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In this paper, we construct a general bulk wave packet in the AdS=CFT correspondence. This wave
packet can be described both in bulk and conformal field theory (CFT) descriptions. Then, we compute the
time evolution of the energy density of this wave-packet state on the vacuum in the CFT picture of
AdS3=CFT2. We find that the energy density of the wave packet is localized at two points, which means
that the bulk wave packet corresponds to two light-like particle-like objects in the CFT picture. Our result
implies that the entanglement wedge reconstruction given by Almheiri et al. [Bulk locality and quantum
error correction in AdS=CFT, J. High Energy Phys. 04 (2015) 163] is invalid.
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I. INTRODUCTION AND SUMMARY

The AdS=CFT correspondence [1] is expected to be
important to understanding quantum gravity. In particular,
because the bulk spacetime should emerge from conformal
field theory (CFT), we can, in principle, understand the
bulk spacetime in quantum gravity from the AdS=CFT
correspondence. For this purpose, several bulk spacetime
probes in CFT are known, including correlation functions,
Wilson loops, and entanglement entropy.
The important probes of bulk spacetime, which have not

been studied intensively, are the wave packets in bulk
spacetime. Such wave packets are fundamental objects for
thought experiments in bulk spacetime. In particular, a local
region in the bulk spacetime can be probed by the time-
evolved wave packet. Then, the relationship between the
local region of the bulk where the wave packet resides and
the corresponding region of the boundary in the CFT
picture will be the key to understanding how the bulk
spacetime emerges from the CFT. Thus, it is important to
understand how the bulk wave packets are described in the
CFT picture. In [2,3], a special kind of bulk wave packets,
for which only their direction is fixed, were considered in
the AdS=CFT correspondence, although the general bulk
wave packets have not been studied.
In this paper, we first construct a general bulk wave

packet in the AdS=CFT correspondence. Here we take the
large-N limit, which is the free limit in the bulk picture and

the generalized free approximation in the CFT picture.
Furthermore, we consider only the bulk scalar field and the
corresponding scalar CFT operator, for simplicity. This
wave packet can be described in both bulk and CFT
descriptions.1

Then, we compute the energy density of this state of the
wave packet on the vacuum in the CFT picture of
AdS3=CFT2.

2 Note that the energy density does not vanish
if the CFT state is excited by the local CFT operator there.
Thus, if the distribution of the energy density is localized in
some regions, the CFT state is localized in those regions. We
find that the energy density of the wave packet is localized at
two points, which are on the light cone, in the CFT picture,
which means that the bulk wave packet corresponds to two
light-like particle-like objects in the CFT picture, although
these are not like the free particles. This result completely
agrees with the result in [2,3] in which the entanglement
wedge reconstruction given in [4] was shown to be invalid.
Note that our results in this paper only use the Banks-
Douglas-Horowitz-Matinec (BDHM) extrapolation relation
[5], which is the basic AdS=CFT dictionary, like the Gubser-
Klebanov-Polyakov-Witten relation [6,7], and the known
three-point function in 2D CFT.
We also compute the vacuum expectation value (VEV) of

the CFT primary scalar operator for the wave packet. The
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1In this paper, we consider the light-like wave packet. This is
because we consider a generic Δ and the nonrelativistic wave
packet can be considered only for Δ ≫ lAdS, where Δ is the
conformal dimension of the CFT operator and lAdS is the length
scale of the AdS space, which we set to lAdS ¼ 1.

2More precisely, we compute the energy density of this state of
the wave packet represented by (2.13) in the CFT picture. The
energy density depends on 1=N corrections of the wave-packet
operator. Our operator is special because it is localized at a point
of the boundary on a time slice.
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distribution of this is completely different from that of the
energy density. This is because there are infinitely many
independent fields at a fixed time for thegeneralized free field.

II. WAVE PACKETS IN AdS=CFT

A. Bulk and CFT fields in AdS=CFT

Let us consider the global AdSdþ1 and Ω represents
coordinates of a (d − 1)-dimensional sphere Sd−1. The
coordinates τ and ρ run in the ranges −∞ < τ < ∞ and
0 ≤ ρ < π=2. In the coordinates, the metric takes the form

ds2 ¼ 1

cos2 ρ
ð−dτ2 þ dρ2 þ sin2 ρdΩ2

d−1Þ: ð2:1Þ

For the Poincaré patch of AdSdþ1, the metric is

ds2 ¼ 1

z2
ð−dt2 þ dz2 þ δijdxidxjÞ; ð2:2Þ

where z > 0 and i; j ¼ 1; 2;…; d − 1.
Let us consider the canonical quantization of a free scalar

field ϕ with mass m, which satisfies the equations of
motion ð□ −m2Þϕ ¼ 0. For the Poincaré AdSdþ1, the
mode expansion of the scalar field is given by the
Bessel functions as

ϕðt; z; xiÞ ¼ C
Z
ω>

ffiffiffiffi
k2

p dωdkieiωt−ikjx
j
z
d
2a†ω;kJν

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − k2

p
z
�

þ H:c:; ð2:3Þ

where ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ d2=4

p
¼ Δ − d=2 and k2 ≡ kjkj. Note

that we included the normalizable modes only. Here the
asymptotic behavior of the Bessel function is

Jνð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − k2

p
zÞ →

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − k2

p
ν
zν for z → 0; ð2:4Þ

Jνð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − k2

p
zÞ →

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − k2

p
z

s

× cos

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − k2

p
z −

2νþ 1

4
π

�

for z → ∞: ð2:5Þ

The overall constant C is usually chosen such that it
satisfies the canonical commutator,

�
ϕðt; z0; x0iÞ; ∂

∂t
ϕðt; z; xiÞ

�
¼ iδðz0 − zÞδðx0i − xiÞ; ð2:6Þ

where we defined the creation operators as

½a†ω0;k0 ; aω;k� ¼ δðω0 − ωÞδðk0i − kiÞ: ð2:7Þ

However, we make a different choice, as explained below.

The CFT primary operator O corresponding to the bulk
scalar field ϕ is obtained by the BDHM relation Oðt; xiÞ ¼
limz→0 ϕðt; z; xiÞ=zΔ [5] as

Oðt; xiÞ ¼ C
Z
ω>

ffiffiffiffi
k2

p dωdkieiωt−ikjx
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − k2

p Δ−d=2
a†ω;k

þ H:c:; ð2:8Þ
which is valid only for the large-N limit or the generalized
free theory limit. We choose the normalization constant C
such that the above BDHM relation holds with the standard
normalization of the CFT primary fieldOðt; xiÞ. For d ¼ 2,
this means

h0jOðu1; v1ÞOðu2; v2Þj0i ¼
1

ðu1 − u2ÞΔðv1 − v2ÞΔ
; ð2:9Þ

where u ¼ ðtþ xÞ; v ¼ ðt − xÞ.

B. Wave packets

In this paper, we consider essentially Gaussian wave
packets because we study the generic properties of the wave
packets. We mainly consider a one-particle state on the bulk
side for simplicity. It is easy to generalize this state to the
coherent state for the weak-coupling bulk theory, as done in
Appendix A.

1. Minkowski spacetime

Let us remember the wave packets, at t ¼ x⃗ ¼ 0, of a
free scalar field in dþ 1-dimensional Minkowski space-
time:
Z

dx⃗e−
x⃗2

2a2
þip⃗·x⃗ϕðt¼0; x⃗Þj0i∝

Z
dk⃗e−

a2ðk⃗−p⃗Þ2
2 a†

k⃗
j0i; ð2:10Þ

where p⃗ is the momentum of the wave packet and
½a†

k⃗
; ak⃗� ¼ δðk⃗Þ. Instead of this, we can consider another

wave packet that is defined by a Gaussian integral for the
time and xi where i ¼ 2;…; d:

Z
dt

Y
i¼2;…;d

dxie−
xixiþt2

2a2
þipixiþiωtϕðt; x⃗Þjx1¼0j0i

∝
Z

dk⃗e−
a2
2
ððki−piÞðki−piÞþð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk1Þ2þkiki

p
−ωÞ2Þa†

k⃗
j0i; ð2:11Þ

where i runs only for 2;…; d. Here we assume that
japij ≫ 1 and aω ≫ 1, which are needed for the wave
packet and we always assume these. With these, it is
approximated as

Z
dk⃗e

−a2
2
ððδkiÞ2þðk1−p1þpiδki

p1
Þ2Þ
a†
k⃗
j0i

þ
Z

dk⃗e
−a2

2
ððδkiÞ2þðk1þp1þpiδki

p1
Þ2Þ
a†
k⃗
j0i; ð2:12Þ
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where p1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − pipi

p
and δki ¼ ki − pi. These are the

Gaussian integrals around k1 ¼ �p1 and ki ¼ pi. Thus,
the wave packet (2.11) is essentially the same as the sum of
the original wave packets (2.10) with opposite momenta.

Note that if we change the Gaussian factor e−
xixiþt2

2a2 in (2.11)

to a general one e−
hijx

ixjþh0
i
xitþt2

2a2 with the appropriate constants
h, h0, the approximated Gaussian factor can be taken to be
the same one as in (2.10). Furthermore, if we consider the
theory on the half-space x1 > 0 with a boundary condition
on x ¼ 0, only one wave packet can be obtained by (2.11).
We consider such wave packets in AdSdþ1 where x1

corresponds to the radial direction z.

2. Wave packet in AdS=CFT

In anti–de Sitter (AdS) spacetime, wave packets are
constructed as in flat spacetime. The wave packets should
be very small in size compared with the AdS scale, where
the AdS spacetime can be approximated as a Minkowski
spacetime. Thus, the wave packets (2.10) and (2.11) in the
flat spacetime can be regarded as the wave packets in AdS
spacetime for a ≪ 1. Furthermore, in AdS spacetime any
wave packet will reach the asymptotic boundary by the
time or backward time evolution. Thus, we need to prepare
wave packets almost on the boundary only to represent a
general wave packet. On the boundary, the bulk scalar field
ϕ is identified as the CFT primary field O with an overall

factor by the BDHM relation. This means that the bulk
wave packet in AdS=CFT can be given by

jp; ω̄i ¼ lim
z→0

1

zΔ

Z
dtdxie−

xixiþt2

2a2
þipixi−iω̄tϕðt; z; xiÞj0i

¼
Z

dtdxie−
xixiþt2

2a2
þipixi−iω̄tOðt; xÞj0i ð2:13Þ

for the Poincaré AdSdþ1 (2.2).
3 This can be regarded as the

state in bulk and also the state in the CFT. Here we require
that

a2p2 ≫ 1; aω̄ ≫ 1; ð2:16Þ

and then the wave packet has a definite orientation with the
momentum pi and energy ω̄.
Let us check the time evolution of this state in the bulk

picture. The bulk localized (one-particle) state is

ϕðt; z; xiÞj0i ¼ C
Z
ω>

ffiffiffiffi
k2

p dωdkieiωt−ikjx
j
z
d
2Jν

×
	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2 − k2
p

z


a†ω;kj0i; ð2:17Þ

which is not normalized.4 In order to consider the bulk
spatial distribution of the wave-packet state (2.13) at time t,
we consider the following overlap:

h0jϕðt ¼ 0; z; xiÞeiHtjp; ω̄i ¼ ða ffiffiffi
π

p ÞdC2

Z
ω>

ffiffiffiffi
k2

p dωdkieiωtþikjxje−
a2
2
ððki−piÞ2þðω−ω̄Þ2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − k2

p
2Δ−d

z
d
2Jν

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − k2

p
z
�
:

ð2:18Þ

Because of the Gaussian factor, the integrals are dominated for the region near ki ¼ pi;ω ¼ ω̄. Defining δω≡ ω − ω̄,
δki ≡ ki − pi, and pz ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω̄2 − p2

p
, the overlap can be approximated as

h0jϕðt ¼ 0; z; xiÞeiHtjp; ω̄i ∼ ða ffiffiffi
π

p ÞdC2
ffiffiffiffiffiffiffiffi
2=π

p
z
d−1
2 ðpzÞ2Δ−d−1=2eiω̄tþipjxj

×
Z

dδωdδkieiδωtþiδkjxje−
a2
2
ððδkÞ2þδω2Þ cos

�ðpzÞ2 þ ω̄δω − piδki
pz

z −
2νþ 1

4
π

�
: ð2:19Þ

The integral in this is proportional to

3Using (2.8), we can rewrite the state in momentum space,

jp; ω̄i ¼ ða ffiffiffi
π

p ÞdC
Z
ω>

ffiffiffiffi
k2

p dωdkie−a
2ðki−piÞ2þðω−ω̄Þ2

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − k2

p Δ−d=2
a†ω;kj0i; ð2:14Þ

for the generalized free-field approximation. The norm of this state is

N 2¼hp;ω̄jp;ω̄i¼ða ffiffiffi
π

p Þ2dC2

Z
ω>

ffiffiffiffi
k2

p dωdkie−a
2ððki−piÞ2þðω−ω̄Þ2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2−k2

p
2Δ−d

; ð2:15Þ

which is approximated as N 2 ≃ ða ffiffiffi
π

p
3Þd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω̄2 − p2

p
2Δ−dC2.

4This state cannot be normalized and we need to smear this state to eliminate the high-energy modes. Here we use this because we
consider the overlap between this and the wave packet state, which is already smeared.

WAVE PACKETS IN ADS/CFT CORRESPONDENCE PHYS. REV. D 109, 106012 (2024)

106012-3



Z
dδωdδkieiδωðt�ω̄z=pzÞþiδkjðxj∓pjz=pzÞe−a2

2
ððδkÞ2þδω2Þ ≃ e−

1

2a2
ððt�ω̄z=pzÞ2þðxj∓pjz=pzÞ2Þ; ð2:20Þ

which is strongly suppressed by the Gaussian factor for

jt� ω̄z=pzj ≫ a; or jxj ∓ pjz=pzj ≫ a: ð2:21Þ

Thus, at each time t > 0, the wave packet is localized at

z ¼ pz
ω̄ t; xj ¼ − pj

ω̄ t which is on the light-like trajectory
from the boundary point at t ¼ 0 with the energy ω̄ and
momentum pz, pi, as expected. This also implies that the
size of the wave packet is OðaÞ for any time t in the
coordinate z; xi.

3. Remarks on the asymptotic AdS case

So far, we have considered the wave packets in AdS
space. The wave-packet state (2.13) can also be regarded as
the wave-packet state in the asymptotic AdS case. This is
because the state is written by the bulk field on the
asymptotic boundary or the CFT primary fields. Indeed,
near the boundary, spacetime can be regarded as the AdS
space and the state will represent the wave packet moving
toward the inside of the asymptotic AdS space. The wave
packet will be on the null geodesics of the asymptotic
AdS space.
Another remark is that the wave-packet state (2.13) can

be created from the vacuum or the semiclassical back-
ground by the source term in CFT because it is written by
the CFT primary fields. Indeed, by adding the source term

e
R

dt0dx0ϵJðt0;x0ÞOðt0;x0Þ with small ϵ, we can obtain the wave-
packet state (2.13) at the subleading order in ϵ by setting the
source term Jðt; xÞ as the Gaussian factor in (2.13). For
general ϵ, the state becomes the coherent state given in
Appendix A. In the bulk theory, the one-particle state is
described by the free quantum field approximation around
the AdS background and the coherent state can be
considered as a free approximation of the classical field.

III. ENERGY DENSITY OFWAVE PACKET IN CFT
PICTURE

We can consider the time evolution of the bulk wave
packet (2.13) as a state in CFT. Here the bulk wave packet
can be regarded as a basic probe of the bulk spacetime
point. Thus, in order to understand how the bulk spacetime
emerges from CFT, it is important to know what is the
spacetime region of this state in the CFT picture.5

We compute the time evolution of the energy density of
the bulk wave packet (2.13) in the CFT picture in order to
investigate where the state (2.13) in the CFT picture is

localized at each time. Another quantity that might behave
like the energy density is the expectation value of the
primary scalar operators O. However, this quantity is not
good for our purpose. Indeed, if we see it as representing
the location of the state in the CFT picture, its time
evolution violates causality, as we will see later. The reason
for this is as follows. The generalized free field does not
obey equations of motion and ∂

n

∂tn O with different n are
independent at each time. The expectation values of ∂

n

∂tn O
are independent quantities. Thus, if these are different, we
cannot take one of them as a representative. Furthermore,
because the number of these independent operators is
infinite, it is difficult to obtain information on the location
of the state in the CFT picture.
The energy density for (2.13) is the three-point function

of the two primary scalar operators and the energy-
momentum tensor,

hp; ω̄jT00ðt ¼ t̄; xi ¼ x̄iÞjp; ω̄i

¼
Z

dt1dxi1e
−
ðxi
1
Þ2þt2

1

2a2
−ipixi1þiω̄t1

Z
dt2dxi2e

−
ðxi
2
Þ2þt2

2

2a2
þipixi2−iω̄t2

× h0jOðt1; x1ÞT00ðt ¼ t̄; xi ¼ x̄iÞOðt2; x2Þj0i; ð3:1Þ

in the Heisenberg picture. Because such a three-point
function in CFT is known exactly, we can compute the
energy density. It is important to note that this computation
does not use the generalized free approximation, which is
the leading order of the large-N expansion, and the result is
valid for a large but finite N.
We also note that the operator ordering of this does not

follow the time ordering. The ordering of the operators is
fixed by the path of analytic continuation from the
Euclidean correlation function. This can be implemented
by slightly deforming the insertion points by a small
imaginary time, as in the iϵ prescription. For (3.1), we
change t1 → t1 þ iϵ1, t̄ → t̄þ iϵT , and t2 → t2 þ iϵ2,
where ϵ1 > ϵT > ϵ2. For example, we can take ϵ1 ¼ −ϵ2 ¼
ϵ > 0 and ϵT ¼ 0.
Below, we will consider the energy density in the

approximation a ≪ 1 and ω̄a ≫ 1; ðpiÞ2a2 ≫ 1. We will
neglect the terms that become zero in this limit. We also
assume Δ ¼ Oð1Þ, which implies the mass m is Oð1Þ and
the wave packet behaves like a massless particle because its
the energy and momentum are much larger than the mass.6

We will also consider the d ¼ 2 case only.

5A special kind of bulk wave packet and the corresponding
CFT state was considered in [2,3], and we will see that the general
bulk wave packet (2.13) also has the same property, as expected.

6If we take Δ ≫ 1 such thatma ≪ 1, the Compton length 1=m
will be larger than the size of the wave packet. In this case, the
wave packet can correspond to the massive particle.
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A. d = 2

For CFT2 in the complex plane, the energy-momentum tensor is given by TðzÞ and T̄ðz̄Þ. We need to compute
h0jOðz0; z̄0ÞT00ðξ; ξ̄ÞOðz; z̄Þj0i, where the energy density is 1

2π T00ðz; z̄Þ ¼ 1
2π ðTðzÞ þ T̄ðz̄ÞÞ. Using the conformal Ward

identity, the three-point function7 is evaluated (see, for example, [8]) as

h0jTðξÞO1ðz1; z̄1ÞO2ðz2; z̄2Þj0i ¼
X
i¼1;2

�
hi

ðξ − ziÞ2
þ ∂i

ξ − zi

�
h0jO1ðz1; z̄1ÞO2ðz2; z̄2Þj0i

¼
X
i¼1;2

�
hi

ðξ − ziÞ2
þ ∂i

ξ − zi

�
1

ðz1 − z2ÞΔ1þΔ2ðz̄1 − z̄2ÞΔ1þΔ2
; ð3:2Þ

where we used the normalization of the primary operator such that the two-point function is the standard one and hi is the
weight with Δ ¼ hþ h̄.
For Minkowski spacetime, we replace z → u ¼ ðtþ xÞ and z̄ → −v ¼ −ðt − xÞ, and then we obtain8

h0jOðt1; x1ÞT00ðt ¼ t̄; x ¼ x̄ÞOðt2; x2Þj0i ¼ h0jOðu1; v1ÞðTðūÞ þ T̄ðv̄ÞÞOðu2; v2Þj0i

¼
X
i¼1;2

�
Δ=2

ðū − uiÞ2
þ ∂ui

ū − ui
þ Δ=2
ðv̄ − viÞ2

þ ∂vi

v̄ − vi

�
1

ðu1 − u2ÞΔðv2 − v1ÞΔ

¼ Δ
2

� ðu1 − u2Þ2
ðū − u1Þ2ðū − u2Þ2

þ ðv1 − v2Þ2
ðv̄ − v1Þ2ðv̄ − v2Þ2

�
1

ðu1 − u2ÞΔðv2 − v1ÞΔ
: ð3:3Þ

Using this, the energy density for (2.13) is

hp; ω̄jT00ðt ¼ t̄; x ¼ x̄Þjp; ω̄i ¼
Z

dt1dx1e
−
ðx1Þ2þt2

1

2a2
−ipx1þiω̄t1

Z
dt2dxi2e

−
ðx2Þ2þt2

2

2a2
þipx2−iω̄t2

×
Δ
2

� ðu1 − u2Þ2
ðū − u1Þ2ðū − u2Þ2

þ ðv1 − v2Þ2
ðv̄ − v1Þ2ðv̄ − v2Þ2

�
1

ðu1 − u2ÞΔðv2 − v1ÞΔ
: ð3:4Þ

We will evaluate this explicitly below. Because the calculation is not very technically simple, we state the results of the
calculation first. The energy density Eðt; xÞ of the wave-packet state is approximately given by

Eðt; xÞ ≃ 1

2
ffiffiffiffiffiffi
2π

p
a
ðe−

ðxþtÞ2
2a2 ðω̄ − pÞ þ e−

ðx−tÞ2
2a2 ðω̄þ pÞÞ; ð3:5Þ

which is localized on the light cone x ¼ t or x ¼ −t.
Before computing the energy density of the wave-packet state, let us consider the state jp; ω̄iwith p ¼ ω̄ ¼ 0 because it

is simpler. This corresponds to the (Gaussian-smeared) local CFT operator insertion. We will see that the energy density of
this state in CFT is localized on the light cone. For this, we have

h0; 0jT00ðt ¼ t̄; x ¼ x̄Þj0; 0i ¼
Z

dt1dx1

Z
dt2dx2e

−ðx1Þ2þðt1Þ2
2a2 e−

ðx2Þ2þðt2Þ2
2a2

×
Δ
2

� ðu1 − u2Þ2
ðū − u1Þ2ðū − u2Þ2

þ ðv1 − v2Þ2
ðv̄ − v1Þ2ðv̄ − v2Þ2

�
1

ðu1 − u2ÞΔðv2 − v1ÞΔ
: ð3:6Þ

The Gaussian integral approximately vanishes except for the region near ui ¼ vi ¼ 0. For jūj ≫ a and jv̄j ≫ a, which
implies that the energy-momentum tensor is inserted far from the light cone of the scalar operator insertion point, we can use
the following expansion:

7Here we consider Euclidean, not Lorentzian, CFT and we do not care about the operator ordering as usual, although the operator
ordering is fixed by the imaginary time.

8More precisely, we need to include the small imaginary part as the ϵ prescription according to the ordering of the operators. The
definitions of 1

ðu1−u2ÞΔ and similar terms should be given by the convergent sum expression in the Euclidean cylinder, as explained in, for
example, [9]. In our case, although the overall phase factor depends on these definitions, it is indeed fixed by requiring that the energy is
real and non-negative.
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h0; 0jT00ðt ¼ t̄; x ¼ x̄Þj0; 0i ¼
Z

dt1dx1dt2dx2e
−
ðx1Þ2þt2

1
þðx2Þ2þt2

2

2a2
Δ
2

�ðu1 − u2Þ2
ū4

þ ðv1 − v2Þ2
v̄4

�
1

ðu1 − u2ÞΔðv2 − v1ÞΔ
þ � � � ;

ð3:7Þ

where � � � means Oð 1
ū5
Þ and Oð 1

v̄5
Þ terms. This implies that h0; 0jT00ðt ¼ t̄; xi ¼ x̄iÞj0; 0i ∼Oð 1

jx̄�t̄j4Þ at t ¼ t̄ and the

contribution of the region jx̄� t̄j ≫ a to the energy of the state at t ¼ t̄ isOð 1
jx̄�t̄j3Þ. Thus, the energy density is localized and

only nonzero, for a → 0, at x̄ ¼ t̄ or x̄ ¼ −t̄, which are on the light cone.
Now, let us go back to studying the wave-packet state jp; ω̄i. For this, by defining

pu ¼ ω̄ − pð≥ 0Þ; pv ¼ ω̄þ pð≥ 0Þ; ð3:8Þ

we have

hp; ω̄jT00ðt ¼ t̄; x ¼ x̄Þjp; ω̄i ¼
Z

dt1dx1e
−
ðx1Þ2þt2

1

2a2
−ipx1þiω̄t1

Z
dt2dx2e

−
ðx2Þ2þt2

2

2a2
þipx2−iω̄t2

×
Δ
2

� ðu1 − u2Þ2
ðū − u1Þ2ðū − u2Þ2

þ ðv1 − v2Þ2
ðv̄ − v1Þ2ðv̄ − v2Þ2

�
1

ðu1 − u2ÞΔðv2 − v1ÞΔ

¼ 1

4

Z
du1dv1du2dv2e

−ðu1Þ2þðv1Þ2þðu2Þ2þðv2Þ2
4a2

þiðpuu1þpvv1−puu2−pvv2Þ=2

×
Δ
2

� ðu1 − u2Þ2
ðū − u1Þ2ðū − u2Þ2

þ ðv1 − v2Þ2
ðv̄ − v1Þ2ðv̄ − v2Þ2

�
1

ðu1 − u2ÞΔðv2 − v1ÞΔ

¼ 1

4

Z
du1dv1du2dv2e

−ðu1−ipua2Þ2þðv1−ipva2Þ2þðu2þipua2Þ2þðv2þipva2Þ2
4a2

−a2
2
ððpuÞ2þðpvÞ2Þ

×
Δ
2

� ðu1 − u2Þ2
ðū − u1Þ2ðū − u2Þ2

þ ðv1 − v2Þ2
ðv̄ − v1Þ2ðv̄ − v2Þ2

�
1

ðu1 − u2ÞΔðv2 − v1ÞΔ
; ð3:9Þ

which is localized on the light cone ū ¼ 0 or v̄ ¼ 0, as we can easily see using the same argument above. We will evaluate
this more explicitly below. Let us consider a part of it:

A≡
Z

du1dv1du2dv2e
−ðu1−ipua2Þ2þðv1−ipva2Þ2þðu2þipua2Þ2þðv2þipva2Þ2

4a2
−a2

2
ððpuÞ2þðpvÞ2Þ ðu1 − u2Þ2

ðū − u1Þ2ðū − u2Þ2
1

ðu1 − u2ÞΔðv2 − v1ÞΔ

¼ e−
a2
2
ððpvÞ2Þ

Z
dv1dv2e

−ðv1−ipva2Þ2þðv2þipva2Þ2
4a2

1

ðv2 − v1ÞΔ

× e−
a2
2
ððpuÞ2Þ

Z
du1du2e

−ðu1−ipua2Þ2þðu2þipua2Þ2
4a2

1

ðū − u1Þ2ðū − u2Þ2
1

ðu1 − u2ÞΔ−2
: ð3:10Þ

The other part is obtained by interchanging fū; pug and fv̄; pvg. Here the integration paths are taken as ui ∈R − iϵi and
vi ∈R − iϵi, with ϵ2 > 0 > ϵ1 for the iϵ prescription for the ordering of the operator. First, we perform the v1 integration,

e−
a2
2
ððpvÞ2Þ

Z
dv1dv2e

−ðv1−ipva2Þ2þðv2þipva2Þ2
4a2

1

ðv2 − v1ÞΔ

¼ ð−1ÞΔe−a2
2
ððpvÞ2Þ

Z
dv1dv2

1

ðv1 − v2ÞΔ−q
ΓðΔ − qÞ
ΓðΔÞ

∂
q

∂vq1
e−

ðv1−ipva2Þ2þðv2þipva2Þ2
4a2 ; ð3:11Þ

where q is an integer such that 1 ≥ Δ − q > 0, and consider what happens if we move the path to v1 ∈Rþ ia2pv. Then, the

integration does not depend on pv and the Gaussian factor e−
a2
2
ðpvÞ2, which is very small, cannot be canceled. Thus, this

contribution can be neglected in our approximation. The remaining parts of this are contributions from the pole or the
branching point at v1 ¼ v2 in the region between R − iϵ1 and Rþ ia2pv.
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For Δ∈Z, for which q ¼ Δ − 1, the contribution from
the single pole at v1 ¼ v2 is

ð−1ÞΔ 2πi
ΓðΔÞ e

−a2
2
ððpvÞ2Þ

Z
dv2

∂
Δ−1

∂vΔ−11

e−
ðv1−ipva2Þ2þðv2þipva2Þ2

4a2

����
v1¼v2

≃
2πi
ΓðΔÞ ð−ipv=2ÞΔ−1e−a2

2
ððpvÞ2Þ

Z
dv2e

−ðv2Þ2−ðpva2Þ2
2a2

¼ ð2πÞ3=2
ΓðΔÞ ð−iÞΔaðpv=2ÞΔ−1; ð3:12Þ

where we have neglected the terms that are subleading in
1=ðpvaÞ expansion.9
For Δ ∉ Z, there is a branching point v1 ¼ v2. Here we

can neglect the contribution around the branching point

because 1 > Δ − q. Thus, the contribution from the cut
from v1 ¼ v2 is

ð−1ÞΔe−a2
2
ððpvÞ2Þ

Z
dv2ð1−e2πiðq−ΔÞÞi

×
Z

pva2

0

dy
1

ðiyÞΔ−q
ΓðΔ−qÞ
ΓðΔÞ

∂
q

∂ðiyÞqe
−ðv2þiy−ipva2Þ2þðv2þipva2Þ2

4a2 ;

ð3:13Þ

where v1 ¼ v2 þ iy. Because of the Gaussian factor, which
is almost zero for y ≫ a, the y integration can be approxi-
mated as

Z
pva2

0

dy
ð−1ÞΔ
ðiyÞΔ−q

∂
q

∂ðiyÞq e
−ðv2þiy−ipva2Þ2

4a2 ≃
Z

∞

0

dy
ð−1ÞΔ
ðiyÞΔ−q ðipv=2Þqe−ypv=2e−

ðv2−ipva2Þ2
4a2

¼ Γð1 − Δþ qÞðpv=2ÞΔ−1e−
ðv2−ipva2Þ2

4a2 ð−1ÞΔ−qð−iÞΔ: ð3:14Þ

Then, we can easily check that this also gives (3.12) for Δ ∉ Z.
Next, we compute

e−
a2
2
ððpuÞ2Þ

Z
du1du2e

−ðu1−ipua2Þ2þðu2þipua2Þ2
4a2

1

ðū − u1Þ2ðū − u2Þ2
1

ðu1 − u2ÞΔ−2

¼ e−
a2
2
ððpuÞ2Þ

Z
du2e

−ðu2þipua2Þ2
4a2

1

ðū − u2Þ2
Z

du1
1

ðu1 − ūÞ
∂

∂u1

�
e−

ðu1−ipua2Þ2
4a2

1

ðu1 − u2ÞΔ−2
�
: ð3:15Þ

As for the v1 integration, we move the path of the u1 integration to u1 ∈Rþ ia2pu and take the residue at u1 ¼ ū.10 Then,
the result is

2πie−
a2
2
ððpuÞ2Þe−

ðū−ipua2Þ2
4a2

Z
du2e

−ðu2þipua2Þ2
4a2

1

ðū − u2ÞΔ
�
ipu=2 − ðΔ − 2Þ 1

ðū − u2Þ
�
; ð3:16Þ

where we have neglected the term proportional to ū which

is small because there is the Gaussian factor e−
ðūÞ2
2a2 after the

u2 integration, as we will see below. For the u2 integration,
we move the path to u2 ∈R − ia2pu and take the residue at
u2 ¼ ū. Then, the result is

− ð−1ÞΔð2πÞ2e−
ðūÞ2
2a2

1

ΓðΔÞ ð−ipu=2ÞΔ
�
−1þ Δ − 2

Δ

�

¼ ð2πÞ2e−
ðūÞ2
2a2

1

ΓðΔÞ ðipu=2ÞΔ
2

Δ
: ð3:17Þ

Thus, we obtain

A ≃ e−
ðūÞ2
2a2 ð2πÞ5=2 1

ΓðΔÞ2 ðpvpu=4ÞΔ−1
pua
Δ

: ð3:18Þ

We need to compute the normalization of the state,

10There is also the contribution from the singularities at
u1 ¼ u2. However, at this point, the Gaussian factor becomes

e−
ðu2þipua2Þ2

4a2 e−
ðu2−ipua2Þ2

4a2 ¼ e−
ðu2Þ2−ðpua2Þ2

2a2 and the u2 integration is pu
independent. Using this, we can easily see that this contribution is
smaller than that from the pole at u1 ¼ ū.

9After the Gaussian v2 integration, v2 becomes aOðaÞ quantity.
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N 2 ¼ hp; ω̄jp; ω̄i

¼
Z

dt1dx1e
−
ðx1Þ2þt2

1

2a2
−ipx1þiω̄t1

Z
dt2dx2e

−
ðx2Þ2þt2

2

2a2
þipx2−iω̄t2 1

ðu1 − u2ÞΔðv2 − v1ÞΔ

¼ 1

4

Z
du1dv1du2dv2e

−ðu1−ipua2Þ2þðv1−ipva2Þ2þðu2þipua2Þ2þðv2þipva2Þ2
4a2

−a2
2
ððpuÞ2þðpvÞ2Þ 1

ðu1 − u2ÞΔðv2 − v1ÞΔ
; ð3:19Þ

which is the same as the computation of (3.11) and (3.12).
Hence, we obtain

N 2 ≃
1

4

ð2πÞ3=2
ΓðΔÞ ð−iÞΔaðpv=2ÞΔ−1

×
ð2πÞ3=2
ΓðΔÞ ðiÞΔaðpu=2ÞΔ−1: ð3:20Þ

Finally, we have the energy density Eðt̄; x̄Þ of the wave-
packet state as

Eðt̄; x̄Þ ¼ 1

N 2
hp; ω̄j 1

2π
T00ðt ¼ t̄; x ¼ x̄Þjp; ω̄i

≃
1

2
ffiffiffiffiffiffi
2π

p
a
ðe−

ðūÞ2
2a2pu þ e−

ðv̄Þ2
2a2pvÞ; ð3:21Þ

which is localized on the light cone ū ¼ 0 or v̄ ¼ 0. The
energies of the regions near ū ¼ 0 and v̄ ¼ 0 are pu=2 and

pv=2, respectively, because 1ffiffiffiffi
2π

p
a

R
dxe−

x2

2a2 ¼ 1. Their sum

is the correct energy ω̄ of the state.
In summary, the energy density of the wave-packet

state (2.13) in AdS3=CFT2 at time t is localized on the
light cone x ¼ �t for small a and small 1=ðω̄aÞ. The
energy localized near x ¼ t, which is equivalent to
v ¼ x − t ¼ 0, is ðω̄þ pÞ=2. The energy localized near
x ¼ −t,
which is equivalent to u ¼ xþ t ¼ 0, is ðω̄ − pÞ=2. Thus,
the wave packet on the bulk corresponds to a pair of the
excitations at t > 0, which is given schematically by
ðÕvðx ¼ tÞ þ Õuðx ¼ −tÞÞj0i, where Õv; Õu are some
local operators. For ω̄ ¼ p, the state is only at x ¼ t, not
a pair. Indeed, in the bulk picture also, the wave packet is on
the boundary for ω̄ ¼ p, and then it is localized at x ¼ t,
z ¼ 0 in the bulk picture.

1. Global AdS=CFT

So far, we have considered the wave packets in the
Poincaré AdS case. We can easily generalize this to the
global AdS case by a conformal transformation. [More
precisely, for the global AdS3=CFT2 case, the parameters in
the wave-packet state (2.13) should be replaced by, for
example, z → π=2 − ρ, t → τ and x → tanhðθÞ, where
−π < θ ≤ π is the coordinate for the S1.] Instead of
explicitly doing this, we can conclude that the above

summary for the Poincaré AdS case is also true for the
global AdS case. This is because the computations of
the energy density essentially use the information on the
singularities of the three-point function. Thus, the repre-
sentation of the bulk wave packet from the perspective of
the energy density in CFT is the same as the “simple bulk

FIG. 1. An example of the bulk wave packet (moving toward
the center).

FIG. 2. The corresponding two “particles” in the CFT picture.

SEIJI TERASHIMA PHYS. REV. D 109, 106012 (2024)

106012-8



reconstruction” picture given in [2]. See Figs. 1 and 2.
Note that only this is consistent with the causalities in
both the bulk and the boundary theories because the
bulk wave packet starting from the boundary at t ¼ 0 will
reach the boundary at t ¼ π, and then the bulk local field
can be regarded as the CFT local primary field at t ¼ 0
and t ¼ π.
One might think that our result is inconsistent

with the Hamilton-Kabat-Lifschytz-Lowe (HKLL) bulk
reconstruction formula [10] because the bulk local state
corresponds to only two points on the light cone. However,
as shown in [2], this is consistent with the HKLL bulk
reconstruction formula because of the ambiguities of the
smearing function in the formula. We summarize the
discussion for this in Appendix B.

2. Subregion duality and entanglement-wedge
reconstruction

If the subregion duality and the entanglement-wedge
reconstruction are correct, if we take a region A in the CFT
picture such that the bulk wave packet is in the bulk
entanglement MA wedge for A, the state should be
supported only in the region A in the CFT picture.11

This is not the case if the wave packet is the horizon-to-
horizon type discussed in [2]. Here this statement takes into
account the energy density from the perspective of CFT,
which is one of the leading effects of bulk interactions. This
invalidity of subregion duality and the entanglement-wedge
reconstruction12 can be seen from a simpler example. Let us
consider a state that is obtained by acting the (smeared)
bulk local operator ϕ at the center of the global AdS space,
i.e., ρ ¼ 0, on the vacuum. This can be written by the CFT
operator using the HKLL bulk reconstruction formula [10].
Then, the energy density is obtained by an explicit
calculation. Of course, by the symmetry of the state, the
result is a uniform distribution on Sd−1. Then, if we take a
region A in the CFT picture such that the bulk wave packet
is in the bulk entanglement wedge MA, the state should be
supported only in the region A in the CFT picture according
to the subregion duality and the entanglement-wedge
reconstruction. This means that there exists an operator
supported in the subregion A that produces a nonzero
energy density outside A. It is obviously unphysical.

Here it should be stressed that there exists a CFToperator
OA supported in the region A corresponding to the bulk
operator ϕMA

supported in the region MA such that
OAjψi ¼ ϕMA

jψi, where jψi is an arbitrary low-energy
state if the entanglement-wedge reconstruction is correct.
This implies that

O2
AO

1
Ajψi ¼ ϕ2

MA
ϕ1
MA

jψi ð3:22Þ

for Oi
Ajψi ¼ ϕi

MA
jψi because, by writing jψ1i ¼ ϕ1

MA
jψi,

we find O2
Ajψ1i ¼ ϕ2

MA
jψ1i. Then, the Reeh-Schlieder

theorem (and the mirror map of the thermofield double)
is not useful for the entanglement-wedge reconstruction,
although they can give a similar CFT operator such
that OAj0i ¼ ϕMA

j0i, which does not satisfy (3.22).
Furthermore, with the Reeh-Schlieder theorem, the vacuum
acting by operators supported in any subregion can give
any state. Thus, any small subregion can be dual to the
whole space, and statements of the subregion duality and
entanglement-wedge reconstruction will be meaningless
using the Reeh-Schlieder theorem.
Below, we will show that the entanglement-wedge

reconstruction is violated for the coherent state of the wave
packet explicitly. First, we define

ϕp;ω̄ ¼ lim
z→0

1

zΔ

Z
dtdxie−

xixiþt2

2a2

× ðeipixi−iω̄t þ e−ipixiþiω̄tÞϕðt; z; xiÞ ð3:23Þ

and consider jψi ¼ eiϵϕp;ω̄ j0i represented by a CFT
primary operator like (2.13). Note that jp; ω̄i ≃ ϕp;ω̄j0i
for ω̄ ≫ 1=a ≫ 1. We can show that hψ jT00ðt; xÞjψi ¼
hp; ω̄jT00ðt; xÞjp; ω̄i þ Oðϵ3Þ because h0jT00ðt;xÞ
ϕ2
p;ω̄j0i≃0, which follows from the fact that the pole at

u1 ¼ 0 or u2 ¼ 0 does not contribute to the u1, u2
integration in (3.15) for this ordering of the operators.
Let us choose p; ω̄ such that at t ¼ t̄ the bulk wave packet is
inMA and the energy density in the CFT picture is nonzero
at some points in A and Ā. On the other hand, if ϕp;ω̄ is
reconstructed from the CFT operator on A, i.e.,
ϕp;ω̄ ¼ ϕp;ω̄ðOAÞ, we can show that hψ jT00ðt ¼ t̄; x ¼
x̄Þjψi ¼ 0 for x∈ Ā because

hψ jT00ðt ¼ t̄; x ¼ x̄Þjψi
¼ h0jð½T00ðt ¼ t̄; x ¼ x̄Þ; iϵϕp;ω̄ðOAÞ� þ � � �Þj0i ¼ 0;

ð3:24Þ

because A and t ¼ t̄; x ¼ x̄ are spatially separated and the
causality of the CFT implies that the commutators are zero.
Thus, ϕp;ω̄, which is supported on MA, cannot be recon-
structed from the CFT operator supported on A.

11Here the subregion duality and the entanglement-wedge
reconstruction are those given in [4], in which the bulk Hilbert
space was assumed to be a tensor product of the two Hilbert
spaces for the subregions MA and MĀ. This may be (approx-
imately) realized by a gauge fixing, such as the Fefferman-
Graham gauge. In particular, we claim that the global and Rindler
HKLL bulk reconstructions of a bulk local operator in the overlap
of the two entanglement wedges should be different in the leading
order of the 1=N expansion.

12This invalidity may be due to the invalidity of the large-N
expansion for the AdS=CFT correspondence for the sub-
region [11]. This is related to the brick wall in AdS=CFT
[12,13] and the fuzzball conjecture [14,15].
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B. Overlap between the wave-packet state
and CFT local state

Instead of the energy density, one might think that the
overlap between the wave-packet state jp; ω̄i and CFT local
stateOðx; tÞj0iwill give some information xabout where the
state is localized or the spatial distribution of the state.
This can be essentially regarded as the VEV of the scalar
operator for the coherent state, which is discussed in
Appendix A, because hJjOðx;tÞjJi→ ϵh0jðR dt0dx0ϵJðt0;x0Þ
Oðt0;x0ÞOðx;tÞ þ Oðx;tÞR dt0dx0ϵJðt0;x0ÞÞj0i ¼ ϵðhp;ω̄
jOðx;tÞj0iþh0jOðx;tÞjp;ω̄iÞ for small ϵ, where jJi ¼
e
R

dt0dx0ϵJðt0;x0ÞOðt0;x0Þj0i is the coherent state.13 The VEV of
the scalar operator is one of the most important calculable
quantities in AdS=CFT, at least if it is time independent.
Nevertheless, it is highly difficult to obtain any information
on the properties of this state in CFT. This is because
∂
n

∂tn Oðx; tÞj0iwith any n ≥ 0 is an independent state for fixed
x, t in the generalized free approximation, which is the large-
N limit we have taken. This means that there are infinitely
independent states at each point in the large-N limit. Thus,
even if we know some information aboutOðx; tÞ at fixed t, it
is an infinitesimal piece of information.14WithOðx; tÞ for all
t, we can construct ∂

n

∂tn Oðx; tÞ. However, in order to do so, we
need to know the nth-derivative coefficient precisely for
arbitrary n.15

If we know information about Oðx; tÞ for any x, t, we
could recover, for example, the spatial distribution of the
wave packet, in principle. However, this should be nonlocal
in time. Furthermore, it is unclear how to recover it. Indeed,

there may be ambiguities for it like in the computation of
the mutual information for the generalized free field
discussed in [17]. Therefore, we conclude that it is highly
difficult to obtain any information about the properties of
the wave-packet state in CFT using the overlap between it
and the CFT local state or the VEV of the CFT operator.
Below, we will explicitly see the difficulty for the global
AdS3 case.
Let us consider the global AdS3. The CFT primary field

in the large-N limit is written using the creation and
annihilation operators [18] as

Oðτ; θÞ ∼
X

n∈Z≥0;m∈Z

eið2nþjmjÞτ−imθa†n;m þ H:c:; ð3:25Þ

where we took Δ ¼ d=2 for simplicity. Note that this is
invariant under τ → τ þ π and θ → θ þ π. We can easily
extend this for general Δ. The bulk wave-packet state at
τ ¼ 0, θ ¼ 0 with energy ω and momentum p is given by

jp; ω̄i ¼
Z

dτdθe−
τ2þθ2

2a2
þipθ−iω̄τOðτ; θÞj0i

∼ a2
X

n∈Z≥0;m∈Z

e−
a2
2
ððð2nþjmjÞ−ω̄Þ2þðm−pÞ2Þa†n;mj0i;

ð3:26Þ

where we used the Gaussian factor e−
θ2

2a2 instead of e−
tanðθÞ2
2a2

because their difference is negligible for a ≪ 1. Then, the
overlap is

h0jOðτ; θÞjp; ω̄i ∼ a2
X

n∈Z≥0;m∈Z

e−
a2
2
ððð2nþjmjÞ−ω̄Þ2þðm−pÞ2Þe−ið2nþjmjÞτþimθ

≃ a2e−iω̄τþipθ
X

n∈Z;m∈Z

e−
a2
2
ððð2nþjmjÞÞ2þðmÞ2Þe−ið2nþmÞτþimθ

≃ a4e−iω̄τþipθδðτ þ πZÞδðθ − τ þ 2πZÞ; ð3:27Þ

where we assumed p > 0 other than jpj ≫ 1; ω̄ ≫ 1, and

we noted, for example, the Gaussian factor e−
τ2

2a2=a2 as δðτÞ,
for notational simplicity. Thus, its distribution is localized on
θ ¼ 0 at τ ¼ 0þ 2πZ and θ ¼ π at τ ¼ π þ 2πZ. These
spacetime points are when the bulk wave packet is at the
boundary. For other τ, it almost vanishes. Thismeans that the
state is diffused to infinitely many states ∂

n

∂tn Oðx; tÞj0i for it.

Note added. As this paper was being completed, we
became aware of the preprint [19] in which a bulk wave
packet similar to ours was constructed and its VEV of the
CFT operator was discussed.

13Even for the case that ϵ is not small, a similar expression
holds because theOðx; tÞ is linear in the creation and annihilation
operators in the generalized free approximation.

14The statements here can be applied for the energy-momen-
tum tensor. However, the energy-momentum tensor has special
properties. The energy density will be non-negative and any local
excitation will give a nonzero energy density. Thus, the energy
density can be used to understand the spatial distribution of the
wave-packet state.

15Even for time-dependent cases, it is possible to obtain some
information from Oðx; tÞ depending on the state, such as the state
that represents a wave in AdS/boundary CFT [16].
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APPENDIX A: COHERENT STATE

We denote the bulk local operator in the free limit as

ϕðXÞ ¼
X
n

ψnðXÞan þ H:c:; ðA1Þ

where X represents all coordinates of the bulk spacetime, n
labels the mode expansion, and an represents the annihi-
lation operator. The corresponding CFT primary operator in
the free limit is given as

OðxÞ ¼
X
n

ψCFT
n ðxÞan þ H:c:; ðA2Þ

where x represents all coordinates of the CFT spacetime.
Then, the (normalized) semiclassical state in the limit is
given by the coherent state

jαi ¼ e
P

n
ðαna†n−α�nanÞj0i ¼ e−

1
2

P
n
jαnj2e

P
n
αna

†
n j0i; ðA3Þ

for which the time evolution is given by

jαðtÞi ¼ eiHtjαi ¼ e
P

n
ðeiEntαna†n−e−iEntα�nanÞ: ðA4Þ

The VEVs of the bulk and CFT local operators, which are
linear in the creation and annihilation operators, are given
as

hαjϕðXÞjαi ¼
X
n

ψnðXÞαn þ c:c:;

hαjOðxÞjαi ¼
X
n

ψCFT
n ðxÞαn þ c:c: ðA5Þ

Let us rewrite the one-particle state for the bulk wave
packet (2.13) as

jp; ω̄i ¼ ðϕwpÞj0i; ðA6Þ

where

ϕwp ¼
X
n

ψwp
n a†n ¼

Z
dtdxie−

xixiþt2

2a2
þipixi−iω̄tOþðt; xÞ;

ðA7Þ

whereOþðt; xÞ is a part ofOðt; xÞ which is linear in a†n and

ψwp
n ¼

Z
dtdxie−

xixiþt2

2a2
þipixi−iω̄tðψCFT

n ðt; xiÞÞ�: ðA8Þ

Note that the overlaps between this and the bulk and CFT
local states considered in this paper are given by

h0jϕðXÞjp; ω̄i ¼
X
n

ðψnðXÞÞ�ψwp
n ;

h0jOðxÞjp; ω̄i ¼
X
n

ðψCFT
n ðXÞÞ�ψwp

n : ðA9Þ

Then, the corresponding coherent state representing the
bulk wave packet is given by setting αn ¼ ðψwp

n Þ�, i.e.,

jwpi ¼ e
P

n
ððψwpÞ�a†n−ψwp

n anÞj0i: ðA10Þ

The VEVs of the bulk and CFT local operators for this state
are given as

hwpjϕðXÞjwpi ¼
X
n

ψnðXÞðψwp
n Þ� þ c:c:

¼ h0jϕðXÞjp; ω̄i þ c:c:;

hwpjOðxÞjwpi ¼
X
n

ψCFT
n ðxÞðψwp

n Þ� þ c:c:

¼ h0jOðxÞjp; ω̄i þ c:c:; ðA11Þ

which means that where the overlaps are distributed for the
one-particle state is the same as where the VEVs are
distributed for the coherent state. Thus, the corresponding
coherent state represents the wave packet.

APPENDIX B: ON THE HKLL BULK
RECONSTRUCTION FORMULA

The HKLL bulk reconstruction formula [10] is the
formula representing the bulk local field as the spacetime
integrals of the corresponding CFT primary operators in the
generalized free limit, following the ideas in [5,20,21]. The
explicit formula for the bulk local field at the center in
global AdS space is given by

ϕðρ¼0;τ¼0Þ¼
Z
−π
2
≤τ≤π

2

dτ0dΩ0KðΩ0;τ0ÞOðΩ0;τ0Þ; ðB1Þ

where

KðΩ; τÞ ∼ 1

j cos τjd−Δ : ðB2Þ

First, we note that the CFT primary operator OðΩ; τÞ is
periodic, i.e., OðΩ; τ þ 2πÞ ¼ OðΩ; τÞ, in the generalized
free-field approximation. We also note that there are
infinitely many choices of the smearing function
KðΩ; τÞ, as noted in [10], because of the Fourier trans-
formation of the CFT primary operator OðΩ; τÞ in the
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generalized free-field approximation. Indeed, they use this
ambiguity to obtain this simple formula.
In [2,3], the dominant contributions in the τ integrals in

(B1) were from τ ¼ �π=2. This means, for example, that
the overlap hϕjO; τi between the bulk local state jϕi ¼
ϕðρ ¼ 0; τ ¼ 0Þj0i and the spherically symmetric CFT
state jO; τi ¼ R

dΩ0OðΩ0; τÞj0i is zero for τ ¼ π=2þ πZ.
Note that the smearing function can be essentially taken to
KðΩ; τÞ ∼ hϕjO; τi, which is zero for τ ≠ τ ¼ π=2þ πZ
because for the generalized free field we can show
that hO; τjO; τ0i ∼ δðτ − τ0 þ πZÞ.
The above statements are not precise because the bulk

local operator and the CFT operator are ill defined by the
UV divergences. More precisely, we can show that
hϕ;ajO; τ; ai → 0 for a → 0. Here the smeared bulk local
state at the center jϕ;ai is given by

jϕ; ai ¼ 1

N ϕ
2

Z
dτ0e−

ðτ0Þ2
2a2 ϕðρ ¼ 0; τ0Þj0i; ðB3Þ

where N ϕ
2 is fixed by the normalization condition

hϕ; ajϕ; ai ¼ 1 and the smeared spherically symmetric
CFT state jO; τ;ai is given by

jO; τ; ai ¼ 1

N O
2

Z
dτ0e−

ðτ0−τÞ2
2a2 Oðτ0Þj0i; ðB4Þ

where N O
2 is fixed by the normalization condition

hO; τ; ajO; τ; ai ¼ 1. The smearing by the Gaussian
integral roughly corresponds to the energy cutoff
with 1=a.
This seems to be impossible, in particular for τ ¼ �π=2

because KðΩ; τ ¼ �π=2Þ ¼ 0. However, it is indeed pos-
sible because of the choice of the ambiguity of the smearing
function. The important point here is that the smearing
function should be a periodic function; then, it is singular at
τ ¼ π=2þ πZ because of the absolute value of j cosðτÞj.
The local field contains an arbitrarily high-energy mode
and the singularity gives the nontrivial contribution to the
arbitrarily high-energy mode. Thus, the singular points give
the dominant contribution to the reconstruction of the bulk
local operator, as shown in [2].16

We can numerically check this. As an example, we take
d ¼ 3, Δ ¼ 4.8, and a ¼ 0.005. Figure 3 is the plot of the
overlap hϕ; ajO; τ; ai, where τ ¼ 2π

100
m − π

2
and the hori-

zontal axis represents m. This shows the sharp peaks at
τ ¼ π=2þ πZ. Figure 4 is the same plot of the overlap
hϕ;ajO; τ; ai, where τ ¼ π

2
þ 2π

10000
ðm − 50Þ and the hori-

zontal axis representsm. This plot focuses near the τ ¼ π=2
region.

For comparison, Fig. 5 is the plot of 1
j cos τjd−Δ, where τ ¼

2π
100

m − π
2
and the horizontal axis represents m. We also

show the plot of hO; τ; ajO; τ0 ¼ 0; ai in Fig. 6, where τ ¼
2π
100

m − π
2
and the horizontal axis represents m. These

clearly show the orthogonality.
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FIG. 3. Plot of the overlap hϕ; ajO; τ; ai for −π < τ < π.
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FIG. 5. Plot of the HKLL smearing function 1
j cos τjd−Δ.
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FIG. 4. Plot of the overlap hϕ; ajO; τ; ai for
ð1
2
− 1

100
Þπ < τ < ð1

2
þ 1

100
Þπ.

16The bulk local operator can be explicitly written using the
CFT local operators only at τ ¼ π=2 with the time derivative [2]
using the formulas given in [18,22].
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