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We study a model comprising N flavors of Kähler Dirac fermion propagating on a triangulated two-
dimensional disk which is constrained to have a negative average bulk curvature. Dirichlet boundary
conditions are chosen for the fermions. Quantum fluctuations of the geometry are included by summing
over all possible triangulations consistent with these constraints. We show in the limit N → ∞ that the
partition function is dominated by a regular triangulation of two-dimensional hyperbolic space. We use
strong coupling expansions and Monte Carlo simulation to show that in this limit boundary correlators of
the fermions have a power law dependence on boundary separation as one expects from holography.
However, we argue that this behavior breaks down for any finite number of massive fields in the
thermodynamic limit and quantum fluctuations of the bulk geometry drive the theory into a nonholographic
phase. In contrast, for massless fermions, we find evidence that the boundary is conformal even for finiteN.
This is consistent with theoretical results in quantum Liouville theory.

DOI: 10.1103/PhysRevD.109.106010

I. INTRODUCTION

In this paper, we study the effects of fermionic matter on
the partition function for two-dimensional quantum gravity.
In particular we are interested in questions of holography
and hence restrict our discrete geometries to triangulations
with the topology of a disk. For our fermionic matter, we
use Kähler-Dirac fermions rather than Dirac fermions.
Kähler-Dirac (KD) fields afford a natural way to couple

lattice fermions to discrete geometry. In a continuum D-
dimensional Euclidean space with metric g, a KD field Φ is
composed of the set of all (Grassmann valued) antisym-
metric tensor fields (p-forms)

Φ ¼ ðϕ;ϕμ;ϕμν;…;ϕμ1μ2…μDÞ ð1Þ

with the corresponding action,

SKD ¼
Z

dDx
ffiffiffi
g

p
Φ̄ðd − d† þmÞΦ ð2Þ

where d denotes the exterior derivative and the only
dependence of the fermion operator on the metric arises
in the definition of the adjoint operator d†. Notice that the
square of the KD operator ðd − d†Þ is just the Hodge
Laplacian. In the flat space, one can form a matrix fermion
Ψ using these fields as coefficients in an expansion over the
Clifford algebra of Dirac gamma matrices

Ψ ¼ ϕI þ ϕμγ
μ þ ϕμνγ

μγν þ…þ ϕμ1μ2…μDγ
μ1γμ2 � � � γμD

ð3Þ

It is then straightforward to show that Ψ satisfies the usual
Dirac equation ðγμ∂μ þmÞΨ ¼ 0 and hence the fermionic
content of the flat space theory is equivalent to a set of 2D=2

degenerate Dirac fermions corresponding to the columns of
Ψ. However, in a curved space this equivalence to the Dirac
equation is lost.
A key advantage of KD fermions over Dirac fermions is

they may be coupled to gravity without introducing frames
and spin connections and may be discretized without
inducing fermion doubling. Indeed one merely maps the
p-form fields to lattice fields defined on p-simplices in a
triangulation (p-cochains) and replaces d and d† by
boundary δ and coboundary δ̄ operators respectively, which
have a natural action on such p-cochains—see [1,2]
and [3–5] for details.
In our work, we have focused on studying the

back reaction induced on the gravitational theory as a
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consequence of the presence of KD fermions and particu-
larly its effect on the holographic properties of the system.
We employ both analytic arguments and Monte Carlo
simulation to infer the phase diagram of the theory. We
find, for a large number of fields N, the effect of the
fermions is to suppress curvature fluctuations. In the limit
that N → ∞, we find that the geometry becomes a classical
constant (negative) curvature space corresponding to a
regular tessellation of two-dimensional hyperbolic space.
Furthermore, we show in this limit, that boundary-

boundary correlation functions exhibit a power law decay
as expected for a holographic theory. Indeed, the depend-
ence on bulk mass matches well with continuum predic-
tions [6]. However, we will argue that this behavior does
not survive if the number of fields is held fixed in the
thermodynamic limit—the discrete geometries become
disordered as the area of the disk increases and the simple
holographic behavior of the correlators is lost.

II. MODEL

The partition function for the model is written as,

Z ¼
X

T ∈ disk

Z
DΦ̄DΦeΦ̄KðT ÞΦe−Sg

¼
X

T ∈ disk

YD
p¼0

detN=2 ð□ðpÞðT Þ þm2Þe−Sg

¼
X

T ∈ disk

e−Seffe−Sg

where Seff ¼ −
N
2

XD
p¼0

Tr ln ð□ðpÞðT Þ þm2Þ ð4Þ

where we have included N flavors of KD fermion and the
two-dimensional bare gravitational action is just given by a
cosmological constant term Sg ¼ κN2 where N2 is the
number of triangles. In practice, we consider triangulations
of the disk T with a fixed number of triangles so this term
plays no role. The square of the KD operator yields an
operator which is the direct sum of Laplacians □

ðpÞ for
each type p of simplices (vertices, links, and triangles) and
hence appear in the effective action arising from the
fermion loops. The sum over T includes all combinatorial
triangulations with a boundary structure that corresponds to
the last layer of a finite f3; 7g tessellation of hyperbolic
space [7]. That is, we impose the discrete equivalent of
asymptotic AdS boundary conditions on the geometry. As a
consequence, the average bulk curvature is fixed to a
negative constant while a Dirichlet boundary condition is
used for the fermions.

III. ANALYTIC ANALYSIS

It is instructive to analyze the model first in the
large mass limit m → ∞. Furthermore, let us restrict our

attention to the contributions of the p ¼ 0 (node) sector of
the fermion operator whose matrix elements take the form

Mij ¼ □
ð0Þ
ij þ δijqim2 ¼ ð1þm2Þqiδij − Cij ð5Þ

where qi denotes the number of neighbors of the ith node
and Cij ¼ 1 if nodes i and j are neighbors. It is easy to
factorize this in the form M ¼ QAQ where the matrix Q is
diagonal with matrix elements

ffiffiffiffi
qi

p
and A takes the form

Aij ¼ ð1þm2Þδij −
Cijffiffiffiffiffiffiffiffiffiqiqj

p : ð6Þ

Thus

detðMÞ ¼ eN0 ln ð1þm2Þ
�YN0

i

qi

�
e
P

L
1
L

1

ð1þm2ÞLΩL ð7Þ

whereΩL is the number of closed loops of length L that can
be drawn on the triangulation with each loop weighted by
the inverse of the product of the qi for each vertex in the
loop. Taking the large m limit we find that the effective
action for KD fermions contains the local term

Seff ¼ −
N
2

X
i∈ bulk

lnðqiÞ ð8Þ

Using the usual expression for the scalar (Regge) curvature
associated with each node in a triangulation Ri ¼
π
qi
ðqi − 6Þ this can be rewritten

−
N
2
lnðqiÞ ¼ constþ N

X
i∈ bulk

1

π2
R2
i þ � � � ð9Þ

Thus the leading effect of the fermion backreaction in the
large mass limit is to induce a R2 operator that suppresses
local curvature fluctuations. For largeN this conclusion can
be reinforced by performing a steepest descent evaluation
of this leading contribution by solving

∂Seff
∂qi

¼ 0 with
X
i

qi ¼ fixed: ð10Þ

This generates a homogeneous solution with qi ¼ 7—this
value being determined by the geometrical boundary
conditions—here the fact that the boundary nodes have a
connectivity determined by the final layer of a f3; 7g
tessellation.
At m ¼ 0 one can find another representation of the

determinant of the node Laplacian in terms of the number
of spanning trees in the corresponding graph. Thus as
N → ∞ we expect the partition function to be domi-
nated by the triangulation with the maximal number of

ASADUZZAMAN, CATTERALL, and SAMLODIA PHYS. REV. D 109, 106010 (2024)

106010-2



spanning trees—the regular tessellation with constant local
curvature [8]. Thus for large N and for both small and large
fermion mass we expect the partition function to be
dominated by regular tessellations of two dimensional
hyperbolic space. We will see that this expectation is
indeed borne out in our simulations.
Let us now examine the expected behavior of fermion

boundary-boundary correlation functions on such regular
tessellations. We will concentrate on the node correlators
although our conclusions will apply equally to all compo-
nents of the fermion correlator. This correlation function
can be written

hϕiϕji ¼
�
−K þm
−□þm2

�
ij

ð11Þ

where K ¼ δ − δ̄. Focusing on the piece proportional to m
we see that it can be written as a matrix element of the
inverse lattice Laplacian. Thus

hϕiϕji ∼
1

m

�
1 −

1

m2
□

�
−1

ij
ð12Þ

For large mass we can expand the inverse operator in
powers of 1=m2. Each successive term connects nodes
one further step apart in the lattice. The first nonzero
contribution to this correlator then arises from the power
of □ that corresponds to the shortest path on the lattice
between the two boundary nodes—the lattice geodesic. For
a regular hyperbolic lattice this path runs through the bulk
and is of length ln rwhere r is the boundary separation. The
correlator is then

hϕiϕji ∼
�

1

m2

�
ln r

∼
1

r2Δ
with Δ ¼ lnm2: ð13Þ

Thus holographic behavior is expected for any value of the
bulk mass at least as m → ∞. It is not hard to generalize
this argument to show that the strong coupling limit of any
lattice spin or gauge model formulated on a tessellation of
hyperbolic space will exhibit holographic behavior—see
[9]. Using Monte Carlo simulation we will see that in fact
this behavior extends to all values of m provided the
geometry is homogeneous as was seen earlier in [10,11].
According to the AdS/CFT correspondence, the relation-

ship between the mass m of a scalar field in the bulk of
AdSdþ1 and the scaling dimension Δ of the boundary field
operator is given by the following equation [6],

ΔðΔ − dÞ ¼ ðmLÞ2 ð14Þ

where d is the dimension of the boundary and L the AdS
curvature. Two solutions exist for this equation which are,

Δ� ¼ d
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

4
þ ðmLÞ2

r
: ð15Þ

Using appropriate boundary conditions, one can get back
either one of the solutions [6]. Dirichlet boundary con-
ditions as used here ensure the Δþ solution is obtained.
This continuum prediction holds only for a classical

homogeneous hyperbolic/AdS space. One of the goals of
our study is to see whether this behavior survives in the
presence of bulk quantum gravity fluctuations. In our
model the magnitude of the latter can be adjusted by
dialing the number of fermions propagating on the geom-
etry. We have argued that in the limit N → ∞, the back-
ground geometry will reduce to a hyperbolic geometry with
constant local curvature and this is borne out by our
simulations which are discussed in the next section.

IV. MONTE CARLO SIMULATIONS

In order to do Monte Carlo simulations capable of
reproducing a path integral over bulk geometries we need
a set of local moves that change the triangulation T . A
suitable set of moves are called the Pachner moves and can
be implemented in any dimension—see Ref. [12] for a
simple implementation of such moves in D dimensions. In
two dimensions one such move—the so-called link flip
move (see Fig. 1)—is known to be ergodic in the space
of random triangulations of fixed area. By choosing to
perform this move at random one can construct a
Metropolis procedure that is capable of performing a
random walk in the space all such triangulations T
weighted by the effective action. Figure 2 shows typical
random geometries generated in Monte Carlo sampling,
where near regular tessellations are obtained when N is
large. The change in the effective action needed by the
Metropolis algorithm requires the evaluation of the change
in the fermion determinants under such link flip moves. We
have used the SuperLU package to compute the change in
these determinants [13]. This is efficient but still scales like
the cube of the system volume which limits us to relatively
small lattices. In practice we have simulated a range of
lattice areas up to 1162 lattice sites using variables numbers
of KD fermions and using a set of masses that extend
from near massless m ¼ 0.0001 to m ¼ 10.0. Typical
Monte Carlo ensembles for a fixed set of parameters

FIG. 1. Link flip Move.
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correspond to 1000 configurations obtained from 20 000
Monte Carlo sweeps with a gap of 20.

V. SIMULATIONS AND RESULTS

A. Bulk observables

In this subsection, we first investigate the bulk geomet-
rical properties of the triangulations. Figure 3, which plots
the fluctuations in the local curvature Q ¼ hðq − 7Þ2i
averaged over the bulk nodes as a function of the number
of fields N, shows clearly that in the N → ∞ limit, the
geometry indeed approaches the regular f3; 7g tessellation
of hyperbolic space corresponding to a continuum space
with constant negative curvature. However, it can be seen
that the number of fields that are needed to freeze the lattice
geometry to the regular tessellation depends on both the
massm and the lattice area N2. Figure 4 shows a plot of the
bulk value of Q vs the bulk mass for N ¼ 2–512. Clearly
one needs larger N as m increases to smooth the lattice
geometry at fixed area. This makes sense; if one integrates
out massive fields one would expect to generate local R2

operators as we saw for m → ∞. However for finite mass
there will be 1=m2 corrections arising from the expansion
over closed loops which reduce the effective R2 coupling.
However this coupling will also be proportional to the

number of KD fields so the latter can be increased to
compensate for this—an effect which is visible in the plot.
Indeed, since R2 is an irrelevant operator in two

dimensions one might expect its coupling to flow to zero
in the infrared and hence to vanish in the thermodynamic
limit rendering the bulk lattice geometries disordered for
any finite number of massive fermions. In light of this it is
interesting to ask what happens for vanishing mass as the
area is increased. Figure 5 shows a plot of Q vs the lattice
area for several values of the bulk mass m including the
small mass limit. It is clear that the value of Q indeed starts
to grow as the area increases for any value of the mass
which is consistent with our earlier argument.
One can also understand this effect via the following

argument. Imagine the effect of a single link flip around the
regular tessellation. It is not hard to verify that this changes
the action ΔS1flip ¼ α where α ¼ Oð1Þ and is independent
of the area N2. However there are many ways to make such
a fluctuation—the link flip can occur on any bulk link. Thus
the entropy associated to such a flipped configuration
increases logarithmically with the area. Putting these two
facts together one sees that the change in the free energy
associated with a single link flip ΔF ¼ α − β lnN2 can be
made arbitrarily negative by link flips for large enough
area. Thus one expects, even in the massless case,1 that link
flips will predominate for fixed N in the large area limi—as
we see in the data. Indeed, this implies that the regular
tessellation will not dominate in the limit of large areas
unless one sends N → ∞.
Thus our analysis of bulk local observables suggests that

typical geometries become disordered in the thermody-
namic limit. We explore the consequences of this for
holography in the next section.

FIG. 2. Typical geometries arising in Monte Carlo simulations.
The disk on the right is a near perfect regular tessellation for large
N case.
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FIG. 3. Curvature fluctuation Q vs number N of KD fermions
with different bulk masses m for a lattice consisting of N2 ¼
1162 triangles.
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FIG. 4. Q vsmbulk with different number of fields N for a lattice
with N2 ¼ 1162 triangles.

1In practice m ¼ 0.001 gives a good approximation to the
massless theory on our lattices. We have checked that neither bulk
or boundary observables change on further decrease of m.
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B. Boundary correlators

The boundary correlation functions are computed as
matrix elements of the inverse KD operator including the
bulk mass term2

CðrÞ ¼
X
ij

1

nijðrÞ
δji−jj;rð−□þm2Þ−1ij ð16Þ

where ji − jj is the boundary distance (in units of the lattice
spacing) between boundary sites i and j and

nijðrÞ ¼
X
ij

δji−jj;r ð17Þ

In practice we assess errors on our correlation functions
by a jackknife procedure. Typically we have used Njack ¼
200 samples to assess statistical errors. The boundary
correlators for smaller N suffer from large fluctuations
as the boundary geodesic distance increases. These fluc-
tuations become more significant for larger bulk mass.
To handle this and remove the leading discretization

effects we have also performed a smoothing operation on
the correlation function before attempting power law fits.
This entails averaging the correlators at any distance over a
block of a certain size centered on that distance. We have
checked that our results are robust to the size of this
parameter. Once this is done we fit the resultant correlator
to a power law to extract Δ.
An example of this procedure can be seen in Fig. 6 which

shows the smoothed correlation function and fit for N ¼
512 and m ¼ 1.0. In this plot we have chosen to fit the data
in a particular window of length 20 lattice spacings. We plot
the data versus ln ð1 − cos θÞ where θ ¼ π r

rmax
and rmax is

the maximum boundary geodesic distance (half of the total
length of the boundary). This takes into account the leading

finite size effects. For rmax → ∞ this is just 2 ln r. For large
N the results are somewhat insensitive to the choice of
window. But this is no longer true as N is reduced. For
example Fig. 7 shows a correlator form ¼ 1.0 at N ¼ 2 for
several different values of the total area. In this case the log-
log plot shows a pronounced curvature and a strong finite
size effect and it is far less clear which fitting window
should be chosen.
To establish robust values for any extracted Δ we need

to determine what fitting window to use. To do this we
have determined an effective running Δ at each distance r
and look for a robust fitting window where consistent
values of Δ are obtained independent of the precise
location of the window. In more detail, we fix the fitting
window size and move the fitting window progressively
out to larger distances keeping both the block size b and
number of points Nfit fixed. For each choice of fitting
window, we fit a power law from lnCðrÞ vs ln r and
extract an estimate of the local power law exponent Δ.
We then look for a plateau in the value of Δ indicating a
simple power law decay. We additionally check that the
resultant fits have an acceptable χ2 per degree of freedom
(see the appendix for a plot of χ2 vs the fitting window)
To test this method we first restrict ourselves to the case
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FIG. 5. Q vs area N2 for fixed N ¼ 96 and different bulk
masses.
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FIG. 6. Correlation function for N ¼ 512 and m ¼ 1.0 using
smoothing block size b ¼ 4 and a fitting window of size 20.
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FIG. 7. Correlation function for N ¼ 2 and m ¼ 1.0 with
smoothing block size b ¼ 4 for different number of simplices.

2To compute the correlators we use open boundary conditions
but include a very large boundary mass for the fermions to drive
the magnitude of the boundary field close to zero. Typically
m2

∂D ¼ 1000.0.
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of N ¼ 512 where the lattices are perfect regular f3; 7g
tessellations of the hyperbolic plane for all masses and
lattice sizes we employed. Figure 8 plots Δ versus m2 for
N ¼ 512. The fit we show corresponds to the continuum
prediction given in Eq. (15). We fit the data with the
form: Δ ¼ Aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ Bm2

p
. From the fit we find A ¼

0.500� 0.003 and B ¼ 2.558� 0.051. B is related to the
radius of curvature L ¼ ffiffiffiffiffiffiffiffi

B=2
p ¼ 1.131� 0.022. This

can be compared with that expected for a fp; qg
tessellation of hyperbolic space given by

1

L
¼ 2 cosh−1

�
cos ðπ=pÞ
sin ðπ=qÞ

�
ð18Þ

where p ¼ 3 and q ¼ 7 for a triangulation. The formula
yields L ¼ 0.917 which differs by Oð10Þ% from the
theoretical prediction which we attribute to finite size
effects.3

Let us now turn to the situation at finite N. Figure 9
shows the value of Δ extracted from simulations at

m ¼ 1.0, area N2 ¼ 1162 for several values of N. We
fix the fitting window to 20 with r0 the starting point of the
fit and the block size to b ¼ 4. It should be clear that only
for N ¼ 512 do we see a reliable plateau while for smaller
N the effective scaling dimension Δ runs with distance. We
interpret this as a breakdown in holography. In appendix C
we show that this conclusion does not depend on the size of
the fitting window Nfit.
Figure 10 shows a similar plot for m ¼ 0.001. In this

case a plateau is visible even for small values of N4

Thus we conclude that the boundary theory remains
conformal for massless fermions even in the presence of
bulk disorder although the scaling dimension of the
field appears to receive quantum gravity corrections.
We discuss the possible reasons for this in our con-
clusions. Figures 12, 13, and 14 in Appendix C shows
the roubustness of the results for Δ on the size of the
fitting window by choosing Nfit ¼ 12.

VI. SUMMARY AND CONCLUSION

Wehave shown that the back reaction ofKD fermions on a
two-dimensional quantum geometry with the topology of a
disk is such as to suppress local curvature fluctuations.
Indeed, for N → ∞ limit, we find the lattice geometries
approach that of a regular tessellation of hyperbolic space—
in the limit a classical spacewith constant negative curvature.
Furthermore, in this limit, the boundary correlation functions
exhibit a holographic property falling off as powers of the
boundary distance. Remarkably the dependence of this
power on bulk fermion mass matches quite closely the
continuum prediction.
However, if the number of fields is held fixed, we have

provided evidence that fluctuations of the geometry
reemerge in the thermodynamic limit both for massive
and massless fields. For massive fermions the boundary
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data
A = 0.500(0.003), B = 2.56(0.05)

Δ

m2

FIG. 8. Δ vs m2 at N ¼ 512 and N2 ¼ 1162. The χ2 per degree
of freedom for this fit is 0.16.
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FIG. 9. Δ vs location of fitting window for N2 ¼ 1162 and
m ¼ 1.0 (Nfit ¼ 20).
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FIG. 10. Δ vs location of fitting window for N2 ¼ 1162 and
m ¼ 0.001 (Nfit ¼ 20).

3The factor of
ffiffiffi
2

p
connecting B to L arises from a dual lattice

parameter that is needed to construct the correct kinetic operator
for the scalar field on a tessellation [7,14,15].

4Figure 11, in Appendix B we show a typical correlator in the
small mass limit which reinforces the notion that one can obtain a
good power law fit over a wide range of fitting windows.
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correlators, while the correlation is relatively long-ranged,
no longer fit a simple power law. We tentatively conclude
that in this regime the model no longer exhibits a holo-
graphic phase. This is not too surprising—as we have
shown, integrating out massive fields produces local
operators such as R2 which are irrelevant at long distances.
The path integral is then dominated by metrics that differ
drastically from classical hyperbolic space.
The case of massless fermions is more subtle—in this

case, nonlocal operators can arise in the gravity action. For
example the Polyakov action can be generated [16,17]

SP ¼
Z

d2x
ffiffiffiffiffiffiffiffiffi
gðxÞ

p Z
d2y

ffiffiffiffiffiffiffiffiffi
gðyÞ

p
RðxÞ□−1ðx − yÞRðyÞ

ð19Þ

where □ is the covariant Laplacian and R the Ricci scalar.
In the continuum we can fix the conformal gauge g ¼ e2bϕĝ
and obtain the well known Liouville action [16]:

S ¼ 1

4π

Z
d2x

ffiffiffî
g

p
½ð∂ϕÞ2 þQR̂ϕ� ð20Þ

where Q ¼ bþ b−1 is related to the Liouville central
charge cL ¼ 1þ 6Q2. The entire system is quantum
conformal invariant if cM þ cL ¼ 26 where 26 arises from
the ghosts needed to gauge fix diffeomorphism symmetry.
Notice that while KD fermions are equivalent to multiples
of Dirac fermions in flat space this is no longer true in the
presence of gravity where they behave like ghosts. Indeed,
for KD fermions, the central charge cM → −∞ as N → ∞
and we are within the regime of applicability of Liouville
theory with Q large and b small corresponding to weak
gravity. In this limit, we expect that conformal invariance is
maintained with boundary correlation functions still falling
off as a power of the distance [17] even though the bulk
geometry no longer corresponds to a classical hyperbolic
space. This conclusion agrees with our simulations.
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APPENDIX A: FITS FOR Δ

Below we show the result of fitting Δ for various
fermion masses for a large number of fermions and an
area N2 ¼ 1162.

APPENDIX B: MASSLESS FERMION
CORRELATORS

Here we show a boundary correlator for smallN ¼ 2 and
in the (near) massless regime m ¼ 0.001. A clear linear
regime for large values of ln ð1 − cosðθÞÞ or r indicates a
good robust power law fit.
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FIG. 11. Boundary correlator with smoothing block size b ¼ 4f
for N ¼ 2, N2 ¼ 1162 and m ¼ 0.001.

TABLE I. Data for Δ vs m2 at N ¼ 512; N2 ¼ 1162. σ is the
error in estimation Δ.

m2 Δ σ χ2=d:o:f

0.000001 0.99936 0.00265 0.2469
0.0001 0.99959 0.00264 0.24682
0.01 1.02274 0.002 0.24036
0.1 1.20491 0.00805 0.21221
0.2 1.4084 0.00834 0.35023
0.6 1.88571 0.00975 0.30089
0.8 2.05425 0.01059 0.28498
1.0 2.19882 0.01066 0.29197
1.2 2.32405 0.01059 0.30889
1.4 2.43486 0.011 0.32482
1.6 2.53427 0.0117 0.34371
1.8 2.62441 0.01274 0.36496

FERMIONS, QUANTUM GRAVITY, AND HOLOGRAPHY IN TWO … PHYS. REV. D 109, 106010 (2024)

106010-7



APPENDIX C: VARYING THE FITTING
WINDOW

In the pictures below we show the robustness of our
results for Δ on the size of the fitting window by choosing
Nfit ¼ 12 in contrast to the choice Nfit ¼ 20 used in the
main text.
In the following plot we show the χ2 of a typical

correlator fit as a function of the fitting window.
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