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Recently, there has been a growing interest in investigating homogeneous but anisotropic spacetimes
owing to their relation with nonrotating, uncharged black hole interiors. We present a description of axial
perturbations for a massless scalar field minimally coupled to this geometry. We truncate the action at the
quadratic perturbative order and tailor our analysis to compact spatial sections. Perturbations are described
in terms of perturbative gauge invariants, linear perturbative constraints, and their canonically conjugate
variables. The entire set, encompassing perturbations and homogeneous degrees of freedom, is
consolidated into a canonical one. We employ a hybrid approach to quantize this system, integrating a
quantum representation of the homogeneous sector using loop quantum cosmology techniques with a
conventional field quantization of the perturbations.

DOI: 10.1103/PhysRevD.109.106009

I. INTRODUCTION

The foundation of general relativity (GR) provides a
robust framework for understanding gravity as the curva-
ture of spacetime caused by the presence of mass and
energy. However, obtaining exact solutions to Einstein’s
equations is challenging or even impossible in the majority
of gravitational scenarios. It is under such circumstances
that perturbation theory comes into play. Its significance
lies not only in its utility for solving practical problems, but
also in its capacity to unveil new aspects of the Universe.
By studying small fluctuations around well-known solu-
tions, valuable insights can be gained into the stability of
astrophysical systems, gravitational radiation, the forma-
tion and evolution of black holes, and other cosmic
phenomena. Its practical applications extend to fields like
observational astrophysics and the detection of gravita-
tional waves. For instance, the observation of merging
binary black hole systems, using interferometers, signifi-
cantly benefits from perturbative methods to model and
understand events which generate these phenomena, i.e.,
ringdown processes [1].
A challenge in perturbation theory within GR, stemming

from the diffeomorphism invariance of the theory, is
addressing the degrees of freedom that characterize per-
turbations through the use of perturbative gauge invariant
variables [2–5]. We recall that gauge invariant quantities do
not change under gauge transformations; in our case, this
implies that perturbative gauge invariant variables do not
depend on how we relate our well-known spacetime,

commonly referred to as background, to our perturbed
spacetime. Therefore, the choice of these variables is
essential to ensure the consistency and validity of the
results. Under this paradigm, the Hamiltonian formalism of
GR provides an intuitive description for identifying and
characterizing perturbative gauge invariant variables at any
perturbative order, as addressed in a pioneering work in
Ref. [6]. Although the complete formulation of the theory
would involve considering all perturbative orders, full
calculations can often become computationally intensive
and, in some cases, even infeasible. Hence, it is customary
in most cases to work up to the leading perturbative order,
assuming that higher-order corrections are negligible.
Employing this approach not only simplifies computational
aspects but also preserves the most fundamental properties
of the problem, thereby enhancing the ease of analysis and
interpretation of the results.
Unraveling the quantum nature of gravity is one of the

fundamental challenges in modern physics. Despite the
formidable task of the scientific community in under-
standing our surroundings in the Universe, certain physical
regimes persistently elude complete comprehension.
Among gravitational systems, notable examples are the
early Universe and black holes. It is anticipated that a
theory adept at integrating the principles of quantum
mechanics with the foundations of GR will provide insights
into the understanding of these scenarios. One of the most
robust theories in contemporary physics to achieve this goal
is loop quantum gravity (LQG). Essentially, LQG is
characterized as a nonperturbative, diffeomorphism invari-
ant, and background-independent quantization of GR.
Moreover, this theory offers a distinctive perspective by
depicting Einstein’s theory using a SUð2Þ connection and
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its densitized triad as the canonical set of variables within
the Hamiltonian framework. These variables give rise to the
formation of holonomies over closed paths (loops) and
fluxes of the densitized triad over closed surfaces, con-
stituting the algebra of functions that is represented
quantum mechanically [7,8]. The application of LQG
techniques to the study of simplified systems is a special-
ized discipline known in the literature as loop quantum
cosmology (LQC) [9,10]. One of the groundbreaking
achievements of LQC is the resolution of the initial
singularity in standard cosmology, accomplished by avoid-
ing it through a bouncing phenomenon known as the big
bounce [11,12].
In gravitational research, the Kantowski-Sachs spacetime

has recently gained significant attention, standing out as a
particularly interesting model to study. Its geometry defines
a homogeneous but anisotropic scenario, as outlined in
Refs. [13,14], but it also holds profound significance owing
to its diffeomorphic equivalence to the interior of a non-
rotating, uncharged black hole. To unveil this relationship,
we can conduct a compelling comparison between
Kantowski-Sachs spacetime and Schwarzschild. Despite
both spacetimes featuring spherical symmetry, a noteworthy
distinction arises, namely,Kantowski-Sachs features a radial
Killing field, whereas the exterior Schwarzschild exhibits a
temporal one. In Schwarzschild, the transition from the
exterior to the interior geometry involves an inversion of
radial and temporal coordinates. This property, in turn, leads
us to the relationship we sought between the Schwarzschild
interior and Kantowski-Sachs. Regarding the quantum
nature of Kantowski-Sachs with an eye to black hole
physics, the LQC formalism initially did not attain as
significant progress as its counterpart in standard cosmol-
ogy. A (nonexhaustive) list of works in this field includes the
following Refs. [15–30]. Nevertheless, this area of research
has experienced a revitalization, driven by a series of recent
publications that showcase promising advancements
beyond the initial works [31–38]. In fact, a comprehensive
quantization of this spacetime has been successfully
achieved using the same loops methods that were employed
in the quantization of standard cosmology. The only dis-
tinctive element in the quantization program, diverging from
prior LQC works, is the necessity to contemplate an
extendedHamiltonian formulation of the problem to accom-
plish quantization [36]. Remarkably, this extension poses no
apparent obstruction; instead, it facilitates and streamlines
the quantization process [38]. This outcome represents a
significant breakthrough as, before these works, only an
effective description incorporating quantum corrections
from LQC was available. Moreover, it provides the ground-
work for a variety of studies that can delve into the nature and
properties of this quantum spacetime.
Taking into account all these comments, the objective

of this paper is twofold: To employ a perturbative descrip-
tion of Kantowski-Sachs spacetimes and to improve our

understanding of the geometry quantization by introducing
a quantum formalism specifically designed to handle these
perturbations. For the sake of completeness, our study
incorporates the coupling of the geometry with a homo-
geneous, massless scalar field. A good starting point to
initiate the discussion is the analysis presented in Ref. [39],
dedicated to the study of perturbations in spherically
symmetric spacetimes. For this scenario, Kantowski-
Sachs serves as a particular case of background spacetime,
while the perturbative description is notably streamlined by
considering the symmetries of Kantowski-Sachs. In fact,
symmetries enable us to decompose perturbations in terms
of spherical harmonics. Given its importance in the inves-
tigation of gravitational radiation, we employ the
Regge-Wheeler-Zerilli basis for these harmonics. When
conducting the decomposition, special attention is paid to
the behavior of harmonics under parity transformations in
angular coordinates. This behavior allows us to divide our
study into two independent cases: The axial and the polar
cases. For the scope of this article, we specifically delve
into the study of axial modes, chosen for their computa-
tional simplicity. Taking advantage of the additional sym-
metry present in Kantowski-Sachs compared to generic
spherically symmetric spacetimes, our work proposes to
complement the harmonic decomposition with a Fourier
decomposition (in the radial direction), significantly sim-
plifying the calculations. By employing a series of canoni-
cal transformations, dependent on both perturbative modes
eigenvalues and background variables, and incorporating
various redefinitions of the Lagrange multipliers, not
previously considered for this spacetime, we will show
how to derive a Hamiltonian formulation. It is worth
mentioning that the validity of these transformations and
redefinitions holds at the considered perturbative order. The
resulting framework features canonical variables for the
perturbations that are either perturbative gauge invariant
variables or perturbative gauge degrees of freedom, the
latter being decoupled from the former and not pertinent to
the ensuing discussion [39–41].
After these transformations are completed, the dynamics

are governed by a diagonal Hamiltonian, dependent solely
on variables that maintain perturbative gauge invariance at
leading order. Furthermore, its expression is entirely
adapted to the results obtained in Ref. [42]. In that article,
under relatively nonrestrictive conditions, it is proved that
the Fock quantization of a free scalar field within the
Kantowski-Sachs geometry admits a privileged, unitary
equivalent family of representations. The extension to our
scenario, considering Kantowski-Sachs perturbations, is
straightforward and suggests a promising direction for the
quantization of the perturbations. The integration of the
quantum description of the perturbed Kantowski-Sachs
spacetime is conducted using a formalism well known in
the literature as hybrid loop quantum cosmology (LQC-
Hybrid). A detailed analysis of this method can be found in
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Ref. [43], where its successful application in cosmology is
reviewed [44–46]. For the first time, these techniques are
being applied to Kantowski-Sachs. In brief, the LQC-
Hybrid approach involves utilizing a well-established
quantum cosmology theory for the treatment of the back-
ground, while assigning perturbations a less dominant role
in quantum geometry effects. This allows for their treat-
ment through a more conventional representation. For our
discussion, we will employ the LQC representation for the
background and a Fock (or a Schrödinger) representation
for the perturbations. Using this framework, both the
background and the perturbations are addressed altogether
through pure quantum mechanical means. This contrasts
with another approach frequently employed in the LQC
community, namely the dressed metric formalism [47–49],
in which perturbations are effectively treated as test fields
in a background dressed with quantum modifications.
The article is organized as follows. In Sec. II, we

introduce the fundamental concepts of the Hamiltonian
formulation within GR, covering both perturbed and
unperturbed scenarios. Section III presents a concise over-
view of a homogeneous but anisotropic spacetime coupled
with a massless scalar field. The discussion employs
canonical variables based on the connection formulation
of LQG. Moving forward in Sec. IV we introduce a basis of
functions motivated by the symmetries of the background
spacetime that facilitates an appropriate description of the
perturbations in Kantowski-Sachs. The study specializes in
axial perturbations in Sec. V, providing a detailed formu-
lation in terms of perturbative gauge invariant variables.
The approach we adopt maintains the entire canonical
structure of the system, encompassing both the background
and the perturbations. Section VI builds upon the results
from previous sections to conduct a quantization of the
system. Finally, in Sec. VII, we present and discuss the
implications drawn from our results. To address the subtle-
ties concerning the global canonical structure, that are not
relevant for the main discussion, we include the Appendix.
Throughout this article, we adopt geometric natural units,
setting the speed of light, the Planck constant, and the
gravitational constant to unity.

II. HAMILTONIAN FORMALISM
FOR PERTURBATIONS

In this section, we will briefly revisit the Hamiltonian
formulation of GR coupled with a massless scalar field and
explore its perturbations. Although this description has
been previously addressed in the literature, and we refer to
Ref. [8] for a detailed discussion of the unperturbed case
and to Ref. [39] (or, alternatively, to Refs. [50–52]) for the
perturbative treatment, we will provide a concise review to
establish the notation for our upcoming sections.
The starting point of the unperturbed formalism is the

Einstein-Hilbert action coupled with a massless scalar field
Φ. For any spacetime that allows an Arnowitt-Deser-Misner

(ADM) decomposition, a time vector field, referred to as ∂t,
exists. This vector field serves to foliate the spacetime into
a collection of spatial Cauchy hypersurfaces. With the aim
of simplifying the discussion, we introduce coordinates
xμ ¼ ðt; xaÞ aligned with this foliation, where the label μ
represents spacetime indices, and a stands for spatial indices.
Consequently, the action can be written as

S0¼
1

κ

Z
R
dt
Z
σ
d3xðΦ̇ΠΦþ ġabΠab−NH−NaHaÞ: ð2:1Þ

Here, κ is 16π in the chosen units, and the integration is
performed over the globally hyperbolic manifold R × σ,
where σ is the spatial manifold. The notation ġab and Φ̇ refer
to the Lie derivative of the spatial metric and the scalar field,
respectively, along the flow generated by ∂t. In our coor-
dinates, both can be expressed as gab;t and Φ;t, where the
comma denotes partial derivative. Simultaneously, the
expressions for their canonical conjugate momenta are

Πab ¼ κ
δS0
δġab

¼ ffiffiffi
g

p ðKab−gabKc
cÞ;

ΠΦ ¼ κ
δS0
δΦ̇

¼
ffiffiffi
g

p
N

ðΦ;t−NaΦ;aÞ; g¼ detðgabÞ: ð2:2Þ

In these formulas, we introduced the lapse function N, the
shift vector Na, and the extrinsic curvature Kab. Lastly, the
expressions for the Hamiltonian constraintH and the spatial
diffeomorphism constraints Ha are

H ¼ 1ffiffiffi
g

p
�
gacgbd −

1

2
gabgcd

�
ΠabΠcd −

ffiffiffi
g

p
R

þ 1

2

�
Π2

Φffiffiffi
g

p þ ffiffiffi
g

p
gabΦ;aΦ;b

�
¼ 0;

Ha ¼ −2gacDbΠbc þ ΠΦΦ;a ¼ 0; ð2:3Þ

where D represents the covariant derivative with respect to
the spatial metric, satisfying the conditionDagbc ¼ 0, and R
is the Ricci scalar for the spatial sections.
To carry out the perturbative analysis, we introduce a

dimensionless parameter, denoted as ϵ, serving a key role in
establishing the hierarchy of perturbations and labeling a
family of manifolds MðϵÞ within our system. When ϵ ¼ 0,
themanifold corresponds to the background, and for all other
cases, it represents a perturbed manifold. Our aim is to
compare perturbative quantities with background quantities
while anticipating the presence of gauge freedom associated
with the choice of the mapping, ψϵ∶ Mð0Þ → MðϵÞ,
between these manifolds. Hence, when dealing with a
perturbative quantity g̃ðϵÞ on MðϵÞ, its pullback ψ�

ϵ g̃ðϵÞ
defined on Mð0Þ unfolds as follows [39,50]:
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ψ�
ϵ g̃ðϵÞ¼gþ

X∞
n¼1

ϵn

n!
Δn

ψ ½g�; Δn
ψ ½g�¼

dnψ�
ϵ g̃ðϵÞ
dϵn

����
ϵ¼0

: ð2:4Þ

The inclusion of the label ψ in the perturbations, which we
will later omit for simplicity, serves as a reminder that, in
general, establishing a map is essential for accurately
defining these perturbations. With this terminology in mind,
our focus shifts to examining leading-order perturbations,
elucidated by the effective second-order action, denoted as

1

2
Δ2

1½S0� ¼
1

κ

Z
R
dt
Z
σ
d3x

�
hab;tpab þ φ;tp − CΔ½H�

− BaΔ½Ha� −
N
2
Δ2

1½H� − Na

2
Δ2

1½Ha�
�
: ð2:5Þ

This equation incorporates the following notation, intro-
duced to handle first-order perturbative contributions:

C ¼ Δ½N�; Ba ¼ Δ½Na�; hab ¼ Δ½gab�;
pab ¼ Δ½Πab�; φ ¼ Δ½Φ�; p ¼ Δ½ΠΦ�: ð2:6Þ

The lack of a first-order action term to address leading-order
perturbations is grounded in its vanishing contribution
when dealing with compact spatial sections, as will become
apparent later in our model. For similar reasons, the con-
tributions of second-order perturbations of themetric and the
scalar field are irrelevant in our present discussion. To
emphasize this point, we adopted the notation Δ2

1 for
second-order quantities that are composed of first-order
perturbations. To conclude, the terms Δ½H� and Δ½Ha�
should be understood as the first-order perturbative gauge
constraints, whileΔ2

1½H� andΔ2
1½Ha� constitute the dominant

perturbative contributions to the (originally unperturbed)
total Hamiltonian. These terms determine the dynamics of
the perturbations, and their expressions described using the
perturbative variables introduced in Eq. (2.6) can be found in
Chap. 4 of Ref. [39] or in Ref. [51].

III. KANTOWSKI-SACHS SPACETIMES

From now on, our attention will turn exclusively to
Kantowski-Sachs, a homogeneous but anisotropic space-
time. For convenience and simplicity in our calculations,
we adopt compact spatial sections σo ¼ S1o × S2, where S1o
is a 1-sphere, with a period of Lo, and S2 represents the
standard 2-sphere. As we will see, this compactification
will allow us to isolate the zero modes of the perturbed
system. The noncompactified limit should be reached in a
suitable limit with large Lo. Under these considerations,
we present the ADM splitting of the Kantowski-Sachs
metric as

ds2 ¼ −N2ðtÞdt2 þ a2ðtÞdx2 þ r2ðtÞdΩ2; ð3:1Þ

where aðtÞ and rðtÞ are two scale factors that determine the
3-metric, and dΩ2 is the line element for the 2-sphere.
Conversely, the conjugate momentum of the spatial metric
is dictated by Π̃xxðtÞ and Π̃θθðtÞ. The tilde notation is used
to indicate that these quantities have been density-
unweighted with respect to the 2-sphere metric. To align
our discussion with the variables used in other LQC
works [15,31], we introduce the following canonical trans-
formation:

a2 ¼ p2
b

L2
ojpcj

; r2 ¼ jpcj; Π̃xx ¼ −
2Lobjpcj

γpb
;

Π̃θθ ¼ −
1

γLojpcj
ðcpc þ bpbÞ; ð3:2Þ

which establish a connection between metric variables and
their momenta, on the one hand, and connection variables
fb; cg and their momenta, on the other hand. Despite
working with metric variables is feasible, this canonical
transformation constitutes a crucial step for the next sec-
tions. The Kantowski-Sachs phase space can be described
using these variables. After a phase space reduction via a
spatial integration over σo, the contribution of the geometric
degrees of freedom to the symplectic two-form is

ΘB ¼ 1

γ
db ∧ dpb þ

1

2γ
dc ∧ dpc;

fb; pbgB ¼ γ; fc; pcgB ¼ 2γ; ð3:3Þ

while the contribution of the scalar field and its redefined
momentum Π̃Φ ¼ LoΠΦ=ð4 sin θÞ is

ΘΦ ¼ dΦ ∧ dΠ̃Φ; fΦ; Π̃ΦgΦ ¼ 1: ð3:4Þ

Homogeneity leads us to assume that Φ depends
solely on time and further eliminates the diffeomorphism
constraints. The gauge freedom associated with Ha is
effectively removed by setting Na to zero. As a result,
in the Hamiltonian theory, only the Hamiltonian constraint
remains, and upon spatial integration, it can be expressed as

H̃KS½Ñ� ¼ −ÑLo

�
Ω2

b þ
p2
b

L2
o
þ 2ΩbΩc − 4

Π̃2
Φ

L2
o

�
;

Ωj ¼
jpj

γLo
for j ¼ b or c: ð3:5Þ

For instance, for j ¼ b we have Ωb ¼ bpb=ðγL0Þ. The
lapse function is defined as Ñ ¼ 2πNLo=V, with V the
volume of the spatial sections, to ensure consistency with
Ref. [38] (up to an inconsequential global factor equal to
L2
o). This redefinition assigns a density weight of −1 to Ñ,

in accordance with the convention commonly employed in
LQG, and a density weight of 2 to the Hamiltonian H̃KS, to
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balance the overall expression. The background action,
after a spatial integration, becomes

S0 ¼
Z
R
dt

�
−

1

2γ
ðpcÞ;tc −

1

γ
ðpbÞ;tbþΦ;tΠ̃Φ − H̃KS½Ñ�

�
:

ð3:6Þ

The equations of motion for the phase space variables, once
the constraints are imposed, are given by

δS0
δb

¼ −
1

γ
ðpbÞ;t þ 2Ñ

pb

γ
ðΩb þΩcÞ ¼ 0;

δS0
δc

¼ −
1

2γ
ðpcÞ;t þ 2Ñ

pc

γ
Ωb ¼ 0;

δS0
δΦ

¼ −ðΠ̃ΦÞ;t ¼ 0; ð3:7Þ

δS0
δpb

¼ 1

γ
b;t þ 2Ñ

b
γ

�
Ωb þ Ωc þ

γpb

bLo

�
¼ 0;

δS0
δpc

¼ 1

2γ
c;t þ 2Ñ

c
γ
Ωb ¼ 0;

δS0
δΠ̃Φ

¼ Φ;t − 8ÑΠ̃Φ ¼ 0: ð3:8Þ

The time evolution of any function f defined on the reduced
phase space can be calculated as f;t ¼ ff;HKS½Ñ�g, where
the Poisson brackets refer to Θ ¼ ΘB þ ΘΦ. Indeed, the
results presented in Refs. [15,31] are recovered when Φ is
made equal to zero and the inverse of Ñ is set to 2Ωb. When
associating this spacetime with the interior of a
Schwarzschild black hole, the quantity Ωc, which is a
constant of motion, corresponds to the ADM mass value.

IV. SPHERICAL HARMONICS
AND FOURIER MODES

Kantowski-Sachs spacetime exhibits spherical symmetry
and in addition possesses the Killing vector field ∂x, which
allows us to carry out a specific treatment of the perturba-
tions. To take full advantage of this fact, it is worthwhile
adopting the notation recommended in Refs. [39,52]. This
is the objective of this section.
When dealing with perturbations in a spherically sym-

metric background, the expansion in spherical harmonics
proves highly helpful. Our discussion remarks the impor-
tance of the Regge-Wheeler-Zerilli basis, which proves
very convenient e.g. in the analysis of gravitational radi-
ation. In this basis, any function ζ on the 2-sphere can be
expressed by means of the expansion

ζðθ;ϕÞ ¼
X∞
l¼0

Xl

m¼−l
ζml Y

m
l ;

ζml ¼ ðYm
l ; ζÞ ¼

Z
S2
dΩYm�

l ζ;

ðYm0
l0 ; Y

m
l Þ ¼

Z
S2
dΩYm0�

l0 Ym
l ¼ δll0δmm0 ; ð4:1Þ

where the symbol � denotes complex conjugation and the
spherical harmonics Ym

l ðθ;ϕÞ are defined so that

γABDADBYm
l ¼−lðlþ1ÞYm

l for l¼0;1;2;…; m¼−l;…;l;

Ym
l ðθ;ϕÞ⟶

P
Ym
l ðπ−θ;πþϕÞ¼ð−1ÞlYm

l ðθ;ϕÞ: ð4:2Þ
In these formulas, capital letters from the beginning of the
Latin alphabet denoteS2 indices,P is a parity transformation,
andD represents the covariant derivative associated with the
2-sphere metric γAB. We thus have DCγAB ≔ γAB∶C ¼ 0.
We now introduce additional harmonics beyond scalars.

For them, it is advantageous to differentiate between
harmonics with parity ð−1Þl, referred to as polar, and
those with parity ð−1Þlþ1, known as axial. According to this
definition, it is obvious that the spherical harmonics Ym

l are
polar. The main reason to separate modes in this way lies in
the absence of coupling between them at leading perturba-
tive order. Extending the previous analysis to any covector
wA defined on the cotangent space of S2, we can expand it
using the orthogonal basis fZl

m
A; Xl

m
Ag,

wAðθ;ϕÞ ¼
X∞
l¼1

Xl

m¼−l
ðWm

l Zl
m
A þ wm

l Xl
m
AÞ;

Wm
l ¼ 1

lðlþ 1Þ ðZl
m
A; wAÞ;

wm
l ¼ 1

lðlþ 1Þ ðXl
m
A; wAÞ; ð4:3Þ

where the harmonics Zl
m
A ¼ Yl

m
∶A have polar parity,

whereas Xl
m
A ¼ ϵABγ

BCYl
m
∶C are axial, with ϵAB being

the Levi-Civita tensor. Both basis elements are null when l
is equal to zero, and they are normalized in such a way that
ðZl0

m0
A;Zl

mAÞ¼ðXl0
m0

A;Xl
mAÞ¼ lðlþ1Þδll0δmm0 . Similarly,

any symmetric 2-tensor TAB can be expanded using the
orthogonal basis fXl

m
AB; Yl

mγAB; Zl
m
ABg, Xl

m
AB

TABðθ;ϕÞ ¼
X∞
l¼0

Xl

m¼−l
T̃m
l γABY

m
l

þ
X∞
l¼2

Xl

m¼−l
ðTm

l Zl
m
AB þ tml Xl

m
ABÞ; ð4:4Þ

where the harmonics Xl
m
AB and Zl

m
AB are trace-free, and

become zero when l is equal to zero or to one. Their
expressions and normalization in terms of spherical har-
monics are
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Xl
m
AB ¼ 1

2
ðXl

m
A∶B þ Xl

m
B∶AÞ;

Zl
m
AB ¼ Yl

m
∶AB þ lðlþ 1Þ

2
γABYm

l ;

ðXl0
m0

AB; Xl
m
ABÞ ¼ ðZl0

m0
AB; Zl

mABÞ

¼ 1

2

ðlþ 2Þ!
ðl − 2Þ! δll0δmm0 : ð4:5Þ

Conversely, the coefficients of the expansion can be
calculated as

T̃m
l ¼ 1

2
ðYm

l ; T
A
AÞ; Tm

l ¼ 2
ðl − 2Þ!
ðlþ 2Þ! ðZl

m
AB; TABÞ;

tml ¼ 2
ðl − 2Þ!
ðlþ 2Þ! ðXl

m
AB; TABÞ: ð4:6Þ

In future calculations, it may be necessary to compute
derivatives of tensor harmonic fields and evaluate their
integrals over S2. For these operations, we refer to Chap. 6
of Ref. [39] or to Refs. [52,53], where the relevant formulas
can be found.
The preceding discussion focused on complex spherical

harmonics, nevertheless, employing real spherical harmon-
ics proves simpler for our purposes. The connection
between complex and real harmonics is

Ȳo
l ¼ Yo

l ; for m ¼ 0;

Ȳm
l ¼ ð−1Þmffiffiffi

2
p ðYm

l þ Ym�
l Þ; for m > 0;

Ȳm
l ¼ ð−1Þm

i
ffiffiffi
2

p ðY jmj
l − Y jmj�

l Þ; for m < 0: ð4:7Þ

All the results commented above also apply to real
harmonics. In the subsequent sections and in contrast with
Ref. [39], wewill use real harmonics, omitting from now on
the overline notation to simplify the expressions.
When analyzing perturbations about a background

where the metric is independent of a specific coordinate,
let us say x, the expansion in Fourier modes proves highly
advantageous. For x living on a compact topology repre-
sented by a 1-sphere S1o, with a period of Lo, the n-th real
Fourier modes, with n∈N0 ¼ f0; 1; 2;…g, are defined as

Q0ðxÞ ¼
1ffiffiffiffiffiffi
Lo

p ; for n ¼ 0;

Qn;þðxÞ ¼
ffiffiffiffiffiffi
2

Lo

s
cosðωnxÞ;

Qn;−ðxÞ ¼
ffiffiffiffiffiffi
2

Lo

s
sinðωnxÞ; for n ≥ 1: ð4:8Þ

We introduced the positive frequencies ωn ¼ 2πn=Lo. Any
arbitrary function f on S1o can be decomposed as

fðxÞ ¼
X
n∈N0

X
λ

fn;λQn;λðxÞ;

fn;λ ¼
Z
S1o

dxQn;λðxÞfðxÞ: ð4:9Þ

We defined λ∈ fþ;−g ≃ Z2 to simplify the notation and
used Z

S1o

dxQn;λðxÞQn0;λ0 ðxÞ ¼ δnn0δλλ0 : ð4:10Þ

Note that the Lie derivative of f along the flow generated
by ∂x mixes the λ modes of the Fourier expansion and
introduces an additional factor of λωn, resulting in the
expression

∂xfðxÞ ¼
X
n∈N0

X
λ

fn;λ∂xQn;λðxÞ

¼
X
n∈N0

X
λ

λωnfn;−λQn;λðxÞ: ð4:11Þ

V. AXIAL PERTURBATIONS

Any perturbative quantity in Kantowski-Sachs, such as a
symmetric tensor field Tab, can be decomposed as

Tabdxadxb ¼ Txxdx2 þ 2TxAdxdxA þ TABdxAdxB: ð5:1Þ

Clearly, with respect to rotations of S2, Txx represents a
scalar, TxA behaves as a covector, and TAB is a symmetric
2-tensor, while all three are scalars on S1o. As we antici-
pated, we will treat polar and axial perturbations independ-
ently. We center our attention on the axial component of
Eq. (2.5), which can be expressed as,

1

2
Δ2

1½S0�ax ¼
1

κ

Z
R
dt
Z
σo

d3x

�
½hab;tpab�ax − ½BaΔ½Ha��ax

−
N
2
Δ2

1½H�ax
�
; ð5:2Þ

where the superscript ax stands for axial part. Our aim is to
examine each term of the expression in detail (see Chap. 6
of Ref. [39] or Ref. [51] for a comparative analysis).

A. Hamiltonian formulation

We begin the discussion by examining the symplectic
form and establishing the perturbative canonical axial
variables. An important consideration is that there is no
contribution from the perturbative scalar field in the axial
case, since it can only be decomposed into polar modes.
The axial perturbations of the spatial metric and its
momentum are provided by
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½habdxadxb�ax ¼
X
n∈N1

X
λ

−2hn;λ1 ðtÞXl
m
Aðθ;ϕÞQn;λðxÞdxdxAþ

X
n∈N2

X
λ

hn;λ2 ðtÞXl
m
ABðθ;ϕÞQn;λðxÞdxAdxB;�

pabffiffiffi
g

p dxadxb
�
ax
¼

X
n∈N1

X
λ

−2p̃n;λ
1 ðtÞXl

m
Aðθ;ϕÞQn;λðxÞdxdxAþ

X
n∈N2

X
λ

p̃n;λ
2 ðtÞXl

m
ABðθ;ϕÞQn;λðxÞdxAdxB: ð5:3Þ

We have defined the setNk ¼ fðn; l; mÞjn∈N0; l∈ fk; kþ
1; kþ 2; � � �g; m∈ f−l; � � � lgg for k ≥ 1, and then adopted
the abbreviated notation n ¼ ðn; l; mÞ for the mode labels.
By employing Eq. (5.3), the normalization of the basis
modes, and a background-dependent and mode-dependent
redefinition of the momentum variables, given by

pn;λ
1 ¼ V

2πLo

L2
o

p2
b

lðlþ 1Þp̃n;λ
1 ;

pn;λ
2 ¼ V

2πLo

1

4p2
c

ðlþ 2Þ!
ðl − 2Þ! p̃

n;λ
2 ; ð5:4Þ

we attain a concise expression for the symplectic two-form
concerning the perturbation. All modes become decoupled
and Poisson-commute with the background variables,
forming a complete canonical set,

Θax
P ¼

X
n∈N1

X
λ

1

κ
dhn;λ1 ∧ dpn;λ

1

þ
X
n∈N2

X
λ

1

κ
dhn;λ2 ∧ dpn;λ

2 ;

fhn;λi ; pn0;λ0
i0 gP ¼ κδii0δnn0δll0δmm0δλλ0 ; for i ¼ 1; 2: ð5:5Þ

Let us consider now the middle term in Eq. (5.2). It
contains two different components, namely, the axial

perturbative constraints, which generate perturbative gauge
transformations, and their perturbative Lagrange multi-
pliers. They are defined as

Δ½Ha�ax¼½ΠbcDahbc−2DcðhabΠbcþgabpbcÞ�ax;
Bax
a dxa¼

X
n∈N1

X
λ

−κhn;λ0 ðtÞXl
m
Aðθ;ϕÞQn;λðxÞdxA: ð5:6Þ

Upon spatial integration over σo, including the κ factor, we
obtain the following expression for the constraint term:

Cax½hn;λ0 � ¼
X
n∈N1

X
λ

λωnh
n;−λ
0

�
pn;λ
1 −4lðlþ1ÞL

2
o

p2
b

Ωbh
n;λ
1

�

−
X
n∈N2

X
λ

2hn;λ0

�
pn;λ
2 −

ðlþ2Þ!
ðl−2Þ! ðΩbþΩcÞ

hn;λ2

2p2
c

�
:

ð5:7Þ

The remaining term in Eq. (5.2) corresponds to the
Hamiltonian of the perturbations. The traceless nature of
the harmonic basis, which ensures that haa and pa

a are zero
in the axial case, and the symmetries of the background,
simplify its expression to

Δ2
1½H�ax¼

�
2ffiffiffi
g

p pabpab−2
ffiffiffi
g

p
Gabhachcbþ

H
2
habhabþ

2ffiffiffi
g

p habhcdΠacΠbd−
2ffiffiffi
g

p habpabΠc
cþ 8ffiffiffi

g
p Πa

cpcbhab

þ2
ffiffiffi
g

p �
DahabDchbc−

3

4
DchabDchab−habDcDchabþhabDbDchacþhabDcDbhacþ

1

2
DbhacDchab

��
ax
; ð5:8Þ

where Gxx ¼ −L2
o=p2

b is the only nonzero component of the Einstein tensor for the spatial sections Gab. Performing the
same spatial integration as before, we derive the expression

H̃ax½Ñ� ¼
X
n∈N1

X
λ

Ñ
κ

�
p2
b

L2
o

½pn;λ
1 �2

lðlþ 1Þ þ
�
6Ω2

b þ 4ΩbΩc þ
p2
b

L2
o
lðlþ 1Þ þ 8

Π̃2
Φ

L2
o

�
L2
o

p2
b

lðlþ 1Þ½hn;λ1 �2 − 4Ωbh
n;λ
1 pn;λ

1

�

þ
X
n∈N2

X
λ

Ñ
κ

�
4p2

c
ðl − 2Þ!
ðlþ 2Þ! ½p

n;λ
2 �2 þ

�
2Ω2

b þ 4Ω2
c þ 4ΩbΩc þ ω2

np2
c þ 8

Π̃2
Φ

L2
o

�
1

4p2
c

ðlþ 2Þ!
ðl − 2Þ! ½h

n;λ
2 �2

− 4Ωch
n;λ
2 pn;λ

2 þ λωn
ðlþ 2Þ!
ðl − 2Þ! h

n;λ
1 hn;−λ2

�
: ð5:9Þ
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Therefore, in total, the action of the axial perturbations
(at dominant perturbative order) takes the simplified form

1

2
Δ2

1½S0�ax ¼
Z
R
dt

�X
n∈N1

X
λ

1

κ
ðhn;λ1 Þ;tpn;λ

1

þ
X
n∈N2

X
λ

1

κ
ðhn;λ2 Þ;tpn;λ

2 −Cax½hn;λ0 �− H̃ax½Ñ�
�
:

ð5:10Þ

In future discussions, it will be convenient to split this
action into two terms. One will contain the contribution of
the modes with l ≥ 2, permitting a unified study of those
perturbations, while the other will correspond to the l ¼ 1
modes, which present certain peculiarities which will be
commented later in this work.

B. Perturbative gauge invariant description

To establish a consistent formulation, it is imperative to
identify perturbative gauge invariant quantities and express
the results in terms of them. As already discussed in
Refs. [39,41,50], our approach will involve redefining
the phase space variables using perturbative gauge invar-
iants and perturbative constraints (which are also pertur-
bative gauge invariants but constrained to vanish), along
with their corresponding conjugate momenta. During the
derivation process, the background variables will be con-
sidered as fixed, as our primary focus is on addressing the
perturbations. Later, once the perturbative description is
complete, we will tackle any potential issues of this
approach by incorporating a special treatment for the
background. Additionally, our analysis will be concentrated

on the case l ≥ 2, deferring our comments about the case
l ¼ 1 to the next subsection. Then, at this stage, we can
implement a background-dependent and mode-dependent
canonical transformation, generated by the following gen-
erating function of type 2:

F ð2Þ½hn;λi ;Pn;λ
i �

¼
X
n∈N2

X
λ

�
hn;λ1 Pn;λ

1 þhn;λ2 Pn;λ
2 −

λωn

2
hn;λ2 Pn;−λ

1

þ1

4

ðlþ2Þ!
ðl−2Þ!

1

p2
c
ðΩbþΩcÞ½hn;λ2 �2

−2lðlþ1ÞL
2
o

p2
b

Ωb

�
ω2
n

4
½hn;λ2 �2þλωnh

n;λ
1 hn;−λ2

��
: ð5:11Þ

This transformation mixes λ modes, reflecting the behavior
of the perturbative constraint. The resulting set satisfies

Qn;λ
i ¼ ∂F ð2Þ

∂Pn;λ
i

; pn;λ
i ¼ ∂F ð2Þ

∂hn;λi

;

fQn;λ
i ;Pn0;λ0

i0 gP ¼ κδii0δnn0δll0δmm0δλλ0 for i¼ 1;2; ð5:12Þ

as it should. In terms of these new variables, the perturba-
tive gauge constraints are simplified to

Cax½hn;λ0 �jl≥2 ¼ −
X
n∈N2

X
λ

2hn;λ0 Pn;λ
2 ; ð5:13Þ

whereas the expression for the axial Hamiltonian is
given by

κHaxjl≥2 ¼ κH̃axjl≥2 þ fF ; H̃KSgB

¼
X
n∈N2

X
λ

�
p2
b

L2
o

½Pn;λ
1 �2

lðlþ 1Þ þ ω2
np2

c
ðl − 2Þ!
ðlþ 2Þ!

�
Pn;λ
1 − 4lðlþ 1ÞL

2
o

p2
b

ΩbQ
n;λ
1

�
2

þ 4p2
c
ðl − 2Þ!
ðlþ 2Þ!

�
Pn;λ
2 − λωnP

n;−λ
1 þ 4λωnlðlþ 1ÞL

2
o

p2
b

ΩbQ
n;−λ
1 þ 1

p2
c

ðlþ 2Þ!
ðl − 2Þ!ΩbQ

n;λ
2

�
Pn;λ
2

þ lðlþ 1ÞL
2
o

p2
b

�
6Ω2

b þ 4ΩbΩc þ 2
p2
b

L2
o
þ 8

Π̃2
Φ

L2
o
þ p2

b

L2
o
ðlþ 2Þðl − 1Þ

�
½Qn;λ

1 �2 − 4ΩbQ
n;λ
1 Pn;λ

1

�
: ð5:14Þ

In this derivation, we have taken into account the back-
ground dependence of the canonical transformation, mak-
ing it necessary to introduce a correction term in the
Hamiltonian owing to the variation of the generating
function produced by the background.1 We have decided

to omit the type of generating function when correcting the
Hamiltonian since the distinction is irrelevant for our
discussion, inasmuch as different types differ only by
products of perturbative variables, which can be ignored
in taking Poisson brackets with the background. By
redefining the Lagrange multipliers [41], we can eliminate
nonrelevant terms from the Hamiltonian. This redefinition
holds valid within our perturbative truncation order in the
action, and results in

1This term reproduces the time derivative of the generating
function when we consider the background as a time-dependent
quantity.
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κH̃axjl≥2 ¼
X
n∈N2

X
λ

�
p2
b

L2
o

½Pn;λ
1 �2

lðlþ 1Þ þ lðlþ 1ÞL
2
o

p2
b

�
8Ω2

b þ 8ΩbΩc þ 4
p2
b

L2
o
þ p2

b

L2
o
ðlþ 2Þðl − 1Þ

�
½Qn;λ

1 �2

þω2
np2

c
ðl − 2Þ!
ðlþ 2Þ!

�
Pn;λ
1 − 4lðlþ 1ÞL

2
o

p2
b

ΩbQ
n;λ
1

�
2

− 4ΩbQ
n;λ
1 Pn;λ

1

�
: ð5:15Þ

This Hamiltonian only depends on the perturbative gauge invariant pairs ðQn;λ
1 ; Pn;λ

1 Þ and the geometric background
variables.2 On the other hand, the redefined Lagrange multipliers are

Ñ ¼ Ñ

�
1þ ϵ2

2κLo

X
n∈N2

X
λ

lðlþ 1Þp
2
b

L2
o
½Qn;λ

1 �2
�
;

hn;λ
0 ¼ hn;λ0 −

Ñ
κ
2p2

c
ðl − 2Þ!
ðlþ 2Þ!

�
Pn;λ
2 − λωnP

n;−λ
1 þ 4λωnlðlþ 1ÞL

2
o

p2
b

ΩbQ
n;−λ
1 þ 1

p2
c

ðlþ 2Þ!
ðl − 2Þ!ΩbQ

n;λ
2

�
: ð5:16Þ

We highlight the appearance of the factor ϵ2 in the modification of the lapse function, which clearly shows that this change
in lapse is of quadratic perturbative order [41].
We now focus our discussion on refining the expression of the Hamiltonian obtained in Eq. (5.15). To achieve this goal,

we introduce a canonical transformation defined by the following generating function of type 3:

Gð3Þ½Q̃n;λ
i ; Pn;λ

i � ¼ −
X
n∈N2

X
λ

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 2Þ!
ðlþ 2Þ! ½ðlþ 2Þðl − 1Þp

2
b

L2
o
þ ω2

np2
c�

s
Q̃n;λ

1 Pn;λ
1 þ Q̃n;λ

2 Pn;λ
2 þ Fnl

2
½Q̃n;λ

1 �2
#
: ð5:17Þ

To change from the set fQn;λ
i ; Pn;λ

i g2i¼1 to the set fQ̃n;λ
i ; P̃n;λ

i g2i¼1, we use the definitions

Qn;λ
i ¼ −

∂Gð3Þ
∂Pn;λ

i

; P̃n;λ
i ¼ −

∂Gð3Þ
∂Q̃n;λ

i

; Fnl ¼
ðlþ 2Þðl − 1Þp2

bðΩb −ΩcÞ
ðlþ 2Þðl − 1Þp2

b þ ω2
np2

cL2
o
− 4Ωb

�
1þ ω2

np2
cL2

o

ðlþ 2Þðl − 1Þp2
b

�
: ð5:18Þ

Considering the variation of the above generating function coming from its background dependence (and disregarding again
the distinction between different types of generating functions), the axial Hamiltonian becomes

κHaxjl≥2 ¼ κH̃axjl≥2 þ fG; H̃KSgB
¼

X
n∈N2

X
λ

��
ðlþ 2Þðl − 1Þp

2
b

L2
o
þ ω2

np2
c þ

ðlþ 2Þðl − 1Þp4
b

ðlþ 2Þðl − 1Þp2
bL

2
o þ ω2

np2
cL4

o

−
½ðlþ 2Þðl − 1Þp2

b�2 − 2ω2
nðlþ 2Þðl − 1Þp2

cp2
bL

2
o

½ðlþ 2Þðl − 1Þp2
b þ ω2

np2
cL2

o�2
ðΩb − ΩcÞ2

�
½Q̃n;λ

1 �2 þ ½P̃n;λ
1 �2

�
: ð5:19Þ

This expression is significantly more manageable than Eq. (5.15), featuring only diagonal quadratic contributions and
gathering all the background dependence on a single factor. Moreover, it exhibits a notable resemblance to the one in
Ref. [42], which prompts us to rewrite the Hamiltonian in terms of the quantities

k2 ¼ ðlþ 2Þðl − 1Þ þ ω2
n; l̂ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðlþ 2Þðl − 1Þp
k

; k2b2
l̂
¼ ðlþ 2Þðl − 1Þp

2
b

L2
o
þ ω2

np2
c: ð5:20Þ

2Using Eqs. (5.12) and (5.13), it is straightforward to see that the variables Qn;λ
1 and Pn;λ

1 commute under Poisson brackets with the
generator of the perturbative gauge transformations, namely the perturbative constraintCax½hn;λ0 �jl≥2. Consequently, they are perturbative
gauge invariants.
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We also consider the same transformation discussed in
Ref. [42], generated by a generating function of type 2,
namely

Kð2Þ½Q̃n;λ
i ;Pn;λ

i �

¼
X
n∈N2

X
λ

� ffiffiffiffi
bl̂

p
Q̃n;λ

1 Pn;λ
1 þ Q̃n;λ

2 Pn;λ
2 −

bl̂
0

4bl̂
½Q̃n;λ

1 �2
�
;

ð5:21Þ

with b0
l̂
¼ fbl̂; H̃KSgB and fQn;λ

i ;Pn;λ
i g2i¼1 the new set of

canonical variables, determined by

Qn;λ
i ¼ ∂Kð2Þ

∂Pn;λ
i

; P̃n;λ
i ¼ ∂Kð2Þ

∂Q̃n;λ
i

: ð5:22Þ

We then obtain (with the same remarks about the type of
generating function as above)

κH̃axjl≥2¼ κHaxjl≥2þfK;H̃KSgB
¼

X
n∈N2

X
λ

bl̂ð½Pn;λ
1 �2þ½k2þ sl̂�½Qn;λ

1 �2Þ; ð5:23Þ

where

sl̂¼ sA
l̂
þ2

l̂2

b4
l̂

p2
b

L2
o

�
ðΩb−ΩcÞ2þ

1

2

p2
b

L2
o

�
−3

l̂4

b6
l̂

p4
b

L4
o
ðΩb−ΩcÞ2:

ð5:24Þ

The first contribution corresponds to the mass term of the
modes of a free Klein-Gordon field in a Kantowski-Sachs
geometry. Its expression can be computed using the
commutation relationships of the background, as

sA
l̂
¼ 4

b2
l̂

�
p2
b

L2
o
þΩ2

b

�
−2

l̂2

b4
l̂

p2
b

L2
o

�
3ðΩb−ΩcÞ2þ

p2
b

L2
o
þðΩ2

b−Ω2
cÞ
�

þ5
l̂4

b6
l̂

p4
b

L4
o
ðΩb−ΩcÞ2 ð5:25Þ

The two additional terms in Eq. (5.24) are interpreted
as corrections that arise because the Kantowski-Sachs
perturbative modes do not have the same nature as the
modes of a free Klein-Gordon field. The last canonical
transformation that we have performed is crucial for the
remaining part of our work, as we will see. Finally, as the
discussed axial, perturbative gauge invariant variables are
concerned, the action at the first relevant perturbative order
is given by

1

2
Δ2

1½S0�axjl≥2 ¼
Z
R
dt

� X
n∈N2

X
λ

1

κ
ðQn;λ

1 Þ;tPn;λ
1

þ
X
n∈N2

X
λ

1

κ
ðQn;λ

2 Þ;tPn;λ
2

− Cax½hn;λ
0 �jl≥2 − H̃ax½Ñ�jl≥2

�
: ð5:26Þ

C. Modes with l = 1

For the remaining perturbative modes with l ¼ 1, which
we did not consider in the previous subsection, a unique set
of canonical variables is provided by fhn;λ1 ; pn;λ

1 gl¼1.
Employing the same rationale as before, we introduce
the following canonical transformation3:

Qn;λ
1 ¼ ∂F̃ ð2Þ

∂Pn;λ
1

; pn;λ
1 ¼ ∂F̃ ð2Þ

∂hn;λ1

;

F̃ ð2Þ½hn;λ1 ; Pn;λ
1 � ¼

X
n;l¼1

X
λ

�
hn;λ1 Pn;λ

1 þ 4
L2
o

p2
b

Ωb½hn;λ1 �2
�
:

ð5:27Þ
The perturbative constraints and the contribution to the
axial Hamiltonian, expressed in the set fQn;λ

1 ; Pn;λ
1 gl¼1, are

Cax½hn;λ0 �jl¼1 ¼ −
X
n;l¼1

X
λ

λωnh
n;λ
0 Pn;−λ

1 ;

κHaxjl¼1 ¼ κH̃axjl¼1 þ fF̃ ; H̃KSgB
¼

X
n;l¼1

X
λ

�
1

2

p2
b

L2
o
½Pn;λ

1 �2 þ 4ΩbQ
n;λ
1 Pn;λ

1

�
:

ð5:28Þ
Based on these expressions, we can divide our analysis into
two different cases. If n is nonzero, we can conveniently
redefine the perturbative Lagrange multipliers in a manner
similar to that performed in our discussion above, namely

hn;λ
0 ¼ hn;λ0 −

Ñ
λωnκ

�
1

2

p2
b

L2
o
Pn;−λ
1 þ 4ΩbQ

n;−λ
1

�
: ð5:29Þ

Ultimately, the n ≠ 0 modes have no physical relevance,
being purely gauge, as evidenced by their contribution to
the action,

1

2
Δ2

1½S0�axjn≠0l¼1 ¼
Z
R
dt

�X
n;l¼1

X
λ

1

κ
ðQn;λ

1 Þ;tPn;λ
1

−Cax½hn;λ
0 �jl¼1

�����
n≠0

: ð5:30Þ

3It is understood that, in this subsection, all expressions refer to
the case l ¼ 1. To maintain a clear notation, we will omit the
evaluation at this value of l in the perturbative modes and use the
same notation as before.
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When n is equal to zero, on the other hand, three distinct
modes appear, corresponding to m∈ f−1; 0; 1g, and no
constraint is imposed on them. In this situation, we can
carry out another canonical transformation, generated by

G̃ð3Þ½Q̃n;λ
1 ; Pn;λ

1 �

¼ −
X
n;l¼1

X
λ

�
pb

Lo
Q̃nλ

1 Pn;λ
1 þ ðΩb −ΩcÞ½Q̃nλ

1 �2
�����

n¼0

;

ð5:31Þ

with

Qn;λ
1 ¼ −

∂G̃ð3Þ
∂Pn;λ

1

; P̃n;λ
1 ¼ −

∂G̃ð3Þ
∂Q̃n;λ

1

: ð5:32Þ

The corresponding Hamiltonian, expressed in terms of the
new set of variables, fQ̃n;λ

1 ; P̃n;λ
1 gn¼0

l¼1 , is

κH̃axjn¼0
l¼1

¼ κHaxjn¼0
l¼1 þfg̃; H̃KSgB

¼
X
n;l¼1

X
λ

�
1

2
½P̃n;λ

1 �2þ2

�
p2
b

L2
o
− ðΩb−ΩcÞ2

�
½Q̃n;λ

1 �2
�����

n¼0

:

ð5:33Þ

This formula can be interpreted as the Hamiltonian of a
system of three generalized harmonic oscillators with
background-dependent frequencies. If we incorporate the
background contribution to the total Hamiltonian con-
straint, it is not difficult to prove that, up to our perturbative
order, the resulting squared frequencies can be negative if
the zero mode for the scalar field vanishes. In such a
scenario, a nonconventional quantization approach should
be adopted to mitigate issues related to these negative
squared frequencies, such as tachyonic behavior.
Nevertheless, their quantization will not affect the ultra-
violet behavior of the perturbations, since they represent a
finite number of degrees of freedom. In the following, we
ignore these modes and assume that they are taken to
vanish.

VI. HYBRID QUANTIZATION IN LOOP
QUANTUM COSMOLOGY

After completing the Hamiltonian description of the
perturbations, we proceed to the quantization of our
perturbed Kantowski-Sachs spacetime. For this aim, the
main issue not yet addressed is the recovery of a global
canonical structure, encompassing both background and
perturbation variables. In the Appendix, we extensively
discuss this matter. The result is that the only implication of
the passage to a canonical set for the combined perturbed
system is a change in our background variables, that

acquire suitable quadratic corrections in the perturbations.
For practical purposes, this change reduces to a change of
notation for the background variables, which will now
appear with an overhead bar. Consequently, in the follow-
ing, any quantity defined on the background, when adorned
with an overhead bar, refers to that expression in terms of
the newly corrected variables.
To achieve a quantization that includes both perturbative

and nonperturbative degrees of freedom, we adopt the
LQC-Hybrid procedure, a well-established technique in the
LQG community. This choice is motivated by the success
of the approach in the treatment of other cosmological
scenarios of interest, such as Bianchi I or standard
cosmology [43]. A key hypothesis of the hybrid method
is the assumption of different quantization approaches for
perturbative and nonperturbative variables. Considering
that the most relevant quantum geometry aspects impact
the background spacetime, a specialized quantization is
necessary. Meanwhile, the quantum effects of the pertur-
bations can be addressed using a more standard approach.
Throughout this work, we will adopt the LQC and Fock (or
Schrödinger) representations for the background and the
perturbations, respectively. It is important to note that the
hybrid method can be applied to any other type of quantum
approaches. Despite being quantized differently, the per-
turbative and nonperturbative sectors collectively form a
symplectic manifold, which is quantized as a whole.
Subsequently, the method involves imposing classical
constraints quantum mechanically, following Dirac’s pro-
posals, and the viability of their implementation is guar-
anteed thanks to the treatment that we have given to them in
the previous sections. These constraints are represented as
operators that annihilate physical states in the quantum
theory, affecting both sectors simultaneously. Notably, they
encode backreaction of the perturbations on the back-
ground, provided our analysis remains within the quadratic
perturbative truncation of the action that we are consider-
ing. In this section, we will examine the details of each of
the aforementioned quantum representations.

A. LQC representation of the background

The fundamental variables for LQG consist of holono-
mies of a SUð2Þ connection and fluxes of the densitized
triad [7,8]. In Kantowski-Sachs, relevant holonomies are
expressed in terms of complex exponentials of the form
N μj ¼ eij̄μj=2, where μj ∈R represents a coordinate length

parameter, j̄ ¼ b̄ or c̄, and fluxes over surfaces are defined
in terms of the variables p̄j [38]. When examining the
holonomy-flux algebra, it becomes evident that its repre-
sentation is discrete, leading to a limitation in defining
connection variables as operators in the quantum theory.
Given that our Hamiltonian depends on them, this poses a
challenge. However, this problem can be resolved through
an established regularization procedure, which can be
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summarized in the following recipe: j̄ → sinðδjj̄Þ=δj,
where δj are two regularization parameters of quantum
origin. By employing an extended formulation in which
this regularization parameters, along with their correspond-
ing conjugate momenta pδj , are considered as canonical
variables, we can derive effective results for the dynamical
trajectories within this extended phase space. In this
scenario, the dynamics unfold according to the effective
extended Hamiltonian [38]:

H̃eff
ext½Ñ; λb; λc� ¼ H̃reg

KS½Ñ� þΨb½λb� þΨc½λc�: ð6:1Þ

In the above expression, the first term represents the
regularized version of Eq. (3.5), while each of the two
additional terms involves a Lagrange multiplier λj and a
constraint Ψj. These two extra constraints enforce a
relationship between the regularization parameters and
the original phase space variables, dependent on the
prescription under consideration. Among the proposals
found in the literature, one notable suggestion is put forth
by Ashtekar, Olmedo, and Singh (AOS) [31]. In their
proposal, these authors suggest fixing the values of the
regularization parameters to a certain function of Ω̄c (a
conserved quantity along physical trajectories that classi-
cally can be identified with the ADM mass), at least
asymptotically for large values of this quantity. The
strength of this prescription lies in the good physical
properties found when the spacetime is compared with
the interior of a black hole [31,32], displaying in particular
small quantum corrections near the black hole horizon.
Kantowski-Sachs results in GR are recovered when the
regularization parameters approach zero, and a suitable
partial gauge-fixing is enforced by the conditions λj ¼ 0. A
more detailed discussion of the extended formulation can
be found in Ref. [36].
Under these considerations, an extended kinematic rep-

resentation of the model can be formulated by applying
loops techniques to quantize the geometric degrees of
freedom, while a continuous Schrödinger representation
is carried out for the quantization of the homogeneous scalar
field and the δ-parameters. For the geometry, the Hilbert
space, denoted as Hkin

LQC, is constructed in the densitized
triad representation by completing each copy of the hol-
onomy-flux algebra with respect to the discrete product and
taking the tensor product of the two individual Hilbert
spaces. For a more straightforward description, it proves
beneficial to redefine our basis in terms of the eigenvalues of
the rescaled quantities p̃j ¼ p̄j=δj. Explicitly, for the
holonomy elements and flux operators we have

N̂ δb jμ̃bi ¼ jμ̃b þ 1i; N̂ δc jμ̃ci ¼ jμ̃c þ 1i;
ˆ̃μbjμ̃bi ¼

γμ̃b
2

jμ̃bi; ˆ̃pcjμ̃ci ¼ γμ̃cjμ̃ci: ð6:2Þ

Hence, we observe that the action of N̂ δj and ˆ̃pj is
independent of the δ-parameters of the model. Since the
representation of the remaining canonical pairs does not
pose any problem, we proceed to present the resulting
kinematic Hilbert space as the tensor product Hkin

ext ¼
Hkin

LQC ⊗j L2ðR; dδjÞ ⊗ L2ðR; dΦÞ, for which a convenient
basis is provided by the states jμ̃b; μ̃c; δb; δc;Φi obtained
from the tensor product of the respective individual bases.
Here, the labels μ̃j are normalized to the Kronecker delta,
while the rest are normalized to the Dirac delta.
Only the first term of Eq. (6.1) requires a detailed

quantum treatment. The implementation of the other two
constraints at the quantum level is straightforward. Thanks
to the regularization process that we have undertaken, we
can derive a well-defined quantum expression for H̃reg

KS½Ñ�,
upon multiplication by the lapse function, which is repre-
sented as

ĤKS¼−Lo

�
ĥKS−

4

L2
o
Π̂2

Φ

�
; ĥKS¼ Ω̂2

bþ δ̂2b
ˆ̃p2
b

L2
o
þ2Ω̂bΩ̂c;

Π̂Φ ¼−i∂Φ: ð6:3Þ

Regarding the ĥKS operator, its essential self-adjointness
was demonstrated in Ref. [38], and it is primarily composed
of Ω̂j operators, which classically represent the regularized
version of Ω̄j. They are defined as

Ω̂j ¼
1

2γLo
j ˆ̃pjj1=2½ dsinðδjj̄Þ dsignðp̃jÞ

þ dsignðp̃jÞ dsinðδjj̄Þ�j ˆ̃pjj1=2;dsinðδjj̄Þ ¼
1

2i
ðN̂ 2δj − N̂ −2δjÞ; ð6:4Þ

where we have employed the MMO (from the initials of
Martín-Benito, Mena Marugán, and Olmedo) symmetriza-
tion prescription [54], a method that has proven successful
in LQC for various cosmological scenarios. An important
feature of these operators, inherent from the MMO fac-
tor ordering prescription, is that their action leaves invari-
ant the Hilbert subspaces ð2ÞH�

ϵj formed by states with

support on semilattices ð2ÞL�
ϵj ¼ f�ðϵj þ 2nÞjn∈N0g,

where ϵj ∈ ð0; 2�. As a consequence, instead of working
with Hkin

LQC, this property allows us to restrict our study to
one of these separable superselected Hilbert subspaces.
Remarkably, we note that ˆ̃pj is a positive (negative)
operator in ð2ÞHþ

ϵj (ð2ÞH−
ϵj). Therefore, on these super-

selected subspaces, we can always represent any fractional
power of the absolute value of p̄j, including negative
powers, without any obstruction. For simplicity, and with-
out loss of generality, we choose to work with ð2ÞHþ

ϵb ⊗
ð2ÞHþ

ϵc in the following.
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Additionally, in Ref. [38] a method for computing the
states annihilated under the action of ĥKS was presented (up
to a multiplicative factor of L2

o, which is not relevant for our
discussion). The habitat of the mentioned states is the
algebraic dual of the eigenstates of ˆ̃pj, for each generalized
eigenspace of the operators δ̂j. Under these considerations,
solving the Hamiltonian constraint operator is not a
complicated task. To proceed, for instance, the constrained
system can be deparametrized by choosing Φ as an internal
time. This procedure yields two sectors corresponding to
positive and negative frequencies, establishing a notion
of dynamical evolution, R ∋ Φ ↦ jΞΦi ¼ jΞ;Φi, with
jΞi∈Hkin

LQC ⊗j L2ðR; dδjÞ, where time translations mani-
fest as unitary transformations given by

jΞΦo
i ↦ jΞΦi ¼ e�iLo

ffiffiffiffiffiffi
ĥKS

p
ðΦ−ΦoÞ=2jΞΦo

i; ð6:5Þ

with
ffiffiffiffiffiffiffiffi
ĥKS

q
(or, more rigorously, the square root of the

positive part of ĥKS) providing the generator of time
transformations [55]. The imposition of the two remaining
quantum constraints ensures that the dependence of the
state on δj is only through the AOS proposal or, strictly
speaking, through the proposal incorporated in Ψj. In this
sense, we notice that the extended formalism can be easily
applied to other scenarios. It suffices to introduce a
Dirac delta for each regularization parameter to enforce
the desired relationship in the wave function ΞΦo

¼
ΞΦo

ðμ̃b; μ̃c; δb; δcÞ, associated with the state jΞΦo
i, similar

to what was done in Refs. [36,38]. For consistency, we only
need that his relationship is established with Dirac observ-
ables of the quantum theory, namely, the counterpart of
classical constants of motion.

B. Representation of the perturbations
and quantum constraints

In the LQC-Hybrid approach, perturbative modes can be
treated using a Fock quantization. This choice is motivated
by the recovery of a quantum field theory in the curved
background geometry [43]. We adopt this type of repre-
sentation for the perturbative gauge invariant variables.
Their Fock representation turns out to be unique up to
unitary equivalence if one demands certain reasonable
requirements, namely, the invariance of the vacuum under
spatial isometries, and the unitary implementation of the
dynamics of the perturbations when the background is
regarded as classical [42]. It is worth noting that, from a
rigorous mathematical point of view, the proof of this result
uses that the zero modes can be isolated because the spatial
sections are compact, a property that reaffirms our selection
of σo. The demonstration of this uniqueness statement is
straightforward when one compares the Hamiltonian in
Eq. (5.23) with the system studied in Ref. [42]. We stress
the importance of the canonical transformation described in

Eq. (5.21), as it is pivotal in achieving a unique quantiza-
tion with unitary dynamics. Consequently, the annihilation
and creation variables defined by the relations

an;λ ¼ fnlðtÞQn;λ
1 þ gnlðtÞPn;λ

1 ;

a�n;λ ¼ f�nlðtÞQn;λ
1 þ g�nlðtÞPn;λ

1 ; ð6:6Þ

fnlðtÞg�nlðtÞ − f�nlðtÞgnlðtÞ ¼ −i; ð6:7Þ

are suitable to characterize the set of invariant Fock
representations. Note that these variables do not mix modes
and that the functions of time fnlðtÞ and gnlðtÞ that
parametrize the variables may depend only on the mode
labels n and l, but not on m. In addition, these functions
have to satisfy some conditions in order to implement the
dynamical evolution of the creation and annihilation
variables as unitary quantum transformations, an issue
for which we refer to the analysis carried out in Ref. [42].
Let us call F ax

P the Fock space for a given set of creation
and annihilation operators belonging to the above unitarily
equivalent family of representations for the perturbative
modes. Then, a basis of states is provided by the
occupancy-number state jN i, where N denotes an array
of occupancy-numbers for the modes with a finite number
of nonzero entries. Once the Fock space for the axial
perturbations is defined, the implementation of the
Hamiltonian and the perturbative constraints, considered
as operators, is not very difficult to carry out. On one hand,
the quantum implementation of the axial constraints is
immediate. Composed by products of momentum operators
multiplied by their corresponding Lagrange multipliers,
their action can be described by a set of generalized
derivatives. This means that the states annihilated by them
do not depend on the conjugate variables, which, in the
classical theory, were indeed purely gauge quantities. We
emphasize that these restrictions on the quantum states
come from the quantum theory and not as a reduction of the
classical theory.
On the other hand, the quantum implementation of the

axial Hamiltonian is a task that requires more effort. Given
that the Hamiltonian is quadratic in the perturbative gauge
invariants, for which we adopt a Fock representation, the
only real challenge in representing it as a quantum operator
lies in implementing its background-dependent coeffi-
cients. Using the results presented in the previous section
regarding the background quantization, we observe that the
two types of background factors that appear in the axial
Hamiltonian (5.23), namely b̄l̂ and s̄l̂, depend on the
background variables just through p̄j and/or Ω̄j. These
quantities are perfectly representable as essentially self-
adjoint operators acting on the Hilbert space, and the
operator for p̄j results to be positive in the invariant
subspace that we are considering for the background
geometry, as we have commented above. Moreover, it is
remarkable that all the functions of p̄j that appear in the
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background-dependent Hamiltonian factors of Eq. (5.23)
turn out to be nonnegative. This fact allows us to address
the only relevant ambiguity encountered to define those
background factors, which arises when dealing with a
product of noncommuting operators, a situation that can
only occur when the operators belong to the same sector. To
deal with this issue, we employ a symmetric algebraic
ordering for products of (a power of) Ω̄j with a non-
negative function of p̄j, representing it by (this power of)
Ω̂j multiplied from the left and right by the square root of
the operator corresponding to the considered function of
p̄j. In this way, we attain an operator representation of the
Hamiltonian constraint of the perturbed system in our
LQC-Hybrid approach. The only task left is to find
quantum solutions. To construct such solutions and derive
with them master equations for the perturbations, one can
follow a similar approach to that explained in Ref. [41].
This will be the subject of future research.

VII. CONCLUSIONS

We have developed a Hamiltonian formalism tailored to
perturbed cosmological scenarios around a Kantowski-
Sachs geometry, minimally coupled with a homogeneous
scalar field. To achieve this aim, we first provided a brief
outline of the Hamiltonian description of the background
spacetime, addressing an important question, namely, how
to perform a canonical transformation that adjusts the
background variables to a new set, better suited for the
subsequent quantization of the model.
Having laid this groundwork, we then carried out a

detailed examination of the possible perturbations of the
background. In this process, a pivotal aspect is the
expansion of the perturbations in spherical harmonics
and Fourier modes, exploiting the spatial symmetries of
the background. The consideration of a compact section
ensures that zero modes can be isolated from such
expansion, allowing us to separate them from the rest
and treat them exactly, rather than as perturbations, and thus
also avoid any possible infrared divergence in sums of
contributions over all modes (the non-compact case with
continuous Fourier modes should then be reachable in a
suitable limit). For this expansion, we have employed real
eigenfunctions of the Laplace-Beltrami operator associated
with the spatial sections. In the decomposition we have
introduced, the treatment of modes becomes much simpler,
as it allows us to handle efficiently all the spatial depend-
ence of the perturbations. The use of a real basis also
facilitates the understanding of the physical nature of the
modes, making their identification with phase space var-
iables more straightforward. Leveraging the behavior of
spherical harmonics under parity transformations, we have
classified the perturbations into two classes, namely, axial
and polar perturbations. Both of them have decoupled
dynamical equations at leading perturbative order. This

property allows us to analyze them separately. We have
focused our attention primarily on the study of the axial
perturbations, owing to the simplicity of their contribution
compared to their polar counterpart. For these axial modes,
the analysis has been limited to the leading perturbative
order, corresponding in fact to a second-order perturbative
truncation of the action of the system. This action, restricted
to the axial sector, is formed by three types of terms. These
are a presymplectic or Legendre term (i.e., the difference
between the Lagrangian and the constraint terms), the
perturbative constraints, and the perturbative contribution
to the Hamiltonian constraint (which we also call the
perturbative Hamiltonian). In addition, we divided the
axial action into two different types of blocks: One for
modes with l ≥ 2, and the other for modes with l ¼ 1, for
which we have carried out a separate study adapted to their
peculiarities. Let us also recall that, in the axial case,
zero modes and the perturbation of the scalar field need not
be considered. This is so because axial contributions
vanish when l ¼ 0, and the scalar field admits only polar
perturbations.
In the construction of the Hamiltonian formulation, a

crucial step is the description of the perturbations by means
of perturbative gauge invariants, perturbative constraints
(which are also gauge invariants but must vanish) and
momenta of these constraints (which are gauge variables).
To achieve this description, we have had to introduce
canonical transformations for the perturbations, which
depend on both the background variables and the eigen-
values of the modes. Additionally, at a specific stage, we
have found it necessary to redefine certain Lagrange
multipliers of our theory, redefinitions that we have shown
that are always valid at the order employed in our
perturbative truncation. For the lapse function, we have
chosen a densitization which is common in LQC and allows
a direct relationship with previous results obtained for the
background spacetime [38].
For the modes with l ≥ 2, our approach leads to a

diagonal perturbative Hamiltonian that depends quadrati-
cally on perturbative gauge invariants, but not in other
perturbative variables. The background dependence of this
Hamiltonian is captured in two mode-dependent factors.
One of them represents a global factor, while the other
accompanies the square of the configuration perturbative
gauge invariants, and would play the role of a background-
dependent frequency in the context of a harmonic oscil-
lator. Moreover, these background factors are simple
functions of the basic background variables employed in
LQC. In the few cases in which their summands are not
polynomials, they are rational functions that are positive for
nonvanishing background densitized triads. Therefore, in
an LQC-Hybrid approach, the operator representation of
these factors with loops techniques does not pose any
serious complication. We have also seen that the modes
with l ¼ 1 are pure gauge, except for those with n ¼ 0. For
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these three modes (corresponding to the three possible
values of m), an approach similar to that followed for the
case l ≥ 2 is applicable, resulting also in a diagonal
perturbative Hamiltonian.
The introductionof background-dependent canonical trans-

formations for the perturbationsmight give the impression that
we are disrupting the global canonical structure of the system.
To dispel these doubts and show how the perturbed system
remains canonical, we have added the Appendix. At the
perturbative order of our truncation, the main effect of the
transformations on the background is the inclusion of mod-
ifications that are quadratic in the perturbations, in order to
preserve the choice of a canonical set of variables.
Starting with our Hamiltonian formulation, we have

managed to discuss for the first time in the LQC literature
the details of a hybrid quantization of the Kantowski-Sachs
spacetime and its axial perturbations. Since the primary
quantum geometry effects of the model are rooted in the
background, we have embraced LQC to quantize the back-
ground variables, leveraging recent advancements in the loop
quantization of Kantowski-Sachs [38]. Simultaneously, we
have adopted a Fock (or either a Schrödinger) representation
for the quantization of the perturbative modes, acknowledg-
ing that perturbations can be treated using a more conven-
tional representation, at least in certain regimes of direct
interest. Nonetheless, let us comment that the hybrid quan-
tization can also be adapted for combining other alternative
quantum approaches, both for the background and the
perturbations. With our hybrid strategy, we have been able
to impose the perturbative constraints in a straightforward
manner at the quantum level. They imply that physical states
cannot depend on purely gauge modes of the perturbations.
In parallel, we have carried out the quantization of the
perturbative Hamiltonian in a Fock representation that is
essentially unique, according to Ref. [42], provided we
require it to preserve the spatial background isometries
and implement the dynamics of the perturbations as unitary
transformations (when the background can be treated clas-
sically or effectively). This Hamiltonian is quadratic in the
perturbative gauge invariant modes, with no mixing terms. It
is important to highlight that, during the quantization
process, we have not fixed the gauge freedom in any way.
The results of this work pave the way for interesting new

projects. First, a natural continuation of this work is to
complete the perturbative analysis by exploring polar
perturbations. This continuation would mirror the pro-
cedure followed for axial perturbations, but with the added
complexity that calculations would be more intricate,
owing to the greater number of terms in the polar case
compared to the axial contribution. The second line of
research is analyzing in detail the hybrid quantization of the
perturbations discussed in this paper. The goal of this study
would be the inclusion of quantum corrections in the
computation of measurable predictions for anisotropic
cosmologies. This endeavor aligns with current efforts to

investigate consequences of LQC for cosmological pertur-
bations [43,45,48,49]. Finally, a more ambitious line of
investigation involves contemplating the correspondence
between Kantowski-Sachs and the interior of a
Schwarzschild black hole, as we have commented before.
The objective would be to extend the results about the
quantum behavior of the interior and its perturbations to the
exterior geometry of the black hole, obtaining in this way
predictions about quantum effects, for instance, in gray-
body factors [56] or other aspects of gravitational radiation.
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APPENDIX: CORRECTIONS OF THE
BACKGROUND VARIABLES

In this appendix, we show how to recover a canonical
structure for the system formed by the background and its
perturbations whenwe pass to a perturbative gauge invariant
description. As indicated in the main text, the transforma-
tions applied with this aim to the perturbations, obtained
with a generating function that we generically call A, spoil
the global canonical structure when we consider the original
background variables. Following an approach similar to that
of Ref. [41], our goal is to redefine the background variables
with perturbative corrections to restore the canonical struc-
ture. Let us first express the total action using an appropriate
notation, motivated by Ref. [41],

S ¼
Z
R
dt

�X
a

ðwa
qÞ;twa

p þ
ϵ2

κ

X
b

X
n;λ

ðXn;λ
qb Þ;tXn;λ

pb

−H½wa; Xn;λ
b ; Ñ; hn;λc �

�
: ðA1Þ

In this equation, the old perturbative variables are called
fXn;λ

b g ¼ fXn;λ
qb ; X

n;λ
pb g, while the old background variables

are fwag ¼ fwa
q; wa

pg, where a labels the background pairs
of degrees of freedom, b labels all the perturbative variables,
and q and p subscripts stand for configuration andmomenta
variables. The total Hamiltonian H is the sum of the
background and the perturbative contributions. For the
purposes of our discussion, let us express it as follows:

H½wa;Xn;λ
b ;Ñ;hn;λc � ¼ H̃KS½wa;Ñ�þHP½wa;Xn;λ

b ;Ñ;hn;λc �
¼ H̃KS½wa;Ñ�þ ϵ2

X
c

Cc1½wa;Xn;λ
b ;hn;λc �

þ ϵ2H2½wa;Xn;λ
b ;Ñ�: ðA2Þ

Here, fCc1g represents the set of first-order perturbative
constraints, fhn;λc g are the corresponding perturbative
Lagrange multipliers, where c labels all perturbative
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constraints, andH2 is the second-order Hamiltonian for the
perturbations. Redefining our background variables with
second-order perturbative corrections, once the canonical
transformations are completed, we want that terms in the
action additional to the total Hamiltonian becomeZ

R
dt
�X

a

ðw̄a
qÞ;tw̄a

p þ
ϵ2

κ

X
b

X
n;λ

ðVn;λ
qb Þ;tVn;λ

pb

�
; ðA3Þ

where fw̄ag ¼ fw̄a
q; w̄a

pg and fVn;λ
b g ¼ fVn;λ

qb ; V
n;λ
pb g denote

the new canonical sets for the background and the pertur-
bations, respectively. Actually, the linear relationship
between the old and new perturbative variables allows us
to write

Xn;λ
b ¼

X
b0;λ0

�
∂Xn;λ

b

∂Vn;λ0
qb0

Vn;λ0
qb0 þ ∂Xn;λ

b

∂Vn;λ0
pb0

Vn;λ0
pb0

�
: ðA4Þ

Consequently, at the perturbative order of our truncation in
the action, the corrected background variables can be
computed to be

wa
q ¼ w̄a

q þ
ϵ2

2κ

X
b

X
n;λ

�
Xn;λ
qb

∂Xn;λ
pb

∂w̄a
p
−
∂Xn;λ

qb

∂w̄a
p
Xn;λ
pb

�
;

wa
p ¼ w̄a

p −
ϵ2

2κ

X
b

X
n;λ

�
Xn;λ
qb

∂Xn;λ
pb

∂w̄a
q
−
∂Xn;λ

qb

∂w̄a
q
Xn;λ
pb

�
; ðA5Þ

where the original variables are understood as functions of
the newoneswhen calculating the partial derivatives,4which
must be taken keeping the new perturbative variables fixed.
Let us comment that these expressions differ from the ones
given inRef. [41] by a sign in the corrections in order to align
the result with our convention for the background Poisson
bracket. Substituting this relation, we can verify that, at the
perturbative order of our truncation,

Z
R
dt
X
a

ðwa
qÞ;twa

p ¼
Z
R
dt
X
a

ðw̄a
qÞ;tw̄a

p þ
Z
R
dt
X
a

½ðwa
p − w̄a

pÞðw̄a
qÞ;t − ðwa

q − w̄a
qÞðw̄a

pÞ;t�: ðA6Þ

The last term of this formula can be expressed in a more familiar manner asZ
R
dt
X
a

½ðwa
p − w̄a

pÞðw̄a
qÞ;t − ðwa

q − w̄a
qÞðw̄a

pÞ;t� ¼
Z
R
dt
ϵ2

κ

X
a

�
∂A
∂w̄a

q
ðw̄a

qÞ;t þ
∂A
∂w̄a

p
ðw̄a

pÞ;t
�
: ðA7Þ

The outcome for the perturbative modes is already known, as we employed a similar expression in previous calculations,Z
R
dt
X
b

X
n;λ

ðXn;λ
qb Þ;tXn;λ

pb ¼
Z
R
dt
X
b

X
n;λ

ðVn;λ
qb Þ;tVn;λ

pb −
Z
R
dt
X
a

�
∂A
∂w̄a

q
ðw̄a

qÞ;t þ
∂A
∂w̄a

p
ðw̄a

pÞ;t
�
þ
Z

dA: ðA8Þ

The last term is the integral of a total derivative, and can be ignored in the following discussion. On the other hand, at the
considered perturbative order in the action, the total Hamiltonian can be rewritten using a Taylor expansion around the new
background variables as

H½wa; Xn;λ
b ; Ñ; hn;λc � ¼ H̃KS½w̄a; Ñ� þ

X
a0
ðwa0 − w̄a0 Þ ∂H̃KS

∂w̄a0 ½w̄a; Ñ� þHP½w̄a; Xn;λ
b ½w̄a; Vn;λ

b �; Ñ; hn;λc �; ðA9Þ

where the first and third terms correspond to the background Hamiltonian and the perturbative Hamiltonian, respectively,
expressed in terms of the new sets of variables. As for the second term, it can be rewritten as

X
a

ðwa − w̄aÞ ∂H̃KS

∂w̄a ¼ ϵ2

2κ

�X
a

�
∂Að3Þ
∂w̄a

q

∂H̃KS

∂w̄a
p
−
∂H̃KS

∂w̄a
q

∂Að3Þ
∂w̄a

p

�
þ
X
a

�
∂Að1Þ
∂w̄a

q

∂H̃KS

∂w̄a
p
−
∂H̃KS

∂w̄a
q

∂Að1Þ
∂w̄a

p

��
; ðA10Þ

whereAð1Þ andAð3Þ are, respectively, the generating functions of type 1 and 3 associated with the canonical transformation
for the perturbations. Thus, altogether, the final form of the total Hamiltonian of the perturbed system is given, at the
considered perturbative order (and ignoring for simplicity redefinitions of Lagrange multipliers), by

H½wa; Xn;λ
b ; Ñ; hn;λc � ¼ H̃KS½w̄a; Ñ� þ ϵ2

X
c

Cc1½w̄a; Vn;λ
b ; hn;λc � þ ϵ2

�
H2 þ

1

κ
fA; H̃KSgB

�����
½w̄a;Vn;λ

b ;Ñ�
: ðA11Þ

4Up to our perturbative order, the partial derivatives with respect to w̄a are the same as the partial derivatives with respect to wa.
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The interpretation of this result is straightforward. The only
modification required in our expressions is the substitution
of wa for w̄a, which can be accomplished without com-
plication, thereby preserving the validity of the entire

discussion concerning the axial perturbations. It is worth
noticing that no equations of motion were necessary during
our derivation, since Poisson brackets are defined as a
bilinear map to functions on phase space.
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