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The linear dilaton (LD) background is the keystone of a string-derived holographic correspondence
beyond AdSdþ1=CFTd. This motivates an exploration of the (dþ 1)-dimensional linear dilaton spacetime
(LDdþ1) and its holographic properties from the low-energy viewpoint. We first notice that the LDdþ1 space
has simple conformal symmetries, that we use to shape an effective field theory (EFT) on the LD
background. We then place a brane in the background to study holography at the level of quantum fields
and gravity. We find that the holographic correlators from the EFT feature a pattern of singularities
at certain kinematic thresholds. We argue that such singularities can be used to bootstrap the putative
d-dimensional dual theory using techniques analogous to those of the cosmological bootstrap program.
Turning on finite temperature, we study the holographic fluid emerging on the brane in the presence of a
bulk black hole. We find that the holographic fluid is pressureless for any d due to a cancellation between
Weyl curvature and dilaton stress tensor, and verify consistency with the time evolution of the theory. From
the fluid thermodynamics, we find a universal temperature and Hagedorn behavior for any d. This matches
the properties of a CFT2 with large TT̄ deformation, and of little string theory for d ¼ 6. We also find that
the holographic fluid entropy exactly matches the bulk black hole Bekenstein-Hawking entropy. Both the
fluid equation of state and the spectrum of quantum fluctuations suggest that the d-dimensional dual theory
arising from LDdþ1 is generically gapped.

DOI: 10.1103/PhysRevD.109.106011

I. INTRODUCTION

The theory of quantum gravity likely encodes a holo-
graphic principle implying that the information content
inside any spacetime can be stored on its boundary [1–5].
The correspondence between anti–de Sitter (AdS) space-
times and conformal field theories (CFTs) realizes very
concretely this vision [6–9]. It further provides the explicit
description of the unitary evolution of boundary data.
Since the holographic principle itself applies to any

spacetime, we might expect phenomena similar to AdS/
CFT to appear in other geometries, including flat and
asymptotically flat spaces. The holographic dual theory of

flat space remains elusive so far, although progress is being
made via the study of celestial amplitudes, see e.g., [10] and
references therein. On the other hand, the holography of a
specific asymptotically flat spacetime offers encouraging
results. It is the so-called (dþ 1)-dimensional linear dilaton
(LDdþ1) spacetime.
The linear dilaton (LD) spacetime is a negatively curved

spacetime which is, in some sense, right in between AdS
and Minkowski spacetimes. This fact can be recognized at
the level of the entropy of massive black holes, which
grows as E

d−2
d−1, E

d−2
d−3, and E, respectively, for AdS, flat, and

LD spacetimes. In this work we obtain the latter property
for any d via the properties of the LD holographic fluid.
The fact that the LD space looks sometimes like flat
space also appears in a variety of other ways throughout
this work.
Below we briefly recall what is known about LD

holography and then expose our approach.

A. Linear dilaton holography from strings (review)

It has long been known that the linear dilaton back-
ground is holographic [11]. The string derivation of this
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fact involves a stack of NS5 branes taken in an appropriate
decoupling limit. It leads to a holographic correspondence
between a string theory in a seven-dimensional (7D) LD
background and a 6D string theory on a stack of NS5 branes
with gs → 0 [11], where gs is the string coupling. The latter
limit is known as little string theory (LST) [12,13]. It is an
interacting theory of noncritical strings which is nonlocal,
has no massless graviton, and has Hagedorn density of
states at high energy [14,15]. Lower-dimensional versions
of this LD7=LST6 duality can be obtained via spatial
compactifications.
Even though we know that the dual LST does exist, it is

hard to study it because it seemingly has no independent
formulation such as a Lagrangian description. However, it
has been recently proposed that a 2D compactification
of LST with many fundamental strings may be described
as a CFT2 deformed by a specific single-trace TT̄
deformation [16]. As a result, the 3D gravitational
description of this deformed CFT2 is a string theory
living on a background that interpolates between AdS3
and LD3. The LD3 geometry corresponds to the large TT̄
deformation regime. The mass of some of these 3D
spacetimes has been computed in [17] and does seem
to reproduce the effect of a TT̄ deformation. Further
evidence for the proposed duality involves the behavior of
correlators and of certain symmetries (see [18–26] for a
review). These progresses are obtained from the top-down
via string models analyses.

B. Linear dilaton holography from the bottom up

In this work we propose to explore the (dþ 1)-
dimensional linear dilaton spacetime and its holographic
properties from a bottom-up approach, working in the
regime of sub-Planckian energy scales. In this regime,
gravity can be treated classically and effective field theory
(EFT) techniques can be applied.1

There is an AdS/CFT analog to this approach. At the
level of EFT, a version of AdS/CFT can essentially be
derived by using symmetries and the conformal bootstrap2

(see e.g., [8,34–36] as points of entry in the literature.)
In analogy with the EFT approach to AdS/CFT, our aim

in the present paper is to explore some holographic aspects
of the LDdþ1 background at low energies. The LD back-
ground has, of course, less symmetry than the AdS one. Yet
we will find that symmetries do play a role. The overall
strategy is to place a brane in the LDdþ1 background, and to

evaluate the correlators and the thermodynamic behavior as
seen from this “braneworld.”
In this work we do not propose explicit dual theories for

the LDdþ1 spacetimes. While one may keep in mind that,
for certain dimensions, the dual boundary theory might be
some LST taken in an appropriate low-energy regime, our
study remains agnostic of the current string knowledge
about the boundary dual theories. Our focus is on,
(i) independently deriving familiar features from the
low-energy viewpoint, and (ii) uncovering new properties.
We may wonder, for example, if some principle could be
identified in order to bootstrap the d-dimensional dual
theory.

C. Outline

In Sec. II we compute the linear dilaton background in
any dimension, discuss its global properties, and identify
symmetries of the LD line element. In Sec. III we build an
EFT for a scalar field which is compatible with the
symmetries of the LDdþ1 background. In Sec. IV we place
a d-dimensional brane in LDdþ1 and compute brane
correlators on either side. In Sec. V we allow a black hole
solution in the bulk, compute the resulting holographic
fluid on the brane and study its thermodynamic properties.
Finally, Sec. VI contains the detailed summary of our
results, while Appendix A contains additional details on the
LD solutions with and without the bulk black hole.

D. Conventions

Throughout this work we use the conventions of Misner-
Thorne-Wheeler [37], which include the mostly-plus metric
signature sgnðgMNÞ ¼ ð−;þ; � � � ;þÞ. Likewise, we define
the metric determinant

ffiffiffi
g

p ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij det gMN j
p

. The number of
spacetime dimensions isD ¼ dþ 1, and we use eitherD or
d depending on the context.

II. LINEAR DILATON SPACETIME
AND SYMMETRIES

A. Bulk action

We consider a D-dimensional spacetime whose coor-
dinates are labeled as xM. The general scalar-gravity action
in the Einstein frame is

S½gMN;ϕ;Φ� ¼
Z

dDx
ffiffiffi
g

p �
MD−2

D

2
R −

1

2
ð∂MϕÞ2

− VðϕÞ þ Lm½Φ;ϕ�
�
; ð2:1Þ

where R is the D-dimensional Ricci scalar, ϕ is the scalar
field, VðϕÞ is the scalar potential, and MD is the funda-
mental D-dimensional Planck scale. The Lm Lagrangian
contains matter fields, collectively denoted by Φ, living on

1Other field theoretical studies of linear dilaton back-
grounds and related phenomenological developments include
Refs. [27–33].

2This leads to a version of the AdSdþ1=CFTd correspondence
for any d that we can summarize as for any EFT in AdS there is a
CFT, and for any CFT with large N and with a large gap in the
spectrum of higher-spin operators, there is an EFT in AdS.
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the spacetime background. The matter Lagrangian can also
depend on ϕ.
We assume that the scalar potential depends exponen-

tially on ϕ as

VðϕÞ ¼−
ðD− 2Þ2

2
MD−2

D k2e2ϕ̄ with ϕ̄¼ ϕffiffiffiffiffiffiffiffiffiffiffi
D− 2

p
M

D
2
−1

D

;

ð2:2Þ

where k is a constant with mass dimension 1 and ϕ̄ is
dimensionless. This potential corresponds to a cosmologi-

cal constant − ðD−2Þ2
2

MD−2
D k2 and no potential in the Jordan/

string frame. Throughout the paper we refer to the scalar
field ϕ as the dilaton.
We split the D coordinates as xM ¼ fxμ; rg, where xμ ¼

fτ; xig are D − 1≡ d spacetime coordinates, and assume a
warped metric,

ds2 ¼ gMNdxMdxN ¼ e−2AðrÞημνdxμdxν þ e−2BðrÞdr2:

ð2:3Þ

Using this ansatz, the independent field equations for the
metric and the scalar are

A00ðrÞ þ A0ðrÞB0ðrÞ − ϕ̄0ðrÞ2 ¼ 0; ð2:4Þ

A0ðrÞ2þ 1

D−1

�
2e−2BðrÞV̄ðϕ̄Þ− ϕ̄0ðrÞ2�¼ 0; ð2:5Þ

where V̄ ≡ V=½ðD − 2ÞMD−2
D � has mass dimension 2. There

is a third field equation which is redundant, as it can be
expressed in terms of these two equations [see Eq. (A5)].

B. The linear dilaton spacetime

A canonical solution to the field equations (2.4) and (2.5)
is

ds2LD ¼ dr2 þ r2

L2
ημνdxμdxν; ð2:6Þ

ϕ̄ðrÞ ¼ − log ðkrÞ; ð2:7Þ

where L is an integration constant with dimension of
length. The field equations (2.4) and (2.5) have a total
of three integration constants. All the solutions are equiv-
alent to Eq. (2.6) up to coordinate transformations. The
complete set of solutions, as functions of the integration
constants a, c, and L, is presented in Appendix A.
The Einstein tensor obtained from the ds2LD metric is

GLD
μν ¼ðD−2ÞðD−3Þ

2L2
ημν; GLD

rr ¼ðD−1ÞðD−2Þ
2r2

;

Gμr¼ 0; ð2:8Þ

and the Ricci scalar is

RLD ¼ −
ðD − 1ÞðD − 2Þ

r2
: ð2:9Þ

There is a curvature singularity located at r → 0 for D > 2.
Throughout the paper, we sometimes use the conformal

coordinates ðxμ; zÞ, z ¼ L log L
r. The scalar field varies

linearly in z in conformal coordinates, which is why the
spacetime was dubbed “linear dilaton.”

1. D = 2 dimensions

We briefly comment on the case ofD ¼ 2 spacetime. We
notice that for D ¼ 2 the solution simply reduces to a flat
space metric since RMN and VðϕÞ vanish identically. We
can wonder to which region of flat space it maps exactly. To
answer this, we go to Cartesian coordinates. For Lorentzian
signature ds2LD ¼ dr2 − r2

L2 dt2, the mapping to coordinates
ðx; τÞ is given by r ¼ x, t ¼ L tanh−1ðτxÞ. This implies
x2 ≥ τ2; therefore, we obtain that the metric maps to 2D
flat spacetime restricted to spacelike intervals. In other
words, in D ¼ 2 the ds2LD metric amounts to a two-
dimensional version of the Rindler metric. Our focus in
this work is on D > 2.

2. Global features

Singularity—The curvature singularity appearing at
r → 0 for the LD solutions can be classified as “good”
in the sense of Refs. [38,39]. We will explicitly see the
expected physical properties of the good singularity: It
repels quantum fluctuations (Sec. IV) and gets censored by
a horizon (Sec. V).
Boundaries—By going to conformal coordinates with

z ¼ L log L
r, we can see that the LD line element is

proportional to ds2 ∝ dz2þημνdxμdxν with ðxμ; zÞ∈R1;d.
Thus, the conformal structure of the LD spacetime is a null
diamond just like Minkowski spacetime (and unlike AdS).3

Notice that this is in spite of the fact that the scalar
curvature and the potential blow up at z ¼ ∞.
Geodesics—Following [40], the timelike geodesics

are attracted towards the singularity, and the geo-
desic distance grows exponentially with the separation

L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ημνðxμ1 − xμ2Þðxν1 − xν2Þ

q
. In contrast, the null geodesics

escape the singularity. In conformal coordinates they
behave as straight lines analogously to flat space.4

3For example, the Poincaré patch of AdSdþ1 is conformal
to Rþ ×R1;d−1 hence its Penrose diagram is a half-null diamond.

4We thank S. Barbosa (S. Fichet’s master student) for sharing
his notes.
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C. Symmetries

What are the symmetries of the line element of the LD
spacetime, Eq. (2.6)? The line element has d-dimensional
Poincaré isometries along the constant-r slices. It has other
symmetries though:

(i) The line element has a manifest conformal sym-
metry; the dilatation

r → λr; xμ → xμ ð2:10Þ
which gives ds2LD → λ2ds2LD. That is, under dilata-
tion the line element is equivalent to itself up to a
constant Weyl transformation.

(ii) The line element has a manifest discrete (Z2)
conformal symmetry; the inversion

r
L
→

L
r
; xμ → xμ ð2:11Þ

which gives

ds2LD →
L4

r4
ds2LD: ð2:12Þ

That is, under inversion the line element is equiv-
alent to itself up to a Weyl transformation.

The discrete conformal symmetry of ds2LD is expressed
here as an inversion in the ðxμ; rÞ coordinates, but of course,
the existence of a symmetry is coordinate independent. For
example, in conformal z ¼ L log L

r coordinates, this sym-
metry is a “conformal parity,” i.e., the line element is
equivalent to itself under z → −z up to a Weyl trans-
formation. The coordinate-independent statement is that the
LD line element is conformally invariant under an invo-
lution map. In the rest of the paper we mostly use r
coordinates and will refer to the conformal Z2 symmetry of
the line element as the “conformal inversion symmetry.”

1. Symmetry as a defining property

Let us study to which extent the peculiar conformal
symmetries identified above uniquely define the linear
dilaton spacetime. Poincaré invariance imposes the
warped ansatz ds2 ¼ FðrÞdr2 þ GðrÞημνdxμdxν. Then
requiring that dilatation in r leaves the line element
conformaly invariant imposes the form ds2 ¼ FðrÞ
ðdr2 þ ðr2=L2ÞημνdxμdxνÞ. Such a metric is more general
than the LD one. Further requiring that the conformal
weight be a constant, i.e., that the line element be
homothetic to itself we obtain the form,

ds2a ¼
r2a

L2a

�
L2

r2
dr2 þ ημνdxμdxν

�
: ð2:13Þ

Fora∈R=f0g,ds2a reproduces exactly the line element (A12),
which is equivalent to the LD line element Eq. (2.6) via

the coordinate transformation r
L → 1

a ðrLÞa, xμ → axμ (see
Appendix A 1 c). The remaining case a ¼ 0 corresponds
to Minkowski spacetime, in which case the scale trans-
formation amounts to translation along the dimension
xdþ1 ≡ L log r

L. In this particular case the dilatation in r
becomes an isometry.
The line element ds2a has the conformal inversion

symmetry for any a. For a∈R=f0g, ds2a is the one of the
LD spacetime, while for a ¼ 0 it reduces to standard parity
along the dimension xdþ1 ≡ L log r

L. One can easily show
that it is the unique involution in r of the ds2a metric.
Finally, one may ask whether the existence of a

conformal symmetry under an involution in r restricts
by itself the warped ansatz to be LD. The answer is
negative.5 Extra assumptions are needed to reach the LD
spacetime by only imposing symmetry under an involu-
tion. This happens for example for a line element
ds2 ¼ r2a

L2a ðL2

r2 dr
2 þ r2ðb−2Þ

L2ðb−2Þ ημνdxμdxνÞ, for which confor-
mal invariance under inversion requires b ¼ 2, which
yields Eq. (2.13).
In summary, requiring that the warped ansatz be homo-

thetic to itself under dilatation of r gives rise to either the
linear dilaton spacetime or the Minkowski spacetime. The
inversion symmetry automatically follows. In short, we can
say that there is a symmetry which uniquely defines the
linear dilaton spacetime. We have checked that imposing
only the inversion symmetry gives a weaker constraint.

D. Effective field theory and S-duality

ForD ≥ 4 the theory must be considered as a low-energy
effective field theory (EFT) describing gravity at sub-
Planckian scales. The Einstein-Hilbert action is then the
leading-order term in a curvature expansion of the quantum
effective action. The EFT Lagrangian in the gravity sector
reads in general,

1ffiffiffi
g

p Leff ¼
1

2
MD−2

D Rþ
X∞
n¼2

an;i
Λ2n−DOn;i; ð2:14Þ

where Λ is the scale at which the effects of the UV-
completion of quantum gravity show up. From the view-
point of the low-energy gravity EFT, it is the typical cutoff
scale below which the EFT is valid. The On;i are local
operators made of n curvature tensors, e.g. O2;i ¼
fR2; ðRMNÞ2; ðRMNPQÞ2g and their derivatives. Such cor-
rections happen if any state with mass of order Λ is
integrated out in the UV completion.

5For example, consider the set of metrics ds2 ¼ dr2 þ
c2ðrÞημνdxμdxν with cðrÞ an arbitrary real function, and consider
an involution map ρ, defined by ρ∘ρ ¼ Id, acting on the r
coordinate. We find that choosing ρ such that cðrÞρ0ðrÞ ¼ cðρðrÞÞ
gives a metric which is conformally equivalent to itself under the
ρ involution. This is much more general than the LD spacetime.
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1. Validity domain of the linear dilaton spacetime

The EFT breaks down when the series in Eq. (2.14)
cannot be truncated, i.e., when the R=Λ2 expansion breaks
down. This validity cutoff of the EFT is reached at e.g.,
high curvatures or small distances. Since in the LD
spacetime the curvature depends on the location in the
bulk, the EFT cutoff depends on the location r in the bulk.
(Notice this is a general feature of EFT in curved space,
which happens even for AdS [41,42]).
In the LD metric Eq. (2.6), and using the corresponding

curvature tensor Eq. (2.9), we can see that the domain of
validity of the EFT is

r≳ 1

Λ
; ð2:15Þ

where we have assumed that the an;i coefficients are Oð1Þ.
The bound (2.15) implies that the inversion symmetry is

supported on the restricted domain r∈ ½1Λ ;ΛL2�. This
interval is nonempty if the cutoff scale satisfies,

Λ >
1

L
: ð2:16Þ

The inversion symmetry becomes immaterial if this con-
dition is not satisfied.

2. On inversion symmetry and S-duality

We notice that the inversion (2.12), a conformal sym-
metry of the metric, transforms the dilaton expectation
value as

ϕLD → −ϕLD þ cte: ð2:17Þ

Such a transformation might be reminiscent of the S-duality
of string theory (see e.g., [43,44] for introductions).
The linear dilaton spacetime, at least in certain dimen-

sions, can be thought of as a compactified limit of type IIB
string theory, which is self-dual under S-duality [6,45].
In this case the S-duality identifies two solutions with
each other, hence defining a Z2 symmetry. It is thus not
surprising to find in our framework two solutions which are
identified to each other via an S dualitylike transformation.
The string S-duality exchanges weak and strong cou-

pling, gs → 1=gs. In our EFT this notion maps onto the
strength of the higher-order curvature corrections to grav-
ity, which varies with r. The region of strong coupling is the
one toward the singularity, where the EFTof gravity breaks
down. The region of weak coupling is the one away from
the singularity, where the EFT is valid. The S-duality
suggests that there should be an alternative weakly coupled
description beyond the region where the EFT validity
breaks down, r < 1

Λ. This is, in a sense, what we observe:
there is indeed a weakly-coupled region at small r, namely

r < ΛL2, which corresponds to the original solution trans-
formed under (2.12).
In the following we do not need to refer to S-duality,

and we denote the inversion symmetry as S when acting on
the fields.

III. FIELDS IN A LINEAR DILATON
BACKGROUND

In this section we consider quantum fields living on the
linear dilaton background. These are contained in the
matter Lagrangian in Eq. (2.1). The quantum fields inherit
the symmetries of the linear dilaton background. We study
the effects of these symmetries on the fields and how they
constrain physical observables. For concreteness we focus
on a real scalar field ΦðxMÞ and its correlators.

A. Symmetries and free fields

The fields living in the LD background Eq. (2.6) are
constrained by Lorentz invariance along the constant-r
slices, thus Φ ¼ Φðxμxμ; rÞ. Moreover they should trans-
form as representations, in field space, of the conformal
dilatation, Eq. (2.10), and the conformal inversion,
Eq. (2.11), symmetries.
The fundamental action of the matter fields on the LD

background is denoted as

SLD½Φ�≡ S½gLDMN;ϕ
LD;Φ�: ð3:1Þ

Let us consider a free field with canonical normalization,

Sfree
LD ½Φ� ¼ −

1

2

Z
ddx dr

rd

Ld ∂MΦ∂
MΦ: ð3:2Þ

The corresponding d’Alembertian is defined by

□r ¼
Ld

rd
∂r

�
rd

Ld ∂r

�
þ L2

r2
□

ðdÞ; ð3:3Þ

with □ðdÞ ¼ ημν∂μ∂ν the d-dimensional flat space
d’Alembertian.

1. Dilatation

Since the LD background has conformal dilatation
invariance in r, any operator O on the LD background
should transform under a dilatation transformation Dλ as

Dλ½Oðx; rÞ� ¼ Oðx; λrÞ ¼ λ−ΔOOðx; rÞ; ð3:4Þ

where we refer to ΔO as the scaling dimension.
How should a free field scale upon dilatation in r of the

LD background? The condition is that the action of the free
field should be invariant under the dilatation,

Dλ½SLD� ¼ SLD: ð3:5Þ
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This condition is needed to ensure that the correlators (i.e.,
the derivatives of the partition function) transform as
representations of dilatation. This would not be the case
if the action transformed nontrivially under dilatation.
Using the transformation Dλ½ΦðrÞ� ¼ λ−ΔΦΦðrÞ, the scal-
ing dimension of the free field must be

ΔΦ ¼ d − 1

2
: ð3:6Þ

The result (3.6) is also independently verified via a direct
calculation of the 2-point (2-pt) function. As a side note, in
our conventions the dimension Eq. (3.6) happens to match
the standard mass dimension of fields in flat space.

2. Inversion

We have seen that the line element of the background is
self-equivalent under the inversion operation (2.11) up to a
conformal factor. This transformation can be equivalently
thought of as a Weyl transformation i.e., a redefinition of
the metric field. We may thus expect that operators on the
LD background transform under the inversion up to a
similar redefinition. The transformed operator S½O� should
transform under dilatations, thus the field redefinition
should be a power of r,

S½Oðx; rÞ� ¼ O
�
x;
L2

r

�
rc

Lc ; ð3:7Þ

where c∈R is a constant. We have that

S2½O� ¼ S

�
O
�
x;
L2

r

�
rc

Lc

�
¼ O; ð3:8Þ

therefore S is an inversion. Requiring that the matter action
be invariant under S, we find that the free field transforms as

S½Φðxμ; rÞ� ¼ Φ
�
xμ;

L2

r

�
Ld−1

rd−1
≡ Φ̂ðxμ; rÞ; ð3:9Þ

i.e., c ¼ 1 − d for the free field.
The following identities hold:

□L2
r
¼ r4

L4
□r

				
d→2−d

; □L2
r
Φ
�
L2

r

�
¼ rdþ3

Ldþ3
□rΦ̂ðrÞ: ð3:10Þ

The invariance of the action is then verified by using,

Sfree
LD ½Φ� ¼ 1

2

Z
ddx dr

rd

Ld Φðxμ; rÞ□rΦðxμ; rÞ ð3:11Þ

¼ 1

2

Z
ddx dr

Ldþ2

rdþ2
Φ
�
xμ;

L2

r

�
□L2

r
Φ
�
xμ;

L2

r

�
¼ Sfree

LD ½Φ̂�; ð3:12Þ

where we used the change of variable r=L → L=r in the
second line.

3. Mass

A mass term is similarly constrained by the dilatation
and inversion symmetries. We find

Smass
LD ¼ −

1

2

Z
ddx dr

rd−2

Ld−2m
2Φ2; ð3:13Þ

where m is constant. Notice the nontrivial scaling in r.
We may also write the mass term (3.13) in a covariant

form that distinguishes the metric factor
ffiffiffi
g

p ¼ ðr=LÞd
from the dilaton background. In that view the mass
can be understood as a function of the dilaton ϕ, with
mðϕÞ≡ kLeϕ̄m. This form is not needed for our EFT
analysis of a matter field living on the LD background.
We can also notice that if we use a noncanonical

field Φ≡ ru
Lu Φ̃ for any u∈R, the kinetic term Eq. (3.2)

expressed in Φ̃ generates a mass term with precisely the
form of Eq. (3.13). This ensures that the structure of the
Lagrangian is not spoiled if one uses noncanonical fields—
the symmetries always constrain the mass term to a unique
monomial in r.
The mass term Eq. (3.13) together with the

d’Alembertian form the wave operator,

D¼−□rþ
L2

r2
m2 ¼−

Ld

rd
∂r

�
rd

Ld ∂r

�
þL2

r2
ð−□ðdÞ þm2Þ:

ð3:14Þ

4. Mass bound

We find that the mass term defined in Eq. (3.13) must
satisfy the condition,

m2 ≥ −
ðd − 1Þ2
4L2

; ð3:15Þ

to avoid tachyonlike instability of the theory. This can be,
for example, obtained by putting the equation of motion
[Eq. (3.14)] in Schrödinger form, by going to conformal
coordinates z, and performing the field redefinition
Φ ¼ e−

d−1
2L zΨ. The equation of motion then takes a flat

space form, ∂2zΨþ□ðdÞΨ − ðm2 þ ðd−1Þ2
4L2 ÞΨ ¼ 0. In anal-

ogy to flat space, requiring the absence of violation of
causality implies Eq. (3.15). The same conclusion can be
obtained by inspection of the Feynman propagator in
position space, see Eq. (3.28). The negative lower bound
in Eq. (3.15) is somewhat similar to the AdS Breitenlhoner-
Freedman bound, even though our argument is analogous
to a flat space one.
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B. The free 2-pt correlators

It is convenient to work in position-momentum space
ðpμ; rÞ to determine the 2-pt functions of the scalar field.
We introduce the Fourier transformed 2-pt functions as

Gðx; x0; r; r0Þ ¼ R ddp
ð2πÞd Gðr; r0;pÞeipμðx−x0Þμ . In position-

momentum space the equation of motion of the propagator
is given by

DrGðr; r0;pÞ ¼ −i
Ld

rd
δðr − r0Þ; ð3:16Þ

where the wave operator is given in Eq. (3.14), and we will
introduce,

Δp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2ðp2 þm2Þ þ ðd − 1Þ2

4
− iϵ

r
;

γp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−L2ðp2 þm2Þ − ðd − 1Þ2

4
þ iϵ

r
; ð3:17Þ

with γp ¼ iΔp if ϵ > 0.

1. Modes

The solutions to DrΦ ¼ 0 are

r
1−d
2
�Δp : ð3:18Þ

We can see that the quantity λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd−1Þ2
4L2 þm2

q
is a

threshold; solutions with −p2 ¼ p2
0 − p⃗2 > λ2 are oscillat-

ing, while solutions with −p2 < λ2 are exponential.6

Upon suitable normalization, the oscillating solutions
form a set of modes ffþ; f−g defined as

f�ðr; pÞ ¼
ffiffiffiffiffiffiffi
L
2γp

s �
r
L

�1−d
2
�iγp

: ð3:19Þ

This set of modes satisfies orthogonality under
R
∞
0 dr

ffiffiffi
g

p L2

r2 ,
that is

Z
∞

0

dr
rd−2

Ld−2 f�ðr; pÞf��ðr; p0Þ

¼ L2ffiffiffiffiffiffiffi
2γp

p ffiffiffiffiffiffiffiffi
2γp0

p Z
∞

0

dr
r
eiðγp−γp0 Þ logðr=LÞ

¼ πL2

γp
δðγp − γp0 Þ ¼ 2πδðp2 − p02Þ: ð3:20Þ

The set of modes also satisfies a completeness relation
obtained by summing over all the allowed values of p2,

Z
−λ2

−∞
dp2f�ðr;pÞf��ðr0;pÞ¼

1

L

�
rr0

L2

�1−d
2

Z
∞

0

dγeiγ logðr=r0Þ

¼ π

�
r
L

�
2−d

δðr− r0Þ: ð3:21Þ

The 1ffiffiffiffiffi
2γp

p normalization factor of the modes is key for the

completeness relation to work out.

2. The Wightman propagator

The Wightman propagator is the free nonordered 2-pt
function Wðx; x0Þ ¼ hΦðx − iϵÞΦðx0 þ iϵÞi [49]. It can be
thought of as the building block for the other 2-pt functions.
The Wightman propagator can be obtained as the sum of

normalizable modes of positive energy. Here we have to
sum over both the fþ and f− modes, which are inequivalent
modes, W ∝

P
i¼� fiðrÞf�i ðr0Þ. We obtain,

Wðr; r0;pÞ ¼ L
2γp

�
rr0

L2

�1−d
2

��
r
r0

�
iγp þ

�
r0

r

�
iγp
�

× θ

�
p0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ p2

q �
; ð3:22Þ

where θðxÞ is the Heaviside function.
We can see that the symmetries of the background

are reflected in the form of the Wightman propagator.
Firstly, the Wightman propagator has scaling dimension
Δ ¼ 2ΔΦ ¼ d − 1, it is thus consistent with the scaling
obtained in Eq. (3.6) by requiring invariance of the matter
action under dilatation Eq. (3.5). Second, the Wightman
function is invariant under the inversion symmetry,

S½Wðr; r0;pÞ� ¼ L2d−2

ðrr0Þd−1W
�
L2

r
;
L2

r0
;p

�
¼ Wðr; r0;pÞ:

ð3:23Þ

This symmetry is pictured in Fig. 1.
Apart from these symmetries, we can verify that the

Wightman function is Hermitian, Wðr0; rÞ� ¼ Wðr; r0Þ,
which is always true and serves simply as a sanity check
of our calculations.

3. The Feynman propagator

The Feynman propagator is defined by

Gðx; x0Þ ¼ Wðx; x0Þθðt − t0Þ þWðx0; xÞθðt0 − tÞ: ð3:24Þ

In position-momentum space we find,

6This behavior has been pointed out in d ¼ 3 in a number of
papers, see e.g., [18,19,46]. Our interpretation is standard; the
bulk QFT has a Hilbert space with gapped continuous spectrum.
In analogy with AdS/CFT, these normalizable modes may also
be identified as the states of the putative boundary theory (see
e.g., [47,48]).
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Gðr; r0;pÞ ¼ −
iL
2Δp

�
rr0

L2

�1−d
2

�
r<
r>

�
Δp

; ð3:25Þ

where r< ¼ minðr; r0Þ, r> ¼ maxðr; r0Þ. Independently
from the above derivation, G also corresponds to the
solution of the equation of motion Eq. (3.16).
It turns out that the LD propagator can be expressed in

terms of a flat space propagator. Going to conformal
coordinates for convenience and defining Gðr; r0;pÞ≡
Ĝðz; z0;pÞ, we find

Ĝðz;z0;pÞ ¼ e
d−1
2

zþz0
L Ĝflat

�
z; z0;p;m2þðd− 1Þ2

4L2

�
; ð3:26Þ

where Ĝflat is the propagator of a scalar in dþ 1 dimensions

with squared mass M2 ¼ m2 þ ðd−1Þ2
4L2 , here expressed in

momentum-position space ðpμ; zÞ. The Ĝflat propagator
in (3.26) is given by

Ĝflatðx; x0;M2Þ ¼
Z

dDp
ð2πÞD eipNðx−x0ÞN i

−pNpN −M2 þ iϵ

¼
Z

ddp
ð2πÞd e

ipμðx−x0Þμ ei
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−p2−M2þiϵ

p
jz−z0j

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−p2 −M2 þ iϵ

p
≡
Z

ddp
ð2πÞd e

ipμðx−x0ÞμĜflatðz; z0;p;M2Þ:

ð3:27Þ

Having identified Ĝflatðz; z0;p;M2Þ as the integrand of the
bottom-left term, one can easily verify the relation (3.26).
Equivalently, in position space with coordinates ðxμ; rÞ and
defining Gflatðx; x0;M2Þ≡ Ĝflatðx; x0;M2Þjz¼L logðLrÞ, the
relation is

Gðx; x0Þ ¼
�
rr0

L2

�1−d
2

Gflat

�
x; x0;m2 þ ðd − 1Þ2

4L2

�
: ð3:28Þ

By considering a timelike interval with endpoints with
identical r, we can notice that the propagator would blow

up if m2 < − ðd−1Þ2
4L2 , indicating violation of causality. This

proves the mass bound Eq. (3.15).

C. Effective field theory

Having understood the symmetries of the free theory, we
can build an interacting theory by following the principles
of effective field theory. We will write local operators
taking schematically the form Leff ⊃ Fm;nðrÞ∂2mΦn. The
dilatation and the inversion symmetries completely con-
strain the F function.

1. Bilinear operators

The bilinear operators of the theory can be built using
powers of the following d’Alembertian,

□̃r ≡ r2

L2
□r: ð3:29Þ

The quantity □̃rΦðrÞ has the same scaling dimension as Φ,
and furthermore transforms as Φ under the inversion
operation,

S½□̃rΦðrÞ� ¼ Ld−1

rd−1
□̃L2

r
Φ
�
L2

r

�

¼ □̃r

�
Φ
�
L2

r

�
Ld−1

rd−1

�
¼ □̃rΦ̂ðrÞ: ð3:30Þ

We can therefore write the complete bilinear action as

Lbil
LD ¼ −

1

2

Z
ddx dr

rd

Ld ΦΠ½□̃r�Φ; ð3:31Þ

with the self-energy Π expanded as

Π½□̃r� ¼
X∞
n¼0

an
Λ2n−2 ð□̃rÞn: ð3:32Þ

The n ¼ 1 term is the kinetic term, with a1 ¼ 1 for
canonical normalization. The n ¼ 0 term is the mass term,

with a0 ¼ m2ðrÞ
Λ2 .

2. Interactions

Interaction terms are similarly constrained by the dila-
tation and inversion symmetries. For example, for a
nonderivative interaction Φn we find,

Lint
LD ⊃ −

γn
n!

Z
ddx dr

�
r
L

�
nd−1

2
−1
Φn: ð3:33Þ

FIG. 1. Action of the S symmetry on a 2-pt correlator in the
linear dilaton background.
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As in the case of the mass term, we could also write this
interaction covariantly with a dilaton-dependent coupling
γnðϕÞ≡ ðkLeϕ̄Þdþ1−nd−1

2 γn. We can also check that the
derivative interaction,

Lint
LD ⊃ −

1

n!

Z
ddx dr

�
r
L

�ðnþ2Þd−1
2
þ1

Φn
∂MΦ∂

MΦ; ð3:34Þ

is invariant. The invariance under inversion is not straight-
forward. It happens due to cancellations, upon integration
by part of a Φ0Φnþ1 term which appears when applying the
symmetry.

3. Structure of correlators

Consider a diagram contributing to an l-pt correlator

hΦðr1Þ…ΦðrlÞiLDdþ1
≡MðlÞ

LDdþ1
. In position space, the

diagram is built using the above interactions together with
the position space Feynman propagator of Eq. (3.28). Most
r
L powers simplify inside the diagram, the remaining ones
combine such that the interior of the diagram amounts to an
amplitude in flat space with ðxμ; L logðLrÞÞ coordinates [or
equivalently ðxμ; zÞ in conformal coordinates]. The only
remaining r

L factors are those associated with the endpoints
of the external propagators.
The above facts put together imply that any Feynman

diagram of our EFT takes the form of a flat space diagram
with each external leg ending at ri multiplied by a ðriLÞ

1−d
2

factor, i.e.,

MðlÞ
LDdþ1

ðr1;…; rlÞ ¼ MðlÞ
flatdþ1

ðr1;…; rlÞ
Yl
i¼1

�
ri
L

�1−d
2

:

ð3:35Þ
The emergence of a flat space amplitude is a consequence
of the symmetries we have imposed to build the EFT.
The Mflatdþ1

ðriÞ correlator is invariant under the dilatation
of the ri coordinates (or equivalently under translation in
the conformal coordinates zi). The scaling behavior of
MLDdþ1

ðriÞ is thus simply set by the overall powers of r in
the right-hand side of (3.35). This ensures that the
MLDdþ1

ðriÞ diagrams scale as l d−1
2
, consistent with the

scaling dimension of a product of l free fields (see
definition in Sec. III A 1).

IV. LINEAR DILATON HOLOGRAPHY

We turn to the holographic properties of the linear
dilaton spacetime. We place a flat brane in the spacetime
and study the correlators ending on it.7 From these, we

deduce properties that the putative d-dimensional holo-
graphic dual theory, if it exists, should satisfy. We also point
out that the properties of the holographic correlators can be
explored using techniques analogous to those applied to the
wave function of the Universe.

A. Two halves of LD

We assume the existence of a flat brane (i.e., a domain
wall) along the r ¼ rb surface. All the fields have boundary
conditions on the brane. The brane is described by
appending the action,

Sbrane ¼ −
Z

ddx
ffiffiffī
g

p ðVbðϕÞ þ ΛbÞ; ð4:1Þ

to the bulk action defined in (2.1). The brane carries a
localized potential VbðϕÞ. The induced metric determinant
in our coordinates is

ffiffiffī
g

p ¼ ðrb=LÞd.
We assume the brane potential sets the value of ϕ to

ϕ ¼ vb, and Λb is tuned to −VbðvbÞ so that the total brane
tension is zero. The dilaton vacuum expectation value
(VEV) introduces a new physical scale,

η≡ kev̄b : ð4:2Þ

The solution to the bulk field equations is the same as
without a brane, but the parameters of the solution differ.
While the brane location rb may in principle evolve in time
(see Sec. V E), the value of v̄b does not change as a function
of rb, because it is fixed by a brane-localized potential, i.e.,
∂v̄b
∂rb

¼ 0. This fact implies a constraint on the c parameter,

c ¼ 1

ηrb
: ð4:3Þ

Other equivalent conditions are given in Sec. V F. The
solution of the field equations with the parameter fixed in
Eq. (4.3) is

ds2¼ 1

η2r2b
dr2þ r2

L2
ημνdxμdxν; ϕ̄ðrÞ¼ log

�
rb
r

�
þ v̄b:

ð4:4Þ

The brane splits the spacetime into two regions as
illustrated in Fig. 2. We refer to the r∈ ½0; rb� region as
LD−, and to the r∈ ½rb;∞� region as LDþ. The two regions
are fundamentally different; LD− contains the singularity
while LDþ does not. Our goal is to study the quantum fields
living on the LD� regions from the viewpoint of the brane.

1. Preliminary observations

Properties of the QFT differ between LD− and LDþ
regions. As will be shown below, in the LD− region the
spectrum in d-momentum space features isolated discrete

7In this paper we study holography on a timelike surface.
Another direction could be to study holography at the conformal
null boundary of LD (with no brane), just like for flat spacetime,
see e.g., [10] and references therein. This is a distinct analysis that
we leave for future work.
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modes in addition to a gapped continuum. These isolated
modes are absent in region LDþ. A qualitative way to
understand this phenomenon is that the quantum fluctua-
tions tend to be repelled from the curvature singularity, so
that in the LD− region there is a notion of confinement
between the brane and the singularity.
Various truncations of the LD background have been

considered in the literature [27,28,31,33], sometimes
involving two branes. Our analysis provides a simple
overview of the regions and makes it clear that isolated
modes exist even with a single brane.8

As will be clear below, the isolated modes of the gravity
sector in the LD− region are a massless graviton and a
massive scalar, usually called radion [31]. The existence of
the massive radion mode ensures that the brane-singularity
distance is stable in the one-brane setup.
The existence of the isolated massless graviton in the

LD− region means that e.g. one can exploit the D ¼ 5 case
to build models featuring Einstein-like 4d gravity at low
energy. This phenomenological line has been followed to
some extent in [31]. In contrast, in the LDþ region there is
no graviton massless mode. Hence at energies below the
graviton mass gap, gravity can be integrated out. In the
LDþ region we thus recover the familiar LST property that
gravity decouples at low energy [14,15].

Our focus in this work is not on the isolated modes of the
LD− region, but rather on the theory as seen from the brane.
That is, from the viewpoint of the partition function,
we probe the theory by placing sources on the brane.
Integrating out the bulk modes defines the brane quantum
effective action, which generates the brane correlators.
Unlike an EFT for isolated modes, this holographic view-
point applies for both LD− and LDþ regions. Integrating
out either the LDþ or LD− region of the bulk gives rise to
two inequivalent holographic effective theories described
by the quantum effective actions Γþ and Γ−.
Throughout this section we are not interested in the rb

dependence of the correlators. We then simplify the
expressions by assuming the brane located at

rb ≡ 1

η
: ð4:5Þ

For the correlators we compute in this section, assump-
tion (4.5) is equivalent to stating that the correlators
Ĝ≡Gjrb¼η−1 are functions of the rescaled coordinates
ðx̂μ; r̂Þ with,

x̂μ ¼ xμηrb; r̂ ¼ r
ηrb

; ð4:6Þ

[i.e., p̂μ ¼ pμðηrbÞ−1]. The general case Gðxμ; rÞ can be
recovered by plugging (4.6) into the Ĝ correla-
tors, Gðxμ; rÞ ¼ Ĝðx̂μ; r̂Þ.

B. Fields and propagators

We study the quantum fluctuations of a matter scalar
field Φ and of the bulk metric in the LD� regions. We
assume that the propagators are regular at r → 0 and
r → ∞, just like in the LD spacetime without brane. We
assume Neumann boundary condition for the matter scalar.
For the metric fluctuation our focus is the tensor component
gμν, i.e., the d-dimensional graviton, which has automati-
cally Neumann boundary condition on the brane.

1. Matter scalar

We consider the matter scalar field Φ living on the LD
background in the presence of the brane. The action and
properties of this field in the full LD background have been
studied in Sec. III. We denote its bulk action as Sbulk

Φ . The
full action describing the effect of the brane on Φ is

SΦ ¼ Sbulk
Φ −

1

2

Z
brane

ddx
rdb
Ld ΦB½□ðdÞ�Φ: ð4:7Þ

The surface term, which contains the function B, contains
brane-localized operators which are bilinear in Φ and
depend on the flat-space d-dimensional d’Alembertian.

FIG. 2. The linear dilaton spacetime with a brane. The LD�
regions can support different QFTs. The drawn 3-pt contact
diagrams illustrate brane correlators in each region.

8Solutions for D ¼ 5 in the presence of branes have been
studied in Refs. [28,31,33]. Consider AðzÞ ¼ σz, where the
parameter σ ∝ 1=L is such that signðσÞ ¼ signðaÞ, see Eq. (A20).
The σ < 0 case was studied in [28,33] and the σ > 0 case in [31].
In our analysis, these cases map respectively to LDþ and LD−,
which makes it clear why there is low-energy gravity in the latter
and not in the former.
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Upon Fourier transform along the flat slices, the bulk
action gives rise to the bulk wave operator D given
in (3.14). The corresponding bulk equation of motion is
given in (3.16). The Neumann boundary conditions on the
Green’s functions of Φ are

ð∂r � BÞGðr; r0;pÞjr¼rb ¼ 0; ∀ r; r0 ∈LD∓: ð4:8Þ

With this boundary condition, the Feynman propagator G�
Φ

in regions LD� is found to be

G�
Φðr; r0;pÞ ¼

iL
2Δp

�
rr0

L2

�1−d
2

�
bp

�
L2

rr0

��Δp

−
�
r<
r>

�
Δp
�
;

ð4:9Þ

with

bp ¼ 1 − d� 2Δp ∓ 2rbB
1 − d ∓ 2Δp ∓ 2rbB

�
rb
L

��2Δp

; ð4:10Þ

where B≡ Bð−p2Þ.

2. Graviton

We define the graviton as the traceless fluctuation hμν of
the metric

ds2 ¼ dr2 þ r2

L2

�
ημν þ hμνðx; rÞ

�
dxμdxν; ð4:11Þ

where we have used Eq. (4.5). In order to determine the
graviton spectrum, it is enough to focus on the transverse
component of hμν, h⊥μν ¼ P⊥

μρP⊥
νσhρσ − 1

4
ημνP⊥

ρσhρσ , with

P⊥
αβ ¼ ηαβ −

∂α∂β

□
. The h⊥μν component contributes to the

graviton propagator as

Gh
μν;ρσðx; x0Þ ¼ Ghðx; x0ÞIμν;ρσ þ � � � ; ð4:12Þ

with Iμν;ρσ ¼ 1
2
ðημρηνσ þ ημσηνρÞ − 1

d ημνηρσ the identity on
the space of d-dimensional traceless symmetric tensors.
The equation of motion of the reduced graviton propagator
Gh is simply expressed with the scalar wave operator,

□rGhðx; x0Þ ¼ i
Ld

rd
δdþ1ðx − x0Þ; ð4:13Þ

with boundary condition ∂rGhjr¼rb ¼ 0 on the brane.
The reduced bulk Feynman propagator in the LD�

regions is related to the scalar one. We find

G�
h ðr; r0;pÞ ¼ G�

Φðr; r0;pÞ
		
m¼0;B¼0

: ð4:14Þ

Since the graviton propagator can be expressed in terms of
the scalar propagator, our focus below is essentially on the
scalar sector. We shall drop the Φ indexes from the scalar

quantities, while the graviton case is obtained by special-
izing to m → 0, B → 0.

C. Holographic correlators

We now compute the entries of the boundary quantum
effective action of the fields, denoted by Γ�½Φb�, where the
Φb argument is the classical field value on the brane. The
effective actions Γþ and Γ− are obtained from integrating
out, respectively, the LDþ and LD− regions. They are in
principle different.
The boundary quantum effective action can be conven-

iently evaluated by expressing the fields in a holographic
basis which separates the bulk and brane degrees of
freedom. In momentum space it takes the form
Φðp; rÞ ¼ ΦbðpÞKðp; rÞ þΦDðp; rÞ, where ΦbðpÞ is the
boundary degree of freedom, and ΦDðp; rÞ is the Dirichlet
component satisfying ΦDðp; rbÞ ¼ 0. The Kðp; rÞ func-
tion, which satisfies the condition Kðp; rbÞ ¼ 1 for any p,
can be chosen to be the amputated Neumann brane-to-bulk
propagator. With this choice the quadratic action is diago-
nal in the ðΦb;ΦDÞ basis [50]. There is a holographic
decomposition for each of the LD� regions, with distinct
brane-to-bulk propagators K�, that are given further below.
The effective action Γ�½Φb� contains the 1PI pieces of

the boundary correlators, that can be extracted by taking
derivatives in Φb. Notice that the notion of 1PI is meant
with respect to boundary-to-boundary lines. Our focus is
the tree-level entries of Γ�½Φb�, sometimes referred to as
holographic self-energy and vertices.
The tree-level bilinear entry of Γ�½Φb�, i.e., the holo-

graphic self-energy, is given by

Cð2Þ� ðpÞ≡ 1ffiffiffī
g

p δ2Γ�½Φb�
δΦbðpÞδΦbð−pÞ

¼ ∓∂rK�ðp; rÞjr¼rb

¼ 1ffiffiffī
g

p 1

iG�ðp; rb; rbÞ
: ð4:15Þ

The last equality is a general property of the holographic
decomposition which similarly holds for any back-
ground [50].
The higher point terms of Γ½Φb�, i.e., the holographic

vertices, amount to bulk diagrams built from Dirichlet
propagators, with the K�ðpj; rjÞ in external legs. They take
the general form,

Cðl>2Þ
� ðpiÞ¼

 Yl
j¼1

Z
drjK�ðpj;rjÞ

!
Aðl>2Þ

� ðpi;riÞ; ð4:16Þ

where Aðl>2Þ
� ðpi; riÞ is an l-pt bulk subdiagram made

from Dirichlet lines. We use the notation Cðl>2ÞðpiÞ≡
Cðl>2Þðp1;…; plÞ and similarly forA and related quantities.
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1. Propagators

The relevant propagagors in the LD� regions are as
follows. The (amputated) brane-to-bulk propagators are

K�ðp; rÞ ¼
�
r
rb

�1−d
2
∓Δp

: ð4:17Þ

The Dirichlet propagators that appear in internal bulk
lines are

G�
Dðr; r0;pÞ ¼

iL
2Δp

�
rr0

L2

�1−d
2

��
r2b
rr0

��Δp

−
�
r<
r>

�
Δp
�
:

ð4:18Þ

The holographic basis provides a decomposition of the
Neumann propagator into a Dirichlet propagator plus a
boundary contribution describing the propagation of the
boundary degree of freedom. This Neumann-Dirichlet
identity in the LD� regions is

G�ðr; r0;pÞ ¼ G�
Dðr; r0;pÞ

þK�ðp;rÞG�ðrb; rb;pÞK�ðp; r0Þ: ð4:19Þ

2. Dual theory

Finally, we can always interpret Γ½Φb� as the generating
functional of an unknown d-dimensional theory probed by
the Φb source,

Γ½Φb�≡
D
ei
R

dxdΦbO
E
dual ðunknownÞ

; ð4:20Þ

with O an operator from the dual theory. The CðlÞðpiÞ are
then interpreted as the connected correlators of this putative
dual theory.
The dual theory is unknown in the sense that we do not

know the d-dimensional fundamental action that describes
it. Whether this dual description actually exists is a highly
nontrivial question. In this work we infer from Γ½Φb� some
generic features that the dual theory should possess. We
emphasize that all our analysis remains relevant independ-
ently from the actual existence of the dual theory.

D. Two-point correlators and spectrum

The scalar brane-to-brane propagators in the LD�
regions are

G�
b ðp2Þ≡G�ðrb;rb;pÞ¼−i

Ld

rd−1b

1

Δp� d−1
2
þ rbB

; ð4:21Þ

From the viewpoint of the brane, these are 2-pt functions
in d-dimensional flat space. They thus have a Källén-
Lehmann representation from which we can extract a

spectral function. In momentum space the spectral function
is given by

ρ�ðμÞ ¼ 1

π
Im½iG�

b ð−μ2Þ�: ð4:22Þ

For convenience we fix the brane operator to be a mass
term, i.e., B≡ B̄=rb where B̄ is dimensionless. We find,

ρ�ðμÞ ¼ 1

π

Ld

rd−1b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ2−m2ÞL2 − ðd−1Þ2

4

q
ðμ2−m2ÞL2 − ðd− 1� B̄ÞB̄

× θ

�
μ2−

ðd− 1Þ2
4L2

þm2

�

þ δ�;−
ðd− 1− 2B̄ÞLd−2

rd−1b

θ

�
d− 1

2
− B̄
�
δðμ2−m2

0Þ;

ð4:23Þ

with the isolated mode mass given by m2
0 ¼ m2 þ ðd−1−B̄ÞB̄

L2 .

1. The isolated mode

From Eq. (4.23) we see that only the region LD− features
an isolated mode. This can be understood as an effect of
confinement between the brane and the singularity. This
illustrates the idea that the singularity repels the scalar
fluctuations.
The condition on B̄ from the Heaviside function on the

second line in Eq. (4.23) appears because if B̄ ≥ d−1
2

the
residue of the pole vanishes. This mechanism automatically
prevents the residue to become negative, i.e., it prevents the
presence of a ghost in the spectrum.
We notice that a massless mode can be obtained by

tuning B̄, but only if the bulk mass satisfies m2 ≥ − ðd−1Þ2
4L2 .

Interestingly, this is the same bound as the one obtained in
Sec. III A 3, arising here from a subtler criterion: requiring
that a massless isolated mode can exist in the parameter
space.9

The graviton case is obtained by setting B̄ ¼ 0, m ¼ 0.
Hence, the isolated graviton mode in LD− is massless
and the continuous component of the graviton spectrum in
LDþ and LD− are exactly equal, with a mass gap
at ðd − 1Þ=ð2LÞ.

2. Holographic correlators

We turn to the self-energy Cð2Þ� ðp2Þ, defined by
Eq. (4.15). This self-energy can always be interpreted as

9In analogy with a slice of AdS space [51], the existence of
such a massless scalar mode would be necessary in order to build
supersymmetric multiplets in the low-energy EFT of isolated
modes. Aspects of supersymmetry in the LD spacetime have been
investigated in [33].
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the 2-pt correlator of an unknown d-dimensional dual
theory. The spectral distribution of the 2-pt holographic
correlator is given by

ρ�C ðμÞ ¼
1

π
Im½Cð2Þ� ð−μ2Þ�: ð4:24Þ

The result from either the LD− or LDþ regions is

ρ�C ðμÞ ¼
γμ
πrb

θ

�
μ2 −

ðd − 1Þ2
4L2

−m2

�
; ð4:25Þ

where we remind the definition γμ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ2−m2ÞL2− ðd−1Þ2

4

q
.

We see that the spectral functions are equal. No information
on the isolated mode remains in ρ�C . More generally, the B
term entirely drops because it enters as a purely analytical
term, which cannot contribute to the spectral distribution.
We can proceed similarly with the graviton field. The

brane-to-brane propagator for the graviton in LD� regions
is the same as Eq. (4.21) with m ¼ 0 and B ¼ 0, thus the
graviton spectral distribution is

ρ�C ðμÞjm¼0: ð4:26Þ

These results show that the putative dual theory emerg-
ing from the holography of either LD� must describe a
gapped continuum. A similar conclusion is obtained from
other fields, see e.g., [29–32] for related results. The fact

that both regions lead to the same continuum spectrum is
nontrivial. It comes from the fact that the 2-pt propagators
in LD− and LDþ only differ by the isolated mode, which is
reminiscent of the inversion symmetry of the LD space-
time. Interestingly enough, a similar spectrum is also
obtained from the single-trace deformed CFT2 studied
with string techniques, see Refs. [16,18,19].

E. Higher-point correlators and singularities

We now investigate 3-pt and 4-pt correlators. We use the
bulk vertices from the EFT obtained in Sec. III. These
vertices respect the dilatation symmetry by construction.

1. Contact diagrams

To warm-up we compute a 3-pt contact diagram induced
by the cubic vertex,

Sint ⊃ −
Z

ddx dr

�
r
L

�3d−5
2 γ

3!
Φ3: ð4:27Þ

The diagram in the LD� region, for example, is given by

−iγ
Z

∞ðrbÞ

rbð0Þ
dr

�
r
L

�3d−5
2

K�ðr; p1ÞK�ðr; p2ÞK�ðr; p3Þ:

ð4:28Þ
We find identical correlators for LD− and LDþ,

ð4:29Þ

We can see that Cð3Þ;con� has a singularity going as
the inverse of the sum of all scaling dimensions,
Δp1

þ Δp2
þ Δp3

≡ ΔT ¼ 0.
Similarly, the n-pt contact diagrams from aΦn monomial

are identical in both regions, CðnÞ;conþ ¼ CðnÞ;con− , and are
proportional to 1=ΔT with ΔT ≡Pl

i¼1 Δpi
the sum of all

the scaling dimensions.

2. Exchange diagram

We compute an s-channel 4-pt exchange diagram
induced by the cubic vertices. We denote the exchanged

d-momentum by qμ ¼ ðp1 þ p2Þμ. It appears in the scaling
dimension of the propagator, Δq. We define,

ΔT ¼
X4
i¼1

Δpi
; Δij ¼ Δpi

þ Δpj
þ Δq: ð4:30Þ

We first compute the exchange diagram with an internal
Dirichlet propagator. This is, in the language of Sec. IV C, a
contribution to the 4-pt holographic vertex. We find that
this exchange diagram is

ð4:31Þ
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in both regions LD�.
In order to compute the exchange diagram with a

Neumann internal propagator, we can equivalently redo
the calculation using the propagator from Eq. (4.9), or add
to Eq. (4.31) the contribution from the boundary term
in (4.19). The Neumann exchange diagram takes the form,

Cð4Þ;ex�;N ðpiÞ ¼ Cð4Þ;ex� ðpiÞ þ Cð4Þ;ex�;∂ ðpiÞ; ð4:32Þ

with the boundary contribution

Cð4Þ;ex�;∂ ðpiÞ ¼ iγ2L3

�
rb
L

�
2ðd−1Þ 1

Δ12Δ34

1

rbB þ Δq � d−1
2

:

ð4:33Þ

The boundary contribution Cð4Þ;ex�;∂ takes the form of two
holographic 3-pt vertices related by a brane-to-brane

propagator. Accordingly, the Cð4Þ;ex−;∂ term features the
isolated pole with mass m0 that we have already encoun-

tered in Sec. IV D. The Cð4Þ;ex�;∂ is not 1PI since it features a

single boundary line, unlike the Cð4Þ;ex� contribution.
We see that the holographic decomposition naturally

separates Cð4Þ;ex�;N as a boundary term and a 1PI term. The
boundary term can be built from lower-order 1PI holo-
graphic vertices. Hence, the nontrivial information is rather

encoded into the 4-pt 1PI term Cð4Þ;ex� . Interestingly, it is
identical in both regions LD�.
The Cð4Þ;ex� ðpiÞ term features a singularity at ΔT → 0.

This singularity is reached for physical values of the
external momenta. It occurs when the four scaling dimen-
sions simultaneously vanish,

Δp1;p2;p3;p4
→ 0: ð4:34Þ

The vanishing of a given Δpi
corresponds to the threshold

value −p2
i ¼ m2 þ ðd−1Þ2

4L2 beyond which the 2-pt line [here
the Kðpi; riÞ] develops an imaginary part. This is, physi-
cally, the kinematic threshold of the gapped continuum
found in Eq. (4.25). The ΔT ¼ 0 singularity thus occurs at
the configuration of simultaneous kinematic thresh-
olds, Eq. (4.34).
Since theΔT → 0 singularity has a physical meaning, the

associated residue may also have one. We find that the
residue of the 1=ΔT pole is

L

�
rb
L

�
2ðd−1Þ iγ2

q2 þm2 þ ðd−1Þ2
4L2

: ð4:35Þ

We recognize a 4-pt amplitude from d-dimensional flat
space. It is, up to a positive overall factor, the S-matrix

element for the exchange of a scalar with mass m2 þ ðd−1Þ2
4L2 .

In the next subsections we explain why these features
happen.
Finally we comment on the other singularities of

Cð4Þ;ex� ðpiÞ. Singularities associated with the cubic subdia-
grams occur if Δ1;2, or Δ3;4, and Δq simultaneously go to
zero. The threshold in Δq requires −q2 > 0 to be reached,
which occurs in case of an s-channel. These subdiagram
divergences correspond to those of the 3-pt holographic
vertices, Eq. (4.29). They thus appear in both the 1PI term

Cð4Þ;ex� and the boundary term Cð4Þ;ex�;∂ .

3. Singularities

A pattern emerges upon inspection of the perturbative
boundary correlators. The singularities are associated with
the scaling dimensions flowing through each vertices of the
diagrams. In particular, the correlator always features a
singularity at vanishing total scaling dimension ΔT → 0.
Let us prove this last point for a general diagram.
We consider the general structure for the generic brane

correlator given in Eq. (4.16), that we reproduce here:

CðlÞðpiÞ ¼
"Yl
j¼1

Z
drjKðpj; rjÞ

#
AðlÞðpi; riÞ: ð4:36Þ

Here for concreteness we focus on the LD− region and drop
the − subscript. The result in the LDþ region is identical.
We notice that the AðlÞ subdiagram has similar structure

as the bulk correlator described in (3.35), except that the
external legs are amputated. More precisely, using the same
steps as in Sec. III C 3 we find,

AðlÞ
LDdþ1

ðpi; riÞ ¼ AðlÞ
flatdþ1

ðpi; riÞ
Yl
i¼1

�
ri
L

�d−3
2

; ð4:37Þ

where AðlÞ
flatdþ1

ðrjÞ is an amputated correlator in flat
space, expressed in momentum-position coordinates
ðpμ; L logðL=rÞÞ. It is invariant under the dilatation trans-

formation. The scaling dimension of AðlÞ
LDdþ1

is thus −l d−3
2
,

as determined by the powers in (4.37).10

We introduce the conformal coordinates, z ¼ L logðL=rÞ
and Fourier transform AðlÞ

flatdþ1
with respect to all zi,

10An easy way to understand the scaling dimension of AðlÞ
LDdþ1

is as follows. Start from the bulk correlator (3.35), which has
scaling dimension l d−1

2
. Each amputation removes two powers of

Φ and one integral in r. This amounts to a shift of the scaling
dimension by 1 − d and 1 respectively. Doing this for the l legs
amounts to shifting the scaling dimension by þlð2 − dÞ, which
reproduces the scaling dimension of AðlÞ

LDdþ1
.
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AðlÞ
flatdþ1

ðpj; rjÞ ¼ ÂðlÞ
flatdþ1

ðpj; zjÞ

¼
Z

dpz
j

2π
eip

z
jzjÃðlÞ

flatdþ1
ðpj; p

z
jÞδ

X

pz
�
:

ð4:38Þ

We have extracted the overall delta function which results
from the translation invariance in z coordinates.
We introduce Eq. (4.38) in the complete expression of

the brane correlator CðlÞðpiÞ, Eq. (4.36), and integrate over
the zj coordinates. The outcome, and the subsequent steps
leading to the final form, are

CðlÞðpjÞ ¼ N ΔT

"Yl
i¼1

Z
dpz

i

2π

1

Δi − ipz
i

#

× ÃðlÞ
flatdþ1

ðpj; p
z
jÞδ

X

pz
�

ð4:39Þ

¼ N ΔT

"Yl−1
i¼1

Z
dpz

i

2π

1

Δi − ipz
i

#

×
1

Δl þ iðPl−1
k¼1 pkÞ

ÃðlÞ
flatdþ1

ðpj; p
z
jÞ ð4:40Þ

¼ N ΔT

1P
l
k¼1Δk

ÃðlÞ
flatdþ1

ðpj;−iΔjÞ; ð4:41Þ

where we use the notation Δi ≡ Δpi
with the overall factor,

N ΔT
¼ Llð2−d

2
Þ

r
lð1−d

2
Þ

b

�
L
rb

�
ΔT

: ð4:42Þ

From line (4.39) to (4.40) we integrated the δ function in
pz
l . From line (4.40) to (4.41) we performed the remaining

integrals by closing the contour downward to pick the
single poles, pz

i ¼ −iΔi. The pole outside the bracket lies
upward in the complex pz plane and is thus not picked
when closing the contours. We see that the combinationP

l
k¼1 Δk ≡ ΔT appears in the denominator. Thus our

calculation makes it clear that the presence of the 1=ΔT
pole follows from conservation of pz. It is thus a conse-

quence of the translation invariance in z of ÂðlÞ
flatdþ1

ðpj; zjÞ,
or equivalently of the invariance under dilatation

of AðlÞ
flatdþ1

ðpj; rjÞ.
Finally, taking the limit of simultaneous kinematic

threshold Δi → 0, the residue of the ΔT ¼ 0 pole is

ÃðlÞ
flatdþ1

ðpj; 0Þjp2
j¼m2þðd−1Þ2

4L2

: ð4:43Þ

This residue is precisely the (on-shell) S-matrix element in
d-dimensional space. This explains the residues obtained

for the 3-pt and 4-pt diagrams (4.29) and (4.35). The N T
factor reproduces the overall factors in the residues.11

Our analysis shows that the existence of the singularity
and its peculiar residue are a consequence of the dilatation
symmetry of the EFT.

F. Connection to the cosmological bootstrap

The intriguing structure emerging from the brane corre-
lators in the LD background is reminiscent of the one
appearing in the wave function of the Universe in
dS3 space.
Studies of the wave function of the Universe frequently

use a flat space toy model with diagrams ending on a
constant time hypersurface [52–55]. A singularity structure
is observed in the wave function toy model, which is
identical to the one obtained in our LD correlators upon
substituting the scaling dimensions Δi with energies Ei.
The fact that the residue at ΔT ¼ 0 is a flat space amplitude
was also noticed, see e.g. [52]. The similarity between the
LD correlators and the wave function toy model comes
from the fact that the spacetime backgrounds share similar
symmetries.
To exhibit the connection between these seemingly very

different backgrounds, let us first discuss the case of a brane
in flat space. We have seen that the dilatation symmetry
constrains the form of the brane correlators. Taking
L → ∞, LDdþ1 space becomes the half flat space with a
boundary at z ¼ 0. In this limit the dilatation symmetry
reduces to the one-dimensional translation symmetry in the
z coordinate (see Sec. II C 1). This translation symmetry
constrains the flat space correlators, just like dilatation
symmetry constrains the LD correlators. In the L → ∞
limit, Δi=L tends to the momentum transverse to the brane,
pz
i . Accordingly, ΔT=L of a given diagram reduces to the

sum of the external pz momenta.
The wave function toy model is the spacelike version of a

brane in flat space. The coordinate transverse to the
hypersurface is time, and accordingly the conjugate vari-
able is energy. The correlators are analogous to those for a
brane in flat spacetime upon substituting pz

i → Ei. This is
why the singularities in this model involve sums of
energies,

P
i Ei, instead of

P
i p

z
i as for a brane in flat

spacetime, and
P

i Δi for a brane in LD spacetime.
The connection between the LD brane correlators and

the wave function coefficients is especially interesting
because techniques have been developed to study the latter
via e.g., analytical bootstrap [55–57] and polytope repre-
sentations [52,53,57]. In particular, the singularity structure
(analogous to the one of the LD correlators) essentially
fixes the wave function coefficients, and tools are devel-
oped to further bootstrap the wave function of the Uni-
verse [55]. It is thus natural to expect that the LD brane

11To compare the overall power of L one needs to take into
account that some factors of L are included into Ãflat.
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correlators can analogously be constrained using their
singularities.
An important difference between the wave function

coefficients and our LD correlators is that, in the former,
the singularities appear only upon analytical continuation,
while the singularities that appear in our case are physical.12

Thus, it could make sense to take these singularities as
input and use them to bootstrap the holographic dual
theory. These developments are left for future investigation.

V. HOLOGRAPHY AT FINITE TEMPERATURE

We study the gravitational and thermodynamic behavior
of the d-dimensional holographic theory in the presence of
a planar bulk black hole.

A. The linear dilaton black hole

The general scalar-gravity action in D dimensions in the
presence of a brane at r ¼ rb is defined in Sec. IV, see
Fig. 2. Here we solve the field equations allowing for the
existence of a black hole in the metric,

ds2 ¼ gMNdxMdxN ¼ e−2AðrÞð−fðrÞdτ2 þ dx2
D−2Þ

þ e−2BðrÞ

fðrÞ dr2; ð5:1Þ

where fðrÞ is the blackening factor. The metric describes
an event horizon at r ¼ rh if fðrhÞ ¼ 0, and if the A, B
metric factors and the dilaton are regular on this surface.
The temperature associated with the horizon is Th ¼
eBðrhÞ−AðrhÞjf0ðrhÞj=4π, see Eq. (A46).
The independent field equations for the D-dimensional

background are [58–60]

f00ðrÞ
f0ðrÞ þ B0ðrÞ − ðD − 1ÞA0ðrÞ ¼ 0; ð5:2Þ

A00ðrÞ þ A0ðrÞB0ðrÞ − ϕ̄0ðrÞ2 ¼ 0; ð5:3Þ

A0ðrÞ2þ 1

D−1

�
2
e−2BðrÞ

fðrÞ V̄ðϕ̄Þ−f0ðrÞ
fðrÞ A

0ðrÞ− ϕ̄0ðrÞ2
�
¼ 0:

ð5:4Þ

There is a fourth field equation which is redundant, as it can
be expressed in terms of these three equations (see
Appendix A 2 for a discussion). This system admits the
following solution:

ds2 ¼ 1

η2r2b

dr2

fðrÞ þ
r2

L2
ð−fðrÞdτ2 þ dx2

D−2Þ; ð5:5Þ

fðrÞ ¼ 1 −
�
rh
r

�
D−2

; ð5:6Þ

ϕ̄ðrÞ ¼ log

�
rb
r

�
þ v̄b; ð5:7Þ

where the scale η is defined by

η≡ kev̄b : ð5:8Þ

As in the zero temperature case, the c parameter is fixed
to c ¼ 1

ηrb
because ∂v̄b

∂rb
¼ 0 (see Sec. IVA). This constraint

implies for instance the fundamental property that the
d-dimensional Planck scale is independent of rb, ensuring
the consistency of gravity in the d-dimensional theory. See
Sec. V F for other implications.
The curvature singularity at r ¼ 0 gets censored by the

black hole horizon at rh > 0, as expected from a good
singularity. Moreover, assuming the EFT of gravity breaks
down at distances Δx ∼ 1

Λ, we require

rh ≳ 1

Λ
: ð5:9Þ

In turn, the horizon censors the region where the EFT of
gravity would break down. The geometry is summarized
in Fig. 3.
The fundamental domain of the r coordinate is

r∈ ½0; rb�, so that, in the EFT r∈ ½Λ−1; rb�, as shown in
Fig. 3. For convenience, throughout this section we use a
Z2 orbifold convention as in [61] which implies that the
spacetime is mirrored on the other side of the brane. The
domain of integration of r is thus doubled in the action. A
notable implication is that the entropy of the black hole
horizon is doubled when using this convention, see
e.g., Ref. [58].

FIG. 3. The linear dilaton spacetime with a brane and a bulk
black hole. The projection of the black hole horizon onto the
brane gives rise to an effective stress tensor Teff

μν .

12Paraphrasing [55]; “Singularities can be useful and can be
real.”
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B. Black hole thermodynamics

Here we summarize some results from the thermody-
namic of the black hole. For more details about the
calculation, see Appendix A 2.
The Hawking temperature of the black horizon is

Th ¼
D − 2

4π

rb
L
η: ð5:10Þ

The entropy of the black hole may be computed by using a
Bekenstein-Hawking-type entropy formula13

Sh ¼
A

2GD
; ð5:11Þ

where GD ≡ M2−D
D
8π is the D-dimensional Newton constant.

We introduce the entropy density per unit of comoving
volume, sh ≡ Sh

VD−2
with VD−2 ¼

R
dD−2x. Using the metric

solution Eq. (5.5) we find,

sh ¼
1

2GD

�
rh
L

�
D−2

: ð5:12Þ

Notice that the entropy density depends only on the
horizon position rh while the temperature Th is a function
of the brane position rb. Therefore the black hole entropy
and temperature are independent of each other. This is a
special property of the LD background, which does not
occur in general in other scalar-gravity systems (see [62]
for related results in D ¼ 5).

C. The effective Einstein equations

We now turn to the gravitational behavior of the theory
projected onto the brane. The induced metric on the brane
at r ¼ rb is

ds̄2 ¼ ḡμνdxμdxν ¼ −dt2 þ e−2AðrbÞdx2
D−2; ð5:13Þ

where the brane proper time is dt ¼ e−AðrbÞ
ffiffiffiffiffiffiffiffiffiffiffi
fðrbÞ

p
dτ.

Notice the e−AðrbÞ amounts to a spatial scale factor.
The metric (5.13) can be understood as a generalization
of the Friedmann-Robertson-Walker metric to arbitrary
dimension.
To study gravity in the holographic theory, we compute

the effective d-dimensional Einstein equations as seen
by a brane observer. These are computed from the
D-dimensional Einstein equations by projecting on the
brane via the Gauss equation and the Israel junction
condition (see [61] for the original calculation in AdS5).
We recall we use the same orbifold convention as in [61].

We find that the effective Einstein equations have the
form,

ðdÞGμν ¼
1

Md−2
d

ðTb
μν þ Teff

μν Þ þO

�
T2
b

M2D−4
D

�
; ð5:14Þ

where Tb
μν is the stress tensor of possible brane-localized

matter. The indices in (5.14) are contracted with the
induced metric (5.13). Equation (5.14) has the form of
the standard Einstein equations with an extra effective
stress tensor Teff

μν . Moreover, it turns out that the structure of
the Teff

μν tensor represents a d-dimensional perfect fluid
at rest,14

Teff;μ
ν ¼ gμλTeff

λν ¼ diagð−ρ; P;…; PÞ: ð5:16Þ

In our notation, the effective d-dimensional cosmologi-
cal constant is included in Teff

μν . We work in the low-energy
regime,

jTb
μνj ≪

M2D−4
D

Md−2
d

; ð5:17Þ

such that the higher-order terms in Eq. (5.14) can be
neglected. This implies ρb ≪ Md−2

d η2, so that ρb is negli-
gible as compared to ρeff .

1. Holographic fluid from warped spacetime

We present the result for the effective stress tensor
obtained from the general metric (5.1). The effective stress
tensor contains three contributions,

Teff
μν ¼ τWμν þ τϕμν þ τΛμν; ð5:18Þ

which are as follows:
(i) The τWμν is from the projection of the D-dimensional

Weyl tensor ðDÞCMNPQ onto the brane,

13Where we have introduced an extra factor of 2 from the Z2

orbifold.

14The stress-energy tensor of a perfect fluid is in general
expressed as [63]

Tμν ¼ ðρþ PÞUμUν þ Pgμν; ð5:15Þ

where ρ is the energy density, P is the pressure, while Uμ ¼
γð1; viÞ is the local fluid velocity with γ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v⃗2

p
the

Lorentz factor. The perfect fluid at rest, i.e., in a comoving
reference frame, has Uμ ¼ ð1; 0⃗Þ. The fact that we obtain a fluid
at rest is tied to our choice of a static black hole ansatz in the
metric. Boosted black hole solutions are also considered in the
context of the fluid/gravity correspondence [64] in order to
compute higher-order corrections to the constitutive relations
of the fluid, which involve viscosities and other transport
coefficients.
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1

Md−2
d

τWμν ¼ −ðDÞCM
NPQnMnPḡμNḡνQ; ð5:19Þ

where nM is the unit vector normal to the brane, i.e.,

nM ¼ ð0;…; 0;
ffiffiffiffiffiffiffiffiffi
fðrÞ

p
eBðrÞÞ; ð5:20Þ

and ḡMN ¼ gMN − nMnN is the induced metric on
the brane. This leads to the following values for the
energy density ρW and pressure PW :

ρWðrbÞ ¼ ðd− 1ÞPWðrbÞ

¼−
ðd− 1Þðd− 2Þ

2d
Md−2

d e2BðrbÞA0ðrbÞf0ðrbÞ.
ð5:21Þ

(ii) The τϕμν is from the projection of the bulk stress
tensor,

1

Md−2
d

τϕμν¼ðd−2Þ
ðd−1Þ

1

MD−2
D

�
Tϕ
MNḡμ

MḡνN

þ
�
Tϕ
MNn

MnN −
1

d
Tϕ;M
M

�
ḡμν

�
; ð5:22Þ

¼ ðd−1Þðd−2Þ
d

×

�
1

2
e2BðrbÞfðrbÞϕ̄0ðrbÞ2− V̄

�
ḡμν: ð5:23Þ

This leads to the following values of ρϕ and Pϕ:

ρϕðrbÞ ¼ −PϕðrbÞ ¼ −
ðd − 1Þðd − 2Þ

2d
×Md−2

d e2BðrbÞA0ðrbÞ½dfðrbÞA0ðrbÞ
− f0ðrbÞ�. ð5:24Þ

(iii) The τΛμν is the contribution from the brane tension,

1

Md−2
d

τΛμν ¼ −
ðd − 2Þ
8ðd − 1Þ

Λ2
b

M2ðD−2Þ
D

ḡμν; ð5:25Þ

which yields the values

ρΛ ¼ −PΛ ¼ ðd − 2Þ
8ðd − 1Þ

Md−2
d

M2ðD−2Þ
D

Λ2
b; ð5:26Þ

where Λb is the brane tension with mass dimension
equal to d, defined in the brane action Eq. (4.1).

2. Holographic fluid from LD spacetime

We now plug the linear dilaton black hole solutions of
Eqs. (5.5)–(5.7) into the general expressions of Sec. V C 1.

We find the effective energy density,

ρeffðrbÞ ¼ ρWðrbÞ þ ρϕðrbÞ þ ρΛ; ð5:27Þ
with

ρWðrbÞ ¼
ðd − 1Þ2ðd − 2Þ

2d
Md−2

d η2
�
rh
rb

�
d−1

; ð5:28Þ

ρϕðrbÞ ¼
ðd − 1Þðd − 2Þ

2d
Md−2

d η2
�
rh
rb

�
d−1

−
1

2
ðd − 1Þðd − 2ÞMd−2

d η2; ð5:29Þ

ρΛ ¼ 1

2
ðd − 1Þðd − 2ÞMd−2

d η2 þMd−2
d Λd; ð5:30Þ

where we have introduced the d-dimensional cosmological
constant Λd (with mass dimension equal to 2) and the
Planck scale Md. These are identified in the effective
Einstein equations as

Λd ¼−
ðd−1Þðd−2Þ

2
η2þ d−2

8ðd−1Þ
Λ2
b

M2D−4
D

; ð5:31Þ

MD−2
D

Md−2
d

¼ 1

2
ðd−2Þη

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

ðd−1Þðd−2Þ
Λd

η2

s
: ð5:32Þ

It turns out that the first term of ρΛ cancels the constant
contribution in ρϕðrbÞ in the sum (5.27), so that the
effective energy density is given by

ρeffðrbÞ¼
1

2
ðd−1Þðd−2ÞMd−2

d η2
�
rh
rb

�
d−1

þMd−2
d Λd:

ð5:33Þ
On the other hand, we find the following results for the
pressure,

PWðrbÞ þ PϕðrbÞ ¼
1

2
ðd − 1Þðd − 2ÞMd−2

d η2; ð5:34Þ

PΛ ¼ −
1

2
ðd − 1Þðd − 2ÞMd−2

d η2 −Md−2
d Λd; ð5:35Þ

so that the summation of all the contributions yields,

Peff ¼ −Md−2
d Λd: ð5:36Þ

This result can be interpreted as a pressureless perfect
fluid living in a d-dimensional spacetime with a non-
vanishing vacuum energy density Λd, i.e.,

ρeffðrbÞ ¼ ρfluidðrbÞ þ ρvacuum;

PeffðrbÞ ¼ PfluidðrbÞ þ Pvacuum; ð5:37Þ
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with

ρfluidðrbÞ ¼
1

2
ðd − 1Þðd − 2ÞMd−2

d η2
�
rh
rb

�
d−1

;

PfluidðrbÞ ¼ 0; ð5:38Þ
ρvacuum ¼ −Pvacuum ¼ Md−2

d Λd: ð5:39Þ
In summary, the LD geometry induces a holographic

theory which contains a pressureless fluid. This is in
contrast with AdSdþ1 geometry, where carrying out an
analogous calculation leads to a holographic fluid with
nonzero pressure PAdS

fluid ¼ 1
d−1 ρ

AdS
fluid, in accordance with

d-dimensional conformal invariance.15

In the following subsections we study the consistency
of these results, as well as some of their physical
consequences.

D. Thermodynamics of the holographic fluid

A thermodynamic description of the d-dimensional
theory can be inferred from the effective energy density
derived in Eq. (5.33). The physical parameters of the
system are the horizon location rh and the brane location
rb. We introduce thermodynamical variables which are
understood as functions of these parameters.
First we define the volume and temperature of the

system. The spatial volume of the brane is given by

Vb ¼ Vd−1

�
rb
L

�
d−1

; ð5:40Þ

where Vd−1 ¼
R
dd−1x is the brane comoving volume. The

black hole temperature on the brane is

Tb ¼ Th
L
rb

¼ ðd − 1Þ
4π

η; ð5:41Þ

where Th is the horizon temperature [see Eq. (A46)]. The
temperature on the brane is obtained from the horizon
temperature by multiplying it by 1=

ffiffiffiffiffiffiffiffijgττj
p

[65]. It turns out
that Tb is independent of rb, and thus from Vb.

16 Moreover,
Tb is also independent of rh, it is thus a universal constant
of the d-dimensional theory. This is a special property of
the LD background. We will see later that Tb can be
identified with the Hagedorn temperature.
By the fundamental laws of thermodynamics, the revers-

ible variation of total energy E of the system should satisfy,

dE ¼ TdS − PdV: ð5:42Þ

Using that E, S, and V are 0-forms and dðdXÞ ¼ 0 for any
k-form X, taking the exterior derivative of (5.42) gives
dT ∧ dS − dP ∧ dV ¼ 0, where ∧ denotes the exterior
product. Considering that: (i) Tb is independent on rh and
rb which implies dTb ¼ 0, and (ii) Vb depends only on rb;
it follows that Pfluid depends at most on rb. Finally,
PfluidðrbÞ should vanish when rh → 0 since the black hole
ceases to exist in that limit, hence Pfluid ¼ 0. We thus
recover from thermodynamics the vanishing pressure that
we found in Sec. V C 2. This provides a consistency check
of our thermodynamic approach.
On the other hand, using the energy density ρfluid found

in (5.38), it turns out that Efluid ¼ ρfluidVb is independent of
rb. Therefore, we get from the relation (5.42)

�
∂Efluid

∂rh
−Tb

∂Sfluid
∂rh

�
drhþ

�
Pfluid

∂Vb

∂rb
−Tb

∂Sfluid
∂rb

�
drb¼ 0;

ð5:43Þ

where we have kept for the moment the contribution of the
pressure. Notice that each bracket must separately vanish.
From the second bracket in Eq. (5.43) we see that the
condition Pfluid ¼ 0 implies that Sfluid is independent of rb.
Moreover, from the first bracket in Eq. (5.43) we similarly
infer that Efluid and Sfluid are proportional to each other, up
to an additive integration constant. We set the additive
constant to zero using that Sfluid and Efluid should both
vanish in the rh → 0 limit, for which the black hole does
not exist.
In sum, we obtain from (5.43) the relation,

Efluid ¼ TbSfluid: ð5:44Þ

This automatically implies that the fluid free energy F ¼
E − TS vanishes, Ffluid ¼ 0.17 Finally, the total entropy is
deduced from Eq. (5.44) by using the value of the temper-
ature in (5.41). The total energy and entropy are

Efluid ¼
1

2
ðd − 1Þðd − 2Þη2Md−2

d

�
rh
L

�
d−1

Vd−1; ð5:45Þ

Sfluid ¼ 2πðd − 2ÞηMd−2
d

�
rh
L

�
d−1

Vd−1: ð5:46Þ

We notice that Sfluid can be independently derived from
the Bekenstein-Hawking entropy of the black hole,

15In a brane cosmology application, the pressureless fluid from
LD5 could play the role of dark matter [59,60], while the
holographic fluid from AdS5 would instead behave as dark
radiation.

16In the present analysis we are assuming rh ≪ rb, so that the
rb dependence of Tb induced by the 1=

ffiffiffiffiffiffiffiffiffiffiffi
fðrbÞ

p
factor is a small

correction that we neglect.

17An alternative proof of Eq. (5.44) can be done by using
dF ¼ −SdT − PdV. Taking the exterior derivative of this relation
and using similar arguments, one concludes that Pfluid ¼ 0 and
then dFfluid ¼ 0. Hence, Ffluid is a constant in rh and rb that
should vanish, and so Efluid ¼ TbSfluid. This proof uses only that
Tb is independent on rh and rb, and Vb ¼ VbðrbÞ.
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Eq. (5.11). Starting from Eq. (5.12), we multiply by the
redshift factor to get the entropy density at the brane, i.e.,
sb ¼ shðL=rbÞd−1. We use the relation between MD−2

D and
Md−2

d given by Eq. (5.32) assuming Λd ≪ η2, so that the
contribution from Λd is negligible. The result precisely
reproduces Eq. (5.46),

Sb ¼ sbVb ¼ 4πMD−2
D

�
rh
L

�
d−1

Vd−1 ¼ Sfluid; ð5:47Þ

where we have used the expression of Vb given by
Eq. (5.40). From a comparison with Eqs. (5.11) and (5.12)
one easily realizes that Sb ¼ Sh, which is a consequence
of the independence of Sb on rb. Hence, the entropy of
the holographic fluid matches exactly the black hole
entropy, Sfluid ¼ Sh.
Summarizing, we have found that the holographic fluid

has a universal temperature, a vanishing pressure and
has Sfluid ∝ Efluid. These peculiar features reproduce the
Hagedorn behavior [66] that typically appears in string
thermodynamics [67,68] and is, in particular, obtained for
LST [69–74].18 This behavior also occurs for CFT2 with
TT̄ deformations [16]. Here the same phenomenon arises in
our low-energy approach, from the projection of the bulk
physics onto the brane. The Hagedorn behavior appears
generically for any d > 2.

E. Time evolution of the holographic fluid

Further nontrivial checks of the fluid properties obtained
in Secs. V C 2 and VD can be achieved by studying the
time evolution of the brane. This is, in a sense, a
“cosmological” study of the d-dimensional linear dilaton
braneworld.
We allow the brane to evolve with time in the bulk,

rb ¼ rbðtÞ. The effective Einstein equations Eq. (5.14) give
the first d-dimensional Friedmann equation on the brane,

1

2
ðd − 1Þðd − 2ÞMd−2

d H2 ¼ ρb þ ρeff þO

�
ρ2b

η2Md−2
d

�
;

ð5:48Þ

where H ≡ ȧbðtÞ=abðtÞ is the Hubble parameter with
ab ¼ e−AðrbÞ, and ρb is the energy density of brane localized
matter which is neglected as ρb ≪ ρeff . When using the
black hole solutions of Eqs. (5.5)–(5.7), one has
abðtÞ ¼ rbðtÞ=L. In the following the overdot means
differentiation with respect to the brane proper time t.

1. Time evolution

Let us study the consistency of the pressureless fluid
result of Sec. V C from a comparison with the solution of
the Friedmann equation. Given a perfect fluid in d
spacetime dimensions with equation of state P ¼ wρ, the
solution of the Friedmann equation is

abðtÞ ∝ t
2

ð1þwÞðd−1Þ with ρ ∝
1

að1þwÞðd−1Þ
b

: ð5:49Þ

It turns out that (i) a radiation dominated universe ðw ¼
1

d−1Þ behaves as abðtÞ ∝ t
2
d with ρ ∝ 1=adb, (ii) a matter-

dominated universe (w ¼ 0) behaves as abðtÞ ∝ t
2

d−1 with
ρ ∝ 1=ad−1b , and (iii) a universe dominated by the cosmo-
logical constant (w ¼ −1) behaves as log abðtÞ ∝ t with
ρ ∝ cte. A comparison with Eq. (5.38) confirms that the
energy density ρfluid behaves as a pressureless matter term
in the d-dimensional Friedmann equation.19

2. Conservation equation

The conservation equation of the D-dimensional bulk
stress tensor (i.e., the Bianchi identity) evaluated on the
brane can be written as [75,76]

ρ̇effþdHρeffþHTeff μ
μ ¼−2

�
1þ ρb

Λb

�
Tϕ
MNu

MnN; ð5:51Þ

where uM ¼ ðτ̇; 0; ṙbÞ with τ̇ ¼ eA
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f þ ṙ2be

−2B
q

=f is the

timelike unit vector for brane observers. The right-hand
side of this equation represents the energy flux from the
brane into the bulk. To get this expression we have used

ðd − 2ÞM
d−2
d

MD−2
D

HTϕ
MNn

MnN þHτΛμμ ¼ HTeff μ
μ : ð5:52Þ

Using the explicit expression of Tϕ
MN and after some

nontrivial cancellations, it turns out that Tϕ
MNu

MnM ¼ 0 in
the low-energy regime. Finally, by using that

18Identifying the brane temperature Tb, Eq. (5.41), with
the Hagedorn temperature TH from LST [71] given by
TH ¼ ð2π

ffiffiffiffiffiffiffiffi
α0N

p
Þ−1, we obtain η ¼ 5=

ffiffiffiffiffiffiffiffiffiffi
4α0N

p
. α0 is the string

tension, N is the number of NS5-branes, and we have set d ¼ 6.

19For completeness, we provide the solution of the Friedmann
equation including both the perfect fluid contribution and the
cosmological constant term,

abðtÞ ¼ ah

�
ðd − 1Þ η

2γ
sinh

�
γðt − λÞ�� 2

d−1
;

γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd − 1Þ
2ðd − 2Þ

ρvacuum
Md−2

d

s
; ð5:50Þ

where ah ≡ e−AðrhÞ and λ is an integration constant that can be
freely chosen. This formula reproduces the power-law behavior
for a matter dominated universe ½ρvacuum ≪ ρfluidðrbÞ�, and the
exponential behavior for a universe dominated by the cosmo-
logical constant ½ρvacuum ≫ ρfluidðrbÞ�.
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Teff μ
μ ¼ −d · ðρϕðrbÞ þ ρΛÞ ¼ −ρfluidðrbÞ − d · ρvacuum;

ð5:53Þ

it is easy to verify that the conservation equation is satisfied
by the effective energy density ρeff of Eqs. (5.37)–(5.39). A
similar analysis to that performed above was done in
Refs. [59,60] for d ¼ 4 and ρvacuum ¼ 0. The present results
agree and generalize those of the latter references.
Finally, the conservation of entropy is automatically

ensured since Sfluid is independent of rb, and thus from the
brane proper time.

F. Remarks on the general solution

We discuss in more details the fixing of the parameter c
appearing in the general solution of the field equations with
no black hole (A10) and (A11), and in the presence of a
planar black hole (A35)–(A38). We find that c is fixed by
various equivalent conditions.
We first impose the bulk conservation equation

Eq. (5.51) (i.e., the bulk Bianchi identity) and work in
the low-energy regime as defined by Eq. (5.17). Then the
following conditions are equivalent to each other:

(i) The dilaton vev on the brane v̄b ≡ ϕ̄ðrbÞ is inde-
pendent of rb, and thus does not vary in
time; dv̄b

drb
¼ 0.

(ii) Likewise for the effective d-dimensional cosmologi-
cal constant Λd;

dΛd
drb

¼ 0.
(iii) Likewise for the effective d-dimensional Planck

scale Md;
dMd
drb

¼ 0.
(iv) Likewise for the effective pressure; dPeff

drb
¼ 0.

(v) Effective conservation equation; ρ̇eff þ dHρeff þ
HTeffμ

μ ¼ 0.
(vi) The energy loss from the brane into the bulk is

negligible; Tϕ
MNu

MnN ¼ OðH3Þ.
(vii) c ∝ 1

rab
.

We can unambiguously fix the parameter c by using the
general solution for ϕ̄ðrÞ, together with the definitions v̄b ≡
ϕ̄ðrbÞ and η≡ kev̄b . The result is

c ¼ jaj
ηL

�
L
rb

�
a
; ð5:54Þ

and η is independent of rb as is clear from condition (i).
Notice that most of the above conditions are physically

meaningful. Their equivalence is a compelling verification
of the self-consistency of our results.
The d-dimensional Friedmann equation does not impose

any additional constraint on the parameters of the solution.
Using the general solutions in the presence of a bulk black
hole (A35)–(A38), the solution of the Friedmann equation
is given by Eq. (5.50) where now abðtÞ ¼ ðrbðtÞ=LÞa. For
Λd ¼ 0 it is

abðtÞ ¼ ah

�
ðd − 1Þ η

2
ðt − λÞ

� 2
d−1
: ð5:55Þ

The power corresponds to w ¼ 0, in agreement with the
pressureless fluid result.
As a final remark,wemention that theparametera remains

unconstrained. It can thus be freely chosen and the geometry
does not depend on it, in accordance with the discussion
in Appendix A. This property becomes explicit, for instance,
in the solution of the Friedmann equation provided in
Eqs. (5.50) and (5.55), which are independent of a.

VI. SUMMARY AND OUTLOOK

In this work we have studied the (dþ 1)-dimensional LD
spacetime with a focus on holography. Let us recapitulate
our results.
The LD spacetime has a (good) curvature singularity but

no boundary. Its conformal structure is the same as
Minkowski space. The timelike geodesics are attracted
towards the singularity while the null geodesics behave
very much as in flat space.
The LD spacetime has symmetries besides the d-

dimensional Poincaré invariance of the flat slicing; a
conformal dilatation symmetry and a conformal inversion
symmetry acting on the warped coordinate r. The inversion
symmetry is somewhat reminiscent of the string S-duality,
which is known to be a self-duality of the string UV
completion of LD spacetime. We show that the dilatation
symmetry uniquely defines the LD geometry, the exact
requirement is that the line element be homothetic to itself
under dilatation.
We study quantum fields living on the LD background.

Following the principles of effective field theory we
construct an interactive, massive QFT on the LD back-
ground that respects the dilatation and inversion symmetry.
We find that the mass term for a scalar field has a negative
lower bound. This bound is similar to the Breitenlohner-
Freedman bound from AdS, but the proof is closer in spirit
to a flat space argument.
We find that the scalar propagator in LD is related to a

(dþ 1)-dimensional flat space propagator for a scalar with
specific mass, up to r-dependent scaling factors. We
analogously find that all the correlators of our EFT have
a very peculiar structure, they are proportional to (dþ 1)-
dimensional flat space correlators with r-dependent scaling
factors in the external legs.
In order to study the holography of the LD spacetime, we

place a flat brane parallel to the singularity and compute the
boundary quantum effective action on it. The brane splits
the spacetime into two inequivalent regions, LD�.
We study the 2-pt functions for a matter scalar and

graviton in LD�. The correlators in each regions are almost
identical, except that the spectrum in the LD− region
features an isolated mode. The similarity of the LDþ
and LD− correlators is a manifestation of the inversion
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symmetry of the background. The existence of the isolated
mode in LD− shows that the singularity repels quantum
fluctuations, i.e., it acts as a (very smooth) boundary for the
fields. The LDþ region features no isolated mode, which
implies that gravity decouples at low-energy. This reflects
the gravity decoupling expected in LST. We find that the
2-pt correlators always feature a gapped continuum for any
d. This implies that the putative dual theory living on the
brane, defined through the boundary quantum effective
action, has a gapped spectrum.
We evaluate simple scalar 3-pt and 4-pt holographic

correlators built from the boundary quantum effective
action. These correlators share peculiar features that also
generalize to more complex diagrams; they develop poles at
momentum space configurations corresponding to simul-
taneous kinematic thresholds. Furthermore the associated
residue is proportional to a (dþ 1)-dimensional flat space
S-matrix amplitude. Focusing on the main singularity, we
show that both of these phenomena occur for any diagram,
and make it clear that these are consequences of the
dilatation symmetry of the EFT.
We point out that the peculiar properties of the LD

holographic correlators are reminiscent of those of a flat
space toy-model used to understand the singularity struc-
ture of the coefficients of the wave function of the Universe.
The analogy implies that bootstrap techniques developed
for the wave function of the Universe can be transposed to
the holographic correlators of the LD spacetime. An
important difference is that singularities of the wave
function coefficients are unphysical while those of the
LD holographic correlators are physical. Since such sin-
gularities essentially define the correlators, they may even
be used to understand/define the putative d-dimensional
dual theory, if it exists. Overall, the perturbative correlators
seem to tell us that the holographic theory is gapped. This
idea matches the result for single-trace TT̄-deformed CFT2

derived via string techniques in Refs. [16,18,19].
We then take a completely different viewpoint on LD

holography by putting the spacetime at finite temperature.
Namely, we solve the (dþ 1)-dimensional field equations
in the presence of a planar black hole (i.e., black brane). We
then project the bulk physics onto the brane, which
generates the d-dimensional effective Einstein equation
with a nontrivial stress tensor. The effective stress tensor is
the manifestation of the bulk horizon on the brane. It
receives contributions from both the dilaton bulk stress
tensor and from the Weyl curvature projected onto the
brane. The pressure from both terms cancel, such that the
effective stress tensor matches the one of a pressureless
perfect fluid at rest. Summarized:

Linear Dilaton Black Holeðdþ 1 dimÞ
⇔ Pressureless Fluidðd dimÞ:

We test this remarkable result by letting the brane evolve
with time in the bulk, hence defining a (dþ 1)-dimensional

linear dilaton brane world. The evolution of the stress
tensor is consistent with pressureless matter. We further
check that the (dþ 1)-dimensional conservation equation
projected onto the brane is satisfied. The emergence of a
pressureless fluid is reminiscent of a gapped spectrum since
it is the expected behavior for a fluid of massive, non-
relativistic matter. We thus obtain another hint that the dual
d-dimensional theory, if it exists, is gapped. This hint,
being at the level of the classical gravity solution, is
completely independent of our study of the holographic
correlators.
We study the thermodynamics of the holographic fluid.

We find that Efluid ∝ Sfluid and that the proportionality
constant is a universal (Hagedorn) temperature. These
results match the Hagedorn behavior found in LST and
in CFT2 at large TT̄ deformation. The Hagedorn behavior
appears for any d in our low-energy approach. Moreover,
we find that the entropy Sfluid obtained from brane
thermodynamics exactly reproduces the Bekenstein-
Hawking entropy of the planar black hole. Summarized:

LD BH Thermodynamicsðdþ 1 dimÞ
⇔ Hagedorn Thermodynamicsðd dimÞ:

We close by pointing out a few open questions and
directions. The computation of the holographic fluid
features beautiful cancellations that lead to the vanishing
pressure. This vanishing pressure is, to some extent, tied to
the conformal dilatation symmetry of the background. It
would be good to explore in details the interplay between
the dilatation symmetry and the properties of the holo-
graphic fluid.
The LD holographic correlators deserve more study. In

particular it would be good to analyze them via the
bootstrap techniques developed for the wave function of
the Universe. It would also be interesting to see if the LD
correlators admit the polytope representation developed
in [52,53,57], analogously to the flat space wave function
toy model.
Here we have studied holography on a brane parallel to

the singularity, i.e., on a timelike surface. Even though we
obtain compelling results, another interesting direction
could be to study holography on the conformal null
boundary of LD, similarly to flat space holography. This
is a distinct analysis that we leave for future work.
Finally the deep, overarching question is whether there is

an independent formulation of the d-dimensional dual
theory that reproduces the holographic results obtained
in this work. Is there, in analogy with AdSdþ1=CFTd, an
explicit dual to LDdþ1? While the existence of LST for
d ¼ 6 and the CFT2 models may be encouraging signals,
the mysteries of holography beyond AdS mostly remain to
be pierced.
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APPENDIX A: GENERAL SOLUTIONS
OF THE DILATON-GRAVITY SYSTEM

We present in this appendix the most general solutions of
the field equations at zero temperature (2.4) and (2.5), and
in the presence of a planar black hole (5.2)–(5.4).

1. Solution with no black hole

We here consider the solution of the field equations for a
metric in the absence of a black hole.

a. Field equations

The warped metric at zero temperature is

ds2 ¼ e−2AðrÞημνdxμdxν þ e−2BðrÞdr2: ðA1Þ
The BðrÞ function can be freely chosen due to the freedom
of redefinition in r. For instance, BðrÞ can be absorbed by
the change of variable e−BðrÞdr ¼ dr̃, which corresponds to
proper coordinates. Alternatively, the change of variable
e−BðrÞdr ¼ e−Aðr̃Þdr̃ leads to conformal coordinates. Here,
however, we need to keep arbitrary BðrÞ to find consistent
solutions when solving in the presence of a brane.
The field equations are given by (2.4) and (2.5) and a

third equation. The three field equations are

A00ðrÞ þ A0ðrÞB0ðrÞ − ϕ̄0ðrÞ2 ¼ 0; ðA2Þ

A0ðrÞ2 þ 1

D − 1

�
2e−2BðrÞV̄ðϕ̄Þ − ϕ̄0ðrÞ2� ¼ 0; ðA3Þ

ϕ̄00ðrÞ þ �B0ðrÞ − ðD − 1ÞA0ðrÞ�ϕ̄0ðrÞ − e−2BðrÞ
∂V̄

∂ϕ̄
¼ 0:

ðA4Þ

Equation (A4) can be eliminated in favor of Eqs. (A2)
and (A3) by means of the identity,

1

ðD−1Þ ϕ̄
0ðrÞ · ½A4� ¼A0ðrÞ · ½A2�−

�
B0ðrÞþ1

2

d
dr

�
½A3�;

ðA5Þ

so that there are two independent differential equations left.
The number of integration constants in Eqs. (A2)–(A4)
seem to be four by naive counting. However Eq. (A5)
provides an algebraic relation between all the integration
constants, which constrains their number to three.
An alternative analysis of the system (A2)–(A4) can be

done as follows. For a given value of the bulk potential
V̄ðϕ̄Þ, those equations can be written in terms of a super-
potential WðϕÞ as

A0ðrÞ ¼ 1

D − 3
e−BðrÞW̄

�
ϕ̄ðrÞ�;

ϕ̄0ðrÞ ¼ 1

D − 3
e−BðrÞW̄0�ϕ̄ðrÞ�; ðA6Þ

and

V̄ðϕ̄Þ ¼ 1

2ðD − 3Þ2
�
W̄0ðϕ̄Þ2 − ðD − 1ÞW̄2ðϕ̄Þ�; ðA7Þ

where W̄ ≡W=½ðD − 2ÞMD−2
D � is the solution of Eq. (A7).

These constitute three equations of first order, thus making
it clear that there are three integration constants, a feature
that has already been discussed in the literature [77].

b. Integration constants and singularity

Given the potential V̄ðϕ̄Þ of Eq. (2.2), the solution of
Eq. (A7) is expressed as

W̄ðϕ̄Þ ¼ −ðD − 3Þkeϕ̄
h
1þ F



eðD−2Þϕ̄

�i
; ðA8Þ

where F ðxÞ is the solution of a first order differential
equation. It thus contains an integration constant that we
will denote by s. By using the method explained in
Refs. [58,78], this equation can be solved by making an
expansion in s. This produces the following leading term,

F ðxÞ ¼ xsþOðs2Þ: ðA9Þ

In the following we assume that V̄ðϕ̄Þ ∼ϕ̄→∞
W̄2ðϕ̄Þ which

corresponds to a good singularity (see e.g., Refs. [39,79]
for a discussion), and set the integration constant to s ¼ 0.
This removes one integration constant from the solutions,
leaving only two.

c. Solutions

A convenient way to derive the general solution of the
system (A2)–(A4) is to assume that BðrÞ is linearly related
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to AðrÞ, i.e., BðrÞ ¼ α1AðrÞ þ α2. Then, after setting s ¼ 0
the system admits the following solution:

AðrÞ ¼ −a log
�
r − r0
L

�
;

BðrÞ ¼ −ða − 1Þ log
�
r − r0
L

�
− log c; ðA10Þ

ϕ̄ðrÞ ¼ −a log
�
r − r0
L

�
þ log

� jaj
kLc

�
; ðA11Þ

where we have defined the parameters a and c as α1 ≡
ða − 1Þ=a and α2 ≡ − log c. These solutions depend on a
set of four parameters: two integration constants ðL; r0Þ and
two constants ða; cÞ; which is certainly reducible. The
domains of these parameters are a∈R=f0g and L; c > 0.
Notice that the integration constant L is equivalent to an
additive constant cA in AðrÞ, as it can be seen by expressing
it as L ¼ ecA=k in addition to c ¼ eacA c̄. In fact fixing cA ¼
−v̄b leads to the fixing 1=L ¼ η≡ kev̄b , which is usually
assumed in warped models [31].
Among the four parameters, r0, a and c are redundancies

of the description of the D-dimensional geometry, because
a change in the value of either of them is equivalent to a
diffeormorphism. First, a change in the value of r0
corresponds to a shift in the coordinate r. We thus set
r0 ¼ 0 without loss of generality. Second, considering the
resulting line element

ds2aðxμa; raÞ ¼
�
ra
L

�
2a
ημνdx

μ
adxνa þ c2

�
ra
L

�
2ða−1Þ

dr2a;

ðA12Þ

the change of coordinates from ðxμa; raÞ to ðxμb; rbÞ

rb
L
¼
				ba
				
1
b
�
ra
L

�a
b

; xμb ¼
				ab
				xμa ðA13Þ

with a, b ≠ 0, gives

ds2aðxμa;raÞ¼ ds2bðxμb;rbÞ ϕ̄aðraÞ¼ ϕ̄bðrbÞ; ðA14Þ

where

ϕ̄aðraÞ≡ −a log
�
ra
L

�
þ log

� jaj
kLc

�
: ðA15Þ

Therefore the transformation Eq. (A13) is equivalent to a
change in the parameter a. Third, given two solutions with
parameters c and c̃, one can similarly check that the map,

r̃¼
�
c
c̃

�1
a

r; x̃μ ¼ c̃
c
xμ; ðA16Þ

gives ds2 ¼ ds̃2 and ϕ̄ðrÞ ¼ ˜̄ϕðr̃Þ. Therefore, the map
Eq. (A16) is equivalent to a change in the parameter c.
In summary, a and c parametrize redundancies in the
description of the geometry and can thus be fixed. It follows
that only one combination of parameters may have a
physical meaning.
In order to figure out which combination of parameters

exactly is physical, it is instructive to compute the mass gap
of the continuum. We focus on the graviton. Using the
conformal coordinates z ¼ cL logðLrÞ, we can determine the
mass gap from the effective Schrödinger potential,

VσðzÞ¼
ðd−1Þ2

4
A0ðzÞ2−d−1

2
A00ðzÞ¼

�
d−1

2
σ

�
2≡m2

g:

ðA17Þ
The mg parameter is identified as the mass gap. We have
thus,

mg ¼
d − 1

2
σ with σ ≡ a

cL
: ðA18Þ

We can see that the physical quantity mg is related to a
combination of the three parameters. In Secs. III and IVour
“gauge fixing” is a ¼ 1, c ¼ 1, in which case the L
parameter is physical, with mg ¼ d−1

2L .

d. Comparison to Ref. [31]

At this point it would be useful to make connection with
the notation used in Ref. [31] for the caseD ¼ 5. Using the
metric ansatz of [31],

ds2 ¼ e−2AðzÞðημνdxμdxν þ dz2Þ; ðA19Þ
with z ¼ cL logðLrÞ, the solution is found to be

AðzÞ ¼ σz; ϕ̄ðzÞ ¼ σzþ log

�jσj
k

�
ðA20Þ

with the scale σ defined in Eq. (A18). Here σ can have
either sign, and the curvature singularity is in the limit
z → �∞ for a≷ 0.20

e. Fixing the constants

The remaining parameters are fixed as follows:
(i) No brane: We set a ¼ 1, c ¼ 1 with no loss of

generality. The solution turns out to be

20We could also have defined the conformal coordinate z and
scale σ as

z ¼ sgnðaÞcL log

�
L
r

�
; σ ≡ jaj

cL
: ðA21Þ

With this definition, σ is always positive and the singularity is in
the limit z → þ∞.
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ds2 ¼ dr2 þ r2

L2
ημνdxμdxν; ϕ̄ðrÞ ¼ − log ðkrÞ;

ðA22Þ

and the scale σ is σ ¼ 1=L. Any other value of a, c
can be recovered by a coordinate transformation.

(ii) Brane at r ¼ rb: Fixing a ¼ 1, the fact that the
value of the scalar field at the brane is independent
on rb implies (see Sec. V F for other equivalent
conditions)

c ¼ 1

ev̄bkrb
: ðA23Þ

The solution turns out to be

ds2 ¼ 1

η2r2b
dr2 þ r2

L2
ημνdxμdxν;

ϕ̄ðrÞ ¼ log

�
rb
r

�
þ v̄b; ðA24Þ

where the rb-independent scale η is given by

η≡ kev̄b : ðA25Þ
The scale σ turns out to be

σ ¼ 1

cL
¼ η

rb
L
: ðA26Þ

2. Planar black hole solution

Here we will solve the field equations of the metric in the
presence of a blackening factor.

a. Field equations

The metric in the presence of a planar black hole is

ds2 ¼ e−2AðrÞð−fðrÞdτ2 þ dx2
D−2Þ þ

e−2BðrÞ

fðrÞ dr2: ðA27Þ

Due to the breaking of the (D − 1)-Lorentz invariance by
the black hole, there is one more field equation than in the
zero temperature case.
The field equations are given by (5.2)–(5.4) and a fourth

equation. The four field equations are

f00ðrÞ
f0ðrÞ þ B0ðrÞ − ðD − 1ÞA0ðrÞ ¼ 0; ðA28Þ

A00ðrÞ þ A0ðrÞB0ðrÞ − ϕ̄0ðrÞ2 ¼ 0; ðA29Þ

A0ðrÞ2þ 1

D−1

�
2
e−2BðrÞ

fðrÞ V̄ðϕ̄Þ−f0ðrÞ
fðrÞ A

0ðrÞ− ϕ̄0ðrÞ2
�
¼ 0;

ðA30Þ

ϕ̄00ðrÞ þ
�
B0ðrÞ þ f0ðrÞ

fðrÞ − ðD − 1ÞA0ðrÞ
�
ϕ̄0ðrÞ

−
e−2BðrÞ

fðrÞ
∂V̄
∂ϕ̄

¼ 0: ðA31Þ

Equation (A31) can be eliminated in favor of Eqs. (A28)–
(A30) by means of the identity

2fðrÞϕ̄0ðrÞ · ½A31� ¼−A0ðrÞf0ðrÞ · ½A28�
þ�2ðD−1ÞfðrÞA0ðrÞ−f0ðrÞ� · ½A29�
− ðD−1Þ

�
f0ðrÞþ2fðrÞB0ðrÞ

þfðrÞ d
dr

�
½A30�: ðA32Þ

Then, there are three independent differential equations
left,21 with five integration constants.
As in the solution with no black hole, this system of

equations can also be written as an equivalent system in
terms of a superpotential at finite temperature, W̄ðϕ̄Þ [80].
This is given by

0 ¼ f00ðrÞ
f0ðrÞ þ B0ðrÞ −D − 1

D − 3
e−BðrÞW̄

�
ϕ̄ðrÞ�; ðA33Þ

V̄ðϕ̄Þ ¼ f
2ðD − 3Þ2

�
W̄0ðϕ̄Þ2 − ðD − 1ÞW̄2ðϕ̄Þ

þ ðD − 3Þ f
0

f
eBW̄ðϕ̄Þ

�
; ðA34Þ

in addition to the two equations in (A6). The system is
formed by three differential equations of first order, and one
differential equation of second order, thus leading to five
integration constants.

b. Solutions

We follow a similar analysis to that in Appendixes A 1 b
and A 1 c. First, we demand a good singularity and set
s ¼ 0 which removes one integration constant, leaving
four. We find that the system admits the solution,

AðrÞ ¼ −a log
�
r − r0
L

�
; ðA35Þ

BðrÞ ¼ −ða − 1Þ log
�
r − r0
L

�
− log cþ log cf; ðA36Þ

21An analysis of these equations with BðrÞ ¼ AðrÞ has been
done in e.g., Ref. [62].
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fðrÞ ¼ 1

c2f

�
1 −

�
rh − r0
r − r0

�
aðD−2Þ�

; ðA37Þ

ϕ̄ðrÞ¼−a log
�
r− r0
L

�
þ log

� jaj
kLc

�
; ðA38Þ

with the superpotential given by

W̄ðϕ̄Þ ¼ −cfðD − 3Þkeϕ̄: ðA39Þ

The solution has a set of six parameters; four integration
constants ðL; r0; rh; cfÞ and two constants ða; cÞ. As in the
zero temperature case, r0, a, and c are redundancies in the
description of the geometry that can be gauge fixed. We
readily set r0 ¼ 0. The change in a corresponds to the
coordinate transformation of Eq. (A13) together with the
redefinition,

rb;h
L

¼
				 ba
				
1
b
�
ra;h
L

�a
b

; ðA40Þ

where ra;h is the horizon location in the ra coordinate. The
same conclusion is obtained when considering the trans-
formation of Eq. (A16) together with the redefinition
r̃h ¼ ðc=c̃Þ1arh. Finally, the constant cf is another redun-
dancy in the geometry, as a change in cf corresponds to the
coordinate transformation,

t̃ ¼ c̃f
cf

t; ðA41Þ

leading to ds2 ¼ ds̃2, and can thus be fixed. We will
consider the value cf ¼ 1 to guarantee that the black hole
solution tends to the metric of Eq. (A1) in the rh → 0 limit.

c. Temperature of a planar black hole

The temperature of a planar horizon can be obtained by
the standard method of demanding the absence of conical
singularity. Given the Euclidean time ðτE ≡ iτÞ version of
the black hole metric of Eq. (A27), we study the behavior of
ds2 near the horizon, where fðrhÞ ¼ 0. The series expan-
sion of the variables at the first nonvanishing order is

AðrÞ ¼ AðrhÞ þOðr − rhÞ; ðA42Þ

BðrÞ ¼ BðrhÞ þOðr − rhÞ; ðA43Þ

fðrÞ ¼ f0ðrhÞðr − rhÞ þO
�ðr − rhÞ2

�
: ðA44Þ

At this point it is useful to define the new variable ξ as
r ¼ rhð1þ ξ2Þ, in terms of which the line element near the
horizon reads,

ds2 ≃ e−2AðrhÞ
�
rhf0ðrhÞξ2dτ2E

þ e2ðAðrhÞ−BðrbÞÞ
4rh

f0ðrhÞ
dξ2 þ dx2

D−2

�
∝ dξ2 þ ξ2dθ2 þ � � � ; ðA45Þ

where we have defined θ≡ 1
2
eBðrhÞ−AðrhÞjf0ðrhÞjτE. This is

the usual expression of the line element in polar coordi-
nates. The conical singularity is absent if the line element
has periodicity θ → θ þ 2π. This translates into a perio-
dicity in Euclidean time of the form τE → τE þ β with
β≡ 1=Th. We finally arrive at the expression of the
temperature,

Th ¼
1

4π
eBðrhÞ−AðrhÞjf0ðrhÞj: ðA46Þ

This expression is compatible with previous results
reported in the literature [see e.g., Ref. [58] for a metric
with BðrÞ ¼ 0].

d. Temperature and entropy of the LD black hole

Equation (A46) leads to the following result in the LD
model,

Th ¼
D − 2

4π
jσj with σ ¼ a

cL
: ðA47Þ

On the other hand, the entropy of the black hole can be
computed by using the Bekenstein-Hawking entropy for-
mula

Sh ¼
A

2GD
; ðA48Þ

where GD ≡ M2−D
D
8π is the D-dimensional Newton constant,

and we have introduced an extra factor of 2 from the Z2

orbifold convention adopted in Sec. V. By using the metric
of Eq. (5.1), the area of the event horizon is computed as

A ¼
Z

dD−2x
ffiffiffiffiffi
jḡj

p
¼
Z

dD−2xe−ðD−2ÞAðrhÞ

¼ VD−2

�
rh
L

�
aðD−2Þ

: ðA49Þ

The entropy density is then given by

sh ≡ Sh
VD−2

¼ 1

2GD

�
rh
L

�
aðD−2Þ

: ðA50Þ

The zero temperature solution is recovered by taking the
limit rah → 0, which means moving the horizon towards the
singularity.
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e. Fixing the constants

We fix the remaining parameter similarly to the case with
no black hole:

(i) No brane: We set a ¼ 1, c ¼ 1 with no loss of
generality. The solution turns out to be

ds2 ¼ dr2

fðrÞ þ
r2

L2

�
−fðrÞdτ2 þ dx2

D−2
�
;

ϕ̄ðrÞ ¼ − log ðkrÞ; ðA51Þ

with

fðrÞ ¼ 1 −
�
rh
r

�
D−2

: ðA52Þ

The horizon temperature is given by

Th ¼
D − 2

4πL
: ðA53Þ

(ii) Brane at r ¼ rb: Applying the same conditions as in
the case of no black hole, the solution is

ds2 ¼ 1

η2r2b

dr2

fðrÞ þ
r2

L2

�
−fðrÞdτ2 þ dx2

D−2
�
;

ϕ̄ðrÞ ¼ log

�
rb
r

�
þ v̄b; ðA54Þ

with

fðrÞ ¼ 1 −
�
rh
r

�
D−2

; ðA55Þ

where η is given by Eq. (A25). The temperature is
then

Th ¼
D − 2

4π
σ; ðA56Þ

where σ is given by Eq. (A26).
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