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By generalizing the density matrix to a transition matrix between two states, represented as jϕi and jψi,
one can define the pseudoentropy analogous to the entanglement entropy. In this paper, we establish an
operator sum rule that pertains to the reduced transition matrix and reduced density matrices corresponding
to the superposition states of jϕi and jψi. It is demonstrated that the off-diagonal elements of operators can
be correlated with the expectation value in the superposition state. Furthermore, we illustrate the connection
between the pseudo-Rényi entropy and the Rényi entropy of the superposition states. We provide proof of
the operator sum rule and verify its validity in both finite-dimensional systems and quantum field theory.
We additionally demonstrate the significance of these sum rules in gaining insights into the physical
implications of transition matrices, pseudoentropy, and their gravity dual.
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I. INTRODUCTION

In many research fields, we encounter the handling of
off-diagonal elements in certain states. To understand the
quantum decoherence the off-diagonal elements of observ-
ables in the pointer states play an important role [1,2]. In
the eigenstate thermalization hypothesis [3,4] one concerns
about the matrix elements of local observables between
energy eigenstates. In the field of quantum weak value the
key quantity is the expectation value of operator between
the so-called preselection and postselection states [5,6].
To express the off-diagonal matrix elements between two

states, say jϕi and jψi, one can define the unnormalized
transition matrix as T̃ ψ jϕ ≔ jψihϕj. The off-diagonal ele-
ments of local observables A can be expressed as

hϕjAjψi ¼ trðT̃ ψ jϕAÞ: ð1Þ

Here, the transition matrix T̃ ψ jϕ plays a role similar to that
of the density matrix. In fact, in the special case where
jϕi ¼ jψi, it becomes the density matrix. Thus, T̃ ψ jϕ can
be considered a generalization of the density matrix. Many
quantities can be rephrased in terms of the transition

matrices. For instance, the expectation value of an operator
O in the state ρ ¼ jϕihϕj is given by trðρOÞ. It can also be
understood as trðT̃ ψ jϕÞ with jψi ≔ Ojϕi.
If a system can be partitioned into a subsystem A and its

complementary counterpart Ā, similar to the reduced
density matrix, one can establish the reduced transition

matrix of A as T ψ jϕ
A ¼ trĀT

ψ jϕ, where we have defined the
normalized transition matrix

T ψ jϕ ≔
jψihϕj
hϕjψi ; ð2Þ

assuming jϕi and jψi are nonorthogonal. The above idea is
explored in quantum field theory in a recent paper [7], see

also [8]. By definition, one can see that T ψ jϕ
A is generally a

non-Hermitian matrix. It was shown that the reduced
transition matrices contain additional theoretical informa-
tion and lead to intriguing results.
In this paper, we present a sum rule that connects the

reduced transition matrix T ψ jϕ
A and the reduced density

matrix of the superposition state composed of jψi and jϕi.
To accomplish this, we introduce a series of states denoted
by jξðcÞi, defined as

jξðcÞi ¼ N ðcÞðjϕi þ cjψiÞ; ð3Þ

where N ðcÞ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jcj2 þ chϕjψi þ c�hψ jϕi

p
ensures

the normalization of hξðcÞjξðcÞi ¼ 1. We use ρAðcÞ ≔
trĀjξðcÞihξðcÞj to represent the reduced density matrix.
The key finding of this paper is the sum rule that establishes

a connection between ðT ψ jϕ
A Þn and ½ρAðcÞ�n as
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ðT ψ jϕ
A Þn ¼

X
c∈S

aðcÞ½ρAðcÞ�n; ð4Þ

where aðcÞ are some specific n-dependent constants, and
the index c belongs to a given set denoted by S.
In the next section, we will demonstrate that one of the

choices is S ¼ fe 2πi
2nþ1

kjk ¼ 0; 1; 2;…; 2ng. For this particu-
lar set, we define

ak ≔ aðe 2πi
2nþ1

kÞ ¼ e−
2πi
2nþ1

kn

ð2nþ 1ÞN n
k
; ð5Þ

N k ≔ N ðe 2πi
2nþ1

kÞ2hϕjψi: ð6Þ

As a result, the operator sum rule takes the form

ðT ψ jϕ
A Þn ¼

X2n
k¼0

ak½ρAðkÞ�n; ð7Þ

where ρAðkÞ ≔ ρAðe 2πi
2nþ1

kÞ.
Using the operator sum rule (7), we can establish a sum

rule for off-diagonal matrix elements. The off-diagonal
matrix elements of a set of operators fAjg ðj ¼ 1;…; mÞ in
subsystem Awould have the following interesting relations.
If jϕi and jψi are nonorthogonal, for m ≤ n we have

Ym
j¼1

hϕjAjjψi
hϕjψi ¼

X2n
k¼0

ak
Ym
j¼1

hξkjAjjξki; ð8Þ

where jξki ≔ jξðe 2πi
2nþ1

kÞi. If jϕi and jψi are orthogonal, we
have

Yn
j¼1

hϕjAjjψi ¼
X2n
k¼0

a0k
Yn
j¼1

hξkjAjjξki; ð9Þ

where a0k ¼ 2n

2nþ1
e−

2πi
2nþ1

kn.
Based on the similarity between the transition matrix and

the density matrix, the authors in [7] introduce a concept
called pseudoentropy. For the reduced transition matrix

T ψ jϕ
A the definition is

SðT ψ jϕ
A Þ ¼ −trAðT ψ jϕ

A log T ψ jϕ
A Þ: ð10Þ

To evaluate the pseudoentropy, the concept of pseudo-
Rényi entropy is introduced

SðnÞðT ψ jϕ
A Þ ¼ log trAðT ψ jϕ

A Þn
1 − n

; ð11Þ

where n is an integer greater than or equal to 2.
By analytically continuing n, the pseudoentropy can be

expressed as SðT ψ jϕ
A Þ ¼ limn→1 SðnÞðT ψ jϕ

A Þ. In practice, the

replica trick is commonly used to evaluate pseudo-Rényi
entropy in QFTs. Although the calculation method for
pseudo-Rényi entropy is similar to that of Rényi entropy,
there are relatively few analytical results available for
pseudo-Rényi entropy. This scarcity is attributed to the
transition matrix involving two distinct states and being
typically non-Hermitian, which makes the calculations
more intricate.
After taking the trace on both sides of Eq. (7), we obtain

an interesting relation between the Rényi entropy and
pseudo-Rényi entropy

eð1−nÞSðnÞðT
ψ jϕ
A Þ ¼

X2n
k¼0

akeð1−nÞS
ðnÞðρAðkÞÞ: ð12Þ

The discrete Fourier transform of a sequence of N complex
numbers fxkg with k∈ f0;…; N − 1g could be denoted by
F½xk�ðsÞ ¼

P
N−1
k¼0 e

− 2πi
2nþ1

ksxk. The results (8), (9), and (12)
show the off-diagonal elements and the pseudo-Rényi
entropy can be associated with the discrete Fourier trans-
form with N ¼ 2nþ 1 and s ¼ n. Therefore, the calcu-
lation of these quantities can be transformed into evaluating
diagonal elements and the Rényi entropy for the super-
position states and performing a discrete Fourier trans-
formation. It is worth noting that the above results are
trivially satisfied for the special case where jψi ¼ jϕi.
The subsequent sections of the paper are structured in the

following manner. Section II explores the importance of the
sum rule. In Sec. III, we give a proof for the sum rule. We
discuss the sum rule in quantum field theory (QFT) and
conformal field theory (CFT) in Secs. IV and V, respec-
tively. We present examples of the sum rule in Sec. VI.
Moreover, Sec. VII highlights several applications of the
sum rule. In Sec. VIII, we study a tentative sum rule of
the pseudoentropy. Section IX exhibits alternate forms of
the sum rule. Analogous to the sum rule, Sec. X demon-
strates the generalized Rényi entropy expressed as deriv-
atives of Rényi entropy. We conclude with discussion
in Sec. XI.

II. THE SIGNIFICANCE OF THE SUM RULES

Before delving into the details of proving the sum rule,
let us first explore its significance. It is well known that any
non-Hermitian operator can be expressed as a linear
combination of two Hermitian operators. Our sum rule
(7) illustrates a distinct and generalized version of a similar
statement. The sum rules involving the off-diagonal ele-
ments (8), (9) and pseudo-Rényi entropy (12) represent two
different aspects of the operator relation.
As mentioned in the Introduction, in many situations one

needs to deal with the off-diagonal elements in some
Hilbert space, denoted by the H with the orthonormal
basis B ≔ fjmiig (i ¼ 0; 1;…). Consider the off-diagonal
elements hm0jAjjmii (i ≥ 1) for operator A. One can
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construct a new set of nonorthogonal basis Bk ≔ fjm0
iðkÞig

with jm0
iðkÞi ≔ N ðkÞðjm0i þ e

2πi
2nþ1

kjmiiÞ (i ¼ 0; 1;…),
where N ðkÞ is the normalization constant. Note that Bk

is constructed by a rotation of the basis jmii (i ≥ 1) with
respect to jm0i. Equation (9) suggests the product of the
off-diagonal elements

Q
n
j¼1hm0jAjjmii in the basis B can

be decomposed as a linear combination of the product of
the diagonal elements

Q
n
j¼1hm0

iðkÞjAjjm0
iðkÞi in the

basis Bk.
The sum rule (12) gives the relation between two different

concepts of entropy. Entanglement entropy as well as Rényi
entropy are important measures widely employed to char-
acterize quantum entanglement between two given subsys-
tems, and its significance has been extensively discussed
from various perspectives, ranging from quantum many-
body systems to QFTs and quantum gravity [9–12]. In the
context of AdS=CFT correspondence [13–15], entangle-
ment entropy is found to be associated with the minimal
surface in the bulk [16,17], known as the Ryu-Takayanagi
(RT) formula and its generalization Hubeny-Rangamani-
Takayanagi (HRT) formula. This discovery opens up a new
pathway for understanding the quantum nature of black
holes and general spacetime [18–21].
The concept of pseudoentropy is quite new. The main

drive behind exploring pseudoentropy lies in its capacity to
satisfy the RT formula in a new class of non-Hermitian
state, providing valuable insights into geometry and entan-
glement [7]. Additionally, it serves as a novel order
parameter in quantum many-body systems, extending
beyond the entanglement entropy [22–24]. Unlike conven-
tional entropy, pseudoentropy is generally not a real
number. It has been revealed in [25] that the reality
condition of pseudoentropy is closely associated with
non-Hermitian physics [26–28]. Moreover, the imaginary
part of pseudoentropy has been proposed in [29] to be
linked to timelike entanglement and the emergence of time
in the dS=CFT correspondence. Overall, pseudoentropy
exhibits significant potential for applications across various
aspects of physics. For more recent developments, one can
refer to [30–44].
Even though many interesting results have been

obtained, the physical significance and potential applica-
tions of transition matrix as well as pseudoentropy are still
far from clear. The sum rules we have obtained imply that
they are not merely a simple generalization, but are closely
related to the concept of entanglement. These researches
also indicate that certain classes of transition matrices may
possess a dual representation in terms of bulk geometry.
However, our current understanding of this correspondence
is still limited. The sum rule (12) establishes a link between
the geometry associated with the transition matrix and
the density matrix, shedding light on this intriguing
relationship.
The sum rules are crucial for our understanding of the

transition matrix, pseudoentropy, and their holographic

dual. In the following sections, we will briefly discuss
possible applications of the sum rules in these aspects.

III. PROOF OF THE OPERATOR SUM RULE

According to the definition, we have

ρAðcÞ ¼ N ðcÞ2ðρϕA þ chϕjψiT ψ jϕ
A

þ c�hψ jϕiT ϕjψ
A þ cc�ρψAÞ; ð13Þ

where ρϕA ≔ trĀjϕihϕj, and ρψA ≔ trĀjψihψ j. The nth power
of ρAðcÞ can be expanded as

½ρAðcÞ�n ¼
X
fr;s;tg

ctþrðc�Þsþrhϕjψithψ jϕisN ðcÞ2n

×
�ðρϕAÞn−r−s−tðT ψ jϕ

A ÞtðT ϕjψ
A ÞsðρψAÞr þ � � ��;

ð14Þ

where “þ � � �” denotes the sum of all possible permutation
terms for each fixed r, s, t. For example, when n ¼ 5,
r ¼ 4, t ¼ 0 and s ¼ 1, we have the expression

fðρϕAÞ4T ψ jϕ
A þ � � �g ¼ ðρϕAÞ4T ψ jϕ

A þ ðρϕAÞ3T ψ jϕ
A ρϕA þ

ðρϕAÞ2T ψ jϕ
A ðρϕAÞ2 þ ρϕAT

ψ jϕ
A ðρϕAÞ3 þ T ψ jϕ

A ðρϕAÞ4. For a
fixed set fr; s; tg, there are n!

r!s!t!ðn−r−s−tÞ! terms. Now,

consider a linear combination of ½ρAðcÞ�n
X
c∈S

aðcÞ½ρAðcÞ�n ¼
X
fr;s;tg

X
c∈A

aðcÞctþrðc�Þsþrhϕjψithψ jϕis

×N ðcÞ2nfðρϕAÞn−r−s−tðT ψ jϕ
A Þt

× ðT ϕjψ
A ÞsðρψAÞr þ � � �g: ð15Þ

If there is the condition

X
c∈S

aðcÞctþrðc�Þsþrhϕjψithψ jϕisN ðcÞn ¼ δs;0δt;n; ð16Þ

the operator sum rule (4) is obtained.
To find a solution to (16), we consider the set

S ¼ fe 2πi
2nþ1

kjk ¼ 0; 1; 2;…; 2ng. Equation (16) can be
solved as

X2n
k¼0

fke
− 2πi
2nþ1

kðnþs−tÞ ¼ δs;0δt;n; ð17Þ

where

fk ≔ aðe 2πi
2nþ1

kÞ½e 2πi
2nþ1

kN ðe 2πi
2nþ1

kÞ2hϕjψi�n: ð18Þ

The value of fk can be found using an inverse discrete
Fourier transform, resulting in fk ¼ 1

2nþ1
. We obtain ak ≔

aðe 2πi
2nþ1

kÞ (5) using the relation (18).
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By replacing the right-hand side of (16) as well as (17)
with δs;nδt;0, we arrive at the sum rule involving T ϕjψ

A .
Similarly, we can find a relation for the transition

matrix T ϕjψ
A

eð1−nÞSðnÞðT
ϕjψ
A Þ ¼

X2n
k¼0

e
2πi

2nþ1
kn e

ð1−nÞSðnÞðρAðkÞÞ

ð2nþ 1ÞN n
k
: ð19Þ

This is consistent with the fact that ½SðnÞðT ψ jϕ
A Þ�� ¼

SðnÞðT ϕjψ
A Þ. The transition matrix can also be defined for

a pair of orthogonal states. If the two states jϕi and jψi are
orthogonal, the transition matrix is modified to
T ψ jϕ ¼ jψihϕj. The reduced transition matrix is defined

as T ψ jϕ
A ¼ trĀjψihϕj. The sum rule is slightly different in

this case. The normalization constant becomes
N ðcÞ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jcj2

p
. To obtain the sum rule we require

the similar relation as

X
c∈S

a0ðcÞ½N ðcÞ�nðc�Þsct ¼ δs;0δt;n: ð20Þ

We still take S ¼ fe 2πi
2nþ1

kjk ¼ 0; 1; 2;…; 2ng. It is not hard
to get

a0k ≔ a0ðe 2πi
2nþ1

kÞ ¼ 2n

2nþ 1
e−

2πi
2nþ1

kn: ð21Þ

The sum rule for orthogonal states are given by

trAðT ψ jϕ
A Þn ¼

X2n
k¼0

a0ktrA½ρAðkÞ�n; ð22Þ

where ρAðkÞ ≔ trĀjξðe
2πi
2nþ1

kÞihξðe 2πi
2nþ1

kÞj.

IV. SUM RULE FOR PSEUDO-RÉNYI ENTROPY
FROM REPLICA METHOD IN QFTs

In quantum field theory (QFT), the computation of
(pseudo-) Rényi entropy can be achieved using the replica
method [7,45]. Additionally, one can establish the formula
presented in (12) using the same replica method. The state
jψi and jϕi, as well as their superposition jξðcÞi ¼
N ðcÞðjϕi þ cjψiÞ can be prepared using Euclidean path-
integral with operator insertions. The replica partition
function in the transition matrix T ψ jϕ can be computed
by path integral on an n-sheet manifold Rn gluing along
subsystem A,

trA½ðT ψ jϕ
A Þn� ¼ Zn

hϕjψin
�Yn

i¼1

ϕðiÞ†
Yn
j¼1

ψðjÞ
�

Rn

; ð23Þ

where Zn is the vacuum partition function onRn, ψðjÞ and
ϕðiÞ denote the operators on the jth and the ith sheets,

respectively. Similarly, for the reduced density matrix ρAðcÞ
we have

trAf½ρAðcÞ�ng ¼ ZnN ðcÞn
�Yn

i¼1

½ϕðiÞ† þ c�ψðiÞ†�

×
Yn
j¼1

½ϕðjÞ þ cψðjÞ�
�

Rn

: ð24Þ

The correlation function in the above equation can be
expanded as

�Yn
i¼1

½ϕðiÞ† þ c�ψðiÞ†�
Yn
j¼1

½ϕðjÞ þ cψðjÞ�iRn

¼
X
fs;tg

ðc�Þscthψði1Þ† � � �ψðisÞ†ϕði01Þ† � � �ϕði0n−sÞ†

× ψðj1Þ � � �ψðjtÞϕðj01Þ � � �ϕðj0n−tÞ
�

Rn

; ð25Þ

where s; t∈ ð0; 1;…; nÞ. For fixed s, t there are
ðn!Þ2

s!t!ðn−sÞ!ðn−tÞ! terms, thus the total number of terms in the

sum is
P

n
s;t¼0

ðn!Þ2
s!t!ðn−sÞ!ðn−tÞ! ¼ 22n. One of the special term is

the one with s ¼ 0, t ¼ n, i.e., hQn
i¼1 ϕðiÞ†

Q
n
j¼1 ψðjÞiRn

,
which is the correlation function in (23).
Then we consider linear combinations of trA½ρAðcÞ�n

(24). By choosing a series of functions aðcÞ with the index
c∈S, we have

X
c∈S

aðcÞtrA½ρAðcÞ�n

¼ Zn

X
fs;tg

X
c∈A

aðcÞ½N ðcÞ�nðc�Þscthψði1Þ†…ψðisÞ†

× ϕði01Þ†…ϕði0n−sÞ†ψðj1Þ…ψðjtÞϕðj01Þ…ϕðj0n−tÞiRn
:

ð26Þ

If we have

X
c∈S

aðcÞ½N ðcÞ�nðc�Þsct ¼ 1

hϕjψin δs;0δt;n; ð27Þ

the above summation would reduce to trAðT ψ jϕ
A Þn, which is

just the sum rule (4). To find a solution, one could take
S ¼ fe 2πi

2nþ1
kjk ¼ 0; 1; 2;…; 2ng, we would have the same

Eqs. (17), (18). Thus we have proved the sum rule (7) by
the replica method.

V. SHORT INTERVAL EXPANSION
OF PSEUDO-RÉNYI ENTROPY IN CFTs

Another approach to evaluate the (pseudo-) Rényi
entropy involves utilizing the twist operator formalism.
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In certain special cases, like a short interval in
2-dimensional conformal field theories (CFTs), the oper-
ator product expansion (OPE) of the twist operator can be
employed [46–50]. By doing so, the sum rule (12) is
expressed as a series of relationships between correlation
functions of local operators, thus we can derive the
relations (8) and (9).
The sum rule shows the trAðT ψ jϕ

A Þn can be written as
linear combination of trAðρAðcÞÞn. The Rényi entropy can
be evaluated by using twist operator formalism in certain
cases [45]. An obvious conclusion from the sum rule is that
pseudo-Rényi entropy can also be evaluated by twist
operator formalism in same case. In this section we focus
on two-dimensional CFTs. Consider the CFT is defined on
a cylinder with spatial period L. For an interval A ¼ ½0;l�
with l ≪ L, one could use operator product expansion of
twist operator [46–50]. Generally for a given reduced
density matrix ρA, there is

trAðρnAÞ ¼
�
ϵ

l

�
4hσ

	
1þ

Xn
m¼1

X
X1;…;Xm

lΔX1
þ���þΔXm

× dX1…Xm
trðρX 1Þ � � � trðρXmÞ



; ð28Þ

where the summation fX1;…;Xmg is over all the quasi-
primary operators, ΔX i

are their scaling dimension, hσ is
the conformal weight of twist operator, dX1…Xm

are the
coefficients independent with the state ρA. For the transition

matrix T ψ jϕ
A , the formula is almost the same

trAðT ψ jϕ
A Þn ¼

�
ϵ

l

�
4hσ

	
1þ

Xn
m¼1

X
X1;…;Xm

lΔX1
þ���þΔXm

× dX1���Xm
trðT ψ jϕX1Þ � � � trðT ψ jϕXmÞ



: ð29Þ

Defining FmðcÞ ≔ trðρðcÞX1Þ � � � trðρðcÞXmÞ, we have

Fmðe 2πi
2nþ1

kÞ ¼ ½N ðe 2πi
2nþ1

kÞ�2m
Ym
j¼1

ðhϕjX jjϕi

þ e
2πi

2nþ1
khϕjX jjψi þ e−

2πi
2nþ1

khψ jX jjϕi
þ hψ jX jjψiÞ: ð30Þ

The sum rule is given by using the following equation

X2n
k¼0

e−
2πi
2nþ1

kn Fmðe 2πi
2nþ1

kÞ
ð2nþ 1ÞN n

k
¼ 1

hϕjψim
Ym
j¼1

hϕjX jjψi; ð31Þ

which can be shown directly by using (30). Note that

N ðe 2πi
2nþ1

kÞ ¼ ð2þ e
2πi

2nþ1
khϕjψi þ e−

2πi
2nþ1

khψ jϕiÞ−1=2: ð32Þ

The summation over k is discrete Fourier transform of the
terms in the square brackets. These terms are series in e

2πi
2nþ1

k.
The coefficient corresponding to the highest power e

2πi
2nþ1

kn is

hψ jϕin−m
Ym
j¼1

hϕjX jjψi: ð33Þ

In fact this is the only term survived in the discrete Fourier
transform. Obviously, (31) holds.
In fact, Eq. (31) represents the sum rule for the off-

diagonal matrix elements (8). The relation (9) can be
derived by applying the operator sum rule to the orthogonal
states (22).

VI. EXAMPLES FOR THE SUM RULE

A. Two qubits system

The sum rule can be examined in a system of two qubits
represented in the basis states j00i; j01i; j10i; j11i. We
assume two given states

jϕi ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jαϕj2 þ jβϕj2

q ðαϕj00i þ βϕj11iÞ;

jψi ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jαψ j2 þ jβψ j2

q ðαψ j00i þ βψ j11iÞ; ð34Þ

where αϕðψÞ and βϕðψÞ represent arbitrary constants. The

superposition state is jξðkÞi ≔ N ðe 2πi
2nþ1

kÞðjϕi þ e
2πi
2nþ1

kÞjψi.
The reduced density matrix ρAðkÞ is given by

ρAðkÞ ¼
�
λ1 0

0 λ2

�
; ð35Þ

with

λ1 ¼ ½N ðe 2πik
2nþ1Þ�2

������
αϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jαϕj2 þ jβϕj2
q þ αψe

2iπk
2nþ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jαψ j2 þ jβψ j2
q

������
2

;

λ2 ¼ ½N ðe 2πik
2nþ1Þ�2

������
βϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jαϕj2 þ jβϕj2
q þ βψe

2iπk
2nþ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jαψ j2 þ jβψ j2
q

������
2

;

where

½N ðe 2πik
2nþ1Þ�−2¼

������
αϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jαϕj2þjβϕj2
q þ αψe

2iπk
2nþ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jαψ j2þjβψ j2
q

������
2

þ
������

βϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jαϕj2þjβϕj2

q þ βψe
2iπk
2nþ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jαψ j2þjβψ j2
q

������
2

: ð36Þ

SUM RULE FOR THE PSEUDO-RÉNYI ENTROPY PHYS. REV. D 109, 106008 (2024)

106008-5



The reduced transition matrix T ψ jϕ
A is given by

T ψ jϕ
A ¼

�
t1 0

0 t2

�
; ð37Þ

with

t1 ¼
α�ϕαψ

α�ϕαψ þ β�ϕβψ
; t2 ¼

β�ϕβψ
α�ϕαψ þ β�ϕβψ

:

To check the sum rule (7) one just needs

1

ð2nþ 1Þhϕjψin
X2n
k¼0

e−
2πi
2nþ1

kn λni
N ðe 2πi

2nþ1Þ2n
¼ tni ; ð38Þ

with i ¼ 1, 2, where

hϕjψi ¼ αψα
�
ϕ þ βψβ

�
ϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

αψα
�
ψ þ βψβ

�
ψ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αϕα

�
ϕ þ βϕβ

�
ϕ

p : ð39Þ

B. Perturbation states

We examine the states jψi and jϕi ¼ N ϕðjψi þ ϵjψ 0iÞ
with N ϕ ¼ 1 − 1

2
ðϵhψ jψ 0i þ ϵ�hψ 0jψiÞ þ Oðϵ2Þ, con-

sidering only to the leading order of ϵ. The reduced
transition matrix is then expressed as

T ψ jϕ
A ¼ N ðϵÞðρψA þ ϵ�T ψ jψ 0

A Þ; ð40Þ

where N ðϵÞ ¼ 1 − ϵ�hψ 0jψi, ρψA ¼ trĀjψihψ j, and T ψ jψ 0
A ¼

trĀjψihψ 0j.We can thenwrite the expression for trAðT ψ jϕ
A Þn as

trAðT ψ jϕ
A Þn ¼ trAðρψAÞn

�
1 − nϵ�hψ 0jψi

þ nϵ�
trA½ðρψAÞn−1T ψ jψ 0

A �
trAðρψAÞn

�
: ð41Þ

The superposition state is given by

jξðkÞi ¼ N ðe 2πi
2nþ1

kÞ½ðN ϕ þ e
2πi
2nþ1

kÞjψi þ ϵjψ 0i�; ð42Þ

where N ðe 2πi
2nþ1

kÞ is the normalization constant. The expres-
sion for trA½ρAðkÞ�n is then

trA½ρAðkÞ�n ¼ ðÑ kÞ−ntrAðρψAÞn
	
1þ nϵ�

1þ e−
2πi
2nþ1

k

trA½ðρψAÞn−1T ψ jψ 0
A �

trAðρψAÞn
þ nϵ

1þ e
2πi
2nþ1

k

trA½ðρψAÞn−1T ψ 0jψ
A �

trAðρψAÞn


; ð43Þ

where Ñ k ¼ 1þ ϵhψ jψ 0i
1þe

2πi
2nþ1

k
þ ϵ�hψ 0jψi

1þe−
2πi
2nþ1

k
.

For the superposition state

jξðkÞi ¼ N ðe 2πi
2nþ1

kÞ½ðN ϕ þ e
2πi
2nþ1

kÞjψi þ ϵjψ 0i�; ð44Þ

the normalization constant is

N ðe 2πi
2nþ1

kÞ ¼ j1þ e
2πi
2nþ1

kj−1
�
1 −

1

4
ϵhψ jψ 0i e

− 2πi
2nþ1

k − 1

e−
2πi
2nþ1

k þ 1

−
1

4
ϵ�hψ jψ 0i e

2πi
2nþ1

k − 1

e
2πi

2nþ1
k þ 1

�
: ð45Þ

We also have

hϕjψi ¼ 1þ 1

2
ϵhψ jψ 0i − 1

2
ϵ�hψ 0jψi: ð46Þ

It is straightforward to obtain

X2n
k¼0

e−
2πi
2nþ1

kn trAρAðkÞn
ð2nþ 1ÞN ðe 2πi

2nþ1
kÞ2nhϕjψin

¼ 1

2nþ 1

X2n
k¼0

e−
2πi
2nþ1

knpk; ð47Þ

where

pk ¼ j1þ e
2πi
2nþ1

kj2ntrAðρψAÞn
�
1 − nϵ�hψ 0jψi þ nϵ

1þ e
2πi

2nþ1
k

trA½ðρψAÞn−1T ψ 0jψ
A �

trAðρψAÞn
þ nϵ�

1þ e−
2πi
2nþ1

k

trA½ðρψAÞn−1T ψ 0jψ
A �

trAðρψAÞn
�
: ð48Þ

The nonvanishing terms in the summation (47) are the ones associated with e
2πi
2nþ1

kn, which is equal to Eq. (41). Therefore, the
sum rule is proved in this example.
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C. Locally excited states in two-dimensional massless
boson theory

For a general transition matrix

T ψ jϕ ¼ Oðw1; w̄1Þj0ih0jÕ†ðw2; w̄2Þ
h0jÕ†ðw2; w̄2ÞOðw1; w̄1Þj0i

; ð49Þ

one could use replica method to evaluate the (pseudo-)
Rényi entropy. The two states are jϕi ¼ Õðw2; w̄2Þj0i and
jψi ¼ Oðw1; w̄1Þj0i. We focus on the pseudo-Rényi
entropy with n ¼ 2. It can be shown that the pseudo-
Rényi entropy is associated with the four point functions on
the 2-sheet Riemann surface Σ2

ΔSð2ÞðT ψ jϕ
A Þ

¼ − log
hOðw1; w̄1ÞÕ†ðw2; w̄2ÞhOðw3; w̄3ÞÕ†ðw4; w̄4ÞiΣ2

hÕ†ðw2; w̄2ÞOðw1; w̄1ÞiΣ1

;

ð50Þ

with ΔSð2ÞðT ψ jϕ
A Þ ≔ Sð2ÞðT ψ jϕ

A Þ − Sð2Þðρð0ÞA Þ, where ρð0ÞA is
the reduced density matrix for ground state, wi ∈Σ2 (i ¼ 1,
2, 3, 4) are coordinates of the corresponding local
operators.
To calculate the four point correlation function on Σ2,

one could use the conformal mapping

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
w − x1
w − x2

r
; ð51Þ

where x1, x2 are endpoints of the interval A. The corre-
sponding coordinates of wi ∈Σ2 under the conformal
mapping are given by

z1 ¼ −z3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w1 − x1
w1 − x2

r
; z2 ¼ −z4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − x1
w2 − x2

r
: ð52Þ

We take w ¼ xþ iτ, w̄ ¼ x − iτ. We mainly focus on the
operators

Oðw1; w̄1Þ≕ e
i
2
ϕð0;−aÞ∶ þ eiθ∶e− i

2
ϕð0;−aÞ∶;

Õ†ðw2; w̄2Þ≕ e
i
2
ϕð0;a0Þ∶þ ∶e− i

2
ϕð0;a0Þ∶; ð53Þ

with w1 ¼ −ia and w2 ¼ ia0. The two states under con-
sideration are

jϕi ¼ ðei
2
ϕð0;−aÞ þ e−

i
2
ϕð0;−aÞÞj0i;

jψi ¼ ðei
2
ϕð0;a0Þ þ eiθ−

i
2
ϕð0;a0ÞÞj0i: ð54Þ

ΔSð2ÞðT ψ jϕ
A Þ has been evaluated in [7], and the result is

ΔSð2ÞðT ψ jϕ
A Þ ¼ log

1þ cos θ
cos θ þ jηj2 þ j1 − ηj2 ; ð55Þ

where the cross ratio η ¼ ðz1−z2Þðz3−z4Þ
ðz1−z3Þðz2−z4Þ. For the case θ ¼ 0,

the pseudo-Rényi entropy reduces to Rényi entropy. In the

limit a; a0 → 0, η; η̄ → 0, ΔSð2ÞðT ψ jϕ
A Þ → 0. For the case

θ ≠ 0, we can also consider the Lorentzian time evolution
by analytic continuation a → δþ it and a0 → δ − it
where δ is the UV cutoff. It can be shown that in the
region x1 < t < x2 we will have

ΔSð2ÞðT ψ jϕ
A Þ ¼ log

1þ cos θ
cos θ

: ð56Þ

We take a ¼ a0. The superposition state jξðkÞi is
given by

jξðkÞi ¼ N ðe 2πi
2nþ1

kÞðαk∶ e
i
2
ϕð0;−aÞ∶þ βk∶e−

i
2
ϕð0;−aÞ∶Þj0i;

ð57Þ

where

αk ¼ 1þ e
2πi
2nþ1

k; βk ¼ 1þ eiθþ
2πi
2nþ1

k: ð58Þ

The Rényi entropy ΔSð2ÞðρAðkÞÞ≔Sð2ÞðρAðkÞÞ−Sð2Þðρð0ÞA Þ
can also be evaluated by the replica method. With some
calculations we get

ΔSð2ÞðρAðkÞÞ

¼ log
ðjαkj2 þ jβkj2Þ2

jαkj4 þ 2jαkj2jβkj2jηj þ 2jαkj2jβkj2j1 − ηj þ jβkj4
:

ð59Þ

For the case θ ¼ 0 and a → 0 we have ΔSð2ÞðρAðkÞÞ → 0,
which is consistent with [51]. For the case θ ≠ 0, let us
consider the Lorentzian time evolution by analytic con-
tinuation a → δþ it. In the region x1 < t < x2 we have
η ¼ 1; η̄ → 0, thus

ΔSð2ÞðρAðkÞÞ ¼ log

�ðjαkj2 þ jβkj2Þ2
jakj4 þ jβkj4

�
: ð60Þ

One could check ΔSð2ÞðT ψ jϕ
A Þ and ΔSð2ÞðρAðkÞÞ satisfy the

sum rule (12) with n ¼ 2. Further, the n-th (pseudo) Rényi
entropy can be evaluated by replica method. In Sec. VII C,
we will elucidate the aforementioned simple formula using
the quasiparticle framework, thereby providing an explan-
ation of quasiparticles for the pseudo-Rényi entropy.

D. Quasiparticle excited states in spin chain

We consider a chain of L free bosons or fermions with
Hamiltonian
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H ¼
XL
j¼1

a†jaj: ð61Þ

The global modes are

bk ¼
1ffiffiffiffi
L

p
XL
j¼1

e−
2πijk
L aj; b†k ¼

1ffiffiffiffi
L

p
XL
j¼1

e−
2πijk
L aj: ð62Þ

The ground state jGi is defined as

ajjGi ¼ 0; ∀ j: ð63Þ

For the subsystem A ¼ ½1;l� and its complement
B ¼ ½lþ 1; L�, the ground state is a direct product state

jGi ¼ jGAi ⊗ jGBi; ð64Þ

where the subsystem ground states are defined as

ajjGAi ¼ 0; ∀ j∈A;

ajjGBi ¼ 0; ∀ j∈B: ð65Þ

We will also use the single-quasiparticle excited state

jki ¼ b†kjGi: ð66Þ

It is convenient to define the subsystem modes

bA;k ¼
1ffiffiffiffi
L

p
Xl
j¼1

e−
2πijk
L aj; b†A;k ¼

1ffiffiffiffi
L

p
Xl
j¼1

e
2πijk
L a†j ;

bB;k ¼
1ffiffiffiffi
L

p
XL
j¼lþ1

e−
2πijk
L aj; b†B;k ¼

1ffiffiffiffi
L

p
XL
j¼lþ1

e
2πijk
L a†j :

For two different single-quasiparticle excited states jk1i
and jk2i, which are orthogonal, we may define the reduced
transition matrix

T k2jk1
A ¼ trBjk2ihk1j; ð67Þ

which could not be normalized. Then we get the reduced
transition matrix

T k2jk1
A ¼ −α12jGAihGAj þ b†A;k2 jGAihGAjbA;k1 ; ð68Þ

with

α12 ¼ e−
πik12ðlþ1Þ

L
sin πk12l

L

L sin πk12
L

; k12 ¼ k1 − k2: ð69Þ

In the following, we will also use α21 ¼ α�12. We get the
pseudo-Rényi entropy

trAðT k2jk1
A Þn ¼ ½1þ ð−Þn�αn12: ð70Þ

For the state

jξðeiϕÞi ¼ 1ffiffiffi
2

p ðjk1i þ eiϕjk2iÞ; ð71Þ

we get the reduced density matrix

ρA;ξðeiϕÞ ¼
1

2
f½2ð1−xÞ−α21e−iϕ−α12eiϕ�jGAihGAj

þ e−iθb†A;k1 jGAihGAjbA;k2 þeiθb†A;k2 jGAihGAjbA;k1
þ b†A;k1 jGAihGAjbA;k1 þb†A;k2 jGAihGAjbA;k2g;

ð72Þ

where x ¼ l
L. The Rényi entropy is

trAρnA;ξðeiϕÞ ¼
1

2n
f½2xþ α21e−iϕ þ α12eiϕ�n

þ ½2ð1 − xÞ − α21e−iϕ − α12eiϕ�ng: ð73Þ

Using (70) and (73), we check the sum rule

trAðT k2jk1
A Þn ¼ 2n

2nþ 1

X2n
k¼0

e−
2πik
2nþ1trAρn

A;ξðe 2πik
2nþ1Þ

: ð74Þ

VII. APPLICATIONS

A. Relation between static quantity and dynamical one

In quantum mechanics, a sum rule typically represents a
connection between a static quantity and the summation
over a dynamic one. In this context, we aim to demonstrate
that our sum rules exhibit a similar behavior. Let jeii
(i ¼ 0; 1;…) denote an eigenstate of the Hamiltonian H
with energy Ei. Given an operator A we would like
to consider the off-diagonal elements heijAjeji. According
to (9) we have

heijAjejin ¼
X2n
k¼1

a0khsijjAðtkÞjsijin; ð75Þ

where jsiji ≔ 1ffiffi
2

p ðjeii þ jejiÞ, the operator AðtÞ ≔
eiHtAe−iHt, and tk ¼ 2πk

ð2nþ1ÞðEi−EjÞ.
The physical meaning of the above result is clear. The

off-diagonal elements of an operator in energy eigenstates
can be associated with the expectation value of this operator
at time tk in the superposition states. In the special case that
the operator A is independent with time, that is A ¼ AðtÞ,
as a check of (75) we can see the off-diagonal element
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heijAjeji is vanishing, which can also be derived by using
the fact heijAjeji ¼ eiðEi−EjÞtheijAjeji.
The formula may be more useful when the asymptotic

behavior ofAðtÞ is understood in the limit as t → ∞. In the
special case where Ei − Ej is significantly smaller than the
typical energy of the system, the off-diagonal element
heijAjeji can be determined by examining the asymptotic
behavior of AðtÞ.

B. Transition matrix with gravity dual

The transition matrix extends the potential dual geometry
of boundary states to non-Hermitian ones. It is anticipated
that only a limited class of transition matrices could be dual
to bulk geometry. The fundamental constraint is that the
pseudoentropy must be positive. However, we still do not
have a comprehensive understanding of the properties of
such a transition matrix.
It is generally expected that the theory dual to gravity

should be a gapped large-N CFT [52,53]. The bulk Newton
constantG is proportional to 1=N2. If a state jΨi in the CFT
can be effectively described by a geometry, the connected
two point correlation function of single trace operator Oi
should follow the scaling,

hΨjOiOjjΨi − hΨjOijΨihΨjOjjΨi ∼OðN2Þ: ð76Þ

More generally, a connected k-point function of the
rescaled operator Oi ≔ Oi=N should be of order N2−k.
Consequently, in the limit as N → ∞, the correlation
functions of Oi exhibit behavior akin to generalized free
theory [54].
Utilizing (8) allows one to demonstrate that if the states

jξðkÞi meet the necessary conditions for state with geo-
metry dual, the transition matrix T ψ jϕ would also satisfy
these conditions. This implies that the sum rule could be
employed to construct the geometry dual to the transition
matrix, given the geometry dual to jξðkÞi. Furthermore, in
holography, the (pseudo) Rényi entropy can be linked
to the gravitational on-shell action with cosmic brane
insertion [7,55]. The sum rule (12) signifies a connection
between the bulk solutions.

C. Quasiparticle pictures for pseudo-Rényi entropy

In this subsection, we will demonstrate that in certain
specific setups with the help of the sum rule (12), the
pseudo-(Rényi) entropy can be evaluated within the quasi-
particle framework, akin to the traditional treatment of
entanglement entropy. This would provide more insight
into its relationship with entanglement.

1. Local excitation in 2-dimensional CFTs

In Sec. VI C we consider the massless boson CFT in two
dimensions with two states defined by (54). The subsystem
A is defined as ½x1; x2� with x2 > x1 > 0. In QFTs, the

replica method is utilized to evaluate the pseudo-Rényi
entropy. We will take a ¼ a0 in the following. The super-
position state jξðkÞi is given by (57). The state (57) can be
effectively taken as entangled left-moving and right-mov-
ing quasiparticles. When the right-moving particles enter
the subsystem A (x1 < t < x2) the entanglement between A
and Ā will increase by the amount of the entangled pairs.
We explore the real-time evolution by employing ana-

lytic continuation, specifically a → δþ it. If we consider δ
as the UV cutoff, the time evolution of the Rényi entropy
for the superposition state jξðkÞi can be understood using a
quasiparticle picture. In the region x1 < t < x2, we find that
η → 1 and η̄ → 0, where η and η̄ are functions dependent on
a and the endpoints x1, x2 of A. By the quasiparticle picture
of local excitation [51] the Rényi entropy for the super-
position state jξðkÞi takes the form

ΔSðnÞðρAðkÞÞ ¼
1

1 − n
log

	 jαkj2n þ jβkj2n
ðjαkj2 þ jβkj2Þn



: ð77Þ

By using the sum rule, we obtain the pseudo-Rényi entropy
under the same condition

eð1−nÞΔSðnÞðT
ψ jϕ
A Þ ¼ 1

2nþ 1

X2n
k¼0

e−
2πi
2nþ1

kn eð1−nÞΔSðnÞðρAðkÞÞ

½N ðe− 2πi
2nþ1

kÞ�2nhϕjψin

¼ 1

ð2nþ 1Þð1þ eiθÞn

×
X2n
k¼0

e−
2πi
2nþ1

knðjαkj2n þ jβkj2nÞ

¼ 1þ einθ

ð1þ eiθÞn : ð78Þ

where in the second step we use the relation

N ðe− 2πi
2nþ1

kÞ2nhϕjψin ¼ ðjakj2 þ jβkj2Þ−nð1þ eiθÞn:

We can predict that the pseudo-Rényi entropy is given by

ΔSðnÞðT ψ jϕ
A Þ ¼ 1

1 − n
log

1þ einθ

ð1þ eiθÞn : ð79Þ

Remarkably, this prediction is consistent with the results
obtained directly from calculations using the replica
method. Furthermore, the aforementioned outcomes also
align with the quasiparticle picture’s explanation of the
time evolution of the transition matrix.
Note that in [35] the authors consider the time evolution

of a superposition state and find the pseudo-Rényi entropy
is associated with Rényi entropy in the later time limit. One
could show the results in [35] can be derived by using the
sum rule (12) and quasiparticle picture [51,56].
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2. Quasiparticle excited states in spin chain

Consider two distinct single-quasiparticle excited states
denoted as jk1i and jk2i in spin chain. These states are
orthogonal and pertain to a chain comprising L free bosons
or fermions. The system is divided into subsystem
A ¼ ½1;l� and its complementary B ¼ ½lþ 1; L�. The
two states are defined by acting the mode operator bk ¼
bA;k þ bB;k on ground state

jki ¼ b†A;kjGi þ b†B;kjGi; ð80Þ

where bA;k, bB;k are operators located in A and B. It is
shown in [57,58] the Rényi entropy has a universal picture,
which can be explained as the probability of the quasipar-
ticle located in A is given by hGjbA;kb†A;kjGi ¼ x ≔ l

L. For
the superposition state

jξðeiϕÞi¼ 1ffiffiffi
2

p ðjk1iþeiϕjk2iÞ

¼ 1ffiffiffi
2

p ½ðb†A;k1 þeiϕb†A;k2ÞjGiþðb†B;k1 þeiϕb†B;k2ÞjGi�:

By similar argument the probability of the quasiparticle is
located in A is given by

pA;ξ ≔
1

2
hGjðbA;k1 þ e−iϕbA;k2Þðb†A;k1 þ eiϕb†A;k2ÞjGi

¼ xþ 1

2
ðα21e−iϕ þ α12eiϕÞ; ð81Þ

where

α12 ¼ e−
πik12ðlþ1Þ

L
sin πk12l

L

L sin πk12
L

; k12 ¼ k1 − k2: ð82Þ

By this picture, the Rényi entropy takes the form

trAρnA;ξðeiϕÞ ¼ pn
A;ξ þ ð1 − pA;ξÞn: ð83Þ

Using the sum rule (12) we can derive

trAðT k2jk1
A Þn ¼ ½1þ ð−Þn�αn12: ð84Þ

This is consistent with the direct calculation.

VIII. TENTATIVE SUM RULE FOR
PSEUDOENTROPY

For two nonorthogonal states jϕi and jψi, the pseudo-
entropy can be obtained by using

lim
n→1

SðnÞðT ψ jϕ
A Þ ¼ −∂ntrAðT ψ jϕ

A Þnjn→1: ð85Þ

We want to expand the SðnÞðT ψ jϕ
A Þ and SðnÞðρAðkÞÞ in the

sum rule near n ¼ 1.
The sum rule can be written as

trAðT ψ jϕ
A Þn ¼ 1

ð2nþ 1Þhϕjψin
X2n
k¼0

e−
2πi
2nþ1

kn trAρAðkÞn
N ðe 2πi

2nþ1
kÞ2n :

We expand trAðT ψ jϕ
A Þn near n ∼ 1 as

trAðT ψ jϕ
A Þn ≃ 1þ ðn − 1Þ∂ntrAðT ψ jϕ

A Þnjn¼1 þOðn − 1Þ2:
ð86Þ

Similarly, for trAρAðkÞn we have

trAρAðkÞn ¼ 1þ ðn − 1Þ∂ntrAρAðkÞnjn¼1 þOðn − 1Þ2:
ð87Þ

Using

1

ð2nþ 1Þhϕjψin
X2n
k¼0

e−
2πi

2nþ1
kn 1

N ðe 2πi
2nþ1

kÞ2n
¼ 1; ð88Þ

we have

−∂ntrAρAðkÞnjn¼1¼
X2n
k¼0

e−
2πi
2nþ1

kn

ð2nþ1Þhϕjψin
−∂ntrAρAðkÞnjn¼1

N ðe 2πi
2nþ1

kÞ2n :

ð89Þ

Taking the limit n → 1 on both side of the above equation,
we get

SðT ψ jϕ
A Þ ¼ lim

n→1

X2n
k¼0

e−
2πi

2nþ1
kn

3hϕjψi
SðρAðkÞÞjn¼1

N ðe 2πi
2nþ1

kÞ2n : ð90Þ

The reduced density matrix ρAðkÞ depends on n. Generally,
we have

∂ntrAρAðkÞn ¼ ∂n

X
i

½λiðnÞ�n

¼
X
i

f½λiðnÞ�n log λiðnÞ þ nλn−1i ∂nλiðnÞg;ð91Þ

where λiðnÞ denote the eigenvalues of ρAðkÞ. Taking n ¼ 1
and using the fact that

P
i λiðnÞ ¼ 1, we get the second

term
P

i λ
n−1
i ∂nλiðnÞjn¼1 ¼ 0.

If one could take the limit first, we would have

SðT ψ jϕ
A Þ ¼

X2
k¼0

e−
2πi
3
k

3hϕjψi
SðρAðkÞÞjn¼1

½N ðe2πi3 kÞ�2 : ð92Þ
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But the sum rule (92) seems to be not true for the
general case.
We consider the perturbation states. The pseudoentropy

in this example can be evaluated by SðT ψ jϕ
A Þ ¼

−∂ntrAðT ψ jϕ
A Þnjn¼1 and obtain

SðT ψ jϕ
A Þ ¼ SðρψAÞ þ ϵ�hψ 0j½Kψ

A − SðρψAÞ�jψi; ð93Þ

which is the first law like relation for the pseudoentropy.
The entanglement entropy of the superposition state is

SðρAðkÞÞ ¼ SðρψAÞ þ
ϵ�

1þ e−
2πi
3

hψ 0j½Kψ
A − SðρψAÞ�jψi

þ ϵ

1þ e
2πi
3

hψ j½Kψ
A − SðρψAÞ�jψ 0i: ð94Þ

Taking the above expression into the right-hand side (rhs)
of (92) we have

1

3

X2
k¼0

e−
2πi
3 j1þ e−

2πi
3
kj2

	
SðρψAÞ þ

ϵ

1þ e
2iπk
3

hψ jKψ
Ajψ 0i þ ϵ�

1þ e−
2iπk
3

hψ 0j½Kψ
A − SðρψAÞ�jψi þ

ϵ�hψ 0jψiSðρψAÞ
1þ e

2iπk
3




¼ SðρψAÞ þ ϵ�hψ 0j½Kψ
A − SðρψAÞ�jψi: ð95Þ

Therefore, the sum rule (92) is available for the perturbation
states to the leading order of ϵ. However, we do not expect
it is still true to the next order.
We consider the two qubits system as an example to

show the sum rule for pseudoentropy (92) is not correct
beyond the leading order of perturbation. For simplicity, we
consider the state

jϕi ¼ 1ffiffiffi
2

p ðj00i þ j11iÞ;

jψi ¼ 1ffiffiffi
2

p ðj00i þ eiθj11iÞ; ð96Þ

where θ∈ ½0; 2πÞ. The pseudoentropy is given by

SðT ψ jϕ
A Þ ¼ 1

2
θ tan

θ

2
þ log

�
2 cos

θ

2

�
: ð97Þ

For the superposition state jξðkÞi the entanglement
entropy is

SðρAðkÞÞ ¼ −λ1 log λ1 − λ2 log λ2; ð98Þ

where

λ1 ¼ 2½N ðe 2πi
2nþ1

kÞ�2cos2
�
πk
3

�
;

λ2 ¼ 2½N ðe 2πi
2nþ1

kÞ�2cos2
�
θ

2
þ πk

3

�
;

½N ðe 2πi
2nþ1

kÞ�2 ¼ 1

2½cos2ðπk
3
Þ þ cos2ðθ

2
þ πk

3
Þ� : ð99Þ

We define the function

S̃ðθÞ ¼ 1

3hϕjψi
X2
k¼0

e−
2πi
3
k SðρAðkÞÞjn¼1

½N ðe2πi3 kÞ�2 : ð100Þ

One could check S̃ðθÞ is different from the pseudoentropy
(97) for arbitrary θ. In fact for small θ ≪ 1 we have the
expansion

SðT ψ jϕ
A Þ ¼ logð2Þ þ θ2

8
þ θ4

64
þOðθ6Þ;

S̃ðθÞ ¼ logð2Þ þ θ2

8
þ θ4

192
−
iθ5

64
þOðθ6Þ: ð101Þ

We show S̃ðθÞ and SðT ψ jϕ
A Þ as function of θ in Fig. 1.

In summary, the sum rule formula for pseudoentropy
(92) is true to the leading order of the perturbation

(a)

(b)

FIG. 1. The real and imaginary parts of the function S̃ðθÞ and
pseudoentropy SðT ψ jϕ

A Þ as a function of θ. In the region θ ≪ 1,

SðT ψ jϕ
A Þ ≈ S̃ðθÞ, which is consistent with the result that the

pseudoentropy sum rule (92) is available in the leading order of
the perturbation.
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parameter ϵ. However, it cannot be used beyond the leading
order of ϵ. One possible explanation for the above con-
clusion is that the pseudoentropy and entanglement entropy
both satisfy first-law like relation at the leading order of ϵ,
which are associated with the expectation value of the
modular Hamiltonian. Therefore, we conclude that (92) can
only be used if the distance between the two states jϕi and
jψi is small. It would be interesting to find the sum rule for
pseudoentropy for general cases.

IX. ALTERNATIVE FORMS OF THE SUM RULE

For the one-point function hϕjAjψi, we can also con-
struct the sum rule by the following way. Let us write down
the formula

hϕjAjψi ¼
X

c∈ f1;−1;i;−ig
aðcÞAðcÞ;

where aðcÞ ¼ 2cþ hϕjψi þ hψ jϕi and

AðcÞ ≔ hξcjAjξci

jξci ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ chϕjψi þ c�hψ jϕi þ jcj2
p ðjϕi þ cjψiÞ:

Similar formula has been used in [59] to calculate the off-
diagonal elements of the modular Hamiltonian.
Now consider the other form of sum rule for pseudo-

Rényi entropy. Consider trAðT ψ jϕ
A Þ2 as an example.

For simplicity, let hϕjψi ¼ 0. One could choose
S̃ ¼ f1; i;−1;−i; eiθg, where θ is some constant. Define
the superposition state jξci ¼ 1ffiffiffiffiffiffiffiffiffiffi

1þjcj2
p ðjϕi þ cjψiÞ. The

sum rule can be expressed as

trAðT ψ jϕ
A Þ2 ¼

X
c∈ S̃

aðcÞtrAðρA;cÞ2; ð102Þ

where ρA;c ≔ trĀjξcihξcj, ac are given by

að1Þ ¼
1

1−eiθ
; aðiÞ ¼−

1

1þ ieiθ
; að−1Þ ¼

1

1þeiθ
;

að−iÞ ¼−
1

1− ieiθ
; aðeiθÞ ¼−

4e2iθ

1−e4iθ
: ð103Þ

Another form is by taking the set S̃0 ¼
f1; eiθ; e2iθ; e3iθ; e4iθg. The superposition state is
jξci ¼ 1ffiffiffiffiffiffiffiffiffiffi

1þjcj2
p ðjϕi þ cjψiÞ. We have the relation

trAðT ψ jϕ
A Þ2 ¼

X
c∈ S̃0

aðcÞtrAðρA;cÞ2; ð104Þ

where

að1Þ ¼
4

ð1 − eiθÞ4ð1þ eiθÞ2ð1þ eiθ þ 2e2iθ þ e3iθ þ e4iθÞ ;

aðeiθÞ ¼ −
4e−iθ

ð1 − eiθÞ4ð1þ eiθÞð1þ eiθ þ e2iθÞ ;

aðe2iθÞ ¼
4e−iθ

ð1 − eiθÞ4ð1þ eiθÞ2 ;

aðe3iθÞ ¼ −
4

ð1 − eiθÞ4ð1þ eiθÞð1þ eiθ þ e2iθÞ ;

aðe4iθÞ ¼
4e2iθ

ð1 − eiθÞ4ð1þ eiθÞ2ð1þ eiθ þ 2e2iθ þ e3iθ þ e4iθÞ :

One could construct other forms of sum rule by choosing
different set S. But these solutions are only for some
special cases.

X. GENERALIZED RÉNYI ENTROPY AS
DERIVATIVES OF RÉNYI ENTROPY

In [8] the authors introduce the so-called the generalized
Rényi entropy, akin to the pseudo-Rényi entropy. In this
section, we aim to explore the potential to derive the
generalized Rényi entropy through derivatives of the Rényi
entropy. In a d-dimensional Hilbert space, we define the
mixed state reduced density matrix

ρAðfcigÞ ¼
Xd
i¼1

ciρA;i; ð105Þ

with the eigenstate reduced density matrices

ρA;i ¼ trĀjiihij: ð106Þ

Here the reduced density matrices ρAðfcigÞ and all ρA;i are
not necessarily well normalized. For ρAðfcigÞ to be a well-
defined (unnormalized) reduced density matrix, we require
ci ≥ 0 and

P
d
i¼1 ci > 0. From

½ρAðfcigÞ�n ¼
XP
d
i¼1

ri¼n

f0≤ri≤ng

8>>><
>>>:
�Yd

i¼1

crii

�

×

	�Yd
i¼1

ρriA;i

�
þ � � �



n!Q
d
i¼1

ðri !Þ

9>>>=
>>>;
; ð107Þ

for a set frig with 0 ≤ ri ≤ n and
P

d
i¼1 ri ¼ n, we get

	�Yd
i¼1

ρriA;i

�
þ � � �



n!Q
d
i¼1

ðri!Þ

¼
	Yd
i¼1

∂
ri
ci

ri!



½ρAðfcigÞ�n: ð108Þ
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In the above two equations we have used “� � �” to denote the
permutation terms, and subscript n!Q

d
i¼1

ðri!Þ
denotes the total

number of terms. In this way, we the sum of proper
products of the reduced density matrices as the derivatives
of the power of one reduced density matrix.
More generally, we define the mixed state reduced

density matrix

ρAðfci;i0gÞ ¼
X
i;i0

ci;i0ρA;i;i0 ; ð109Þ

with the reduced transition matrices

ρA;i;i0 ¼ trĀjiihi0j: ð110Þ

For ρAðfci;i0 gÞ to be a well-defined (unnormalized) reduced
density matrix, we require that it is Hermitian and positive
definite. Especially, we require c�i;i0 ¼ ci0;i, ci;i ≥ 0 andP

i ci;i > 0. From

½ρAðfci;i0 gÞ�n ¼
XP
i;i0 ri;i0¼n

f0≤ri;i0≤ng

8>><
>>:
�Y

i;i0
c
ri;i0
i;i0

�

×

	�Y
i;i0

ρ
ri;i0
A;i;i0

�
þ � � �



n!Q

i;i0 ðri;i0 !Þ

9>>=
>>;
; ð111Þ

we get the sum of proper products of the reduced transition
matrices written as the derivatives of the power of one
reduced density matrix

	�Y
i;i0

ρ
ri;i0
A;i;i0

�
þ���



n!Q

i;i0 ðri;i0 !Þ

¼
Y
i;i0

∂
ri;i0
ci;i0

ri;i0!
½ρAðfci;i0gÞ�n: ð112Þ

XI. DISCUSSION

In this paper, we have introduced a novel operator sum
rule that involves the reduced transition matrix T ψ jϕ and the
density matrix of the superposition state jξðcÞi. Utilizing
this sum rule, we find the off-diagonal matrix elements can
be associated with the diagonal matrix elements (8)(9). We

also establish a connection between pseudo-Rényi entropy
and Rényi entropy (12), both of which have significant
physical implications.
Currently, the physical interpretation of the non-

Hermitian transition matrix and pseudo-Rényi entropy
remains unclear, despite some intriguing findings in recent
research. Our sum rule can be viewed as a bridge linking
these new concepts to established ones. We demonstrate the
significance of the sum rules and their potential applica-
tions across various physics domains, including under-
standing the gravity dual of the non-Hermitian transition
matrix and the quasi-particle interpretation of pseudo-
Rényi entropy. It is worthwhile to further explore the
physics applications of the sum rule.
Constructing a sum rule for pseudoentropy may be

particularly intriguing, as the pseudoentropy is also
expected to satisfy the HRT formula within the framework
of AdS=CFT. The corresponding sum rule could poten-
tially offer insightful geometric interpretations. The sum
rule for the pseudo-Rényi entropy presented in this paper
does not exhibit a smooth limit to the pseudoentropy.
Thus, a sum rule for the pseudoentropy is still lacking.
However, in principle, there should be various forms of the
sum rule achievable by selecting the set S. It is possible to
construct one that could have a smooth limit for the
pseudoentropy.
Moreover, we anticipate that our findings can be

extended to the transition matrix for mixed states [7,25]
and the generalized Rényi entropy [8]. Notably, a recent
work [60] introduced a new quantity called SVD entangle-
ment entropy, utilizing the transition matrix, which exhibits
distinct properties compared to pseudoentropy. It would be
fascinating to investigate whether the SVD entanglement
entropy also possesses a sum rule similar to the pseudo-
Rényi entropy.
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