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Sum rule for the pseudo-Rényi entropy
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By generalizing the density matrix to a transition matrix between two states, represented as |¢) and |y),
one can define the pseudoentropy analogous to the entanglement entropy. In this paper, we establish an
operator sum rule that pertains to the reduced transition matrix and reduced density matrices corresponding
to the superposition states of |¢) and |y). It is demonstrated that the off-diagonal elements of operators can
be correlated with the expectation value in the superposition state. Furthermore, we illustrate the connection
between the pseudo-Rényi entropy and the Rényi entropy of the superposition states. We provide proof of
the operator sum rule and verify its validity in both finite-dimensional systems and quantum field theory.
We additionally demonstrate the significance of these sum rules in gaining insights into the physical
implications of transition matrices, pseudoentropy, and their gravity dual.
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I. INTRODUCTION

In many research fields, we encounter the handling of
off-diagonal elements in certain states. To understand the
quantum decoherence the off-diagonal elements of observ-
ables in the pointer states play an important role [1,2]. In
the eigenstate thermalization hypothesis [3,4] one concerns
about the matrix elements of local observables between
energy eigenstates. In the field of quantum weak value the
key quantity is the expectation value of operator between
the so-called preselection and postselection states [5,6].

To express the off-diagonal matrix elements between two
states, say |¢) and |y), one can define the unnormalized

transition matrix as 7% := |y} (¢|. The off-diagonal ele-
ments of local observables .4 can be expressed as

(Pl Aly) = (T A). (1)

Here, the transition matrix 7%/ plays a role similar to that
of the density matrix. In fact, in the special case where

|p) = |w), it becomes the density matrix. Thus, 7%/ can
be considered a generalization of the density matrix. Many
quantities can be rephrased in terms of the transition
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matrices. For instance, the expectation value of an operator
O in the state p = |¢)(¢| is given by tr(pO). It can also be
understood as tr(7%1%) with |y) := O|¢h).

If a system can be partitioned into a subsystem A and its
complementary counterpart A, similar to the reduced
density matrix, one can establish the reduced transition
matrix of A as 7% = tr;7%%, where we have defined the
normalized transition matrix

(Plw)

assuming |¢) and |y) are nonorthogonal. The above idea is
explored in quantum field theory in a recent paper [7], see

also [8]. By definition, one can see that TZW is generally a
non-Hermitian matrix. It was shown that the reduced
transition matrices contain additional theoretical informa-
tion and lead to intriguing results.

In this paper, we present a sum rule that connects the
reduced transition matrix T‘/’;“p and the reduced density
matrix of the superposition state composed of |y) and |¢).
To accomplish this, we introduce a series of states denoted
by |&(c)), defined as

[6(c)) = N(e)(Ig) + cly)), (3)

where N (c) = 1/\/1+ |c? + c(ply) + c*(w|p) ensures
the normalization of (&(c¢)|E(c)) = 1. We use py(c) :=
tr|E(c))(E(c)| to represent the reduced density matrix.
The key finding of this paper is the sum rule that establishes

a connection between (’T;’;M’)” and [p,(c)]" as
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(TV/|¢

= Y a(©)lpa(e))" )

ceS

where a(c) are some specific n-dependent constants, and
the index ¢ belongs to a given set denoted by S.

In the next section, we will demonstrate that one of the
choices is S = {e2n+lk|k 0,1,2,...,2n}. For this particu-
lar set, we define

2ri p (& Zﬂlk"
ak = a(eZn+l ) (2n + )N” . (5)
Ny = N (e (ply). (6)

As a result, the operator sum rule takes the form

(T4 Zam ", (7)

where p, (k) = p, (e37).

Using the operator sum rule (7), we can establish a sum
rule for off-diagonal matrix elements. The off-diagonal
matrix elements of a set of operators {A;} (j = 1,...,m) in
subsystem A would have the following interesting relations.
If |¢) and |y) are nonorthogonal, for m < n we have

m A 2n m
120> a el ®
j k=0

J=1

where |&,) == |£(ez5)). If |¢p) and |y) are orthogonal, we
have
n 2n n
[T alw) = > a TT(ad A& ©)
=1 =0 j=I
where d), = 32 e 5Tk,

Based on the similarity between the transition matrix and
the density matrix, the authors in [7] introduce a concept
called pseudoentropy. For the reduced transition matrix

T% the definition is

S(T4") = ~up (T} og T4). (10)
To evaluate the pseudoentropy, the concept of pseudo-
Rényi entropy is introduced

log tr (T47)"
1—-n

St (T41Py = , (11)
where n is an integer greater than or equal to 2.
By analytically continuing n, the pseudoentropy can be
vidy | SO(TY%) I practice, the

expressed as S(7,") = lim,,_,

replica trick is commonly used to evaluate pseudo-Rényi
entropy in QFTs. Although the calculation method for
pseudo-Rényi entropy is similar to that of Rényi entropy,
there are relatively few analytical results available for
pseudo-Rényi entropy. This scarcity is attributed to the
transition matrix involving two distinct states and being
typically non-Hermitian, which makes the calculations
more intricate.

After taking the trace on both sides of Eq. (7), we obtain
an interesting relation between the Rényi entropy and
pseudo-Rényi entropy

e1-ms(Ti?) Zake (1=n) (), (12)

The discrete Fourier transform of a sequence of N complex
numbers {x; } with k€ {0, ..., N — 1} could be denoted by
Flx(s) = V-1 e x,. The results (8), (9), and (12)
show the off-diagonal elements and the pseudo-Rényi
entropy can be associated with the discrete Fourier trans-
form with N =2n + 1 and s = n. Therefore, the calcu-
lation of these quantities can be transformed into evaluating
diagonal elements and the Rényi entropy for the super-
position states and performing a discrete Fourier trans-
formation. It is worth noting that the above results are
trivially satisfied for the special case where |y) = |@).

The subsequent sections of the paper are structured in the
following manner. Section II explores the importance of the
sum rule. In Sec. III, we give a proof for the sum rule. We
discuss the sum rule in quantum field theory (QFT) and
conformal field theory (CFT) in Secs. IV and V, respec-
tively. We present examples of the sum rule in Sec. VI.
Moreover, Sec. VII highlights several applications of the
sum rule. In Sec. VIII, we study a tentative sum rule of
the pseudoentropy. Section IX exhibits alternate forms of
the sum rule. Analogous to the sum rule, Sec. X demon-
strates the generalized Rényi entropy expressed as deriv-
atives of Rényi entropy. We conclude with discussion
in Sec. XI.

II. THE SIGNIFICANCE OF THE SUM RULES

Before delving into the details of proving the sum rule,
let us first explore its significance. It is well known that any
non-Hermitian operator can be expressed as a linear
combination of two Hermitian operators. Our sum rule
(7) illustrates a distinct and generalized version of a similar
statement. The sum rules involving the off-diagonal ele-
ments (8), (9) and pseudo-Rényi entropy (12) represent two
different aspects of the operator relation.

As mentioned in the Introduction, in many situations one
needs to deal with the off-diagonal elements in some
Hilbert space, denoted by the H with the orthonormal
basis B := {|m;)} (i =0, 1, ...). Consider the off-diagonal
elements (mg|A;[m;) (i >1) for operator A. One can
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construct a new set of nonorthogonal basis B := {|m’(k))}
with  |[m)(k)) = N(k)(Jmo) + e |m,)) (i =0,1,..),
where A/ (k) is the normalization constant. Note that B
is constructed by a rotation of the basis |m;) (i > 1) with
respect to |mg). Equation (9) suggests the product of the
off-diagonal elements [ [_, (mo|.A;[m;) in the basis B can
be decomposed as a linear combination of the product of
the diagonal elements [[7_;(m}(k)[A;lmi(k)) in the
basis B,

The sum rule (12) gives the relation between two different
concepts of entropy. Entanglement entropy as well as Rényi
entropy are important measures widely employed to char-
acterize quantum entanglement between two given subsys-
tems, and its significance has been extensively discussed
from various perspectives, ranging from quantum many-
body systems to QFTs and quantum gravity [9—12]. In the
context of AdS/CFT correspondence [13-15], entangle-
ment entropy is found to be associated with the minimal
surface in the bulk [16,17], known as the Ryu-Takayanagi
(RT) formula and its generalization Hubeny-Rangamani-
Takayanagi (HRT) formula. This discovery opens up a new
pathway for understanding the quantum nature of black
holes and general spacetime [18-21].

The concept of pseudoentropy is quite new. The main
drive behind exploring pseudoentropy lies in its capacity to
satisfy the RT formula in a new class of non-Hermitian
state, providing valuable insights into geometry and entan-
glement [7]. Additionally, it serves as a novel order
parameter in quantum many-body systems, extending
beyond the entanglement entropy [22-24]. Unlike conven-
tional entropy, pseudoentropy is generally not a real
number. It has been revealed in [25] that the reality
condition of pseudoentropy is closely associated with
non-Hermitian physics [26-28]. Moreover, the imaginary
part of pseudoentropy has been proposed in [29] to be
linked to timelike entanglement and the emergence of time
in the dS/CFT correspondence. Overall, pseudoentropy
exhibits significant potential for applications across various
aspects of physics. For more recent developments, one can
refer to [30-44].

Even though many interesting results have been
obtained, the physical significance and potential applica-
tions of transition matrix as well as pseudoentropy are still
far from clear. The sum rules we have obtained imply that
they are not merely a simple generalization, but are closely
related to the concept of entanglement. These researches
also indicate that certain classes of transition matrices may
possess a dual representation in terms of bulk geometry.
However, our current understanding of this correspondence
is still limited. The sum rule (12) establishes a link between
the geometry associated with the transition matrix and
the density matrix, shedding light on this intriguing
relationship.

The sum rules are crucial for our understanding of the
transition matrix, pseudoentropy, and their holographic

dual. In the following sections, we will briefly discuss
possible applications of the sum rules in these aspects.

III. PROOF OF THE OPERATOR SUM RULE

According to the definition, we have

palc) = N ()2 + clgply) T
+ W) T + cerpk), (13)

where pi := trz| @) (¢, and pY = trj|w) (w|. The nth power
of ps(c) can be expanded as

pa(e)]" = > () (gl () N ()"
{r.s.t}
XAy (T TR Y )+ )
(14)

where “+ - - - denotes the sum of all possible permutation
terms for each fixed r, s, . For example, when n =5,
r=4, t=0 and s=1, we have the expression
D TE + ) = R + (TR +
PRPTR (00?2 + AT () + TR (o). For a
fixed set {r,s,t}, there are m terms. Now,
consider a linear combination of [p,(c)]"

D ale =2 > alo)e(e

@l (wle)*

ceS {rst}ceA
x N () {(p)=r=s=1(T4?):
x (T ) (o) + - 3. (15)

If there is the condition

> ale)e (e ) gl wlh) N

ceS

(C)n = 53‘,05[."’ (16)

the operator sum rule (4) is obtained.
To find a solution to (16), we consider the set

S ={e*"*k=0,1,2,....2n}. Equation (16) can be
solved as

kae z,,’fuk nbs=l) = 55‘,051,n7 (17)

where

fi = (RN gy (18)

The value of f; can be found using an inverse discrete
Fourier transform, resulting in f; =

a(e?#™) (5) using the relation (18).

T H We obtain ay, :=
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By replacing the right-hand side of (16) as well as (17)
with & ,8,9, we arrive at the sum rule involving 7 fﬁ"’.
Similarly, we can find a relation for the transition

matrix Tﬁ“”

2n —n)S®(p
e(1=m) STy _ erikn w‘ (19)
pa (2n+ 1)N%

TR =
St(T f{""). The transition matrix can also be defined for

a pair of orthogonal states. If the two states |¢) and |y) are
orthogonal, the transition matrix is modified to

T¥!? = |y)(¢h|. The reduced transition matrix is defined

as 7 vid = trz|w)(¢|. The sum rule is slightly different in
this case. The normalization constant becomes

N(c) = 1/4/1 +|c|*. To obtain the sum rule we require
the similar relation as

> d (N (e)]"(¢) e’ = 8,00, (20)

cesS

This is consistent with the fact that [S

We still take S = {em*|k = 0,1,2, ...,
to get

2n}. It is not hard

27 2”
() = =

2z kn
nt z 21
e 2n + 1 e (21)

-
ay =

The sum rule for orthogonal states are given by

2n
wa (75 =" g [pa ()", (22)
k=0

olt

IV. SUM RULE FOR PSEUDO-RENYI ENTROPY
FROM REPLICA METHOD IN QFTs

where p, (k) = trz |£(en 1K) (£(e

In quantum field theory (QFT), the computation of
(pseudo-) Rényi entropy can be achieved using the replica
method [7,45]. Additionally, one can establish the formula
presented in (12) using the same replica method. The state
lw) and |¢), as well as their superposition |E(c)) =
N (c)(|¢) + c|y)) can be prepared using Euclidean path-
integral with operator insertions. The replica partition
function in the transition matrix 7% can be computed
by path integral on an n-sheet manifold R, gluing along
subsystem A,

try [(TV/W nl —

<H¢ THw ) e

IZ

where Z,, is the vacuum partition function on R,,, w(j) and
¢(i) denote the operators on the jth and the ith sheets,

respectively. Similarly, for the reduced density matrix p4(¢)
we have

n

wa{lpale)]"} = Zn/\/(C)"<1_[[¢(i)T +cy(i)']

i=1
X H )+ cep(j >R

The correlation function in the above equation can be
expanded as

(24)

<f[[¢><i>T ey T90) + v,
i=1 =l
= Y (e Wi (@) -
{s.t}
<w(i) - wli)dUl) - ¢<j;_t>> |

R

(i)
(25)

where s,t€(0,1,...,n). For fixed s, ¢ there are

(n!)?

sitt(n—s)!(n—1)!
2
sumis %o )

terms, thus the total number of terms in the

T T = 22", One of the special term is

the one with s = 0, r = n, i.e., ([T72; ()" [T w())r,»
which is the correlation function in (23).

Then we consider linear combinations of try[p,(c)]"
(24). By choosing a series of functions a(c) with the index
c €S, we have

> ale)malpale))”

ceS
=Z,) > ale)IN (o)) e (w(i)' ..y (i)
{si}ceA
x ()" (i) (1) w () (1) b)) x,
(26)
If we have
;a(C)[N(CH”(C*)SC’ <¢| i 8000, (27)

the above summation would reduce to try (7° Z’llﬁ)", which is
just the sum rule (4). To find a solution, one could take
S = {e#*|k =0,1,2,...,2n}, we would have the same
Egs. (17), (18). Thus we have proved the sum rule (7) by
the replica method.

V. SHORT INTERVAL EXPANSION

OF PSEUDO-RENYI ENTROPY IN CFTs

Another approach to evaluate the (pseudo-) Rényi
entropy involves utilizing the twist operator formalism.

106008-4



SUM RULE FOR THE PSEUDO-RENYI ENTROPY

PHYS. REV. D 109, 106008 (2024)

In certain special cases, like a short interval in
2-dimensional conformal field theories (CFTs), the oper-
ator product expansion (OPE) of the twist operator can be
employed [46-50]. By doing so, the sum rule (12) is
expressed as a series of relationships between correlation
functions of local operators, thus we can derive the
relations (8) and (9).

The sum rule shows the trA(TW|¢) can be written as
linear combination of try(p4(c))". The Rényi entropy can
be evaluated by using twist operator formalism in certain
cases [45]. An obvious conclusion from the sum rule is that
pseudo-Rényi entropy can also be evaluated by twist
operator formalism in same case. In this section we focus
on two-dimensional CFTs. Consider the CFT is defined on
a cylinder with spatial period L. For an interval A = [0, 7]
with £ < L, one could use operator product expansion of
twist operator [46-50]. Generally for a given reduced
density matrix p,, there is

tu(pﬁ)—(—) [HZ Z ghnt A,

m=1X,...,

< dy . w(pX)- ~tr<pxm>} , (28)

where the summation {X, ..., X,,} is over all the quasi-
primary operators, Ay, are their scaling dimension, 7, is
the conformal weight of twist operator, dy, _y are the
coefficients independent with the state p,. For the transition

matrix TKM’, the formula is almost the same

4h, n
Tty = (5)" [ 3 3 s
Xdy .y r(TVX)) .- -tr(T‘/”/’Xm)] . (29)

Defining F,,(c) :=tr(p(c)X,) - - -tr(p(c) X,,), we have

F,,(enih) = ez,,ﬂ ZmH (#|X}|)

n eﬁk<¢|xj|w> + e (y| X))
X)), G0

.
—_

The sum rule is given by using the following equation

2n 27i 2z
2 F. (e
E e_z;’ilk” ( )

Gn NG~ 1 Hfﬁlew (31)
=0 =1

which can be shown directly by using (30). Note that

N (&) = (2 + e (ply) + e 20 (y|p) 2 (32)

The summation over k is discrete Fourier transform of the

terms in the square brackets. These terms are series in e 1%,

The coefficient corresponding to the highest power ez Tk i

(i) T (1 1w). (33)

Jj=1

In fact this is the only term survived in the discrete Fourier
transform. Obviously, (31) holds.

In fact, Eq. (31) represents the sum rule for the off-
diagonal matrix elements (8). The relation (9) can be
derived by applying the operator sum rule to the orthogonal
states (22).

VI. EXAMPLES FOR THE SUM RULE
A. Two qubits system

The sum rule can be examined in a system of two qubits
represented in the basis states |00),[01),[10), [11). We
assume two given states

1
) = T(%IOW + Byl11)).
\1al™ + 18yl
1
| :T(awm(» +ﬂx//|11>)v (34)
V0™ + 18y
where ay,) and S, represent arbitrary constants. The

27

superposmon state is |§(k)> i= N (e257) (|p) + e2i1%) ).
The reduced density matrix p, (k) is given by

M 0
= (4 ). 39
2
with
2ink 2
2 = [N ()2 % AR
V0agl + 18,2 ¢ a2+ 18,
gk 2
dy = [N(ezzn”ik,)]z By By ,
0yl + 18, ¢ a2 + 16,

where
2ink 2
2nik 2 a¢ aW62n+l
W ()2 = -
VP 4182\l +18, 12
2irk 2
e2n+1
+ P 36)
\/\a¢|2+|ﬂ¢\2 V0ewP+18,P|
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B. Perturbation states

We examine the states |y) and |¢) = N, (|w) + €[y’))
f 0 with Ny =1 =35 (e{wly’) + € (y'|w)) + O(¢?), con-
Tl/l;\fﬁ - ((; ), (37) sidering only to the leading order of e. The reduced

The reduced transition matrix Tl/’(“p is given by

5 transition matrix is then expressed as
with T = N +eT{). (40)
L. BBy where NV (e) = 1 —e*(y/'|w), p}f = tralw)(w
b ayay, +Byby 2T @y, + Bih, trz|y) (w'|. We can then write theexpressionfortrA(’Tl’Af“p)" as
To check the sum rule (7) one just needs trA(TZW)” =try(ph)" (1 — ne*(y'|y)
tr [(pu/)n—lTW\lI/]
1 2N ay, Al +ner ARCAL DA 1), 41
G = (38) s ()" e
2n+ 1){¢ly)" = N (emin)2n

The superposition state is given by
with i = 1, 2, where

[6(K)) = N (e ) (W + ) y) + ely’)].  (42)
@, @ + B, b

(Ply) = (39)  where N (e%k) is the normalization constant. The expres-
V%, + BBy agay BBy sion for try[p, (k)]" is then
|
. ne* tr [(pW)n—lTW\V/] ne trA[(pW)"_]TW/‘W}
tr 1 = (N )Ml (p?) |1 + ‘ AL\FA A . A A , 43
AMA( )] ( k) A(pA) 1 + e_%k trA(p‘/’;)” 1 + e#’ilk trA (pZ)n ( )
where N, = 1 + <) +<l"7|7"'l> 1
R By =1+ 5elly’) =3¢ ). (46)
For the superposition state
|E(k)) = (ezﬁ'ink)[(N(ﬁ + et )|y) +ely’)],  (44)  Itis straightforward to obtain
the normalization constant is
) Z e 7nm ki’l trApA (k)n
i 1 —5mk _ 1 ”’” 52k \2n n
N(ezn+1 ) = |] +ezﬁ+1k| 1<1 _ *€<W|W>% 2” + )J\/(e2 ) <¢|W>
ek 4+ | 1 2n
1 ezi/jrl] _1 — e 2n+| pk (47)
= 7€ v’ T) (45) s
et 4 1
We also have where
n—17¥' lw * w\n—1v' I
_ 522120 V\n Yy ne ry [(loZX/) ' ]TX ] ne {ry [(pA) TA }
pr = |1 +en Ty (p <1—n€ Vi) + ,ﬁ ”i o . (48
k | | A( A) < | > 1—|—ezﬁﬁk trA(p,l{;) 1+e_2’21ﬁk trA(pZ) ( )

The nonvanishing terms in the summation (47) are the ones associated with e%k”, which is equal to Eq. (41). Therefore, the
sum rule is proved in this example.
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C. Locally excited states in two-dimensional massless
boson theory

For a general transition matrix

O(w1.1)[0) (0O (w,. )

Tl — - ,
(0|07 (wa, ,) O(wy, ,)|0)

(49)

one could use replica method to evaluate the (pseudo-)
Rényi entropy. The two states are |¢) = O(w,,W,)|0) and
lw) = O(wy,w;)|0). We focus on the pseudo-Rényi
entropy with n = 2. It can be shown that the pseudo-
Rényi entropy is associated with the four point functions on
the 2-sheet Riemann surface %,

2Ty
(O(wy, )0 (W2,W2)<O(W3,W3)(~9-‘-(W47W4)>22
Il

= —log (O (wa, 2) O(wy. W)y,

(50)
with AS@(TY?) .= s (TY17) — 5@ (pgo)), where pgo) is
the reduced density matrix for ground state, w; €%, (i = 1,
2, 3, 4) are coordinates of the corresponding local
operators.

To calculate the four point correlation function on %,,
one could use the conformal mapping

w— Xy

(51)

Z: 9
w =X

where x;, x, are endpoints of the interval A. The corre-
sponding coordinates of w; €X, under the conformal
mapping are given by

wp — X Wy — X
H=—7=,/—— (52)
Wy — X2

{1 = —43 = B
wp — X

We take w = x + ir, w = x — iz. We mainly focus on the
operators

O(wy, w) = ceih(0-a) . 4 i0:o—ih(0.—a) - ’

O (W, ) = ex?0) : 4 :em2h(0) (53)

with w; = —ia and w, = id’. The two states under con-

sideration are

#) = (eH0-9 + e HO-0)|0),
) = (M0 4 -WO)|0). (54)

AS@)(T"?) has been evaluated in [7], and the result is

1 +cos®
cos 0 + [n]* + [1 —n]?

@(T4?) = log . (59)

where the cross ratio n = % For the case § = 0,

the pseudo-Rényi entropy reduces to Rényi entropy. In the
limit a,d’ = 0, 5,77 — 0, AS(Z)(TIX‘(/’) — 0. For the case
6 # 0, we can also consider the Lorentzian time evolution
by analytic continuation a — 5+ it and d — 5— it
where 6 is the UV cutoff. It can be shown that in the
region x; < t < x, we will have

1+ cosf
og—.

(2)(TK‘¢) =1 cosd

(56)

We take a=d'.
given by

The superposition state |£(k)) is

E(K)) = N (35) (o HH0-0): 1400 )[0).

(57)

where

27 k

a =1 +emtk,  po=14etak (58)
The Rényi entropy AS®)(p,(k)) =5 (p4 (k) =S (o)
can also be evaluated by the replica method. With some
calculations we get

AS®) (pa(k))
(ol + 18
el 1 2P Pnl + 2 PIBPT =l + B
(59)
For the case § = 0 and a — 0 we have AS®)(p,(k)) — 0,

which is consistent with [51]. For the case 8 # 0, let us
consider the Lorentzian time evolution by analytic con-
tinuation a — 6 + it. In the region x; <t < x, we have
n=1,7—- 0, thus

a 2 2\2
A5 (py(8) = tog ((PELEIAEE). (60

One could check AS® (’T"’M’) and AS® (p,(k)) satisfy the
sum rule (12) with n = 2. Further, the n-th (pseudo) Rényi
entropy can be evaluated by replica method. In Sec. VII C,
we will elucidate the aforementioned simple formula using
the quasiparticle framework, thereby providing an explan-
ation of quasiparticles for the pseudo-Rényi entropy.

D. Quasiparticle excited states in spin chain

We consider a chain of L free bosons or fermions with
Hamiltonian
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L
H= Z a;a e (61)
j=1
The global modes are

2zijk

1 &L
b :—E e L a,
‘ \/Zj=1 !

2nijk

1 L
o Z _2aijk
bk = \/_ijl € L Clj. (62)

The ground state |G) is defined as
a|G)=0, ¥ j. (63)

For the subsystem A =[1,7] and its complement
B = [/ + 1, L], the ground state is a direct product state

G) = 1Ga) ® |Gp). (64)
where the subsystem ground states are defined as

aj|Ga) =0,
aj|Gp) =0,

V jJEA,
V jEB. (65)

We will also use the single-quasiparticle excited state
k) = bilG). (66)

It is convenient to define the subsystem modes

4 4
b l _ 2xijk bT 1 27ijk t
Ak:—g € LClj, A,k:_g eLaj,
Lj:1 \/ijl
1 & o n 1 & g
bpr=—7 Y e ta. bh=—4Y cta
\/Zj=f+1 \/Zj=f+1

For two different single-quasiparticle excited states |k;)
and |k,), which are orthogonal, we may define the reduced
transition matrix

Tfflk] = trplky) (k. (©7)

which could not be normalized. Then we get the reduced
transition matrix

Tff‘k‘ = —a1y|GA) (G| + bL’kZ|GA><GA|bA,k]7 (68)

with

_rikyp(£41) Sin%
xjp =€ L 7”1612, k12 ES kl - kz. (69)

L sin T

In the following, we will also use a,; = aj,. We get the
pseudo-Rényi entropy

tra (755" = 1+ (=)"]ay. (70)
For the state
. 1 .
€)= 75 (1) + e ) (71)

we get the reduced density matrix

1 . .
PAge?) :E{[z(l —x) —ay e —a,e]|G 4 ) (G|
+ e_iab;,k, |G4){(Galba, +eigb/§,k2 |GA){(Galba g,
+ b} 1, 1Ga) (Galbas, +b} 1, 1Ga) (Galbas, }-
(72)

where x = f. The Rényi entropy is

1 . .
thﬂfw(eaz/») = ?{[2)‘ + ay e + e

+ 2(1 —x) —ag e —ape'?"}.  (73)

Using (70) and (73), we check the sum rule

on 2n .

ko |k _ 2zik

try (TA2| 1>n — —2n i g e 2n+1trApZ g(efrﬂkl>' (74)
k=0 ’

VII. APPLICATIONS

A. Relation between static quantity and dynamical one

In quantum mechanics, a sum rule typically represents a
connection between a static quantity and the summation
over a dynamic one. In this context, we aim to demonstrate
that our sum rules exhibit a similar behavior. Let |e;)
(i=0,1,...) denote an eigenstate of the Hamiltonian H
with energy E;. Given an operator A we would like
to consider the off-diagonal elements (e;|.Ale;). According
to (9) we have

2n

(eilAle;)" =) ai(8,1A(1)18,)" (75)

k=1

where [8,;) = \/L§(|e,-> +le;)), the operator A(r) :=

iHt [ —iH! _ 2k
e Ae™™ and 1, = @t )(E<E )

The physical meaning of the above result is clear. The
off-diagonal elements of an operator in energy eigenstates
can be associated with the expectation value of this operator
at time ¢#; in the superposition states. In the special case that
the operator A is independent with time, that is A = A(r),
as a check of (75) we can see the off-diagonal element
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(e;|Ale;) is vanishing, which can also be derived by using
the fact (e;|Ale;) = e/ EEi (e;| Ale;).

The formula may be more useful when the asymptotic
behavior of A(¢) is understood in the limit as t — co. In the
special case where E; — E; is significantly smaller than the
typical energy of the system, the off-diagonal element
(ej|Ale;) can be determined by examining the asymptotic
behavior of A(r).

B. Transition matrix with gravity dual

The transition matrix extends the potential dual geometry
of boundary states to non-Hermitian ones. It is anticipated
that only a limited class of transition matrices could be dual
to bulk geometry. The fundamental constraint is that the
pseudoentropy must be positive. However, we still do not
have a comprehensive understanding of the properties of
such a transition matrix.

It is generally expected that the theory dual to gravity
should be a gapped large-N CFT [52,53]. The bulk Newton
constant G is proportional to 1/N2. If a state |¥) in the CFT
can be effectively described by a geometry, the connected
two point correlation function of single trace operator O;
should follow the scaling,

(P|0,0,|®) - (¥|O;|¥)(P|O,|¥) ~ O(N?). (76)

More generally, a connected k-point function of the
rescaled operator O, := O;/N should be of order N>
Consequently, in the limit as N — oo, the correlation
functions of O; exhibit behavior akin to generalized free
theory [54].

Utilizing (8) allows one to demonstrate that if the states
|E(k)) meet the necessary conditions for state with geo-
metry dual, the transition matrix 7% would also satisfy
these conditions. This implies that the sum rule could be
employed to construct the geometry dual to the transition
matrix, given the geometry dual to |£(k)). Furthermore, in
holography, the (pseudo) Rényi entropy can be linked
to the gravitational on-shell action with cosmic brane
insertion [7,55]. The sum rule (12) signifies a connection
between the bulk solutions.

C. Quasiparticle pictures for pseudo-Rényi entropy

In this subsection, we will demonstrate that in certain
specific setups with the help of the sum rule (12), the
pseudo-(Rényi) entropy can be evaluated within the quasi-
particle framework, akin to the traditional treatment of
entanglement entropy. This would provide more insight
into its relationship with entanglement.

1. Local excitation in 2-dimensional CFTs

In Sec. VI C we consider the massless boson CFT in two
dimensions with two states defined by (54). The subsystem
A is defined as [xi,x,] with x, > x; > 0. In QFTs, the

replica method is utilized to evaluate the pseudo-Rényi
entropy. We will take a = a’ in the following. The super-
position state |£(k)) is given by (57). The state (57) can be
effectively taken as entangled left-moving and right-mov-
ing quasiparticles. When the right-moving particles enter
the subsystem A (x; < t < x,) the entanglement between A
and A will increase by the amount of the entangled pairs.

We explore the real-time evolution by employing ana-
lytic continuation, specifically a — 6 + it. If we consider §
as the UV cutoff, the time evolution of the Rényi entropy
for the superposition state |£(k)) can be understood using a
quasiparticle picture. In the region x; < t < x,, we find that
n — 1 and 7 — 0, where 7 and 7 are functions dependent on
a and the endpoints x|, x, of A. By the quasiparticle picture
of local excitation [51] the Rényi entropy for the super-
position state |£(k)) takes the form

L og[lb
0og (

AS (pa (k) = 7— o>+ B ?)”

} . (77)

By using the sum rule, we obtain the pseudo-Rényi entropy
under the same condition

1 & L, el Ao

€ 2 2ni
N (e P (plw)"

e(1=mAs™ (T _
2n+ 1 =

1
(2n+ 1)(1 +€9)"

2n )
Y e (Jay [+ B[P
k=0

1 +ein€
= . 78
(1 +619)11 ( )

where in the second step we use the relation
N(EF P ply)" = (ail + )7 (1 + )"
We can predict that the pseudo-Rényi entropy is given by

. 1 1 +ein€

Remarkably, this prediction is consistent with the results
obtained directly from calculations using the replica
method. Furthermore, the aforementioned outcomes also
align with the quasiparticle picture’s explanation of the
time evolution of the transition matrix.

Note that in [35] the authors consider the time evolution
of a superposition state and find the pseudo-Rényi entropy
is associated with Rényi entropy in the later time limit. One
could show the results in [35] can be derived by using the
sum rule (12) and quasiparticle picture [51,56].
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2. Quasiparticle excited states in spin chain

Consider two distinct single-quasiparticle excited states
denoted as |k;) and |k,) in spin chain. These states are
orthogonal and pertain to a chain comprising L free bosons
or fermions. The system is divided into subsystem
A=[1,7] and its complementary B = [/ + 1,L]. The
two states are defined by acting the mode operator b, =
bp i + bpy on ground state

k) = b} (|G) + b (|G). (80)

where b, bp; are operators located in A and B. It is
shown in [57,58] the Rényi entropy has a universal picture,
which can be explained as the probability of the quasipar-
ticle located in A is given by <G|bA,kb;’k|G> = x =% For
the superposition state

[6(e)) =—= (ki) +e[k2))

-5l

(B g, + €1 )|G) + (b, +e b )|G)).

By similar argument the probability of the quasiparticle is
located in A is given by

1 ) )
Pagi=35 (Gl(bag, + e_"ﬁbA,kz)(be,k, + el¢b,:.k2)|G>

1 . .
=xt3 (az1e™ + appe'?), (81)
where
A
_aikpp (£41) Sll’lﬂ#
app =¢ L @ kiy = ki —ky. (82)

By this picture, the Rényi entropy takes the form

AP ey = Phg T (1= Pag)" (83)

Using the sum rule (12) we can derive

tra (T )" = 14 (=)")ay. (84)

This is consistent with the direct calculation.

VIII. TENTATIVE SUM RULE FOR
PSEUDOENTROPY

For two nonorthogonal states |¢) and |y), the pseudo-
entropy can be obtained by using

HmS™ (TY) = —a,tr (T%7)"

n—1

(85)

|n—>l‘

We want to expand the S (T%?) and S™ (p,(k)) in the
sum rule near n = 1.
The sum rule can be written as

2
Zn: o ikn trypa (k)"

N(eﬁ’flk)Zn ’

1

wld\n
tra (T57)" = (2n + 1) (¢lw)" =

We expand trA(T;’(W)” near n~ 1 as

ey (TP = 1+ (= 1)0, e (TH)] oy + O(n = 1)2.
(86)

Similarly, for tryp, (k)" we have

trapa(k)" =1+ (n = 1)9,trapa(k)"|,—y + O(n = 1)%.
(87)

Using

1 iy 1
-~ R rEs| n—zm =1, 88
TRV R e

e2n+1
we have
2n 271 27 fy
€ i —0,trapa (k)" ],
_antrApA(k)n|n:l = n 271
;(ZH D{glw)" N (extik)2n

(89)

Taking the limit » — 1 on both side of the above equation,
we get

’I/|(/’ Ze ZH‘lkn S pA ))|n:l ) (90)

27

—0 ¢|l// eZI1+l )Zn

The reduced density matrix p, (k) depends on n. Generally,
we have

antrApA (

by = a,,Zm,(nn”
— Z{

where A;(n) denote the eigenvalues of p4 (k). Taking n = 1
and using the fact that >, 4;(n) = 1, we get the second
term Zi’w_lan/li(nﬂn:l =0.

If one could take the limit first, we would have

"log A;(n) + nAr=1a,4;(n)}(91)

2 2mk
Z S pA k))|n l' (92)

TWW’ l
5 3(Plw) [N (eFh)P
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But the sum rule (92) seems to be not true for the
general case.

We consider the perturbation states. The pseudoentropy
in this example can be evaluated by S(TZW) =

—0,tr(T%")"|,_, and obtain

S(TY") = S(p%) + e (W' |[KY = S()]lw).  (93)

2

32 1+ S0
=0

o

W)+ e WIIKY = SDw)-

Therefore, the sum rule (92) is available for the perturbation
states to the leading order of €. However, we do not expect
it is still true to the next order.

We consider the two qubits system as an example to
show the sum rule for pseudoentropy (92) is not correct
beyond the leading order of perturbation. For simplicity, we
consider the state

|#) = (|00> + 1),

%!

) === (100) + 1), (96)

Sl -

where 0 € [0, 2x). The pseudoentropy is given by
0 0
S(TY?) = 5 9 tan > + log (2 cos 5) (97)

For the superposition state |£(k)) the entanglement
entropy is

S(pa(k)) = =2, log Ay — A, log Ay, (98)
where
27 \1D 2 ﬂ'k
A = 2[N (e2+1)]*cos 3 )
/12 - 2[N<62n+1k)]2(:032 g+ ﬂ_k s
2 3
27i 1

A ()2 = (99)

2[cos? (& =) + cos*(¢ + ”Tk)] )

We define the function

€
+ —= WK ') +
+ e

which is the first law like relation for the pseudoentropy.
The entanglement entropy of the superposition state is

*

S(pa(k)) = S(p%) + T W/ |IKY = S()]lw)
o + = WIKY =~ S, (94)

Taking the above expression into the right-hand side (rhs)
of (92) we have

€ N oW e (w'lw)S(p})
WIS - Sl + )
99
f
2 e T” )|n:]
¢|w > 7» T (100)

One could check § (0) is different from the pseudoentropy
(97) for arbitrary 6. In fact for small & << 1 we have the
expansion

S(T%?) =1og(2) +5 o + g;: + 0(6°),
~ 6> 64 i6°
5(0) = 10g(2) + +19—2—16—4 L 0®6%.  (101)

We show S(6) and S(T'Z"ﬁ) as function of @ in Fig. 1.
In summary, the sum rule formula for pseudoentropy
(92) is true to the leading order of the perturbation

af
o
ab
o

0.0 0.5 1.0 1.5 2.0 2.5 3.0
uf : : : : :
3l — Ins(72'%)
of ImS (0)

i (b) :

FIG. 1.
pseudoentropy S(7° l/’;“/’) as a function of 6. In the region 6 < 1,

S(T KWJ) ~ &8(6), which is consistent with the result that the
pseudoentropy sum rule (92) is available in the leading order of
the perturbation.

The real and imaginary parts of the function S(6) and
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parameter . However, it cannot be used beyond the leading
order of €. One possible explanation for the above con-
clusion is that the pseudoentropy and entanglement entropy
both satisfy first-law like relation at the leading order of ¢,
which are associated with the expectation value of the
modular Hamiltonian. Therefore, we conclude that (92) can
only be used if the distance between the two states |¢) and
|w) is small. It would be interesting to find the sum rule for
pseudoentropy for general cases.

IX. ALTERNATIVE FORMS OF THE SUM RULE

For the one-point function (¢|.Aly), we can also con-
struct the sum rule by the following way. Let us write down
the formula

WlAl) = > aeAe,
ce{l.-1i-i}
where a () = 2¢ + (ply) + (w|¢) and
= (& Al&)
1
&) = (Ip) + cly)).

V1+clglw) +c (wlg) + e

Similar formula has been used in [59] to calculate the off-
diagonal elements of the modular Hamiltonian.

Now consider the other form of sum rule for pseudo-
Rényi entropy. Consider trA(Tl’" )2 as an example.
For simplicity, let (¢|w)=0. One could choose
S ={1,i,—1,-i,e}, where 6 is some constant. Define
the superposition state |£.) = W(\¢>+c|w)). The

sum rule can be expressed as

AT = Yamboas (102
ceS
where p, . = trz|&.) (&, |, a. are given by
1 1 1
a(l)_l ei&’ (i):_1+iei9’ a(—]):1+ei0’
1 4e20
(Z(_l) = 1 —ieiﬂ s CI(eis) = _1——6419. (103)
Another form is by taking the set S =

{1,€ %% &% 49} The superposition state is

) = T—— + . We have the relation
) = b () + clo)
trA TW‘(A Za trA pAL . (104)
ced
where

4
am) = (1- ei(’)“(l I ew)z(l el 1 0e2if 30 1 6419)*
4710

A =~ i0\4 0 0 20y

(1 —e9)*(1 +€e9)(1 + €l + e*?)

4 —i0
(1 =e)*(1 4 e
4
ety =~ 04 0 0 2i0)°
—e e e e
(1 =e“)* (1 +e“)(1 +e“ +e*)
420

Cl(ezue) =

(1 _ ei6)4(1 + eié‘)Z(l + eiH + 262i9 + e3i6 + e4i9) '

One could construct other forms of sum rule by choosing
different set S. But these solutions are only for some
special cases.

X. GENERALIZED RENYI ENTROPY AS
DERIVATIVES OF RENYI ENTROPY

In [8] the authors introduce the so-called the generalized
Rényi entropy, akin to the pseudo-Rényi entropy. In this
section, we aim to explore the potential to derive the
generalized Rényi entropy through derivatives of the Rényi
entropy. In a d-dimensional Hilbert space, we define the
mixed state reduced density matrix

d
ciy) = ZCiPA,ia (105)
i=1
with the eigenstate reduced density matrices
pai = wali){il. (106)

Here the reduced density matrices p4({c;}) and all p, ; are
not necessarily well normalized. For p,({c;}) to be a well-
defined (unnormalized) reduced density matrix, we require
¢;>0and > ¢, ¢; > 0. From

palfed)] = ZZ (H )

[(f1)

for a set {r;} with 0 <r; <nand >.%, r; =n, we get

Kljpﬁi,i) + ] ) [H ]m red)

a =
i=1

: } . (107)
H?:l (rit)

(108)
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In the above two equations we have used “...” to denote the
permutation terms, and subscript Hd denotes the total

number of terms. In this way, we the sum of proper
products of the reduced density matrices as the derivatives
of the power of one reduced density matrix.

More generally, we define the mixed state reduced
density matrix

pal{cii}) = Zci,i’pA,i,i” (109)
ii'
with the reduced transition matrices
pair = trali)(i']. (110)

For ps({c;}) to be a well-defined (unnormalized) reduced
density matrix, we require that it is Hermitian and positive
definite. Especially, we require ¢;;, = c¢;;, ¢;; 20 and

> ¢ii > 0. From
ri.i/
( Ci.i/ )
iil

x [( p) +} . (1)
i “

Hz:i’ (i)

Z”, rg=n
lpa{cii})]" = Z

we get the sum of proper products of the reduced transition
matrices written as the derivatives of the power of one
reduced density matrix

r. aL‘ZK[/
{(pA"‘”)—l-] . Hr N LUA {CII})}

N

(112)

xt’( ”,

XI. DISCUSSION

In this paper, we have introduced a novel operator sum
rule that involves the reduced transition matrix 7*|# and the
density matrix of the superposition state |£(c)). Utilizing
this sum rule, we find the off-diagonal matrix elements can
be associated with the diagonal matrix elements (8)(9). We

also establish a connection between pseudo-Rényi entropy
and Rényi entropy (12), both of which have significant
physical implications.

Currently, the physical interpretation of the non-
Hermitian transition matrix and pseudo-Rényi entropy
remains unclear, despite some intriguing findings in recent
research. Our sum rule can be viewed as a bridge linking
these new concepts to established ones. We demonstrate the
significance of the sum rules and their potential applica-
tions across various physics domains, including under-
standing the gravity dual of the non-Hermitian transition
matrix and the quasi-particle interpretation of pseudo-
Rényi entropy. It is worthwhile to further explore the
physics applications of the sum rule.

Constructing a sum rule for pseudoentropy may be
particularly intriguing, as the pseudoentropy is also
expected to satisfy the HRT formula within the framework
of AdS/CFT. The corresponding sum rule could poten-
tially offer insightful geometric interpretations. The sum
rule for the pseudo-Rényi entropy presented in this paper
does not exhibit a smooth limit to the pseudoentropy.
Thus, a sum rule for the pseudoentropy is still lacking.
However, in principle, there should be various forms of the
sum rule achievable by selecting the set S. It is possible to
construct one that could have a smooth limit for the
pseudoentropy.

Moreover, we anticipate that our findings can be
extended to the transition matrix for mixed states [7,25]
and the generalized Rényi entropy [8]. Notably, a recent
work [60] introduced a new quantity called SVD entangle-
ment entropy, utilizing the transition matrix, which exhibits
distinct properties compared to pseudoentropy. It would be
fascinating to investigate whether the SVD entanglement
entropy also possesses a sum rule similar to the pseudo-
Rényi entropy.
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