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In this paper, we construct a general bulk wave packet in the AdS/CFT correspondence. This wave
packet can be described both in bulk and conformal field theory (CFT) descriptions. Then, we compute the
time evolution of the energy density of this wave-packet state on the vacuum in the CFT picture of
AdS;/CFT,. We find that the energy density of the wave packet is localized at two points, which means
that the bulk wave packet corresponds to two light-like particle-like objects in the CFT picture. Our result
implies that the entanglement wedge reconstruction given by Almheiri et al. [Bulk locality and quantum
error correction in AdS/CFT, J. High Energy Phys. 04 (2015) 163] is invalid.
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I. INTRODUCTION AND SUMMARY

The AdS/CFT correspondence [1] is expected to be
important to understanding quantum gravity. In particular,
because the bulk spacetime should emerge from conformal
field theory (CFT), we can, in principle, understand the
bulk spacetime in quantum gravity from the AdS/CFT
correspondence. For this purpose, several bulk spacetime
probes in CFT are known, including correlation functions,
Wilson loops, and entanglement entropy.

The important probes of bulk spacetime, which have not
been studied intensively, are the wave packets in bulk
spacetime. Such wave packets are fundamental objects for
thought experiments in bulk spacetime. In particular, a local
region in the bulk spacetime can be probed by the time-
evolved wave packet. Then, the relationship between the
local region of the bulk where the wave packet resides and
the corresponding region of the boundary in the CFT
picture will be the key to understanding how the bulk
spacetime emerges from the CFT. Thus, it is important to
understand how the bulk wave packets are described in the
CFT picture. In [2,3], a special kind of bulk wave packets,
for which only their direction is fixed, were considered in
the AdS/CFT correspondence, although the general bulk
wave packets have not been studied.

In this paper, we first construct a general bulk wave
packet in the AdS/CFT correspondence. Here we take the
large-N limit, which is the free limit in the bulk picture and
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the generalized free approximation in the CFT picture.
Furthermore, we consider only the bulk scalar field and the
corresponding scalar CFT operator, for simplicity. This
wave packet can be described in both bulk and CFT
descriptions.'

Then, we compute the energy density of this state of the
wave packet on the vacuum in the CFT picture of
AdS;/ CFTZ.2 Note that the energy density does not vanish
if the CFT state is excited by the local CFT operator there.
Thus, if the distribution of the energy density is localized in
some regions, the CFT state is localized in those regions. We
find that the energy density of the wave packet is localized at
two points, which are on the light cone, in the CFT picture,
which means that the bulk wave packet corresponds to two
light-like particle-like objects in the CFT picture, although
these are not like the free particles. This result completely
agrees with the result in [2,3] in which the entanglement
wedge reconstruction given in [4] was shown to be invalid.
Note that our results in this paper only use the Banks-
Douglas-Horowitz-Matinec (BDHM) extrapolation relation
[5], which is the basic AdS/CFT dictionary, like the Gubser-
Klebanov-Polyakov-Witten relation [6,7], and the known
three-point function in 2D CFT.

We also compute the vacuum expectation value (VEV) of
the CFT primary scalar operator for the wave packet. The

'In this paper, we consider the light-like wave packet. This is
because we consider a generic A and the nonrelativistic wave
packet can be considered only for A > [,45, Where A is the
conformal dimension of the CFT operator and /,4s is the length
scale of the AdS space, which we set to /4g5 = 1.

*More precisely, we compute the energy density of this state of
the wave packet represented by (2.13) in the CFT picture. The
energy density depends on 1/N corrections of the wave-packet
operator. Our operator is special because it is localized at a point
of the boundary on a time slice.
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distribution of this is completely different from that of the
energy density. This is because there are infinitely many
independent fields at a fixed time for the generalized free field.

II. WAVE PACKETS IN AdS/CFT
A. Bulk and CFT fields in AdS/CFT

Let us consider the global AdS,,; and Q represents
coordinates of a (d — 1)-dimensional sphere S¢~!'. The
coordinates 7 and p run in the ranges —oo < 7 < oo and
0 < p < /2. In the coordinates, the metric takes the form

ds* = —d7® + dp? + sin? pdQ2_). (2.1
s COS2p( T2 4 dp* + sin® pdQ;_ ;). (2.1)
For the Poincaré patch of AdS,,;, the metric is
1 o
ds* = = (—dt* + dz* + &;;dx'dx/), (2.2)

<

where z>0and i,j=1,2,...,d—1.

Let us consider the canonical quantization of a free scalar
field ¢ with mass m, which satisfies the equations of
motion ((J—m?)¢p = 0. For the Poincaré AdS,,, the
mode expansion of the scalar field is given by the
Bessel functions as

ot z,x") = C/

o>ViZ

dwdkieiwt—iijfzgal') Wy (1 /? — k22>

+H.c., (23)
where v = \/m? +d*/4 = A —d/2 and k* = k/k;. Note
that we included the normalizable modes only. Here the
asymptotic behavior of the Bessel function is

J,(Wa? —122) = Var =12z forz -0, (2.4)
2
L (Va? = k7)) = | ————
( ) wa? —k*z
2 1
X cos<\/ w? —k*z — y: ﬂ)
for z = oo. (2.5)

The overall constant C is usually chosen such that it
satisfies the canonical commutator,

o(t, z’,x’i),%gb(t,z,xi)] =i5(7 —2)6(x" = x), (2.6)

where we defined the creation operators as
(@) 4] = 8@ — @)K = k). (2.7)

However, we make a different choice, as explained below.

The CFT primary operator O corresponding to the bulk
scalar field ¢ is obtained by the BDHM relation O(z, x') =
lim,_, ¢(t,z,x") /2% [5] as

O(t,x') = C/ dwdkieiwt—iijf \/mA_d/za* .
(1)>\/k—2 ,

+Hec., (2.8)

which is valid only for the large-N limit or the generalized
free theory limit. We choose the normalization constant C
such that the above BDHM relation holds with the standard
normalization of the CFT primary field O(t, x'). For d = 2,
this means

1

(uy = Mz)A(vl - vz)A 7

(010(u1, v1)O(uy, v2)|0) = (2.9)

where u = (1 4+ x),v = (t — x).

B. Wave packets

In this paper, we consider essentially Gaussian wave
packets because we study the generic properties of the wave
packets. We mainly consider a one-particle state on the bulk
side for simplicity. It is easy to generalize this state to the
coherent state for the weak-coupling bulk theory, as done in
Appendix A.

1. Minkowski spacetime

Let us remember the wave packets, at t = X =0, of a
free scalar field in d + 1-dimensional Minkowski space-
time:

2 oo o 2?2
/ die 3 P p(1=0,5)[0) / dke=="aj0),  (2.10)

where p is the momentum of the wave packet and
[a;g,alj = 6(k). Instead of this, we can consider another
wave packet that is defined by a Gaussian integral for the

time and x’ where i =2, ...,d:

oo
/dt [T dxie 2P 2, %) _o[0)

i=2,....d

o / dRe= S K= ki=p) TP HE-0P) 4110 (2.11)
k

where i runs only for 2,...,d. Here we assume that
lap’| > 1 and aw > 1, which are needed for the wave
packet and we always assume these. With these, it is
approximated as

o _d((spi2 1 Pk
/dke (8K ) +(ky—p +p| ) )a£‘0>

piok;

a2 i P oxy
+ / dke” TR 41y (2.12)
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where p! = \/w? — p'p; and Sk’ = k' — p'. These are the
Gaussian integrals around k' = £p! and k' = p’. Thus,
the wave packet (2.11) is essentially the same as the sum of

the original wave packets (2.10) with opposite momenta.
w42

Note that if we change the Gaussian factor e” 2 in (2.11)

2

Dy ixtod 1 pr
to a general one ¢ a7 with the appropriate constants
h, I, the approximated Gaussian factor can be taken to be
the same one as in (2.10). Furthermore, if we consider the
theory on the half-space x! > 0 with a boundary condition
on x = 0, only one wave packet can be obtained by (2.11).
We consider such wave packets in AdS,., where x!

corresponds to the radial direction z.

2. Wave packet in AdS/CFT

In anti—de Sitter (AdS) spacetime, wave packets are
constructed as in flat spacetime. The wave packets should
be very small in size compared with the AdS scale, where
the AdS spacetime can be approximated as a Minkowski
spacetime. Thus, the wave packets (2.10) and (2.11) in the
flat spacetime can be regarded as the wave packets in AdS
spacetime for a < 1. Furthermore, in AdS spacetime any
wave packet will reach the asymptotic boundary by the
time or backward time evolution. Thus, we need to prepare
wave packets almost on the boundary only to represent a
general wave packet. On the boundary, the bulk scalar field
¢ is identified as the CFT primary field O with an overall

|

0|p(t = 0,z,x )| p, @) = (a\/,—,)dcz/

o>ViZ

factor by the BDHM relation. This means that the bulk
wave packet in AdS/CFT can be given by

1 oo .
m@=%¥/mW€ﬁﬂ””wmwm>

N /dtdx"e_x ;;r-”””xi_imo(t, x)[0) (2.13)

for the Poincaré AdS, (2.2).” This can be regarded as the
state in bulk and also the state in the CFT. Here we require
that
a’p?>1, aw > 1, (2.16)

and then the wave packet has a definite orientation with the
momentum p; and energy @.

Let us check the time evolution of this state in the bulk
picture. The bulk localized (one-particle) state is

L g
dwdk,-e’“”_’k-f"'szy

¢mawm=c/

o>ViZ

x (Vo - kz)a, ,|0),

which is not normalized.* In order to consider the bulk
spatial distribution of the wave-packet state (2.13) at time ¢,
we consider the following overlap:

(2.17)

da)dkieiwt+ikije_§((k"_p")2+(w_&))2)‘ /w? — k22A_dZ‘5’JU(1 ? — k2Z) )

(2.18)

Because of the Gaussian factor, the integrals are dominated for the region near k; = p;, @ = &. Defining 6w = o — @,
Sk; = k; — p;, and p, = /@ — p?, the overlap can be approximated as

0g(t = O,Z,xi)eiH'|p,CT)> ~ (aﬁ)dcz Z/EZ%(pz)zA—d—l/zeiu‘)Hipjxf

X/d5wd5kieiéwz+i5k,x/e—“j((&k)2+5w2) cos((pZ)

The integral in this is proportional to

3Using (2.8), we can rewrite the state in momentum space,

p.) = (@vmyc [

>

2 (ki=pi
dwdk;e™*
VP

24 @60 — pisk; 2w+ 1
roow - pok vt 7z>. (2.19)
p: 4

2+ (w-a)?
2

for the generalized free-field approximation. The norm of this state is

N?=(p,®

p.&)=(ay/m)C? /

which is approximated as N2 ~ (ay/73)?\/@* — p>>*~*C2.

w>VIk?

Vr — 124 o), (2.14)
dordk;e==p P +@=01) \ /g2 _ 12?4 (2.15)

“This state cannot be normalized and we need to smear this state to eliminate the high-energy modes. Here we use this because we
consider the overlap between this and the wave packet state, which is already smeared.
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/déwd(skiei&a)(ti&)z/pz)+i5kj(xj:{:pfz/p:)e—%((rik)zﬂﬁwz) ~ e—ﬁ((ti(?)Z/m>2+(xf¢pfz/pz)2), (2.20)

which is strongly suppressed by the Gaussian factor for

lt+@z/p.|>a, or |¥ Fpiz/p.|>a (2.21)

Thus, at each time ¢ > 0, the wave packet is localized at
z="21x =—L¢ which is on the light-like trajectory

from the boundary point at t = 0 with the energy @ and
momentum p,, p;, as expected. This also implies that the
size of the wave packet is O(a) for any time 7 in the

coordinate z, x'.

3. Remarks on the asymptotic AdS case

So far, we have considered the wave packets in AdS
space. The wave-packet state (2.13) can also be regarded as
the wave-packet state in the asymptotic AdS case. This is
because the state is written by the bulk field on the
asymptotic boundary or the CFT primary fields. Indeed,
near the boundary, spacetime can be regarded as the AdS
space and the state will represent the wave packet moving
toward the inside of the asymptotic AdS space. The wave
packet will be on the null geodesics of the asymptotic
AdS space.

Another remark is that the wave-packet state (2.13) can
be created from the vacuum or the semiclassical back-
ground by the source term in CFT because it is written by
the CFT primary fields. Indeed, by adding the source term

J ! / ! J !
ef Al dxel (1. )00 X) (with small e, we can obtain the wave-

packet state (2.13) at the subleading order in € by setting the
source term J(z,x) as the Gaussian factor in (2.13). For
general ¢, the state becomes the coherent state given in
Appendix A. In the bulk theory, the one-particle state is
described by the free quantum field approximation around
the AdS background and the coherent state can be
considered as a free approximation of the classical field.

III. ENERGY DENSITY OF WAVE PACKET IN CFT
PICTURE

We can consider the time evolution of the bulk wave
packet (2.13) as a state in CFT. Here the bulk wave packet
can be regarded as a basic probe of the bulk spacetime
point. Thus, in order to understand how the bulk spacetime
emerges from CFT, it is important to know what is the
spacetime region of this state in the CFT picture.’

We compute the time evolution of the energy density of
the bulk wave packet (2.13) in the CFT picture in order to
investigate where the state (2.13) in the CFT picture is

A special kind of bulk wave packet and the corresponding
CFT state was considered in [2,3], and we will see that the general
bulk wave packet (2.13) also has the same property, as expected.

[

localized at each time. Another quantity that might behave
like the energy density is the expectation value of the
primary scalar operators O. However, this quantity is not
good for our purpose. Indeed, if we see it as representing
the location of the state in the CFT picture, its time
evolution violates causality, as we will see later. The reason
for this is as follows. The generalized free field does not
obey equations of motion and %(’) with different n are
independent at each time. The expectation values of %O
are independent quantities. Thus, if these are different, we
cannot take one of them as a representative. Furthermore,
because the number of these independent operators is
infinite, it is difficult to obtain information on the location
of the state in the CFT picture.

The energy density for (2.13) is the three-point function
of the two primary scalar operators and the energy-
momentum tensor,

(p.®|To(t =1.x5" = X7)|p. @)
S i PR
:/ dnydi e TP / dtydxie™ 2 HiPmion

X (0]O(ty,x1)Too(t = 7.x" = ¥')O(1,, x,)|0), (3.1)

in the Heisenberg picture. Because such a three-point
function in CFT is known exactly, we can compute the
energy density. It is important to note that this computation
does not use the generalized free approximation, which is
the leading order of the large-N expansion, and the result is
valid for a large but finite N.

We also note that the operator ordering of this does not
follow the time ordering. The ordering of the operators is
fixed by the path of analytic continuation from the
Euclidean correlation function. This can be implemented
by slightly deforming the insertion points by a small
imaginary time, as in the ie prescription. For (3.1), we
change ¢, — t; +ie;, T—>1+iep, and t, - 1, + i€y,
where €; > e > ¢,. For example, we can take ¢; = —¢, =
e >0 and ey = 0.

Below, we will consider the energy density in the
approximation a < 1 and @a > 1, (p;)?a> > 1. We will
neglect the terms that become zero in this limit. We also
assume A = O(1), which implies the mass m is O(1) and
the wave packet behaves like a massless particle because its
the energy and momentum are much larger than the mass.’
We will also consider the d = 2 case only.

°If we take A > 1 such that ma < 1, the Compton length 1/m
will be larger than the size of the wave packet. In this case, the
wave packet can correspond to the massive particle.
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A.d=2

For CFT, in the complex plane, the energy-momentum tensor is given by T(z) and 7(z). We need to compute
(0[O(2,7)Too(€.£)O(2.2)[0), where the energy density is 3-T(z,Z) = 5- (T(z) + T(z)). Using the conformal Ward
identity, the three-point function’ is evaluated (see, for example [8]) as

<0\T<5>ol<z1,zl>oz<z2,zz>|o>=Z((g i | 9 )<0|01<z1,z1>02<z2,zz>|o>

—Zi)2 E-z

hi J; 1
> <<f —up &= zl-) @) R ) (32)

where we used the normalization of the primary operator such that the two-point function is the standard one and #4; is the
weight with A = h + h.
For Minkowski spacetime, we replace z — u = (1 +x) and 7 - —v = —(¢ — x), and then we obtain®

(01O(t1,x1)Too(t = T, x = %)O(t2,x,)[0) = (0[O(uy, vy )(T (&) + T(2))O(us, v,)|0)

Using this, the energy density for (2.13) is

()22 ()22

p,d)> = /dtldxle T—sz1+lwt1 /d[deée 2—2+1pr it

KA < (1 — ) (01 = 1)’ ) ! . (34)

2\ @@ =02 - 022) (1 = w)2 (0 — 1)

(P, @|Too(t =7,x = X)

We will evaluate this explicitly below. Because the calculation is not very technically simple, we state the results of the
calculation first. The energy density £(¢, x) of the wave-packet state is approximately given by

1 _(rn)? -2
E(t,x) = (e (@ —p)+e 2 (@+p)) (3:5)
2\ 2ra
which is localized on the light cone x = ¢ or x = —.

Before computing the energy density of the wave-packet state, let us consider the state |p, @) with p = @ = 0 because it
is simpler. This corresponds to the (Gaussian-smeared) local CFT operator insertion. We will see that the energy density of
this state in CFT is localized on the light cone. For this, we have

G2 ()P (n)?
%)|0,0) dtidx, [ dtydx,e 222 e 22

x( (h—w)” (o =v)’ ) ! . (36)

2 \(@—wuy)*(a—up)* (0 =01)*(0—02)*) (g — up)*(vy — vy)*

The Gaussian integral approximately vanishes except for the region near u; = v; = 0. For |z| > a and |p| > a, which
implies that the energy-momentum tensor is inserted far from the light cone of the scalar operator insertion point, we can use
the following expansion:

(0,0]Too(t =

"Here we consider Euclidean, not Lorentzian, CFT and we do not care about the operator ordering as usual, although the operator
ordering is fixed by the imaginary time.

More precisely, we need to include the small imaginary part as the ¢ prescription according to the ordering of the operators. The
definitions of m and similar terms should be given by the convergent sum expression in the Euclidean cylinder, as explained in, for
example, [9]. In our case, although the overall phase factor depends on these definitions, it is indeed fixed by requiring that the energy is
real and non-negative.
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3

()2 42+ (xp) 2 +12 A _ 2 _ 2 1
(0,0|Tgo(r = 7,x = %)|0,0) :/dtldxldtzdxze_ilzaz 28 ()" | (01 = o) B
2 (uy —uy)

it v Aoy —1y)

(3.7)

where --- means O(d5) and O(&) terms. This implies that (0,0|T(r =7, x' = %')|0,0) ~ O(m) at t =17 and the
contribution of the region |x + 7| > a to the energy of the state at t = 7is O (.

—3). Thus, the energy density is localized and
[x+7|
only nonzero, for a — 0, at X =7 or x = —1, which are on the light cone.

Now, let us go back to studying the wave-packet state |p, @). For this, by defining

we have
B _(X1)2+’f_. i _(X2)2+f§+4 _iot
<p,(1)|T00(t =71,x= J_C) p7(;)> = /dlldx1€ S2 lpxition /dtzdxze o Hipxy—ibn

A (uy — uy)? (v — vp)? 1

X —| = - + = -
2 <(” - Ml)z(” - U2)2 (v - 01)2(1’ - U2)2> (uy = uz)A(Uz - Ul)A
()2 (1) +p) > +(12)? ‘\

_ l duldvlduzdvze 2 i(putti +pyvy=Ppuity—p,v2)/2
4

A () — uy)? (v, = v)? 1
((u S @—wp (-0 (- >> (uy — 1) (0 — 0,)

(1 —[p,,az )2+('L‘1 —[pvnz)2+(u2+ip“a2)z+(1:2+[p,;a2)2 a2/

1 2
— 4/du1d1jldu2d1)2e 4q2 2\(p1()2+(p1) )

A< () — 1) (v, = v,)? ) 1

I\ w2 a—wml =0 - 02 (a1 = )2 (02 — 1)

: 5 (39)

which is localized on the light cone # = 0 or 7 = 0, as we can easily see using the same argument above. We will evaluate
this more explicitly below. Let us consider a part of it:

—ipn a2 (o1 —ipnal)? in,a2)2 in a2)2 2
du d,U du d,U ¢ (ug=ipya”)“+(vy=ipya )422142+1pua )= +(vp+ipya“) HZZ((pu)er(p”)z) (ul — uz) 1
1 u 25 ug uy (%) V1

o2 (1;]—i])puz)z+(1,'2+ipp112)2 1
_ L) / dodpge S L
(va = v1)
2 5 _(u]—ip,,a2)2+(u2+ipuaz)2 1 1
x @) / duydupe™ = L . (3.10)
(it = uy)* (@ = uz)* (uy — up)

The other part is obtained by interchanging {&, p, } and {?, p,}. Here the integration paths are taken as u; € R — i¢; and
v; €R —ie;, with €, > 0 > € for the ie prescription for the ordering of the operator. First, we perform the v, integration,

vt ’1)“2 2 (vy+i 1;"2 2
S / dvydvge~ T L
(v2 —vy)
-t / and g 2 , 3.11
( ) e 2 U] 7-)2 (Ul —_ Uz)A—q F(A) a/[j‘l] e 2 ( )

where ¢ is an integer such that 1 > A — ¢ > 0, and consider what happens if we move the path to v, € R + ia®p,,. Then, the

ﬂz . . .
integration does not depend on p, and the Gaussian factor e=7(7.)°, which is very small, cannot be canceled. Thus, this
contribution can be neglected in our approximation. The remaining parts of this are contributions from the pole or the
branching point at v, = v, in the region between R — ie; and R + ia’p,,.
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For A € Z, for which ¢ =
the single pole at v; = v, is

A — 1, the contribution from

2ri 2 ) 0AL  (i-ippa®P (v +ipya?)?
(1 e 2((p)) / dupore e
1 V=02
:F(”Al) (—ipU/Z)A_le_T((”L /dvze e
2m)3¥%
= o a2 (3.12)

where we have neglected the terms that are subleading in
1/(p,a) expansion.’

For A ¢ Z, there is a branching point v; = v,. Here we
can neglect the contribution around the branching point

|
/ptaz
0

(=%

d 07 _M o0 d
4a ~
Y liy)A a(iy)e ¢ A y

because 1 > A — g. Thus, the contribution from the cut
from v; = v, is

( A __ P( /dvz

poa 1 r A q) aq (1r2+iy—i111;l!2)2+(1!2+ip7,a2)2
X / = e 4a? ,
o ) @) o)

(3.13)

27[1 (g—A) )l

where v; = v, + iy. Because of the Gaussian factor, which
is almost zero for y > a, the y integration can be approxi-
mated as

1)2—1 pl ,a2)2

(=1)*

(e P/ 2 e

(vp lpL ‘,2)2

=T(1-A+q)(p,/2)* e (—1)A7(=0)% (3.14)
Then, we can easily check that this also gives (3.12) for A ¢ Z.
Next, we compute
5 (uy=ipua®)?+(uy +ipya®)? 1 1
=5 ((pa)?) /d die =@
e 2 uaue 4a — — —
(i = wy)*(@t = up)? (uy — up)™2
2 (u2+ipua2)2 1 1 a _(ul—ipuaz)z 1
= e=5((P)) /d o 7/51 — ( w 7> (3.15)
ez use — u - e — . .
(& —up)? (uy — @) ou, (uy = up)2
As for the v, integration, we move the path of the u; integration to u; € R + ia®p,, and take the residue at u; = i1."% Then,
the result is
2 (u=ipya®)? (uy+ipya®)? 1 1
dmie= () o~ / duye™ (lp /2-(A-2) —) (3.16)
(it = uy)® ! (it — uy)
where we have neglected the term proportional to # which
_@?* )2 —
is small because there is the Gaussian factor e 22 after the — (_1)A(2;;)2e_% ! (=ip./2)" <—1 + A2>
u, integration, as we will see below. For the u, integration, I'(a) A
we move the path to u, € R — ia®p, and take the residue at B ) @2 . A2
u, = . Then, the result is = (22)%e r(A) (ip./2) A (3.17)
- Thus, we obtain
? After the Gaussian v, integration, v, becomes a O(a) quantity.
10, . . . . ..
There is also the contribution from the singularities at _@? 1 ., Pua
u; = u,. However, at this point, the Gaussian factor becomes Axe 2 (Zﬂ)S/Z F(A)Z (Pvpu/4>A IT. (3'18)
(ny+ipua®)? _(uy=ipya®)? ()2 ~(pua*)?

e W e W  =e 24 and the u, integration is p,
independent. Using this, we can easily see that this contribution is
smaller than that from the pole at u; = i.

We need to compute the normalization of the state,
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N? = (p,|p, ®)
(x)2+72

1

2,2

S T . W)ty
:/dtldxle 22 sz1+twt1/dt2dx2€ 32 +ipx,—idty

(x2)

(u]—ip,,u2)2+(w]—ipvnz)2+(u2+ip“u2)2+(1:2+i1},,u2)2 2 2 2
L((p)+(po)) !

1

(uy — Mz)A(Uz - 1y)

A

:4/du1dvldu2dv2e 4a?

which is the same as the computation of (3.11) and (3.12).
Hence, we obtain

2”)3/2 A _
(A) (_l) a(pb/z)A !

(27)3/?
r(A)

2 1
N T4

—

X

(i)%a(p./2)*7". (3.20)

Finally, we have the energy density £(7, X) of the wave-
packet state as

_ 1 1 - _
E(t,x) = m<P,w|§Too(f =5Lx=X)|p,®)

1 _@? @2

~

3.21
2ra ( )

which is localized on the light cone # = 0 or # = 0. The
energies of the regions near # = 0 and » = 0 are p, /2 and

x2
P./2, respectively, because ﬁ [ dxe™2@ = 1. Their sum

is the correct energy @ of the state.

In summary, the energy density of the wave-packet
state (2.13) in AdS;/CFT, at time ¢ is localized on the
light cone x = +¢ for small a and small 1/(@a). The
energy localized near x =, which is equivalent to
v=x—1t=0,1is (@+ p)/2. The energy localized near
X =—t,
which is equivalent to u = x + ¢ =0, is (@ — p)/2. Thus,
the wave packet on the bulk corresponds to a pair of the
excitations at t > 0, which is given schematically by
(O,(x =1)+ O,(x = =1))|0), where O,,0, are some
local operators. For @ = p, the state is only at x = 7, not
a pair. Indeed, in the bulk picture also, the wave packet is on
the boundary for @ = p, and then it is localized at x = ¢,
z = 0 in the bulk picture.

1. Global AdS/CFT

So far, we have considered the wave packets in the
Poincaré AdS case. We can easily generalize this to the
global AdS case by a conformal transformation. [More
precisely, for the global AdS;/CFT, case, the parameters in
the wave-packet state (2.13) should be replaced by, for
example, z - /2 —p, t - 7 and x — tanh(f), where
—7 <@ < is the coordinate for the S'.] Instead of
explicitly doing this, we can conclude that the above

(uy = Mz)A(Uz - Ul)A 7 (3.19)

|
summary for the Poincaré AdS case is also true for the
global AdS case. This is because the computations of
the energy density essentially use the information on the
singularities of the three-point function. Thus, the repre-
sentation of the bulk wave packet from the perspective of
the energy density in CFT is the same as the “simple bulk

FIG. 1. An example of the bulk wave packet (moving toward
the center).

FIG. 2. The corresponding two “particles” in the CFT picture.
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reconstruction” picture given in [2]. See Figs. 1 and 2.
Note that only this is consistent with the causalities in
both the bulk and the boundary theories because the
bulk wave packet starting from the boundary at t = 0 will
reach the boundary at ¢ = z, and then the bulk local field
can be regarded as the CFT local primary field at t =0
and t = 7.

One might think that our result is inconsistent
with the Hamilton-Kabat-Lifschytz-Lowe (HKLL) bulk
reconstruction formula [10] because the bulk local state
corresponds to only two points on the light cone. However,
as shown in [2], this is consistent with the HKLL bulk
reconstruction formula because of the ambiguities of the
smearing function in the formula. We summarize the
discussion for this in Appendix B.

2. Subregion duality and entanglement-wedge
reconstruction

If the subregion duality and the entanglement-wedge
reconstruction are correct, if we take a region A in the CFT
picture such that the bulk wave packet is in the bulk
entanglement M, wedge for A, the state should be
supported only in the region A in the CFT picture."
This is not the case if the wave packet is the horizon-to-
horizon type discussed in [2]. Here this statement takes into
account the energy density from the perspective of CFT,
which is one of the leading effects of bulk interactions. This
invalidity of subregion duality and the entanglement-wedge
reconstruction'” can be seen from a simpler example. Let us
consider a state that is obtained by acting the (smeared)
bulk local operator ¢ at the center of the global AdS space,
i.e., p = 0, on the vacuum. This can be written by the CFT
operator using the HKLL bulk reconstruction formula [10].
Then, the energy density is obtained by an explicit
calculation. Of course, by the symmetry of the state, the
result is a uniform distribution on S¢~!. Then, if we take a
region A in the CFT picture such that the bulk wave packet
is in the bulk entanglement wedge M 4, the state should be
supported only in the region A in the CFT picture according
to the subregion duality and the entanglement-wedge
reconstruction. This means that there exists an operator
supported in the subregion A that produces a nonzero
energy density outside A. It is obviously unphysical.

"Here the subregion duality and the entanglement-wedge
reconstruction are those given in [4], in which the bulk Hilbert
space was assumed to be a tensor product of the two Hilbert
spaces for the subregions M, and M. This may be (approx-
imately) realized by a gauge fixing, such as the Fefferman-
Graham gauge. In particular, we claim that the global and Rindler
HKLL bulk reconstructions of a bulk local operator in the overlap
of the two entanglement wedges should be different in the leading
order of the 1/N expansion.

This invalidity may be due to the invalidity of the large-N
expansion for the AdS/CFT correspondence for the sub-
region [11]. This is related to the brick wall in AdS/CFT
[12,13] and the fuzzball conjecture [14,15].

Here it should be stressed that there exists a CFT operator
O, supported in the region A corresponding to the bulk
operator ¢y, supported in the region M, such that
Oulw) = ¢y, |w), where |y) is an arbitrary low-energy
state if the entanglement-wedge reconstruction is correct.
This implies that

O30Lw) = 3y biy lw) (3.22)

for O}i[y) = by, ly) because, by writing |y1) = ¢}, |w).
we find Ofly) = ¢35, |wi). Then, the Reeh-Schlieder
theorem (and the mirror map of the thermofield double)
is not useful for the entanglement-wedge reconstruction,
although they can give a similar CFT operator such
that 04]0) = ¢y, 0), which does not satisfy (3.22).
Furthermore, with the Reeh-Schlieder theorem, the vacuum
acting by operators supported in any subregion can give
any state. Thus, any small subregion can be dual to the
whole space, and statements of the subregion duality and
entanglement-wedge reconstruction will be meaningless
using the Reeh-Schlieder theorem.

Below, we will show that the entanglement-wedge
reconstruction is violated for the coherent state of the wave
packet explicitly. First, we define

x[xl-+12

.1 -
Gpo =lim— [ dtdx'e 22

z—07

% (eip,xi—id)t + e—ip,-x"+i(21t)¢(t’ Z,Xi) (323)
and consider |y) = e*#»2|0) represented by a CFT
primary operator like (2.13). Note that |p,®) ~ ¢, ;|0)
for @ > 1/a> 1. We can show that (y|To(t, x)|y) =
(p, @|Too(t, x)|p, @) + O(e®)  because  (0|Ty(t,x)

%’,;,|O>z0, which follows from the fact that the pole at
u; =0 or u, =0 does not contribute to the u;, u,
integration in (3.15) for this ordering of the operators.
Let us choose p, @ such that at r = 7 the bulk wave packet is
in M 4 and the energy density in the CFT picture is nonzero
at some points in A and A. On the other hand, if Dpao 18
reconstructed from the CFT operator on A, i.e.,
oo = pa(O4), we can show that (y|Tp(t=17x=
%)) = 0 for x € A because

(W|Too(t =1, x =X)lw)
= (0[([Too(t = 7. x = X), i, 5(O4)] + - -)|0) = 0,
(3.24)

because A and t = 7, x = X are spatially separated and the
causality of the CFT implies that the commutators are zero.
Thus, ¢, 5, which is supported on M,, cannot be recon-
structed from the CFT operator supported on A.
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B. Overlap between the wave-packet state
and CFT local state

Instead of the energy density, one might think that the
overlap between the wave-packet state | p, @) and CFT local
state O(x, 1)|0) will give some information xabout where the
state is localized or the spatial distribution of the state.
This can be essentially regarded as the VEV of the scalar
operator for the coherent state, which is discussed in
Appendix A, because (J|O(x,1)|J) = e(0|( [ di'dx'e] (7 ,x')
O(7.x)O(x,t) + O(x.1) [di'dx'eJ(f.x))|0) = e({p,®

|O(x,1)|0) + (0|O(x,1)|p,@)) for small e, where |J) =

ef dideel( )02 10) s the coherent state.”® The VEV of
the scalar operator is one of the most important calculable
quantities in AdS/CFT, at least if it is time independent.
Nevertheless, it is highly difficult to obtain any information
on the properties of this state in CFT. This is because
92 O(x,1)|0) with any n > 0is an independent state for fixed
x, t in the generalized free approximation, which is the large-
N limit we have taken. This means that there are infinitely
independent states at each point in the large-N limit. Thus,
even if we know some information about O(x, 1) at fixed ¢, it
is an infinitesimal piece of information.'* With O(x, r) for all
t, we can construct % O(x, t). However, in order to do so, we
need to know the nth-derivative coefficient precisely for
arbitrary n'?

If we know information about O(x, t) for any x, £, we
could recover, for example, the spatial distribution of the
wave packet, in principle. However, this should be nonlocal
in time. Furthermore, it is unclear how to recover it. Indeed,

010E.0)p.6)~a* 3

n€Zlsy.mel

~ aZe—i(I)T+ip9

neZmel

~ ate”OHiP05(7 4+ 1Z)5(0 — T + 277Z),

3Even for the case that e is not small, a similar expression
holds because the O(x, 1) is linear in the creation and annihilation
operators in the generalized free approximation.

“The statements here can be applied for the energy-momen-
tum tensor. However, the energy-momentum tensor has special
properties. The energy density will be non-negative and any local
excitation will give a nonzero energy density. Thus, the energy
density can be used to understand the spatial distribution of the
wave-packet state.

“Even for time-dependent cases, it is possible to obtain some
information from O(x, t) depending on the state, such as the state
that represents a wave in AdS/boundary CFT [16].

there may be ambiguities for it like in the computation of
the mutual information for the generalized free field
discussed in [17]. Therefore, we conclude that it is highly
difficult to obtain any information about the properties of
the wave-packet state in CFT using the overlap between it
and the CFT local state or the VEV of the CFT operator.
Below, we will explicitly see the difficulty for the global
AdS; case.

Let us consider the global AdS;. The CFT primary field
in the large-N limit is written using the creation and
annihilation operators [18] as

O(T, 9) ~ ei(ZVLHm\)T—imHaj;’m +H.c.,

n€Zlsy.mel

(3.25)

where we took A = d/2 for simplicity. Note that this is
invariant under 7 — 7 + 7 and 8 — 0 + 7. We can easily
extend this for general A. The bulk wave-packet state at
7 =0, § = 0 with energy @ and momentum p is given by

2402

p.@) = / dedge” """ 0(2.0)(0)

~ad Y eS@nn-a e np?g] L 0),

n€Zlsymel

(3.26)

_& . _tan(0)?
where we used the Gaussian factor e 2 instead of e 22

because their difference is negligible for ¢ < 1. Then, the
overlap is

=2 ((@n+]m))=@)>+(m=p)?) p=i(2n+|m|)z-+im0

=S ((@n+]m])P+(m)?) p=i(2n-+m)c-+imo

(3.27)

[
where we assumed p > 0 other than [p| > 1,® > 1, and

2
we noted, for example, the Gaussian factor e /a*as & (7),
for notational simplicity. Thus, its distribution is localized on
0=0at7=0427Z and 0 = at t = 7w + 2xZ. These
spacetime points are when the bulk wave packet is at the
boundary. For other z, it almost vanishes. This means that the
state is diffused to infinitely many states 2= O(x, 1)|0) for it.

Note added. As this paper was being completed, we
became aware of the preprint [19] in which a bulk wave
packet similar to ours was constructed and its VEV of the
CFT operator was discussed.
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APPENDIX A: COHERENT STATE

We denote the bulk local operator in the free limit as
P(X) = (X

where X represents all coordinates of the bulk spacetime, n
labels the mode expansion, and a, represents the annihi-
lation operator. The corresponding CFT primary operator in
the free limit is given as

ZWCFT a, +H.c.,

)a, + H.c., (A1)

(A2)

where x represents all coordinates of the CFT spacetime.
Then, the (normalized) semiclassical state in the limit is
given by the coherent state

la) = ez,,(anai—aﬁan”m _ e—%znlan\zeznanaﬂ()% (A3)
for which the time evolution is given by
|a(l‘)> — eth|a> — ezn(eiEn!(l,,ujl—e—iEnfa;‘,a,,)‘ (A4)

The VEVs of the bulk and CFT local operators, which are
linear in the creation and annihilation operators, are given
as

(alp(X an
Zl//

Let us rewrite the one-particle state for the bulk wave
packet (2.13) as

. T C.C.,

(a|O(x)|a) = .+ c.c. (AS)

p.@) = (¢"7)[0), (A6)

where
xixp+i2 | . i =
$r = il = / didxie” 2P OF (1, x),
n
(A7)

where O (¢, x) is a part of O(t, x) which is linear in a}, and

it = [ o) (s

Note that the overlaps between this and the bulk and CFT
local states considered in this paper are given by

@) = Z(wn(X))*wZ",
Z(w Yy’

Then, the corresponding coherent state representing the

bulk wave packet is given by setting a,, = (y,")*, i.e.,

(Olp(X)|p

(0[O(x)

(A9)

lwp) = e W) @iy a,)

0). (A10)

The VEVs of the bulk and CFT local operators for this state
are given as

(wplep(X)wp) = an “fec
= (0lp(x )|P w) +ec.,
(wp|O(x)|wp) = Zl// *+c.c.

= (0|O(x)|p, @) + c.c., (A11)
which means that where the overlaps are distributed for the
one-particle state is the same as where the VEVs are
distributed for the coherent state. Thus, the corresponding
coherent state represents the wave packet.

APPENDIX B: ON THE HKLL BULK
RECONSTRUCTION FORMULA

The HKLL bulk reconstruction formula [10] is the
formula representing the bulk local field as the spacetime
integrals of the corresponding CFT primary operators in the
generalized free limit, following the ideas in [5,20,21]. The
explicit formula for the bulk local field at the center in
global AdS space is given by

d(p=0,7=0)= / AP dYK(Q.,7)OQ,7),  (BI)
—i<r<f
where
K(Q.7) ~ (B2)
T)~———————.
| cos 7|94

First, we note that the CFT primary operator O(Q,7) is
periodic, i.e., O(Q, 7+ 27) = O(Q, 7), in the generalized
free-field approximation. We also note that there are
infinitely many choices of the smearing function
K(Q,7), as noted in [10], because of the Fourier trans-
formation of the CFT primary operator O(Q,7) in the
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generalized free-field approximation. Indeed, they use this
ambiguity to obtain this simple formula.

In [2,3], the dominant contributions in the 7 integrals in
(B1) were from 7 = £x/2. This means, for example, that
the overlap (4|0, 7) between the bulk local state |¢p) =
¢(p =0,7=0)|0) and the spherically symmetric CFT
state |0, 1) = [dQ'O(Q,7)|0) is zero for t = n/2 + #Z.
Note that the smearing function can be essentially taken to
K(Q.7) ~ (¢|O, 1), which is zero for 7 # 1 =n/2 + nZ
because for the generalized free field we can show
that ( "N~ 8t =7 +2Z).

The above statements are not precise because the bulk
local operator and the CFT operator are ill defined by the
UV divergences. More precisely, we can show that
(¢;a|O,1;a) - 0 for a — 0. Here the smeared bulk local
state at the center |¢;a) is given by

#i0) =3 [ @G =0.2)0).  (B3)

N

where N ¢2 is fixed by the normalization condition
(¢p,a|¢,a) =1 and the smeared spherically symmetric
CFT state |0, 7;a) is given by

(=

0.50) = 3 /dfe— = O®)|0),

(B4)

where N ,? is fixed by the normalization condition
(O,7,al0,7,a) = 1. The smearing by the Gaussian
integral roughly corresponds to the energy cutoff
with 1/a.

This seems to be impossible, in particular for 7 = +7/2
because K(Q,7 = +x/2) = 0. However, it is indeed pos-
sible because of the choice of the ambiguity of the smearing
function. The important point here is that the smearing
function should be a periodic function; then, it is singular at
7 = /2 + nZ because of the absolute value of |cos(z)|.
The local field contains an arbitrarily high-energy mode
and the singularity gives the nontrivial contribution to the
arbitrarily high-energy mode. Thus, the singular points give
the dominant contribution to the reconstruction of the bulk
local operator, as shown in [2].16

We can numerically check this. As an example, we take
d=3,A =438, and a = 0.005. Figure 3 is the plot of the
overlap (¢;alO,1;a), where 7 = l%m —% and the hori-
zontal axis represents m. This shows the sharp peaks at
7 =n/2 + nZ. Figure 4 is the same plot of the overlap
(¢;a|O.1;a), where 7 =%+ 2= (m — 50) and the hori-
zontal axis represents . ThlS plot focuses near the 7 = 7/2
region.

"“The bulk local operator can be explicitly written using the
CFT local operators only at 7 = z/2 with the time derivative [2]
using the formulas given in [18,22].

0.8
0.6 |
04t
0.2
0 20 40 60 80 100
FIG. 3. Plot of the overlap (¢; ,Ta) for —r <7 < 7.

20 40 60 80 100

FIG. 4. Plot of the

(%— 100)71’ <t< ( +ﬁ)n’.

overlap  (¢p;a|O,7;a)  for

20 40 60 80 100

FIG. 5.

Plot of the HKLL smearing function

1
| cos 7|4-A"

For comparison, Fig. 5 is the plot of W’ where 7 =
ﬁ%m — 7 and the horizontal axis represents m. We also
show the plot of (O, 7;a|O,7 = 0;a) in Fig. 6, where 7 =
126’0 m —% and the horizontal axis represents m. These
clearly show the orthogonality.
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FIG. 6. The corresponding two “particles” in the CFT picture.
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