices.
The valency of the internal vertices is given by the order of
the Hamiltonian in the field and all half-legs are contracted
to form legs. Each internal vertex is connected to x by at
least one directed path, and there are no closed directed
cycles. The value of each diagram is obtained by assigning
each internal vertex with a dummy index z and following
the rules:

(i) Each internal vertex z gives a sum i
P

x−1
z¼1 and a

factor of the coupling and any other constants
appearing in the interaction Hamiltonian H.

(ii) Each directed edge a → b gives a factor of −iΔR
ba.

(iii) Each undirected edge a— b gives a factor of ΔF
ab.

(iv) Multiply by an overall factor coming from the
different ways of connecting the half-legs to form
the diagram,
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(v) Divide by jAutðGnÞj, the number of automorphisms which keep x fixed.
For example, expansion (4.1) can be rewritten in terms of unlabeled diagrams as

ð4:6Þ

B. In-in correlators

In Sec. IVA we gave diagrammatic rules for computing
the expectation value of the Heisenberg field, hϕHðxÞi.
Here, we generalize these rules to in-in correlators of
causally ordered products of local operators.
Given some causet C and an integer 1 ≤ k ≤ jCj, let

x1; x2;…; xk denote integers satisfying jCj ≥ x1 > x2… >
xk ≥ 1. For each i ¼ 1;…; k we write OHðxiÞ to denote a
local Heisenberg operator at xi. We allow for the depend-
ence of OHðxiÞ on ϕðxiÞ to be different to the dependence
of OHðxjÞ on ϕðxjÞ, but we restrict ourselves to operators
that are finite-order polynomials in the Heisenberg fields,
e.g., OHðx2Þ ¼ 3ðϕHðx2ÞÞ4. We seek to compute the in-in
correlator,

hOHðx1Þ…OHðxkÞi: ð4:7Þ

We proceed in two stages. First, we expand the operator
product OHðx1Þ…OHðxkÞ as a sum of locally ordered

products of interaction picture fields. Second, we apply
Wick’s theorem to compute the expectation value of each
term in the expansion.
Our strategy for obtaining the expansion of

OHðx1Þ…OHðxkÞ is to express it as a nested product
(cf. Lemma A.3),

OHðx1Þ…OHðxkÞ ¼ U†
xkO1…kUxk ; ð4:8Þ

where O1…k is defined recursively via

O1…p ¼
�Oðx1Þ p¼ 1

U†
xp−1;xpO1…p−1Uxp−1;xpOðxpÞ 1<p≤ k:

ð4:9Þ

This enables us to obtain the product expansion by the
recursive application of the relation (cf. Lemma A.2),

U†
x;yOUx;y ¼

X∞
n¼0

ð−iÞn
Xx−1

z1;…zn¼y

½…½½O;Hðz1Þ�;Hðz2Þ�…;HðznÞ�ϒðz1;…; znÞ; ð4:10Þ

whereO is any (not necessarily local) operator, and the n ¼ 0 term is understood to be equal toO. We leave the result to the
Appendix (cf. Corollary A.5), but note that inside the expectation value, the expansion simplifies to (cf. Lemma A.6)

hOHðx1Þ…OHðxkÞi ¼
X∞
n¼0

ð−iÞn
Xx−1

z1;…;zn¼1

h½…½½Oðx1Þ…OðxkÞ;Hðz1Þ�;Hðz2Þ�…;HðznÞ�iϒðz1;…; znÞ; ð4:11Þ

where on the rhs, the operators OðxiÞ are in the interaction
picture, and H is the interacting Hamiltonian in the
interaction picture.
To evaluate the expectation value, we apply Wick’s

theorem diagrammatically. The diagrammatic expansion
of the nested correlator in (4.11) is obtained by modifying

the rules given in 3.1 so that each diagram has k external
vertices labeled x1;…; xk, and each internal vertex is
connected to at least one external vertex by at least one
directed path. Additionally, the number of half-legs at each
external vertex is equal to the number of fields at that point
[e.g., three half-legs at xi if OðxiÞ ¼ ðϕHðxiÞÞ3], and there
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must be no outgoing edges from any of the external
vertices. To apply Wick’s theorem, we connect the remain-
ing half-legs into undirected edges. The resulting diagrams
are labeled, and we repeat the procedure outlined in
Sec. IVA to obtain an expansion in terms of an unlabeled
diagram. The rules are obtained from those given in
Sec. IVA by allowing for multiple external vertices and
accounting for any additional factors they may carry. For
completeness, the rules are presented below.
The diagrammatic expansion for hOHðx1Þ…OHðxkÞi.

The diagrams that contribute to the expansion at order n
contain k external vertices labeled x1;…; xk and n unla-
beled internal vertices. The valency of the internal (exter-
nal) vertices is given by the order of the Hamiltonian (local
operator O) in the field, and all half-legs are contracted to
form legs. Each internal vertex is connected to at least one
external vertex by at least one directed path. There are no
closed directed cycles and no edges directed outward from
an external vertex. The value of each diagram is obtained

by assigning each internal vertex with a dummy index z and
following the rules:

(i) Each internal vertex z gives a sum i
P

x−1
z¼1 and a

factor of the coupling and any other constants
appearing in the interaction Hamiltonian H.

(ii) Each external vertex xi gives any constant factors
appearing in OðxiÞ.

(iii) Each directed edge a → b gives a factor of −iΔR
ba.

(iv) Each undirected edge a—b gives a factor of ΔF
ab.

(v) Multiply by an overall factor coming from the
different ways of connecting the half-legs to form
the diagram.

(vi) Divide by jAutðGnÞj, the number of automorphisms
which keep x1;…; xk fixed.

See [27,28] for an explicit computation of the two-point
function in ϕ4 theory. In ϕ3, the connected part of
hϕHðx1ÞϕHðx2ÞϕHðx3Þi to first order in the coupling is
given by

ð4:12Þ

V. PATH INTEGRALS

The interacting quantum field theory on a causal set
described above was first proposed in path integral or
“histories” form as a decoherence functional by Rafael
Sorkin in [26]. The decoherence functional, or double path
integral of Schwinger-Keldysh form, is the basis for an
alternative foundation for quantum theory in which histories
and events, rather than operators and states, are fundamental
(see, for example, [61]). In this section, we will not dwell on
this foundational aspect of the path integral approach but
instead briefly show how the interacting decoherence func-
tional proposed by Sorkin encapsulates, mathematically, the
time-ordered correlation functions in the in-in formalism
calculated in Sec. IV. More details of the translation between
the operator formalism and the path-integral formalism are
given in [27] and expanded on in [28]. We use the
decoherence functional to write down a generating func-
tional for the in-in correlators of Sec. IV B. We also give the
generating functional for in-out correlators.

A. The decoherence functional of the free theory

Consider a causal set C with N elements. The space of
histories of a real scalar quantum field theory on C is the
space of real vectors RN . We denote a vector by ξ with

components ξx, x∈ C. The decoherence functional for the
free theory in a particular state is given by [26]

D0ðξ; ξ̄Þ ¼ hδðϕ1 − ξ̄1Þδðϕ2 − ξ̄2Þ…δðϕN − ξ̄NÞ
× δðϕN − ξNÞ…δðϕ2 − ξ2Þδðϕ1 − ξ1Þi; ð5:1Þ

where we write ϕx as a shorthand for the free field operator
ϕðxÞ, and h·i denotes expectation value in a Gaussian state,
ρ, which may be the SJ state or another state:

hÔi ¼ ρðÔÞ ¼ Tr½ρ̂ Ô�: ð5:2Þ

The decoherence functional should have a label indicat-
ing its dependence on the state ρ, but we omit it for
convenience.
Note that
(i) The decoherence functional is normalizedZ

dNξdN ξ̄D0ðξ; ξ̄Þ ¼ 1. ð5:3Þ

(ii) The ordering of the operators in the expectation
value (5.4) uses the label order of C.

(iii) Since operators at spacelike points commute, we
have
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D0ðξ; ξ̄Þ ¼ hC̄½δðϕ1 − ξ̄1Þδðϕ2 − ξ̄2Þ…
× δðϕN − ξ̄NÞ�C½δðϕN − ξNÞ…
× δðϕ2 − ξ2Þδðϕ1 − ξ1Þ�i; ð5:4Þ

whereC and C̄ are the causal and anticausal ordering
operators defined in Sec. II C, so the ξ delta
functions are causally ordered, and the ξ̄ delta
functions are anticausally ordered.

(iv) The delta functions ensure that the decoherence
functional vanishes unless the field values ξx ¼ ξ̄x
on every maximal element x of C.

(v) The decoherence functional (5.4) is evaluated
in [26].

Let FðξÞ and GðξÞ be real functions on RN . If we
integrate FðξÞGðξ̄Þ over all pairs of field configurations,
ðξ; ξ̄Þ∈RN ×RN against a measure, which equals the
decoherence functional, the delta functions in D0ðξ; ξ̄Þ
act to causally/anticausally order the corresponding func-
tions of the field operators:Z
R2N

dN ξ̄dNξD0ðξ; ξ̄ÞFðξÞGðξ̄Þ¼hC̄½GðϕÞ�C½FðϕÞ�i: ð5:5Þ

The simplest examples are the two-point correlators, and
we have

hC½ϕxϕy�i ¼
Z
R2N

dN ξ̄dNξD0ðξ; ξ̄Þξxξy; ð5:6Þ

hC̄½ϕxϕy�i ¼
Z
R2N

dN ξ̄dNξD0ðξ; ξ̄Þξ̄xξ̄y; ð5:7Þ

Wxy ¼ hϕxϕyi ¼
Z
R2N

dN ξ̄dNξD0ðξ; ξ̄Þξ̄xξy: ð5:8Þ

Slightly more generally, when the functions are monomials
in the field components, we haveZ

R2N
dN ξ̄dNξD0ðξ; ξ̄Þξx1…ξxl ξ̄y1…ξ̄ym

¼ hC̄½ϕy1…ϕym �C½ϕx1…ϕxl �i: ð5:9Þ

The causal ordering results from the fact that in the integral,
the factor ξx, say, is just a real variable and can be moved
anywhere. When ξx is moved next to the corresponding
operator factor δðϕx − ξxÞ in the decoherence functional, ξx
becomes the operator ϕx which, as an operator, is now in
the causally ordered position of δðϕx − ξxÞ in the operator
product.

B. The decoherence functional of the interacting theory

In the interacting theory with a ϕ4 interaction, Sorkin
proposed the interacting decoherence functional,

Dgðξ; ξ̄Þ ¼ D0ðξ; ξ̄Þe−iðξ4−ξ̄4Þ·g; ð5:10Þ

where

g ¼ ðg1; g2; g3;…gNÞ ð5:11Þ

is a vector of N coupling constants, one for each causet
element, and

V intðξÞ ¼ ξ4 · g ≔
XN
x¼1

ðξxÞ4gx ð5:12Þ

is the self-interaction potential.
The interacting decoherence functional can be general-

ized to the case of any real polynomial self-interaction. In
other words, the ϕ4 interaction potential can be replaced by

XN
x¼1

ðξxÞ4gx ⟶ V intðξÞ ¼
XN
x¼1

PxðξxÞ; ð5:13Þ

where each local Px is a real polynomial, which may vary
from element to element. Then the interacting decoherence
functional is

Dgðξ; ξ̄Þ ¼ D0ðξ; ξ̄Þe−iV intðξÞþiV intðξ̄Þ: ð5:14Þ

Note that
(i) The interacting decoherence functional is normal-

ized; i.e., the integral of (5.14) over ξ and ξ̄ equals
1 [27,28].

(ii) The varying local polynomial allows for an inter-
action that is zero outside some interaction region of
the causal set.

(iii) Another generalization is to M scalar fields,
ϕð1Þ;ϕð2Þ;…ϕðMÞ, with an interaction potential at
each element that is a polynomial in the M fields at
that element.

(iv) In making the correspondence with the continuum, if
the causal set is well approximated by a spacetime
region M of dimension d and spacetime volume V,
then we have, for example, in the ϕ4 case with
constant coupling gx ¼ g for all x,

g
XN
x¼1

ðξxÞ4 ↔ λ

Z
M

ddx
ffiffiffiffiffiffi
−g

p
ξðxÞ4; ð5:15Þ

and so g ↔ dVλ, where dV ¼ V=N ¼ ld, l is the
discreteness scale, and λ is the coupling constant in
the continuum.

The interacting causally ordered n-point function is
given in path integral form as before, with the free
decoherence functional measure replaced by the interacting
decoherence functional (5.14),
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hC½ϕH
x1…ϕH

xn �i ¼
Z
R2N

dN ξ̄dNξDgðξ; ξ̄Þξx1…ξxn : ð5:16Þ

It can be shown [27,28] that this equals the interacting in-in
causally ordered n-point function of Sec. IV in a given state
ρin. That is, the Heisenberg field operators are given by
(3.10) where Hx ¼ PxðϕxÞ for each x∈ C, and ϕx are the
interaction picture fields. ρin depends on the Gaussian state
ρ that defines the free decoherence functional (5.4) in the
following way. Since the algebra of observables is generated
by the interaction picture field operators (see Sec. III B), the
in-state ρin is defined by its value on every product of pairs
of interaction picture field operators, whose values are
extended to all monomials of interaction picture operators
(and thence by linearity to all polynomials) by Wick’s
theorem. So the state ρin is fully specified by the Wightman
function of ρ in the free theory:

ρinðϕxϕyÞ ¼ Wxy; ð5:17Þ

(plus the one-point functions if they are nonzero in ρ).
In the case that ρ is a pure state jΨi, then ρin is also a pure

state jΨini.

C. Generating functionals

The in-in generating functional is given in terms of the
decoherence functional:

Zin−in½J; J̄� ¼
Z

dNξdN ξ̄Dgðξ; ξ̄Þe−iJ:ξeiJ̄:ξ̄; ð5:18Þ

where J and J̄ are two independent sources. For example,
the in-in causally ordered two-point correlator is given by

i
∂

∂Jx
i
∂

∂Jy
Zin−in½J; J̄�jJ¼0;J̄¼0 ¼ hC½ϕH

x ϕ
H
y �iρin ; ð5:19Þ

with similar expressions with more derivatives for the
causally ordered in-in n-point correlators. Derivatives with
respect to J̄ similarly result in anticausally ordered products
of field operators.
The generating functional for the causally ordered in-out

correlators is not given in terms of the interacting
decoherence functional but by a closely related expression,

Zin−out½J� ¼
R
dNξdN ξ̄D0ðξ; ξ̄Þe−iV intðξÞe−iJ·ξR

dNξdN ξ̄D0ðξ; ξ̄Þe−iV intðξÞ ; ð5:20Þ

where the case of the ϕ4 interaction is shown (again, this
can be generalized to any polynomial local interaction).
Now we have

i
∂

∂Jx
i
∂

∂Jy
Zin−out½J�jJ¼0 ¼

hŜC½ϕH
x ϕ

H
y �i

hŜi ; ð5:21Þ

where the S operator is given by

Ŝ ¼ C

"Y
z∈ C

e−iHðzÞ
�
; ð5:22Þ

and the C operator applied to Heisenberg field acts as

C½ϕHðxÞϕHðyÞ� ¼
(
ϕHðxÞϕHðyÞ if x≻y
ϕHðyÞϕHðxÞ otherwise:

ð5:23Þ

To see this, note that the derivatives have no effect on the
denominator of the generating functional so the denomi-
nator of (5.21) follows directly from (5.5). The numerator,
after taking derivatives and setting J ¼ 0, becomes
hC½Qz e

−iHðzÞϕxϕy�i. When x > y, the causally ordered
product can be expanded as

he−iHðNÞ…e−iHðxÞUxϕ
H
x U

†
xe−iHðx−1Þ…

× e−iHðyÞUyϕ
H
y U

†
ye−iHðy−1Þ…e−iHð1Þi

¼ hŜϕH
x ϕ

H
y i; ð5:24Þ

where on the lhs, we used relation (3.11) between the
Heisenberg and interaction picture fields, and on the rhs,
we simplified the products of exponentials. Similarly, when
x < y, we obtain hŜϕH

y ϕ
H
x i, so overall, the numerator is

given by hŜC½ϕH
x ϕ

H
y �i.

In contrast to the in-in correlators, the expansion of the
in-out correlators as a power series in the coupling(s) does
not terminate at a finite order even if the causal set itself is
finite. One can see this by expanding (5.21) diagrammati-
cally: The diagrams are identical to those of the continuum,
with hŜi given by the sum of vacuum bubble diagrams.

VI. SCATTERING AMPLITUDES

In this section, we propose a definition for the Smatrix on
a causal set. In curved spacetime, particles can be produced
by a nonstatic metric, and one expects this also in QFT on a
causal set that is a sprinkling into a nonstatic spacetime. On
the causal set, there are many continuum structures and
concepts that are used in continuum QFT that are missing.
For example, there is no analog of a Cauchy surface in a
causal set. We progress by adapting the concept of “scatter-
ing” to the technology we do have on the causal set: the SJ
vacuum with its corresponding particle states, noting that in
the continuum, in a spacetimewith a timelike Killing vector,
one can show formally that the SJ vacuum equals the
usual canonical vacuum defined by the positive frequency
modes [31]. To get as close as possible to the usual setup for
scattering calculations, we assume that the interaction
region is confined to a region between noninteracting “past”
and “future” regions. This enables the definition of “asymp-
totic” states formally associated to these noninteracting past
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and future regions, whose states then provide a proposed
definition for the causal set S matrix.
To define the past and future regions, we will make use

of the following terminology. A subcauset S ⊆ C is called a
stem (or down-set) if x∈S implies that y∈S for all y ≺ x.
A subcauset S ⊆ C is called a total stem if it is a stem and
for all y=∈S there exists some x∈S such that x ≺ y. A
subcauset S ⊆ C is called an up-set if x∈S implies that
y∈S for all y≻ x. A subcauset S ⊆ C is called a total up-
set if it is an up-set, and for all y=∈S there exists some x∈S
such that x≻ y.
Consider a finite causet C with N > 1 elements. Let P

and F denote a total down-set and a total up-set in C,
respectively, with P ∩ F ¼ ∅. We will refer to P and F as
the past and future regions in C and require that there are no
interactions in these regions; i.e., the interaction region is
given by CnfP ∪ Fg. Recall that we require that C is
naturally labeled, i.e., that if x ≺ y then x < y (cf. Sec. II A).
Therefore, regardless of which natural labeling one chooses,
the element labeled 1 is always contained in the past region
P, and the element labeled N is always contained in the
future region F . This will be the key to defining our
“asymptotic” states.
To define particle states in the interacting theory, note

that we can obtain a mode expansion of the Heisenberg
field by substituting the free field mode expansion (2.9)
into definition (3.11) of the Heisenberg field,

ϕHðxÞ ¼
X
λ>0

ffiffiffi
λ

p
ðvλxbλðxÞ þ v̄λxb

†
λðxÞÞ; ð6:1Þ

where we define bλðxÞ ¼ U†
xaλUx.

At x ¼ 1, we recover the free theory ladder operators,
bλð1Þ ¼ aλ, and the vacuum, denoted by j0; 1i and defined
by the requirement that bλð1Þj0; 1i ¼ 0 for all λ, is the SJ
vacuum (cf. Sec. II).
At x ¼ N, the vacuum, denoted by j0;Ni, is given by

bλðNÞj0;Ni ¼ U†
NaλUN j0; xi ¼ 0 ⇒ UN j0; xi

∝ j0i ⇒ j0;Ni ∝ U†
N j0i; ð6:2Þ

where ∝ denotes equality up to an overall phase.
Finally, we define the number operator at x ¼ 1 and

x ¼ N as

N ðxÞ ¼
X
λ

b†λðxÞbλðxÞ: ð6:3Þ

We can now define an in-state as an eigenstate ofN ð1Þ and
an out-state as an eigenstate of N ðNÞ. One can verify that
the in-states are given by applications of b†λð1Þ on j0; 1i,
while the out-states are given by applications of b†λðNÞ
on j0;Ni. We choose our normalization to be such that a

one-particle state is given by jλ; xi ¼ 1ffiffi
λ

p b†λðxÞj0; xi so that

h0; xjϕðxÞjλ; xi ¼ vλx for x ¼ 1; N.
[Note that while it may seem that the notion of the

number operator and the associated particle states could be
extended to any 1 ≤ x ≤ N, this is problematic because the
“state at x” that one obtains in this way is generally label
dependent unless x ¼ 1; N. Replacing Ux by the covariant
Vx (cf. Sec. III) results in label-independent states but does
not allow for the notion of asymptotic regions, requiring
instead that a state be defined at a point.]
Scattering amplitudes are given by the overlap of an in-

and an out-state. Taking two-to-two scattering as an
example, the associated amplitude is

outhλ3; λ4jλ1; λ2iin ¼ hλ3; λ4;Njλ1; λ2; 1i ¼ hλ3; λ4jŜjλ1; λ2i;
ð6:4Þ

where on the rhs, jλ; λ0i are the particle states of the free
theory, and Ŝ is the S operator given in (5.22), which
reduces to

Ŝ ¼ C

�Y
z

e−iHðzÞ
�
; ð6:5Þ

where the product is over points z in the interaction region.
To evaluate S matrix elements, one follows the familiar

continuum prescription: Expand Ux order by order in the
interaction coupling and apply Wick’s theorem. A con-
traction of a pair of fields gives rise to a Feynman
propagator (represented by an internal leg), while a con-
traction of a field with a one-particle state gives a mode
function,

ϕðxÞjλi ¼ vλxj0i; ð6:6Þ

and is represented by an external leg. From (6.4), we see
that in the absence of interactions, the amplitude trivializes,
and it does not capture any particle production due to a
nonstatic metric. We will investigate this in future work.

VII. CONCLUSION

A. Summary

In the causal set approach to quantum gravity, spacetime
is fundamentally discrete at the Planck scale and takes the
form of a causal set. Establishing a framework for quantum
field theory on causal sets is a valuable exercise: for
describing matter on a causal set spacetime, for making
phenomenological predictions under the assumption of
spacetime discreteness and for exploring new avenues for
regularizing the UV divergences of the continuum through
numerical methods. The main result of this work extends the
body of work on the in-in formalism on a causal set by
proving that the work of [27,28] on two-point functions in
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ϕ4 theory generalizes to all causally ordered in-in correla-
tors of local operators in scalar theories. This approach
complements the construction in [25] of algebraic quantum
field theory on a causal set and the associated diagrammatic
expansions of [62]. We leave understanding the relationship
between the two approaches to future work.
Our approach adapted the continuum construction of [38]

to a causal set background and recovered the same dia-
grammatic expansion. However, there are some differences
between the continuum and discrete that stem from the
difference in the interpretation of the diagrams. The fact that
in the discrete the continuum integrals over the interaction
vertices are replaced by sums means that several interaction
vertices can live at the same spacetime point. Since the
diagrams can be interpreted as decorated subcausal sets,
when the interaction region is finite, there are only finitely
many of them, and the series terminates at a finite order.

B. Future directions

By sprinkling causal sets at large density ρ into cosmo-
logical spacetimes, our framework can be applied to the
computation of cosmological observables. Each diagram
becomes a random variable, and understanding how their
behavior depends on ρ is of interest. In this scenario, the
coupling constant should be scaled by 1=ρ (on dimensional
grounds), e.g.,H ∼ g

4!ρ ϕ
4. There are many avenues one can

explore here, for example, computing the mean of a
particular diagram over a sample of sprinklings and the
fluctuations around this average. A question of particular
interest for comparison with the continuum is whether the
mean tends to a (finite) limit when ρ → ∞.
The similarities between the discrete in-in formalism and

the continuum formalism of [38] make comparisons
between the discrete and the continuum possible. For
example, one can show that in 1þ 1-dimensional
Minkowski space with an interaction region confined to a
finite causal diamond, the contribution from a diagram
containing only retarded propagators (and no Feynman
propagators) is equal to the ρ → ∞ limit of the ensemble
average of the same diagram in the discrete. The key that
makes this calculation possible is that in 1þ 1 dimensions,
the retarded propagator is constant. Investigating whether
this correspondence persists for diagrams that contain
Feynman propagators/in higher dimensions is another
direction for future research.
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APPENDIX: DERIVATION OF THE
DIAGRAMMATIC EXPANSIONS

In the following, we denote an ordered list by bold
letters; e.g., a ¼ a1…an is an ordered list of length n. We
only consider lists whose entries take value in the natural
numbers.
Definition A.1 (The function ϒ). Given an ordered list

a ¼ a1a2…an, we define

ϒðaÞ ¼
� 1

l1!…lk!
a1 ≥ a2 ≥ … ≥ zn

0 otherwise;
ðA1Þ

where k denotes the number of strings of equal signs in
a1 ≥ a2 ≥ … ≥ an, and li is the length of the ith string of
equal signs.
For example, if a ¼ 1, 2, 2, 4, 5, 5, 5 and b ¼ 1, 4, 2, 4,

then ϒðaÞ ¼ 1
12

and ϒðbÞ ¼ 0.
Definition A.2 (Shuffle of ordered lists). Given a pair of

ordered lists, a and b, their shuffle, denoted by a ⧢ b, is the
set of ordered lists that can be constructed by putting
together all of the entries of a and b into a single list c such
that the order of elements in c is compatible with the order
of elements in a and b.
For example, if a ¼ a1a2 and b ¼ b1, then a ⧢ b ¼

fa1a2b1; a1b1a2; b1a1a2g.
Definition A.3 (Permutation of an ordered list). Given an

ordered list a ¼ a1a2…an, a permutation π of a is an
ordered list of length n such that there exists a bijection
f∶ a → π with fðaiÞ ¼ ai for all i.
We will make use of the following properties of the ϒ

function. For any list a,X
π

ϒðπÞ ¼ 1; ðA2Þ

where the sum is over all permutations π of a. For any pair
of lists, a and b,

ϒðaÞϒðbÞ ¼
X

c∈ a⧢b

ϒðcÞ; ðA3Þ

where ⧢ denotes the shuffle product.
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Lemma A.1.

Ux;y ¼
X∞
n¼0

ð−iÞn
Xx−1

z1;…;zn¼y

Hðz1Þ…HðznÞϒðzðnÞÞ; ðA4Þ

where zðnÞ ¼ z1z2…zn and the n ¼ 0 terms is understood to equal 1.
Proof. Starting with definition (3.4) of Ux;y, expand the exponentials to obtain

Ux;y ¼
�
1 − iHðx − 1Þ þ ð−iÞ2 Hðx − 1Þ2

2
� � �
�
� � �
�
1 − iHðyÞ þ ð−iÞ2HðyÞ2

2
þ � � �

�
: ðA5Þ

Note that every order n term, which one can obtain from expanding the rhs of (A5) has the form,

ð−iÞn Hðz1Þn1 � � �HðzmÞnm
n1!…nm!

; ðA6Þ

with x − 1 ≥ z1 > z2… > zm ≥ y and n1 þ � � � þ nm ¼ n for some integer 1 ≤ m ≤ n. The order n term in Ux;y is the sum
of all terms of the form (A6), i.e., the sum of (A6) over the ordered partitions of n and over the possible choices of
z1; z2…; zm:

Xn
m¼1

X
n1>0

� � �
X
nm>0|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

n1þ���þnm¼n

X
x−1≥z1>…>zn≥y

ð−iÞn Hðz1Þn1 � � �HðzmÞnm
n1!…nm!

¼ ð−iÞn
Xx−1

z1;…;zn¼y

Hðz1Þ…HðznÞϒðzðnÞÞ; ðA7Þ

where in the second line, ϒðzðnÞÞ enforces the nonstrict label ordering z1 ≥ z2… ≥ zn and provides the factorial factors in
the denominator. ▪
Lemma A.2. For any operator O and x > y∈ C,

U†
x;yOUx;y ¼

X∞
n¼0

ð−iÞn
Xx−1

z1;…;zn¼y

½…½½O;Hðz1Þ�;Hðz2Þ�…;HðznÞ�ϒðzðnÞÞ; ðA8Þ

where zðnÞ ¼ z1z2…zn and the n ¼ 0 term is understood to be O.
Proof. By Lemma A.1 we have

U†
x;yOUx;y ¼

 X∞
n1¼0

ðð−iÞn1Þ�
Xx−1

z1;…;zn1¼y

Hðzn1Þ…Hðz1Þϒðzðn1ÞÞ
!
O

×

 X∞
n2¼0

ð−iÞn2
Xx−1

zn1þ1;…;zn1þn2
¼y

Hðzn1þ1Þ…Hðzn1þn2Þϒðzðn2ÞÞ
!
; ðA9Þ

with zðn1Þ ¼ z1z2…zn1 , z
ðn2Þ ¼ zn1þ1zn1þ2…zn1þn2 and the n1 ¼ 0 and n2 ¼ 0 terms understood to be equal to 1. The order

n > 0 contribution to (A9) is
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ð−iÞn
Xx−1

z1;…;zn¼y

X
n1þn2¼n

ð−1Þn1Hðzn1Þ…Hðz1ÞOHðzn1þ1Þ…HðznÞϒðzðn1ÞÞϒðzðn2ÞÞ

¼ ð−iÞn
Xx−1

z1;…;zn¼y

X
n1þn2¼n

ð−1Þn1Hðzn1Þ…Hðz1ÞOHðzn1þ1Þ…HðznÞ
X
w

ϒðwðnÞÞ; ðA10Þ

where in the second line, we applied Eq. (A3) to write the produce of theϒ as a sum over wðnÞ ∈ zðn1Þ ⧢ zðn2Þ. Next, to each

wðnÞ, we apply a coordinate transformation so thatwðnÞ ¼ w1w2…wn↦
wðnÞ

zðnÞ ¼ z1z2…zn, i.e. wi↦
wðnÞ

zi. Writing pðiÞ to denote
the position of zi in wðnÞ, the transformation we need is zi ¼ wpðiÞ↦

wðnÞ
zpðiÞ. Plugging this back into (A10), we find

ð−iÞn
Xx−1

z1;…;zn¼y

ϒðzðnÞÞ
X

n1þn2¼n

ð−1Þn1
X
w

Hðzpðn1ÞÞ…Hðzpð1ÞÞOHðzpðn1þ1ÞÞ…HðzpðnÞÞ; ðA11Þ

where the pðiÞ labels are implicitly dependent on wðnÞ. By comparing (A11) with the order n term in (A8), we find that to
complete the proof, we must show that

½…½½O;Hðz1Þ�;Hðz2Þ�…;HðznÞ�
¼

X
n1þn2¼n

ð−1Þn1
X
w

Hðzpðn1ÞÞ…Hðzpð1ÞÞOHðzpðn1þ1ÞÞ…HðzpðnÞÞ: ðA12Þ

To prove (A12), we proceed with a counting argument. Consider the lhs of (A12) and note that

(1) It contains 2n terms.
(2) Each term is of the form ofO sandwiched between a

product of Hamiltonians.
(3) Each of Hðz1Þ;…HðznÞ appears in each term

exactly once.
(4) A term has a positive sign if there is an even number

of Hamiltonians to the left of O and negative
otherwise.

(5) The product of Hamiltonians to the right (left) of O
is ordered so that the labels of the z coordinates
increase (decrease) from left to right.

We observe that conditions (1)–(5) are also satisfied by the
rhs. In particular, condition (1) follows from the fact that
there are ( nn1) shuffles of two words of lengths n1 and n − n1
so the number of terms on the rhs is

P
n1ð nn1Þ ¼ 2n, and

condition (5) follows from the order-preserving properties
of the shuffle. To complete the proof, we argue that there
exists exactly 2n terms that satisfy conditions (2)–(5), and
the result follows.
To construct a term satisfying conditions (2)–(5), fix

some n1 and choose n1 Hamiltonians to be on the left of O
leaving the rest to the right. Now order them to satisfy
condition (5), and note that there is a unique way to do that.
Thus, there are ( nn1) ways to construct an appropriate term
with n1 Hamiltonians on the left. The total number of

possible terms that can be constructed to satisfy conditions
(2)–(5) is therefore given by

P
n1ð nn1Þ ¼ 2n. ▪

For the remaining lemmas, consider a finite causal set C
and k integers satisfying jCj ≥ x1 > x2… > xk ≥ 1. Let
OHðxiÞ denote a local Heisenberg picture operator living
at xi.
Lemma A.3.

OHðx1Þ…OHðxkÞ ¼ U†
xkO1…kUxk ; ðA13Þ

where O1…k is defined recursively via

O1…p¼
�Oðx1Þ p¼1

U†
xp−1;xpO1…p−1Uxp−1;xpOðxpÞ 1<p≤ k:

ðA14Þ

Proof. This is a short proof by induction. Consider
k ¼ 1, 2 for the base case. Then assuming (A13) holds for
all k ¼ 1;…; s, it follows from the composition properties
of U (3.7) and (3.8) that it also holds for k ¼ sþ 1. ▪
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Lemma A.4.

U†
xp−1;xpO1…p−1Uxp−1;xp

¼
X∞
n¼0

ð−iÞn
X

n1þ���þnp−1¼n

Xx1−1
z1;…;zn1¼x2

Xx2−1
zn1þ1;…;zn1þn2

¼x3

� � �
Xxp−1−1

zn1þ���np−2þ1;…;zn¼xp

½� � � ½� � � ½½� � � ½Oðx1Þ;Hðz1Þ� � � � ;Hðzn1Þ�Oðx2Þ;Hðzn1þ1Þ� � � �Oðxp−1Þ;Hðzn1þ���þnp−2þ1Þ� � � � ;HðznÞ�ϒðzðnÞÞ; ðA15Þ

where O1…p−1 is as given in (A14).
Proof. We proceed by induction. Suppose true for p ¼ s and consider the case p ¼ sþ 1. To compute

U†
xs;xsþ1

O1…sUxs;xsþ1
; ðA16Þ

we start by expanding O1…s by applying definition (A14) together with the inductive assumption,

O1…s ¼
X∞
n¼0

ð−iÞn
X

n1þ���þns−1¼n

Xx1−1
z1;…;zn1¼x2

Xx2−1
zn1þ1;…;zn1þn2

¼x3

� � �
Xxs−1−1

zn1þ���ns−2þ1;…;zn¼xs

½� � � ½� � � ½� � � ½Oðx1Þ;Hðz1Þ� � � �Oðx2Þ;Hðzn1þ1Þ� � � �Oðxs−1Þ;Hðzn1þ���þns−2þ1Þ� � � � ;HðznÞ�OðxsÞϒðzðnÞÞ: ðA17Þ

Now, we compute (A16) by substituting the rhs of (A17) for O1…s and applying Lemma A.2 to obtain

X∞
m;n¼0

ð−iÞmþn
X

n1þ���þns−1¼n

Xx1−1
z1;…;zn1¼x2

Xx2−1
zn1þ1;…;zn1þn2

¼x3

� � �
Xxs−1−1

zn1þ���ns−2þ1;…;zn¼xs

Xxs−1
znþ1;…;znþm¼xsþ1

½� � � ½½� � � ½� � � ½Oðx1Þ;Hðz1Þ� � � �Oðxs−1Þ;Hðzn1þ���þns−2þ1Þ� � � � ;HðznÞ�OðxsÞ;Hðznþ1Þ� � � �HðznþmÞ�ΥðzðnÞÞΥðzðmÞÞ; ðA18Þ

with zðmÞ ¼ znznþ1…zm. Now, apply (A3) to replace the product ϒðzðnÞÞϒðzðmÞÞ with the sum
P

z ϒðzÞ with z∈ zðnÞ ⧢
zðmÞ and note that the limits of the summations in (A18) mean that the only term that survives is ϒðzðnþmÞÞ where
zðnþmÞ ¼ z1…znþm. Finally to show that the lemma holds for p ¼ sþ 1, relabel as mþ n → n and m → ns. ▪
Corollary A.5.

OHðx1Þ…OHðxkÞ ¼
X∞
n¼0

ð−iÞn
X

n1þ���þnk¼n

Xx1−1
z1;…;zn1¼x2

Xx2−1
zn1þ1;…;zn2¼x3

� � �
Xxk−1

zn1þ���þnk−1þ1;…;zn¼1

½� � � ½� � � ½½� � � ½Oðx1Þ;Hðz1Þ� � � � ;Hðzn1Þ�Oðx2Þ;Hðzn1þ1Þ� � � �OðxkÞ;Hðzn1þ���þnk−1þ1Þ� � � � ;HðznÞ�ΥðzðnÞÞ.
ðA19Þ

Proof. It follows immediately from plugging (A15) into (A13). ▪
Lemma A.6.

hOHðx1Þ…OHðxkÞi ¼
X∞
n¼0

ð−iÞn
Xx1−1

z1;…;zn¼1

h½� � � ½½Oðx1Þ…OðxkÞ;Hðz1Þ�;Hðz2Þ� � � � ;HðznÞ�iΥðzðnÞÞ: ðA20Þ

Proof. Begin by taking the expectation value of both sides of (A19). Then note that the value of the summand,

h½� � � ½� � � ½½� � � ½Oðx1Þ;Hðz1Þ� � � � ;Hðzn1Þ�Oðx2Þ;Hðzn1þ1Þ� � � �OðxkÞ;Hðzn1þ���þnk−1þ1Þ� � � � ;HðznÞ�iΥðzðnÞÞ;
differs from the value of

h½� � � ½½Oðx1Þ…OðxkÞ;Hðz1Þ�;Hðz2Þ� � � � ;HðznÞ�iΥðzðnÞÞ;

only outside the domain of the nested sum, so replace the former by the latter. [One way to observe this equivalence is via
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the diagrammatic representations of the expectation value
of the nested correlators (cf. Sec. IV). The latter expression
is given by all diagrams with n internal and k external
vertices such that each internal vertex is connected via a
path of retarded propagators to at least one external vertex.
The former expression is given by the subset of these
diagrams in which only the last nk internal vertices may be
connected by a path of retarded propagators to xk, only the
last nk þ nk−1 internal vertices may be connected by a path
of retarded propagators to xk−1, etc. The diagrams that
make up the difference between the two expressions vanish
in the domain of the nested sum.]

To complete the proof, we note that ϒðzðnÞÞ vanishes
everywhere outside the domain of the sum, which enables
us to make the replacement,

X
n1þ���þnk¼n

Xx1−1
z1;…;zn1¼x2

Xx2−1
zn1þ1;…;zn2¼x3

� � �
Xxk−1

zn1þ���þnk−1þ1;…;zn¼1

⟶
Xx1−1

z1;…;zn¼1

: ðA21Þ
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